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Abstract: Semantic role labelling (SRL) is a core technology for semantic analysis. However, 
SRL methods based on pre-trained language models still face semantic ambiguity and training 
complexity. This paper proposes a Chinese SRL approach that integrates pre-trained language 
models with Biaffine technology to better capture semantic information in long sentences while 
alleviating training difficulty. By further incorporating pooling techniques and part-of-speech 
(POS) features, the model more accurately identifies semantic role boundaries. Experiments 
show that the RoBERTa-MPBF-CRF* model based on maximum pooling achieves an F1 score 
of 90.89% on the Chinese PropBank (CPB) dataset, outperforming CRF-only baselines. The 
introduction of POS features yields an average F1 improvement of about 1.5%, and the additional 
computational overhead remains acceptable relative to the performance gains. 
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1 Introduction 
As a vital technology in natural language processing, 
semantic role labelling (SRL) mainly relies on pre-trained 
language models and CRF models for in-depth research. 
Nevertheless, these models often face challenges including 
numerous network parameters, complex training process, 
and insufficient processing of semantic information for long 
sentences. In order to more accurately capture semantic role 
boundary relationships, researchers have attempted to 
integrate linguistic features such as lexicality into the 
models Li et al. (2021), but this may also increase the 
complexity of model training. The Biaffine technique 
models the probability of semantic roles between words by 
constructing a Biaffine matrix, which centres on the use of a 
bilinear function to portray the interdependence between 
words Xu et al. (2022). Specifically, the technique combines 
vectors representing inter-word relationships with Biaffine 
matrices and realises nonlinear transformations through 
activation functions, while the parameters of the Biaffine 
matrices are learned and adapted during the model training 
process. 

In the present study, we put forward a new method for 
Chinese semantic role annotation that combines pre-trained 
language models and Biaffine technology. First, the coding 
layer output of the pre-trained language model is efficiently 
sampled and extracted by pooling technique, which 
simplifies the network structure, effectively lowers the 
number of parameters required for model training, and 
shortens the training period. Meanwhile, the Biaffine 
technique is applied to construct a global dependency model 
of the lexical items within a sentence, which is able to 
comprehensively analyse the interactions between verbs and 
other lexical items, and thus significantly improves the 
accuracy of the prediction of semantic roles. Due to the 
parallel processing capability of Biaffine technology, the 
model in this study is also capable of efficiently handling 
large-scale semantic role annotation work. After a series of 
experimental validations, the approach proposed in this 
study can obviously improve the overall performance of the 
semantic role annotation model and enhance the capability 
of the pre-trained language model in capturing semantic role 
boundary attribution relationships. 

To clarify the novelty of this work, our main 
contributions are summarised as follows: 

1 We propose RoBERTa-based pooling-of-Biaffine 
architectures (APBF/MPBF) for Chinese SRL on CPB 
and, for the first time, systematically integrate 
maximum/average pooling, Biaffine tag prediction, 
part-of-speech (POS) features and CRF decoding 
within a unified framework. The best variant, 
RoBERTa-MPBF-CRF* (with POS), achieves an F1 
score of 90.89% on CPB, significantly surpassing 
previous CPB baselines. 

2 We conduct a comprehensive empirical study of how 
pooling techniques (min/avg/max), Biaffine vs. 
conditional random fields (CRF) tag prediction layers, 

and POS features jointly influence both model accuracy 
and computational efficiency. 

3 We provide a detailed comparison with a strong 
BiLSTM-CRF baseline on CPB. Zhu et al. (2021a, 
2021b) together with an analysis of training and 
prediction time, demonstrating that the proposed MPBF 
family substantially reduces the computational cost 
compared with RoBERTa-CRF while maintaining or 
improving performance. 

2 Related research 
Over the years, traditional statistical machine learning 
methods have been limited in their effectiveness in SRL. 
Meanwhile, with the increase of deep learning techniques, 
neural network-based approaches have indicated great 
potential in natural language processing Ranathunga et al. 
(2023). These neural network-based models use word 
embedding vectors to initialise the features of the  
input layer and adapt to specific tasks by adjusting 
hyperparameters. The architecture of deep learning is 
consisted of an input layer, an output layer, and multiple 
hidden layers, and the prediction of the final task is 
achieved by passing information between the layers and 
assigning different weights. 

