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Abstract: Semantic role labelling (SRL) is a core technology for semantic analysis. However,
SRL methods based on pre-trained language models still face semantic ambiguity and training
complexity. This paper proposes a Chinese SRL approach that integrates pre-trained language
models with Biaffine technology to better capture semantic information in long sentences while
alleviating training difficulty. By further incorporating pooling techniques and part-of-speech
(POS) features, the model more accurately identifies semantic role boundaries. Experiments
show that the RoOBERTa-MPBF-CRF* model based on maximum pooling achieves an F1 score
of 90.89% on the Chinese PropBank (CPB) dataset, outperforming CRF-only baselines. The
introduction of POS features yields an average F1 improvement of about 1.5%, and the additional
computational overhead remains acceptable relative to the performance gains.
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1 Introduction

As a vital technology in natural language processing,
semantic role labelling (SRL) mainly relies on pre-trained
language models and CRF models for in-depth research.
Nevertheless, these models often face challenges including
numerous network parameters, complex training process,
and insufficient processing of semantic information for long
sentences. In order to more accurately capture semantic role
boundary relationships, researchers have attempted to
integrate linguistic features such as lexicality into the
models Li et al. (2021), but this may also increase the
complexity of model training. The Biaffine technique
models the probability of semantic roles between words by
constructing a Biaffine matrix, which centres on the use of a
bilinear function to portray the interdependence between
words Xu et al. (2022). Specifically, the technique combines
vectors representing inter-word relationships with Biaffine
matrices and realises nonlinear transformations through
activation functions, while the parameters of the Biaffine
matrices are learned and adapted during the model training
process.

In the present study, we put forward a new method for
Chinese semantic role annotation that combines pre-trained
language models and Biaffine technology. First, the coding
layer output of the pre-trained language model is efficiently
sampled and extracted by pooling technique, which
simplifies the network structure, effectively lowers the
number of parameters required for model training, and
shortens the training period. Meanwhile, the Biaffine
technique is applied to construct a global dependency model
of the lexical items within a sentence, which is able to
comprehensively analyse the interactions between verbs and
other lexical items, and thus significantly improves the
accuracy of the prediction of semantic roles. Due to the
parallel processing capability of Biaffine technology, the
model in this study is also capable of efficiently handling
large-scale semantic role annotation work. After a series of
experimental validations, the approach proposed in this
study can obviously improve the overall performance of the
semantic role annotation model and enhance the capability
of the pre-trained language model in capturing semantic role
boundary attribution relationships.

To clarify the novelty of this work, our main
contributions are summarised as follows:

1 We propose RoBERTa-based pooling-of-Biaffine
architectures (APBF/MPBF) for Chinese SRL on CPB
and, for the first time, systematically integrate
maximum/average pooling, Biaffine tag prediction,
part-of-speech (POS) features and CRF decoding
within a unified framework. The best variant,
RoBERTa-MPBF-CRF* (with POS), achieves an F1
score of 90.89% on CPB, significantly surpassing
previous CPB baselines.

2 We conduct a comprehensive empirical study of how
pooling techniques (min/avg/max), Biaffine vs.
conditional random fields (CRF) tag prediction layers,

and POS features jointly influence both model accuracy
and computational efficiency.

3 We provide a detailed comparison with a strong
BiLSTM-CREF baseline on CPB. Zhu et al. (2021a,
2021b) together with an analysis of training and
prediction time, demonstrating that the proposed MPBF
family substantially reduces the computational cost
compared with ROBERTa-CRF while maintaining or
improving performance.

2 Related research

Over the years, traditional statistical machine learning
methods have been limited in their effectiveness in SRL.
Meanwhile, with the increase of deep learning techniques,
neural network-based approaches have indicated great
potential in natural language processing Ranathunga et al.
(2023). These neural network-based models use word
embedding vectors to initialise the features of the
input layer and adapt to specific tasks by adjusting
hyperparameters. The architecture of deep learning is
consisted of an input layer, an output layer, and multiple
hidden layers, and the prediction of the final task is
achieved by passing information between the layers and
assigning different weights.

