On turbulent marginal boundary layer separation: how the half-power law supersedes the logarithmic law of the wall
by B. Scheichl, A. Kluwick
International Journal of Computing Science and Mathematics (IJCSM), Vol. 1, No. 2/3/4, 2007

Abstract: As the authors have demonstrated recently, application of the method of matched asymptotic expansions allows for a self-consistent description of a Turbulent Boundary Layer (TBL) under the action of an adverse pressure gradient, where the latter is controlled such that it may undergo marginal separation. In that new theory, the basic limit process considered is provided by the experimentally observed slenderness of a turbulent shear layer, hence giving rise to an intrinsic perturbation parameter, say α, aside from the sufficiently high global Reynolds number Re. Physically motivated reasoning, supported by experimental evidence and the existing turbulence closures, then strongly suggests that α is indeed independent of Re as Re → ∞. Here, we show how the inclusion of effects due to high but finite values of Re clarifies a long-standing important question in hydrodynamics, namely, the gradual transformation of the asymptotic behaviour of the so-called wall functions, which characterises the flow in the overlap regime of its fully turbulent part and the viscous sublayer (and, consequently, its scaling in the whole shear layer), as separation is approached.

Online publication date: Mon, 07-Jan-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com