Blloshmi et al. (2021) propose an end-to-end SRL 
model (GSR) that jointly predicts predicates and arguments 
for both dependency-based and span-based formulations. 
Fei et al. (2021a) integrate constituency and dependency 
representations to better exploit syntactic information for 
SRL. Li et al. (2020) explore high-order SRL with enhanced 
structural features to capture richer interactions between 
predicates and arguments. For Chinese SRL, Wang et al. 
(2022) present a syntax-aware framework based on  
self-attention, while Fei et al. (2022) introduce an  
encoder-decoder based unified SRL architecture with  
label-aware syntax. Shi et al. (2020) reformulate SRL as 
syntactic dependency parsing, and Fei et al. (2021b) further 
develop end-to-end SRL via a neural transition-based 
model. Yuan (2022) incorporates valence information into a 
deep SRL model for Chinese; Li et al. (2023) study learning 
SRL from compatible label sequences; and Wang et al. 
(2020) propose a multi-cue Chinese SRL approach based on 
CRF. Zhou et al. (2022) cast end-to-end span SRL as  
word-based graph parsing. Zhu et al. (2021a, 2021b) 
propose Chinese SRL systems with attention and  
pooling-based feature grouping on CPB, which we adopt as 
our main CPB baselines. 

In addition to neural models, reasoning-based intelligent 
systems provide an important perspective on semantic 
representation and inference. For example, Jain et al. (2021) 
argues that enriching logical semantics with an ontological 
structure reflecting commonsense knowledge can help 
address long-standing challenges in natural language 
semantics. Lu (2025) develops a semantic-based document 
management system that uses ontologies and reasoning 
engines to support knowledge discovery and complex 
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queries. These studies demonstrate that explicit semantic 
modelling and reasoning can complement data-driven 
approaches, which is consistent with our goal of  
learning structured semantic role representations on top of  
pre-trained language models. 

In contrast to Zhu et al.’s (2021a, 2021b), BiLSTM-CRF 
models that rely on hand-crafted argument features and 
pooling-based feature selection on top of recurrent 
encoders, our work builds directly on large pre-trained 
language models and studies how pooling techniques, 
Biaffine prediction and POS features can be combined 
within the RoBERTa encoder to improve both accuracy and 
efficiency on CPB. Previous Chinese SRL work with  
multi-cue or syntax-aware models Wang et al. (2022), 
Wang et al. (2020) mainly focuses on feature engineering or 
syntactic integration, whereas we emphasise the interaction 
between pre-trained representations, pooling-of-Biaffine 
architectures and linguistic features. 

For Chinese SRL, a series of works have explored 
multi-cue and syntax-aware architectures, such as 
integrating valence information Yuan (2022), combining 
constituency and dependency syntax Fei et al. (2021a), or 
leveraging multi-task learning frameworks Yang et al. 
(2021). These models significantly improve Chinese SRL 
performance on various datasets. However, most of them 
focus on corpora such as Chinese FrameNet or task 
formulations that are not directly aligned with the CPB 
setting used in this paper. As a result, only Zhu et al.’s 
(2021b) BiLSTM-CRF systems, Zhu et al. (2021a) report 
CPB scores under a comparable experimental setup, which 
we therefore adopt as our main CPB baselines in Section 5. 

3 Model construction 
The fusion model RoBERTa-POBF consists of an input 
layer, a coding layer and a POBF layer. In the training 
phase, the model integrates a variety of pre-trained language 
models to effectively obtain the semantic associations 
between words within a sentence with the help of their  
in-depth understanding of the context. In the meanwhile, the 
model incorporates linguistic features, especially lexical 
annotation, a step that significantly improves the model’s 
ability in defining core role boundaries and resolving 
contextual conflicts. Further, the model employs a pooling 
technique to filter the output of the encoding layer to extract 
key information and eliminate unnecessary redundancies, 
thus simplifying the training process. Ultimately, the 
Biaffine layer is responsible for modelling the global 
dependencies between words in a sentence. Figure 1 
displays the overall architecture of the model. 

3.1 Input layer 
In this experiment, not only was a pre-trained language 
model employed to enhance the training effect of the SRL 
model, but the key linguistic feature of lexicality was also 
introduced. Lexical properties are categorised according to 
the roles played by words in grammatical structures, 

covering a wide range of lexical categories such as nouns, 
verbs, adjectives, etc. thus revealing the grammatical 
properties of words. When SRL is performed, nouns are 
usually associated with the role of either the giver or the 
receiver, while verbs are mostly labelled as the central role. 
By integrating lexical information into the experimental 
data, the model is capable of understanding more precisely 
the linguistic meaning represented by each label. The 
objective of SRL is to determine and label the full range of 
semantic roles in a sentence that are closely associated with 
a predicate. Lexical features provide valuable information 
for this purpose, which not only relate to the grammatical 
function of words in context, but also correlate to their 
semantic roles. By combining lexical and semantic  
role annotations, it is possible to accumulate a deeper 
understanding of sentence structure and clarify the 
relationship between each word and the role it plays. By 
integrating lexical information, the model is able to identify 
and localise the roles played by specific words in a sentence 
with higher accuracy, thus effectively eliminating 
uncertainty in the semantic role annotation process. This 
fusion strategy ensures high accuracy of the annotation 
results, and the partial lexical comparison table in Table 1 
further demonstrates the advantages of combining lexical 
information. 