Blloshmi et al. (2021) propose an end-to-end SRL
model (GSR) that jointly predicts predicates and arguments
for both dependency-based and span-based formulations.
Fei et al. (2021a) integrate constituency and dependency
representations to better exploit syntactic information for
SRL. Li et al. (2020) explore high-order SRL with enhanced
structural features to capture richer interactions between
predicates and arguments. For Chinese SRL, Wang et al.
(2022) present a syntax-aware framework based on
self-attention, while Fei et al. (2022) introduce an
encoder-decoder based unified SRL architecture with
label-aware syntax. Shi et al. (2020) reformulate SRL as
syntactic dependency parsing, and Fei et al. (2021b) further
develop end-to-end SRL via a neural transition-based
model. Yuan (2022) incorporates valence information into a
deep SRL model for Chinese; Li et al. (2023) study learning
SRL from compatible label sequences; and Wang et al.
(2020) propose a multi-cue Chinese SRL approach based on
CRF. Zhou et al. (2022) cast end-to-end span SRL as
word-based graph parsing. Zhu et al. (2021a, 2021b)
propose Chinese SRL systems with attention and
pooling-based feature grouping on CPB, which we adopt as
our main CPB baselines.

In addition to neural models, reasoning-based intelligent
systems provide an important perspective on semantic
representation and inference. For example, Jain et al. (2021)
argues that enriching logical semantics with an ontological
structure reflecting commonsense knowledge can help
address long-standing challenges in natural language
semantics. Lu (2025) develops a semantic-based document
management system that uses ontologies and reasoning
engines to support knowledge discovery and complex
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queries. These studies demonstrate that explicit semantic
modelling and reasoning can complement data-driven
approaches, which is consistent with our goal of
learning structured semantic role representations on top of
pre-trained language models.

In contrast to Zhu et al.’s (2021a, 2021b), BILSTM-CRF
models that rely on hand-crafted argument features and
pooling-based feature selection on top of recurrent
encoders, our work builds directly on large pre-trained
language models and studies how pooling techniques,
Biaffine prediction and POS features can be combined
within the RoOBERTa encoder to improve both accuracy and
efficiency on CPB. Previous Chinese SRL work with
multi-cue or syntax-aware models Wang et al. (2022),
Wang et al. (2020) mainly focuses on feature engineering or
syntactic integration, whereas we emphasise the interaction
between pre-trained representations, pooling-of-Biaffine
architectures and linguistic features.

For Chinese SRL, a series of works have explored
multi-cue and syntax-aware architectures, such as
integrating valence information Yuan (2022), combining
constituency and dependency syntax Fei et al. (2021a), or
leveraging multi-task learning frameworks Yang et al.
(2021). These models significantly improve Chinese SRL
performance on various datasets. However, most of them
focus on corpora such as Chinese FrameNet or task
formulations that are not directly aligned with the CPB
setting used in this paper. As a result, only Zhu et al.’s
(2021b) BIiLSTM-CRF systems, Zhu et al. (2021a) report
CPB scores under a comparable experimental setup, which
we therefore adopt as our main CPB baselines in Section 5.

3 Model construction

The fusion model RoBERTa-POBF consists of an input
layer, a coding layer and a POBF layer. In the training
phase, the model integrates a variety of pre-trained language
models to effectively obtain the semantic associations
between words within a sentence with the help of their
in-depth understanding of the context. In the meanwhile, the
model incorporates linguistic features, especially lexical
annotation, a step that significantly improves the model’s
ability in defining core role boundaries and resolving
contextual conflicts. Further, the model employs a pooling
technique to filter the output of the encoding layer to extract
key information and eliminate unnecessary redundancies,
thus simplifying the training process. Ultimately, the
Biaffine layer is responsible for modelling the global
dependencies between words in a sentence. Figure 1
displays the overall architecture of the model.

3.1 Input layer

In this experiment, not only was a pre-trained language
model employed to enhance the training effect of the SRL
model, but the key linguistic feature of lexicality was also
introduced. Lexical properties are categorised according to
the roles played by words in grammatical structures,

covering a wide range of lexical categories such as nouns,
verbs, adjectives, etc. thus revealing the grammatical
properties of words. When SRL is performed, nouns are
usually associated with the role of either the giver or the
receiver, while verbs are mostly labelled as the central role.
By integrating lexical information into the experimental
data, the model is capable of understanding more precisely
the linguistic meaning represented by each label. The
objective of SRL is to determine and label the full range of
semantic roles in a sentence that are closely associated with
a predicate. Lexical features provide valuable information
for this purpose, which not only relate to the grammatical
function of words in context, but also correlate to their
semantic roles. By combining lexical and semantic
role annotations, it is possible to accumulate a deeper
understanding of sentence structure and clarify the
relationship between each word and the role it plays. By
integrating lexical information, the model is able to identify
and localise the roles played by specific words in a sentence
with higher accuracy, thus effectively eliminating
uncertainty in the semantic role annotation process. This
fusion strategy ensures high accuracy of the annotation
results, and the partial lexical comparison table in Table 1
further demonstrates the advantages of combining lexical
information.

