Continuum modelling of gigahertz nano-oscillators
by Barry J. Cox, Tamsyn A. Hilder, Duangkamon Baowan, Ngamta Thamwattana, James M. Hill
International Journal of Nanotechnology (IJNT), Vol. 5, No. 2/3, 2008

Abstract: Fullerenes and carbon nanotubes are of considerable interest throughout many scientific areas due to their unique and exceptional properties, such as low weight, high strength, flexibility, high thermal conductivity and chemical stability. These nanostructures have many potential applications in nano-devices. One concept that has attracted much attention is the creation of nano-oscillators, which can produce frequencies in the gigahertz range, for applications such as ultra-fast optical filters and nano-antennae. In this paper, we provide the underlying mechanisms of the gigahertz nano-oscillators and we review some recent results derived by the authors using the Lennard-Jones potential together with the continuum approach to mathematically model three different types of nano-oscillators including double-walled carbon nanotube, C60-nanotube and C60-nanotorus oscillators.

Online publication date: Wed, 30-Jan-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com