Table 1 Partial part of speech comparison table 

Lexical 
tag 

Hidden 
meaning 

 Lexical 
tag Hidden meaning 

CC Conjunctions  NN Other nouns 
JJ Other noun 

modifiers 
 LC Azimuths 

VA Predicate 
adjectives 

 PN Pronouns 

VV Other verbs  AD Adverbs 
NR Proper nouns  P Prepositions 
NT Time nouns  AS Action auxiliaries 

In constructing the input layer, this model adopts a  
pre-trained language model for enhancing the understanding 
and capture of contextual information, which significantly 
improves the accuracy of recognising semantic links 
between words within a sentence. In addition, by 
incorporating lexical tagging, a key linguistic feature, the 
model demonstrates higher accuracy in delineating core role 
boundaries and is more efficient in handling contextual 
conflicts. By categorising words with detailed grammatical 
functions, such as nouns, verbs, adjectives, etc. the model 
further deepens the understanding of sentence structure. By 
adding lexical tags to the experimental dataset, the model is 
able to comprehend the linguistic meaning of each tag more 
deeply, which significantly improves the accuracy of 
semantic role prediction. As presented in Figure 2, the 
construction process of input layer feature mining is 
demonstrated. 
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Figure 1 Model structure (see online version for colours) 
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Figure 2 Input layer feature mining construction 
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3.2 Pre-trained language model coding layer 
In the encoding stage of the model, three pre-trained 
language models, BERT, ALBERT and RoBERTa, are 
selected and subword-level encoding techniques, such as 

Word Piece or BPE methods, are utilised. Taking the 
RoBERTa model as an example, the architectural design of 
its encoder is shown in Figure 3, which clearly presents the 
overall structure of the model. 
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This paper employs diversified vector techniques to enhance 
the expressiveness of the input text. Specifically, they 
include the following: 

1 Word embeddings, a technique that maps the words in 
the text into a low-dimensional space by means of a 
pre-trained word embedding method, which serves as 
the initialisation basis for the vocabulary list. 

2 Segment embeddings, a vector that is used to mark the 
demarcation of different sentences in the input text. For 
the task of a single sentence, all input tokens are 
usually set to a uniform value, such as 0 or 1; for the 
task of sentence pairs, the segmental embeddings of 
two sentences are assigned different values. 

3 Position embeddings, which are used to indicate the 
exact position of a word in a sequence and position 
information is integrated into the model by summing up 
with the word vectors. 

4 Linguistic feature embeddings, which captures 
linguistic attributes in the text, such as lexical 
properties, to provide important clues to the model 
about sentence structure and grammatical roles, and 
helps to minimise misinterpretation of word roles. 

5 Predicate indicator embeddings, which are special 
binary vectors used to explicitly mark the position of 
predicates in a sentence, where only the elements 
corresponding to the position of predicates are set to 1, 
and the rest of the positions are 0. This design allows 
the model to concentrate more on the semantic role 
recognition of predicates. The combined use of these 
vectors greatly enriches the model’s understanding of 
the input text and enhances the accuracy and efficiency 
of SRL. 

[ ]1 2 3, , , ..., E EE E ESeg mb Lf mbToken mb Pos mb Rel mb
n i i i i i iT x x x x x E E E E E=  (1) 

In model operations, all input tokens are concatenated into a 
unified sequence, serving as the input for the model to 
process downstream tasks. Regarding an input text 
sequence, where indicates the ith character in text T, the 
sentence is split into word-level character sequences based 
on input layer features. These are then used to generate 
corresponding token embeddings through a pre-trained 
language model. Simultaneously, combined with positional 
vectors, segment vectors, linguistic feature vectors, and 
predicate indicators, they are concatenated into a new 
vector, which is then inputted to the next layer of the model. 
Ultimately, the comprehensive representation of these 
vectors forms the complete word embedding, as shown in 
(2). 

, , , ,SegEmb LfEmbTokenEmb PosEmb RelEmb
i i i i i iE E E E E E =    (2) 

After concatenating the word vectors, the model feeds these 
vectors into a multi-head attention mechanism for further 
computation. This process involves first calculating three 
weight matrices: WQ, WK, WV. Then these weight matrices 
are applied to each word vector, performing three linear 

transformations, resulting in new vectors qt, kt, vt. Next, all 
the generated qt vectors are concatenated into a large matrix 
to form the query matrix Q; similarly, kt vectors are 
concatenated into the key matrix K, and vt vectors are 
concatenated into the value matrix V. The construction and 
calculation of these matrices follow (3) to (5). In this way, 
the multi-head attention mechanism effectively captures 
information from different positions in the sequence and 
enhances the model’s understanding of the text. 