Table 1 Partial part of speech comparison table

Lexical szd?n Lexical Hidden meaning

tag meaning tag

CcC Conjunctions NN Other nouns

1 Other noun LC Azimuths
modifiers

VA Predicate PN Pronouns
adjectives

\'AY Other verbs AD Adverbs

NR Proper nouns P Prepositions

NT Time nouns AS Action auxiliaries

In constructing the input layer, this model adopts a
pre-trained language model for enhancing the understanding
and capture of contextual information, which significantly
improves the accuracy of recognising semantic links
between words within a sentence. In addition, by
incorporating lexical tagging, a key linguistic feature, the
model demonstrates higher accuracy in delineating core role
boundaries and is more efficient in handling contextual
conflicts. By categorising words with detailed grammatical
functions, such as nouns, verbs, adjectives, etc. the model
further deepens the understanding of sentence structure. By
adding lexical tags to the experimental dataset, the model is
able to comprehend the linguistic meaning of each tag more
deeply, which significantly improves the accuracy of
semantic role prediction. As presented in Figure 2, the
construction process of input layer feature mining is
demonstrated.
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Figure 1 Model structure (see online version for colours)
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3.2 Pre-trained language model coding layer Word Piece or BPE methods, are utilised. Taking the
RoBERTa model as an example, the architectural design of
its encoder is shown in Figure 3, which clearly presents the
overall structure of the model.

In the encoding stage of the model, three pre-trained
language models, BERT, ALBERT and RoBERTa, are
selected and subword-level encoding techniques, such as
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This paper employs diversified vector techniques to enhance
the expressiveness of the input text. Specifically, they
include the following:

1 Word embeddings, a technique that maps the words in
the text into a low-dimensional space by means of a
pre-trained word embedding method, which serves as
the initialisation basis for the vocabulary list.

2 Segment embeddings, a vector that is used to mark the
demarcation of different sentences in the input text. For
the task of a single sentence, all input tokens are
usually set to a uniform value, such as 0 or 1; for the
task of sentence pairs, the segmental embeddings of
two sentences are assigned different values.

3 Position embeddings, which are used to indicate the
exact position of a word in a sequence and position
information is integrated into the model by summing up
with the word vectors.

4  Linguistic feature embeddings, which captures
linguistic attributes in the text, such as lexical
properties, to provide important clues to the model
about sentence structure and grammatical roles, and
helps to minimise misinterpretation of word roles.

5  Predicate indicator embeddings, which are special
binary vectors used to explicitly mark the position of
predicates in a sentence, where only the elements
corresponding to the position of predicates are set to 1,
and the rest of the positions are 0. This design allows
the model to concentrate more on the semantic role
recognition of predicates. The combined use of these
vectors greatly enriches the model’s understanding of
the input text and enhances the accuracy and efficiency
of SRL.

_ Tokengmb y~Posgmb rSegemb r-Lfgmb y~Relpmb
T—[XI,XZ,X:;,...,X”]XZ'E g E & E; E; E; g (1)

In model operations, all input tokens are concatenated into a
unified sequence, serving as the input for the model to
process downstream tasks. Regarding an input text
sequence, where indicates the i character in text T, the
sentence is split into word-level character sequences based
on input layer features. These are then used to generate
corresponding token embeddings through a pre-trained
language model. Simultaneously, combined with positional
vectors, segment vectors, linguistic feature vectors, and
predicate indicators, they are concatenated into a new
vector, which is then inputted to the next layer of the model.
Ultimately, the comprehensive representation of these
vectors forms the complete word embedding, as shown in

2).
Ei — |:El_TokenEmh , El_PosEmb , EI_SEgEmb , El_L_fEmb , E[_RelEmb ] (2)

After concatenating the word vectors, the model feeds these
vectors into a multi-head attention mechanism for further
computation. This process involves first calculating three
weight matrices: Wy, Wk, Wy. Then these weight matrices
are applied to each word vector, performing three linear

transformations, resulting in new vectors g;, &, v.. Next, all
the generated ¢, vectors are concatenated into a large matrix
to form the query matrix Q; similarly, & vectors are
concatenated into the key matrix K, and v, vectors are
concatenated into the value matrix V. The construction and
calculation of these matrices follow (3) to (5). In this way,
the multi-head attention mechanism effectively captures
information from different positions in the sequence and
enhances the model’s understanding of the text.

