An interval computation approach for power components overload protection in the presence of data uncertainty
by Alfredo Vaccaro, Domenico Villacci
International Journal of Reliability and Safety (IJRS), Vol. 1, No. 4, 2007

Abstract: The embedding of microprocessor-based relays in power components enables improved overload protection because of higher computational resources, adaptiveness and flexibility. The increased computing power that is now embedded in power component devices makes possible the real-time simulation of built-in thermal models. However, the use of model-based protective systems is exposed to the uncertainty affecting some model components. The effect of these uncertainties could compromise the overall protective function reliability. To address this problem, we use Affine Arithmetic (AA). In particular, AA can be used to calculate the component's hot spot temperature by solving a thermal dynamic model where parameters are imprecise, and the uncertainty is represented by affine forms. The proposed solution method is implemented on a microcontroller-based unit to develop a prototype thermal relay equipped with robust tools for uncertainty data management. Various experimental results are presented and discussed.

Online publication date: Thu, 13-Dec-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com