( )q i i QQ Linear E E W= =  (3) 

( )k i i kK Linear E E W= =  (4) 

( )v i i vV Linear E E W= =  (5) 

Calculate the attention mechanism matrix based on the 
query matrix, key matrix, and value matrix, as expressed in 
(6). 

( )( )( , , ) T
kAtt Q K V softmax QK d V=  (6) 

In which, dk refers the dimension of the key matrix K, KT is 
the transpose of the key matrix K, the softmax function is a 
normalisation function, which multiplies the normalised 
matrix with the value matrix V, and finally obtains the 
attention matrix Att about Q, K, and V. 

The multi-head attention mechanism consists of h 
attention heads, each with its own query, key, and value 
matrices Qi, Ki, Vi. Through linear transformations, they are 
converted from a set (WQ, WK, WV) to h sets 
( ) ( ) ( )0 0 0 1 1 1, , , , , , ..., , , .Q Q QK V K V K V

h h hW W W W W W W W W  Each 
attention head i computes attention over the input sequence, 
producing corresponding outputs Headi. These outputs from 
all attention heads are concatenated and multiplied by an 
output weight matrix Wo, resulting in the final multi-head 
self-attention output MultiHead, as shown in (7) and (8). 

( ), ,Q K V
i i i iHead Att QW KW VW=  (7) 

( ) [ ] O
input iMultiHead X concat Head W=  (8) 

After obtaining the attention matrix from the multi-head 
attention mechanism, it is supplemented to the input matrix 
for residual connection and layer normalisation, as shown in 
(9). 

( )( )+hidden input inputX LayerNorm X MultiHead X=  (9) 

In each layer of the encoder, there is a complete  
feed-forward network, which is consisted of two linear 
transformations with ReLU activation in between, as shown 
in (10). 

( ) ( )1 1 2 2max 0, + +hidden hiddenFFN X X W b W b=  (10) 

Finally, calculate the residual connections and layer 
normalisation, as presented in (11). 

( )( )+output hidden hiddenX LayerNorm X FFN X=  (11) 
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3.3 Pooling of Biaffine layer 
In this model, the Biaffine layer precisely evaluates the 
interactions between words through a bilinear function, 
constructing a model of lexical dependency relationships. 
This layer receives processed hidden features from the 
preceding layer, which encapsulate crucial information 
about words in specific contexts. By computing attention 
scores between pairs of words, the Biaffine layer infers the 
semantic roles of each word and generates a distribution of 
role probabilities, assigning the most suitable semantic role 
labels to each word. The Biaffine layer excels in handling 
long-distance lexical dependency relationships, thanks to 
the combination of the bilinear function and nonlinear 
activation function, enabling the model to capture complex 
lexical relationships and significantly improve annotation 
accuracy and generalisation ability. In the training process, 
the parameters of this layer are optimised, endowing the 
model with strong expressive power and wide applicability, 
effectively improving the overall performance of the model 
in various SRL scenarios. 

After processing at the encoding layer, the output 
sequence 0 1, , ..., Tn

output outputoutput outputX X X X=     is obtained. 
The Biaffine layer employs a dual-affine method to further 
process these outputs. As shown in Figure 1, Biaffine1 layer 
generates head vectors Hj and dependent vectors Di through 
two multilayer perceptrons (MLPs) respectively, as  
detailed in (12) and (13). Subsequently, by calculating the 
attention scores between these two vectors, as shown in 
(14), the Biaffine layer can capture and understand the 
interrelationships between the words in the sentence more 
finely. 

( )j head outputH MLP X=  (12) 

( )i dep outputD MLP X=  (13) 

( ) +TT
j i jijS H Q D H b=  (14) 

The input dimensions of MLPhead and MLPdep are 2h, and 
the output dimension is d, where Q represents the learned 
parameters. 

The obtained T
ijS  will undergo pooling techniques to 

derive its pooled results. As shown in (15), the result is the 
outcome of max pooling, while (16) represents the result of 
average pooling. 

( )MaxP T
ij ijS MaxP S=  (15) 

( )AvgP T
ij ijS AvgP S=  (16) 

Finally, matrix Z is obtained through matrix multiplication 
and projection operations, as shown in (17). The generation 
of matrix Z involves multiplying the output matrix after 
pooling operation with the weight matrix P, followed by 
layer normalisation through LayerNorm, as shown in (18). 

Pooling
ijZ S P= ×  (17) 

( )+norm T
ij ijS LayerNorm S Z=  (18) 

T
ijA  the Biaffine2 in Figure 1 shares the same structure as 

Biaffine1, but differs in parameter handling. The obtained 
through (11) to (16) is finally combined with the weight 
matrix αt for prediction, as shown in (19). 