Q = Linear, (E;) = EWy 3)
K = Linear; (E;) = E;W; 4)
V = Linear, (E;) = EW, &)

Calculate the attention mechanism matrix based on the
query matrix, key matrix, and value matrix, as expressed in

(©).
At(Q, K, V) = softmax((QK ") /\Jdi )V (6)

In which, d; refers the dimension of the key matrix K, K7 is
the transpose of the key matrix K, the softmax function is a
normalisation function, which multiplies the normalised
matrix with the value matrix V, and finally obtains the
attention matrix A¢f about Q, K, and V.

The multi-head attention mechanism consists of #
attention heads, each with its own query, key, and value
matrices Q;, K;, V. Through linear transformations, they are
converted from a set (Wp, Wk, Wy) to h sets
(w ws wd ), Wl wk wy ), ... (W2 WK W) ). Each
attention head i computes attention over the input sequence,
producing corresponding outputs Head;. These outputs from
all attention heads are concatenated and multiplied by an

output weight matrix W°, resulting in the final multi-head
self-attention output MultiHead, as shown in (7) and (8).

Head; = Att(QW2, KWK, vw}) (7)
MultiHead (X jupu ) = concat | Head; |W© (8)

After obtaining the attention matrix from the multi-head
attention mechanism, it is supplemented to the input matrix
for residual connection and layer normalisation, as shown in

).
X hidden = LayerNorm (X imput + MultiHead ( X )) 9)

In each layer of the encoder, there is a complete
feed-forward network, which is consisted of two linear
transformations with ReLU activation in between, as shown
in (10).

FEN (X higden ) = max (0, XpiaaenWs +by ) W + by (10)

Finally, calculate the residual connections and layer
normalisation, as presented in (11).

Xoutput =LayerN0rm(Xhidden +FFN(Xhidden)) (11)
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3.3 Pooling of Biaffine layer

In this model, the Biaffine layer precisely evaluates the
interactions between words through a bilinear function,
constructing a model of lexical dependency relationships.
This layer receives processed hidden features from the
preceding layer, which encapsulate crucial information
about words in specific contexts. By computing attention
scores between pairs of words, the Biaffine layer infers the
semantic roles of each word and generates a distribution of
role probabilities, assigning the most suitable semantic role
labels to each word. The Biaffine layer excels in handling
long-distance lexical dependency relationships, thanks to
the combination of the bilinear function and nonlinear
activation function, enabling the model to capture complex
lexical relationships and significantly improve annotation
accuracy and generalisation ability. In the training process,
the parameters of this layer are optimised, endowing the
model with strong expressive power and wide applicability,
effectively improving the overall performance of the model
in various SRL scenarios.

After processing at the encoding layer, the output

T
_[ yo 1 . :
sequence X o = [X output » Xoutput » -+ X ;’mpm] is obtained.

The Biaffine layer employs a dual-affine method to further
process these outputs. As shown in Figure 1, Biaffinel layer
generates head vectors H; and dependent vectors D; through
two multilayer perceptrons (MLPs) respectively, as
detailed in (12) and (13). Subsequently, by calculating the
attention scores between these two vectors, as shown in
(14), the Biaffine layer can capture and understand the
interrelationships between the words in the sentence more
finely.

Hj = MLI)head (Xoutput) (12)

D,' :MLPdgp (Xoutput) (13)

ST =H,0(D;) +Hb (14)
ij J ‘ J

The input dimensions of MLPjc.q and MLPy,, are 2h, and
the output dimension is d, where Q represents the learned
parameters.

The obtained S will undergo pooling techniques to
derive its pooled results. As shown in (15), the result is the

outcome of max pooling, while (16) represents the result of
average pooling.

SMaxP = MaxP (ST) (15)
S = AvgP(ST ) (16)

Finally, matrix Z is obtained through matrix multiplication
and projection operations, as shown in (17). The generation
of matrix Z involves multiplying the output matrix after
pooling operation with the weight matrix P, followed by
layer normalisation through LayerNorm, as shown in (18).

Z=8""xP (17

S1om = LayerNorm (ST +7) (18)

Aj the Biaffine2 in Figure 1 shares the same structure as

Biaffinel, but differs in parameter handling. The obtained
through (11) to (16) is finally combined with the weight
matrix ¢ for prediction, as shown in (19).

