Finite volume computations of convective exergy losses in microfluidic devices
by E.O.B. Ogedengbe, G.F. Naterer
International Journal of Exergy (IJEX), Vol. 5, No. 2, 2008

Abstract: Exergy losses affect the net power required to transport fluid through microfludic devices. Unlike pressure losses or friction factors, modelling of exergy losses can encompass all types of irreversibilities within a microsystem, including thermofluid, chemical and electromagnetic irreversibilities. In this paper, a finite volume method with a SIMPLEC formulation is developed to predict exergy losses in microchannels. The continuum Navier–Stokes equations are solved numerically with a slip-flow boundary condition. The implications of the two coefficients on exergy destruction, involved in the first-order boundary model, are investigated. By reducing exergy destruction within the microchannel, pressure losses and fluid friction can be minimised to reduce power input and improve overall energy efficiency.

Online publication date: Sat, 12-Jan-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com