( )2
TScore T

tij ijt
A softmax A h= ⋅ α  (19) 

The weight vector αt ∈ RT learned by the model satisfies the 

normalisation condition 1.
T

tt
= α  

For each position i, the decoder introduces the  
cross-entropy loss function to optimise predictions, with the 
specific form of the loss function detailed in (20) and (21). 

( )
1 1

1 ˆlog
N C

ij iji j
loss y y

N = =
= −    (20) 

( )ˆ 2
TScore T

ij tij ijt
y A softmax A h= = ⋅ α  (21) 

where N refers to the number of samples, C is the number of 
classes, yij denotes the true label, and ˆijy  refers to the 
probability predicted by the model. 

3.4 CRF labelling prediction layer 
CRF is a type of probabilistic graphical model proposed by 
Lafferty et al. in 2001. The main advantage of CRF lies in 
its excellent predictive ability, capable of identifying and 
predicting label sequences that best match a given 
observation sequence. This model effectively captures the 
dependencies between observation sequences and label 
sequences by constructing the conditional probability 
distribution among labels. The details of label prediction 
computation in CRF can be understood through (22) and 
(23), which describe the computational process of the model 
in detail. 

( )( )1
1( | , ) exp , , ,
( ) j j i it j

P Y X λ λ f X t y y
Z X −=   (22) 

( )( )1where ( ) exp , , ,
n

j j i iy Y i j
Z X λ f X t y y −∈

=     (23) 

One of the feature functions can be represented as f(X, i, yi, 
yi–1), where X denotes the input sentence, n is the current 
position, yn is the current state, and yn–1 is the previous state. 
where Z(X) denotes the normalisation constant, j denotes the 
number of feature functions, and λj is the weight of the 
feature function. 

In the experiment of this study, the begin-inside-outside-
end-single (BIOES) tagging scheme was adopted to enhance 
the recognition of semantic role boundaries and lexical 
attribution. This scheme subdivides the semantic roles in the 
sentence into multiple intervals, precisely locating each role 
and clearly defining the boundaries between roles. Utilising 
CRF technology, the model establishes a transition 
probability model between adjacent labels, enabling 
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efficient learning and prediction of the optimal label 
sequence, achieving more precise semantic role annotation. 

4 Experimental setup 
4.1 Experimental corpus 
The CPB is a semantic role set developed specifically for 
Chinese corpora, defining a total of eighteen semantic roles. 
Among them, the predicate marker is labelled as ‘Rel’, and 
the core semantic roles ARG0-ARG5, as well as additional 
semantic roles ARG-M-X, are used for representation, 
where X is the abbreviation of the corresponding semantic 
role in English. For example, the marker for the temporal 
semantic role is labelled as ‘ARGM-TMP’. The detailed 
semantic roles are shown in Table 2. 

For example, in the sentence ‘Zhang San ate an apple 
yesterday’, the predicate ‘ate’ is marked as Rel, ‘Zhang San’ 
is annotated as ARG0 (agent, the doer of the action), ‘apple’ 
is ARG1 (patient, the object being acted upon), and 
‘yesterday’ is ARGM-TMP (temporal modifier). This 
example illustrates the SRL format of the CPB corpus. 

The experiment utilised the CPB dataset, comprising 
17,839 sentences in the training set and 1,115 sentences in 
the test set. Statistical analysis was conducted on the 
sentence length distribution in the experimental corpus. 
Figure 4 shows the proportion of different sentence lengths 
in the training and validation sets. Sentences with more than 
100 characters are classified as long; those with  
50–99 characters are medium-long; 30–49 characters are  
medium-short; and fewer than 30 characters are short. In the 
training set, medium-long sentences have the highest 
proportion at 48%, while long sentences have the lowest 
proportion at only 9%. In the validation set, medium-long 
sentences again have the highest proportion (47%), and 
short sentences the lowest (11%). These sentence length 
categories were determined based on the dataset’s 
distribution and linguistic intuition. Short sentences (fewer 
than 30 characters) usually contain a single clause, whereas 
long sentences (≥ 100 characters) often consist of multiple 
clauses and complex structures. This categorisation ensures 
that each group of sentences has sufficient examples and 
allows us to examine the model’s performance under 
different levels of sentence complexity. 

Figure 4 Proportion of different sentence lengths in the CPB 
corpus, (a) training set (b) validation 
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48%
28%

15%
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Sentences
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Sentences

Long Sentences 19%

47%

23%

11%

 
(a)    (b) 

A simple statistical analysis was conducted on the length 
distribution of sentences in the experimental corpus.  

Figure 4 shows the proportions of different sentence types 
in the corpus. Sentences with more than 100 words are 
referred to as long sentences; those with fewer than 99 but 
more than 50 words are termed as medium-long sentences; 
those with fewer than 49 but more than 30 words are termed 
as medium-short sentences and those with fewer than 30 
words are termed as short sentences. In the training set, it 
can be observed that medium-long sentences have the 
highest proportion, reaching 48%; while long sentences 
have the lowest proportion, accounting for only 9%. In the 
validation set, it can be found that medium-long sentences 
have the highest proportion, reaching 47%; and short 
sentences have the lowest proportion, accounting for only 
11%. 