Aeere = Zja, -softmax(Ag/\/ﬂ) 19)

The weight vector ¢z € R” learned by the model satisfies the
T

normalisation condition z o =1
t

For each position 7, the decoder introduces the
cross-entropy loss function to optimise predictions, with the
specific form of the loss function detailed in (20) and (21).

1 N —C .
loss = _ﬁzgl Vi log(55) (20)

Py = Ageore = Zjat -softmax(Ag /\/ﬁ) 21)

where N refers to the number of samples, C is the number of
classes, y; denotes the true label, and J; refers to the

probability predicted by the model.

3.4 CRF labelling prediction layer

CREF is a type of probabilistic graphical model proposed by
Lafferty et al. in 2001. The main advantage of CRF lies in
its excellent predictive ability, capable of identifying and
predicting label sequences that best match a given
observation sequence. This model effectively captures the
dependencies between observation sequences and label
sequences by constructing the conditional probability
distribution among labels. The details of label prediction
computation in CRF can be understood through (22) and
(23), which describe the computational process of the model
in detail.

1
Z(X)

where Z(X) = eXp(Z}Eyzjzj)hjjfj (X, 8, 1, yiaa )) (23)

PY| X, %)=

of ST, () @2

One of the feature functions can be represented as f(X, i, y;,
yi-1), where X denotes the input sentence, n is the current
position, y, is the current state, and y,_ is the previous state.
where Z(X) denotes the normalisation constant, j denotes the
number of feature functions, and 4; is the weight of the
feature function.

In the experiment of this study, the begin-inside-outside-
end-single (BIOES) tagging scheme was adopted to enhance
the recognition of semantic role boundaries and lexical
attribution. This scheme subdivides the semantic roles in the
sentence into multiple intervals, precisely locating each role
and clearly defining the boundaries between roles. Utilising
CRF technology, the model establishes a transition
probability model between adjacent labels, enabling
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efficient learning and prediction of the optimal label
sequence, achieving more precise semantic role annotation.

4 Experimental setup
4.1 Experimental corpus

The CPB is a semantic role set developed specifically for
Chinese corpora, defining a total of eighteen semantic roles.
Among them, the predicate marker is labelled as ‘Rel’, and
the core semantic roles ARG0-ARGS5, as well as additional
semantic roles ARG-M-X, are used for representation,
where X is the abbreviation of the corresponding semantic
role in English. For example, the marker for the temporal
semantic role is labelled as ‘“ARGM-TMP’. The detailed
semantic roles are shown in Table 2.

For example, in the sentence ‘Zhang San ate an apple
yesterday’, the predicate ‘ate’ is marked as Rel, ‘Zhang San’
is annotated as ARGO (agent, the doer of the action), ‘apple’
is ARGI1 (patient, the object being acted upon), and
‘yesterday’ is ARGM-TMP (temporal modifier). This
example illustrates the SRL format of the CPB corpus.

The experiment utilised the CPB dataset, comprising
17,839 sentences in the training set and 1,115 sentences in
the test set. Statistical analysis was conducted on the
sentence length distribution in the experimental corpus.
Figure 4 shows the proportion of different sentence lengths
in the training and validation sets. Sentences with more than
100 characters are classified as long; those with
50-99 characters are medium-long; 30—49 characters are
medium-short; and fewer than 30 characters are short. In the
training set, medium-long sentences have the highest
proportion at 48%, while long sentences have the lowest
proportion at only 9%. In the validation set, medium-long
sentences again have the highest proportion (47%), and
short sentences the lowest (11%). These sentence length
categories were determined based on the dataset’s
distribution and linguistic intuition. Short sentences (fewer
than 30 characters) usually contain a single clause, whereas
long sentences (= 100 characters) often consist of multiple
clauses and complex structures. This categorisation ensures
that each group of sentences has sufficient examples and
allows us to examine the model’s performance under
different levels of sentence complexity.

Figure 4 Proportion of different sentence lengths in the CPB
corpus, (a) training set (b) validation

Long Sentences 11%

19%

= Medium-length
Sentences

Medium-short
Sentences

23%

Short Sentences

@ (b)

A simple statistical analysis was conducted on the length
distribution of sentences in the experimental corpus.

Figure 4 shows the proportions of different sentence types
in the corpus. Sentences with more than 100 words are
referred to as long sentences; those with fewer than 99 but
more than 50 words are termed as medium-long sentences;
those with fewer than 49 but more than 30 words are termed
as medium-short sentences and those with fewer than 30
words are termed as short sentences. In the training set, it
can be observed that medium-long sentences have the
highest proportion, reaching 48%; while long sentences
have the lowest proportion, accounting for only 9%. In the
validation set, it can be found that medium-long sentences
have the highest proportion, reaching 47%; and short
sentences have the lowest proportion, accounting for only
11%.