4.2 Parameterisation 
Table 3 lists the hyperparameter settings of our model. We 
chose these values based on preliminary experiments and 
the characteristics of the CPB dataset. Specifically, the 
maximum sequence length was set to 512 to accommodate 
the longest sentences, and the batch size was 4 due to GPU 
memory constraints with the large model. We used a 
learning rate of 1 × 10–5 for stable fine-tuning and applied a 
dropout rate of 0.1 in order to prevent overfitting. The 
model was trained for 70 epochs, which was sufficient for 
convergence without overfitting. The hidden layer size 
(768), number of hidden layers (12), and number of 
attention heads (12) follow the configuration of the 
RoBERTa base pre-trained language model. 

4.3 Implementation details 
All models were implemented in Python using the  
PyTorch framework and the HuggingFace transformers 
library. Training and evaluation were conducted on a single 
machine equipped with an Intel i7-6700HQ CPU, 8 GB 
RAM and an NVIDIA GTX 960M GPU (4 GB memory). 
The hyperparameters for all experiments follow the settings 
summarised in Table 3. For each configuration, we trained 
the model once with a fixed random seed to ensure 
reproducibility, and applied early stopping based on 
development-set F1 with a patience of 5 epochs. Owing to 
limited computational resources and the relatively large size 
of the RoBERTa-based encoders, we did not perform 
multiple independent runs per configuration; therefore, the 
reported results are single-run scores rather than averages 
over multiple runs. 

5 Experimental 
5.1 Experimental comparison 
Experiment 1: evaluating the change in model performance 
after replacing the CRF tag prediction layer with the 
Biaffine tag prediction layer. As shown in Table 4, models 
marked with an asterisk (*) include POS features, while 
those without an asterisk are models without POS features. 
Training duration and prediction duration refer to the 



40 N. Ma et al.  

average time per epoch. This paper’s test results adopt three 
common evaluation metrics: precision (P), recall (R), and 
F1-score (F1 value), defined as follows: 

• Precision measures the proportion of correctly 
predicted semantic role labels in the SRL task. 

• Recall measures the proportion of correctly predicted 
positives in the SRL task out of all true positives. 

• F1-score: F1 = (P × R × 2)/(P + R). 

Analysis of Table 4 leads to the following conclusions: 

1 The Biaffine model without integrated pooling 
techniques slightly underperforms the CRF model in 
terms of F1 score, with a difference of approximately 
1%. However, the Biaffine model significantly reduces 
training and prediction times, with training time per 
epoch reduced by approximately 485 seconds and 
prediction time reduced by about 2 seconds. 

2 Introducing pooling techniques before Biaffine 
technology improves model performance beyond 
models using only CRF technology, with an average 
increase in F1 score of around 2%. Additionally, 
Biaffine technology continues to demonstrate its 
advantage in reducing training and prediction times, 
with training time per epoch reduced by approximately 
400 seconds and prediction time reduced by about 4 
seconds. 

3 The inclusion of integrated POS features in the Biaffine 
model leads to an average F1 score improvement of 
about 1.5%, indicating a positive impact of POS 
features on model performance. However, models 
incorporating POS features require more time for 
training and prediction, suggesting that the introduction 
of additional features increases computational burden. 
Nevertheless, given the performance improvement, this 
additional time cost is worthwhile. 

4 The combination of pooling techniques with Biaffine 
technology significantly enhances model performance, 
particularly with average pooling and max pooling 
techniques. The average pooling technique increases 
the F1 score by approximately 5.5%, reduces training 
time by about 34 seconds, and reduces prediction time 
by about 1 second. The max pooling technique 
increases the F1 score by approximately 7%, reduces 
training time by about 44 seconds, and reduces 
prediction time by about 3 seconds. In contrast, the 
improvement effect of the min pooling technique is less 
significant, with an F1 score increase of approximately 
1.5%. 

Experiment 2: further validated the performance 
enhancement effects of max pooling and average pooling 
techniques on the model. Meanwhile, combined these two 
pooling techniques with Biaffine technology to construct the 
AvgPooling of Biaffine (APBF) model and MaxPooling of 
Biaffine (MPBF) model. The experimental results are 
shown in Table 5, where models with an asterisk (*) in their 

names include POS features, while those without an asterisk 
(*) do not. Through these experiments, the impact of 
different technology combinations on model performance 
can be further evaluated. 