4.2 Parameterisation

Table 3 lists the hyperparameter settings of our model. We
chose these values based on preliminary experiments and
the characteristics of the CPB dataset. Specifically, the
maximum sequence length was set to 512 to accommodate
the longest sentences, and the batch size was 4 due to GPU
memory constraints with the large model. We used a
learning rate of 1 x 1075 for stable fine-tuning and applied a
dropout rate of 0.1 in order to prevent overfitting. The
model was trained for 70 epochs, which was sufficient for
convergence without overfitting. The hidden layer size
(768), number of hidden layers (12), and number of
attention heads (12) follow the configuration of the
RoBERTa base pre-trained language model.

4.3 Implementation details

All models were implemented in Python using the
PyTorch framework and the HuggingFace transformers
library. Training and evaluation were conducted on a single
machine equipped with an Intel 17-6700HQ CPU, 8 GB
RAM and an NVIDIA GTX 960M GPU (4 GB memory).
The hyperparameters for all experiments follow the settings
summarised in Table 3. For each configuration, we trained
the model once with a fixed random seed to ensure
reproducibility, and applied early stopping based on
development-set F1 with a patience of 5 epochs. Owing to
limited computational resources and the relatively large size
of the RoBERTa-based encoders, we did not perform
multiple independent runs per configuration; therefore, the
reported results are single-run scores rather than averages
over multiple runs.

5 Experimental
5.1 Experimental comparison

Experiment 1: evaluating the change in model performance
after replacing the CRF tag prediction layer with the
Biaffine tag prediction layer. As shown in Table 4, models
marked with an asterisk (*) include POS features, while
those without an asterisk are models without POS features.
Training duration and prediction duration refer to the
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average time per epoch. This paper’s test results adopt three
common evaluation metrics: precision (P), recall (R), and
F1-score (F1 value), defined as follows:

e  Precision measures the proportion of correctly
predicted semantic role labels in the SRL task.

e Recall measures the proportion of correctly predicted
positives in the SRL task out of all true positives.

e Fl-score: F1 =(PX R X2)/(P+R).
Analysis of Table 4 leads to the following conclusions:

1 The Biaffine model without integrated pooling
techniques slightly underperforms the CRF model in
terms of F1 score, with a difference of approximately
1%. However, the Biaffine model significantly reduces
training and prediction times, with training time per
epoch reduced by approximately 485 seconds and
prediction time reduced by about 2 seconds.

2 Introducing pooling techniques before Biaffine
technology improves model performance beyond
models using only CRF technology, with an average
increase in F1 score of around 2%. Additionally,
Biaffine technology continues to demonstrate its
advantage in reducing training and prediction times,
with training time per epoch reduced by approximately
400 seconds and prediction time reduced by about 4
seconds.

3 The inclusion of integrated POS features in the Biaffine
model leads to an average F1 score improvement of
about 1.5%, indicating a positive impact of POS
features on model performance. However, models
incorporating POS features require more time for
training and prediction, suggesting that the introduction
of additional features increases computational burden.
Nevertheless, given the performance improvement, this
additional time cost is worthwhile.

4 The combination of pooling techniques with Biaffine
technology significantly enhances model performance,
particularly with average pooling and max pooling
techniques. The average pooling technique increases
the F1 score by approximately 5.5%, reduces training
time by about 34 seconds, and reduces prediction time
by about 1 second. The max pooling technique
increases the F1 score by approximately 7%, reduces
training time by about 44 seconds, and reduces
prediction time by about 3 seconds. In contrast, the
improvement effect of the min pooling technique is less
significant, with an F1 score increase of approximately
1.5%.

Experiment 2: further validated the performance
enhancement effects of max pooling and average pooling
techniques on the model. Meanwhile, combined these two
pooling techniques with Biaffine technology to construct the
AvgPooling of Biaffine (APBF) model and MaxPooling of
Biaffine (MPBF) model. The experimental results are
shown in Table 5, where models with an asterisk (*) in their

names include POS features, while those without an asterisk
(*) do not. Through these experiments, the impact of
different technology combinations on model performance
can be further evaluated.