By comparing and analysing the data in Tables 4 and 5, 
the following conclusions can be made: 

1 Integrating pooling techniques into the Biaffine 
feedforward neural network results in superior 
performance compared to models using pooling 
techniques solely in the Biaffine layer. Specifically, the 
F1 score of the RoBERTa-APBF model improved by 
approximately 2%, with a reduction in training time of 
about 127 seconds per epoch and a decrease in 
prediction time of around 7.5 seconds. Similarly, the 
RoBERTa-MPBF model exhibited an F1 score 
improvement of approximately 2.2%, with a training 
time reduction of about 134 seconds per epoch and a 
prediction time decrease of about 9 seconds. These 
results indicate that both the RoBERTa-MPBF and 
RoBERTa-APBF models significantly enhance the 
performance of SRL tasks. 

2 Regarding training duration, models without a CRF 
layer, such as RoBERTa-APBF and RoBERTa-MPBF, 
have relatively shorter training times, implying an 
advantage in training efficiency. However, models with 
a CRF layer exhibit increased training times, which is 
reasonable considering the performance enhancement 
they provide. In terms of prediction time, all models 
maintain relatively low levels, indicating their ability to 
make fast predictions in practical applications. 
Particularly noteworthy is the RoBERTa-MPBF model, 
which achieves high F1 scores while requiring only 
21.36 seconds for prediction, demonstrating excellent 
real-time prediction capabilities. 

3 Models incorporating POS features show 
improvements in all performance metrics, indicating 
that POS information aids in a deeper understanding of 
sentence structure and semantic relationships. The 
RoBERTa-MPBF-CRF model achieves the highest F1 
score of 90.89% among all models, validating the 
effectiveness of combining POS features with the 
MPBF layer in enhancing model performance. 

Experiment 3: further investigation was conducted on the 
RoBERTa-MPBF model with the best performance to 
explore the influence of different convolutional kernel sizes 
on model performance. Testing was carried out by 
employing convolutional kernels of varying sizes in the 
pooling layer, aiming to understand whether the kernel size 
would affect the model’s performance. Table 6 documents 
test results, with all convolutional kernels set to a stride of 1 
and zero-padding of unit length applied at both ends of the 
input sequence. Through these experiments, a more 
comprehensive assessment of the specific effects of 
different technical parameters on model performance was 
achieved. 
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Table 2 CPB semantic role labels 

Semantic role labeling Hidden meaning  Semantic role labeling Hidden meaning 

ARG0 Agent (doer)  ARGM-FRQ Frequency 
ARG1 Patient (undergoer)  ARGM-LOC Location 
ARG2 Range  ARGM-MNR Manner 
ARG3 Action start  ARGM-ADV Adverbial (general) 
ARG4 Action end  ARGM-PRP Purpose 
ARG5 Other action-related  ARGM-BNF Beneficiary 
ARGM-DIS Discourse marker  ARGM-TMP Time 
ARGM-DGR Degree  ARGM-CND Condition 
ARGM-EXT Extent  ARGM-TPC Topic 

Table 3 Hyperparameter settings 

Parameter Description Value 

Max_length Maximum input sequence length 512 
Batch_size Number of samples per batch 4 
Learning_rate Learning rate 1e-5 
Dropout Dropout rate 0.1 
Num_train_epochs Number of training epochs 70 
Hidden_size Hidden layer dimension 768 
Num_hidden_layers Number of hidden layers (transformer blocks) 12 
Num_attention_heads Number of attention heads 12 

Table 4 Performance comparison of various pooling techniques added before Biaffine technology 

Models P/% R/% F1/% Training duration/s Projected duration/s 

RoBERTa-CRF 80.22 81.37 80.79 1,456.28 33.25 
RoBERTa-CRF* 82.33 83.81 83.06 1,504.34 38.28 
RoBERTa-Biaffine 78.34 80.74 79.52 971.28 31.98 
RoBERTa-Biaffine* 79.18 83.09 81.09 1,015.21 33.41 
RoBERTa-MinP-Biaffine 82.72 80.13 81.40 931.81 28.28 
RoBERTa-MinP-Biaffine* 84.59 84.29 84.44 1,003.65 30.73 
RoBERTa-AvgP-Biaffine 85.36 86.91 86.13 937.34 29.98 
RoBERTa-AvgP-Biaffine* 87.92 88.24 88.08 1,009.47 32.11 
RoBERTa-MaxP-Biaffine 86.88 86.42 86.65 927.17 28.47 
RoBERTa-MaxP-Biaffine* 88.01 88.75 88.38 999.48 29.87 

Note: Models marked with an asterisk (*) include POS features. 