By comparing and analysing the data in Tables 4 and 5,
the following conclusions can be made:

1 Integrating pooling techniques into the Biaffine
feedforward neural network results in superior
performance compared to models using pooling
techniques solely in the Biaffine layer. Specifically, the
F1 score of the ROBERTa-APBF model improved by
approximately 2%, with a reduction in training time of
about 127 seconds per epoch and a decrease in
prediction time of around 7.5 seconds. Similarly, the
RoBERTa-MPBF model exhibited an F1 score
improvement of approximately 2.2%, with a training
time reduction of about 134 seconds per epoch and a
prediction time decrease of about 9 seconds. These
results indicate that both the ROBERTa-MPBF and
RoBERTa-APBF models significantly enhance the
performance of SRL tasks.

2 Regarding training duration, models without a CRF
layer, such as ROBERTa-APBF and RoBERTa-MPBF,
have relatively shorter training times, implying an
advantage in training efficiency. However, models with
a CRF layer exhibit increased training times, which is
reasonable considering the performance enhancement
they provide. In terms of prediction time, all models
maintain relatively low levels, indicating their ability to
make fast predictions in practical applications.
Particularly noteworthy is the RoOBERTa-MPBF model,
which achieves high F1 scores while requiring only
21.36 seconds for prediction, demonstrating excellent
real-time prediction capabilities.

3 Models incorporating POS features show
improvements in all performance metrics, indicating
that POS information aids in a deeper understanding of
sentence structure and semantic relationships. The
RoBERTa-MPBF-CRF model achieves the highest F1
score of 90.89% among all models, validating the
effectiveness of combining POS features with the
MPBF layer in enhancing model performance.

Experiment 3: further investigation was conducted on the
RoBERTa-MPBF model with the best performance to
explore the influence of different convolutional kernel sizes
on model performance. Testing was carried out by
employing convolutional kernels of varying sizes in the
pooling layer, aiming to understand whether the kernel size
would affect the model’s performance. Table 6 documents
test results, with all convolutional kernels set to a stride of 1
and zero-padding of unit length applied at both ends of the
input sequence. Through these experiments, a more
comprehensive assessment of the specific effects of
different technical parameters on model performance was
achieved.
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Table 2 CPB semantic role labels
Semantic role labeling Hidden meaning Semantic role labeling Hidden meaning
ARGO Agent (doer) ARGM-FRQ Frequency
ARG1 Patient (undergoer) ARGM-LOC Location
ARG2 Range ARGM-MNR Manner
ARG3 Action start ARGM-ADV Adverbial (general)
ARG4 Action end ARGM-PRP Purpose
ARG5S Other action-related ARGM-BNF Beneficiary
ARGM-DIS Discourse marker ARGM-TMP Time
ARGM-DGR Degree ARGM-CND Condition
ARGM-EXT Extent ARGM-TPC Topic
Table 3 Hyperparameter settings
Parameter Description Value
Max_length Maximum input sequence length 512
Batch_size Number of samples per batch 4
Learning_rate Learning rate le-5
Dropout Dropout rate 0.1
Num_train_epochs Number of training epochs 70
Hidden_size Hidden layer dimension 768
Num_hidden_layers Number of hidden layers (transformer blocks) 12
Num_ attention_heads Number of attention heads 12

Table 4 Performance comparison of various pooling techniques added before Biaffine technology
Models P/% R/% F1/% Training duration/s  Projected duration/s
RoBERTa-CRF 80.22 81.37 80.79 1,456.28 33.25
RoBERTa-CRF* 82.33 83.81 83.06 1,504.34 38.28
RoBERTa-Biaffine 78.34 80.74 79.52 971.28 31.98
RoBERTa-Biaffine* 79.18 83.09 81.09 1,015.21 3341
RoBERTa-MinP-Biaffine 82.72 80.13 81.40 931.81 28.28
RoBERTa-MinP-Biaffine* 84.59 84.29 84.44 1,003.65 30.73
RoBERTa-AvgP-Biaffine 85.36 86.91 86.13 937.34 29.98
RoBERTa-AvgP-Biaffine* 87.92 88.24 88.08 1,009.47 32.11
RoBERTa-MaxP-Biaffine 86.88 86.42 86.65 927.17 28.47
RoBERTa-MaxP-Biaffine* 88.01 88.75 88.38 999.48 29.87

Note: Models marked with an asterisk (*) include POS features.