Table 5 Performance comparison of four models 

Models P/% R/% F1/% Training duration/s Projected duration/s 

RoBERTa-APBF 87.62 88.65 88.13 810.02 22.41 
RoBERTa-APBF* 88.98 90.48 89.72 883.49 24.69 
RoBERTa-MPBF 89.83 87.77 88.79 793.22 21.36 
RoBERTa-MPBF* 90.16 90.32 90.24 851.66 23.01 
RoBERTa-APBF-CRF 89.27 90.11 89.69 1,452.74 35.57 
RoBERTa-APBF-CRF* 89.97 90.40 90.19 1,533.32 38.15 
RoBERTa-MPBF-CRF 91.51 86.48 88.92 1,430.96 33.88 
RoBERTa-MPBF-CRF* 94.48 87.57 90.89 1,513.12 36.21 

Note: Models marked with an asterisk (*) include POS features. 
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Table 6 Test results for different kernel sizes 

Kernel 
size P/% R/% F1/% Training 

duration/s 
Projected 
duration/s 

2 89.79 87.49 88.62 792.91 21.18 
3 89.83 87.77 88.79 793.22 21.36 
4 91.71 71.53 80.37 810.69 24.05 
5 90.30 56.51 69.51 837.46 37.73 

On the basis of the experimental results in Table 6, the 
following conclusions can be drawn: 

1 When the convolutional kernel size is 2 or 3, the model 
demonstrates higher stability, with the F1 score 
consistently between 88.6% and 88.8%. The training 
and prediction times of the model are relatively short, 
approximately 793 seconds and 21 seconds 
respectively, indicating that the model can maintain 
good performance while ensuring efficient training and 
prediction speeds. 

2 As the convolutional kernel size increases to 4, the 
model’s F1 score decreases to 80.37%, and the training 
and prediction times also increase to 810.69 seconds 
and 24.05 seconds respectively. This suggests that 
larger convolutional kernels may lead to a decrease in 
model performance and an increase in computational 
costs. 

3 When the convolutional kernel size continues to 
increase to 5, the downward trend in model 
performance becomes more pronounced, with the F1 
score dropping to 69.51%. At this point, the training 
and prediction times further extend to 837.46 seconds 
and 37.73 seconds respectively. This may indicate that 
excessively large convolutional kernel sizes can lead to 
overfitting or information loss, while also significantly 
increasing the demand for computational resources. 

5.2 Comparison with other experimental methods 
The final results of the text experiment are compared with 
other experimental methods, and the comparative results are 
presented in Table 7. Notably, Zhu et al. (2021b) achieved 
an F1 score of 81.41% on the CPB dataset with a  
BiLSTM-CRF model incorporating attention mechanisms 
and argument features, whereas our best model  
RoBERTa-MPBF-CRF* reaches 90.89%, demonstrating a 
significant improvement in performance. 

To the best of our knowledge, Zhu et al. (2021a, 2021b), 
provide the only published CPB results that match our 
setting in terms of corpus, label set and evaluation protocol. 
Other recent Chinese SRL works mainly concentrate on 
different corpora or task formulations and do not report 
directly comparable CPB scores. For this reason, Table 7 
focuses on Zhu et al.’s BiLSTM-CRF baseline as a 
representative CPB system, while Section 2 qualitatively 
discusses a broader range of Chinese SRL models. 

Table 7 Comparison of final experimental results with other 
model results 

Experimental methods F1/% Training 
duration/s 

Projected 
duration/s 

BiLSTM-Att-CRF-argument 
features 

81.41 860.03 23.74 

RoBERTa-MPBF-CRF* 
(ours + POS + CRF) 

90.89 1,513.12 36.21 

RoBERTa-MPBF* (ours + 
POS) 

90.24 851.66 23.01 

Note: Models marked with an asterisk (*) include POS 
features. 

After analysing the predictive outcomes of the analysis 
model, it was found that the model has shortcomings in 
identifying semantic roles with lower occurrence 
frequencies including place names and personal names. To 
enhance the performance of the model in future research, 
exploration will be conducted to utilise large pre-trained 
language models such as ChatGLM, LLAMA, and 
LangChain. Through meticulous instruction adjustments, 
these models will be adapted and applied to SRL tasks, 
hoping to enhance the overall efficiency of the model. 

6 Conclusions 
To conclude, in the present study, a novel approach to 
Chinese SRL is proposed, which combines pre-trained 
language models with Biaffine technology. Experimental 
results indicate that this method obviously enhances the 
overall performance of SRL models and enhances the 
ability of pre-trained language models to capture semantic 
role boundary relationships. The impact of POS features, 
pooling techniques, and the combination of Biaffine and 
CRF technologies on model performance is also explored, 
along with some experimental results and conclusions. In 
future studies, further exploration will be conducted on  
fine-tuning with large pre-trained language models to 
further enhance model performance. These research 
findings enrich the study of SRL tasks and provide valuable 
references and insights for related research and applications. 

One limitation of the current study is that, due to 
computational constraints, all results are based on single 
training runs per configuration; future work will  
include multi-run statistical analysis and more extensive 
comparisons with additional baselines. 
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