Table 5 Performance comparison of four models
Models P/% R/% F1/% Training duration/s  Projected duration/s
RoBERTa-APBF 87.62 88.65 88.13 810.02 2241
RoBERTa-APBF* 88.98 90.48 89.72 883.49 24.69
RoBERTa-MPBF 89.83 87.77 88.79 793.22 21.36
RoBERTa-MPBF* 90.16 90.32 90.24 851.66 23.01
RoBERTa-APBF-CRF 89.27 90.11 89.69 1,452.74 35.57
RoBERTa-APBF-CRF* 89.97 90.40 90.19 1,533.32 38.15
RoBERTa-MPBF-CRF 91.51 86.48 88.92 1,430.96 33.88
RoBERTa-MPBF-CRF* 94.48 87.57 90.89 1,513.12 36.21

Note: Models marked with an asterisk (*) include POS features.
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Table 6 Test results for different kernel sizes
see PP R FIm T ons
2 89.79 87.49 88.62 792.91 21.18
3 89.83 87.77 88.79 793.22 21.36
4 91.71 71.53 80.37 810.69 24.05
5 90.30 56.51 69.51 837.46 37.73

On the basis of the experimental results in Table 6, the
following conclusions can be drawn:

1 When the convolutional kernel size is 2 or 3, the model
demonstrates higher stability, with the F1 score
consistently between 88.6% and 88.8%. The training
and prediction times of the model are relatively short,
approximately 793 seconds and 21 seconds
respectively, indicating that the model can maintain
good performance while ensuring efficient training and
prediction speeds.

2 As the convolutional kernel size increases to 4, the
model’s F1 score decreases to 80.37%, and the training
and prediction times also increase to 810.69 seconds
and 24.05 seconds respectively. This suggests that
larger convolutional kernels may lead to a decrease in
model performance and an increase in computational
costs.

3 When the convolutional kernel size continues to
increase to 5, the downward trend in model
performance becomes more pronounced, with the F1
score dropping to 69.51%. At this point, the training
and prediction times further extend to 837.46 seconds
and 37.73 seconds respectively. This may indicate that
excessively large convolutional kernel sizes can lead to
overfitting or information loss, while also significantly
increasing the demand for computational resources.

5.2 Comparison with other experimental methods

The final results of the text experiment are compared with
other experimental methods, and the comparative results are
presented in Table 7. Notably, Zhu et al. (2021b) achieved
an F1 score of 81.41% on the CPB dataset with a
BiLSTM-CRF model incorporating attention mechanisms
and argument features, whereas our best model
RoBERTa-MPBF-CRF* reaches 90.89%, demonstrating a
significant improvement in performance.

To the best of our knowledge, Zhu et al. (2021a, 2021b),
provide the only published CPB results that match our
setting in terms of corpus, label set and evaluation protocol.
Other recent Chinese SRL works mainly concentrate on
different corpora or task formulations and do not report
directly comparable CPB scores. For this reason, Table 7
focuses on Zhu et al.’s BILSTM-CRF baseline as a
representative CPB system, while Section 2 qualitatively
discusses a broader range of Chinese SRL models.

Table 7 Comparison of final experimental results with other
model results
. Training  Projected
0,
Experimental methods F1/% durations  duration/s
BiLSTM-Att-CRF-argument ~ 81.41 860.03 23.74
features
RoBERTa-MPBF-CRF* 90.89  1,513.12 36.21
(ours + POS + CRF)
RoBERTa-MPBF* (ours + 90.24 851.66 23.01
POS)
Note: Models marked with an asterisk (*) include POS
features.

After analysing the predictive outcomes of the analysis
model, it was found that the model has shortcomings in
identifying semantic roles with lower occurrence
frequencies including place names and personal names. To
enhance the performance of the model in future research,
exploration will be conducted to utilise large pre-trained
language models such as ChatGLM, LLAMA, and
LangChain. Through meticulous instruction adjustments,
these models will be adapted and applied to SRL tasks,
hoping to enhance the overall efficiency of the model.

6 Conclusions

To conclude, in the present study, a novel approach to
Chinese SRL is proposed, which combines pre-trained
language models with Biaffine technology. Experimental
results indicate that this method obviously enhances the
overall performance of SRL models and enhances the
ability of pre-trained language models to capture semantic
role boundary relationships. The impact of POS features,
pooling techniques, and the combination of Biaffine and
CRF technologies on model performance is also explored,
along with some experimental results and conclusions. In
future studies, further exploration will be conducted on
fine-tuning with large pre-trained language models to
further enhance model performance. These research
findings enrich the study of SRL tasks and provide valuable
references and insights for related research and applications.

One limitation of the current study is that, due to
computational constraints, all results are based on single
training runs per configuration; future work will
include multi-run statistical analysis and more extensive
comparisons with additional baselines.
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