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Abstract: Accurate meteorological forecasting is vital for disaster prevention. However, existing 
approaches often suffer from significant heterogeneity in meteorological data. To address these 
challenges, this paper introduces a data assimilation method based on particle swarm 
optimisation and particle filtering to derive assimilated meteorological observation variables. 
Subsequently, the seasonal-trend decomposition using LOESS is applied to disaggregate 
meteorological series. The trend component is predicted using a gated recurrent unit model, 
while the seasonal and residual components are formulated as state variables. This reformulation 
transforms forecasting problems into the multi-dimensional decision-making task, facilitating the 
training of a reinforcement learning model to improve forecasting accuracy. Experimental results 
show that the proposed model reduces the root mean square error by at least 13.93% and 15.21% 
for forecast lead times of 6 and 24 days, respectively, demonstrating its potential as an effective 
technical solution for high-precision meteorological forecasting across diverse climatic regions. 

Keywords: multi-scale meteorological forecasting; data assimilation; reinforcement learning; 
seasonal-trend decomposition using LOESS; gated recurrent unit. 
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1 Introduction 
Meteorology refers to various elements that indicate the 
physical state and phenomena of the atmosphere, directly 
affecting the formation and changes of regional 
meteorological and climate, thus having a significant impact 

on human production and life (Fathi et al., 2022). Therefore, 
accurate short-term meteorological forecasting is crucial for 
various practical applications (Biswas et al., 2018), such as 
disaster prevention, agricultural production, and 
environmental monitoring. Traditional meteorological 
forecasting methods often employ unified forecasting 
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models and parameter settings, which find it difficult to 
fully consider the differences in geographical environment, 
climate characteristics, and meteorological elements across 
different regions, making it impossible to meet the needs of 
region-specific meteorological forecasting (Neal et al., 
2016). To address this challenge, artificial intelligence 
algorithms have been used for fine-grained modelling of 
specific areas to improve the accuracy and timeliness of 
meteorological forecasting. However, the heterogeneity of 
meteorological data also poses challenges for the 
application of artificial intelligence algorithms (Conti, 
2024). The heterogeneity of meteorological data is reflected 
in its enormous differences in form and scale, increasing the 
difficulty of parsing and fusing these data (Aalto et al., 
2017). Given this, it is particularly important to develop a 
region-specific meteorological forecasting model that can 
uniformly process multiple types of data and deeply mine 
the intrinsic relationships between them. 

Traditional meteorological forecasting methods mainly 
analyse long-term historical data to establish functional 
models between the historical data and the target for 
prediction, including statistical analysis methods such as 
autoregressive models (Abdallah et al., 2020), moving 
average models (Rigby et al., 2024), autoregressive moving 
average models (Lai and Dzombak, 2020), etc. Al-Hajj 
(2025) used the Nadaraya-Watson estimator to further 
propose a time-adaptive kernel density estimation method 
for wind speed forecasting; however, there was considerable 
error in meteorological forecasting. Eberle et al. (2022) 
suggested a forecasting model in light of enhanced Hidden 
Markov models (HMM), using fuzzy smoothing methods to 
overcome performance degradation and adopting roulette 
selection methods to determine probabilities for the 
predicted results, thereby handling uncertainty. Małolepsza 
et al. (2024) adopted adaptive resampling combined with 
fuzzy reasoning to construct prediction intervals, obtaining 
a complete probability distribution of meteorological 
forecasts by simultaneously generating prediction intervals 
at different confidence levels. Statistical methods have 
advantages such as simplicity, ease of implementation, and 
strong interpretability (Finkel et al., 2023). 

Artificial intelligence methods refer to meteorological 
forecasting approaches based on machine learning and deep 
learning. These methods, based on historical data, establish 
neural networks that describe the relationship between 
historical inputs and outputs through various machine 
learning and deep learning rules, and further use this model 
to predict future meteorological conditions. Helmert et al. 
(2018) introduced a data assimilation method to improve the 
heterogeneity of meteorological data and integrated random 
forests, support vector machines, and neural networks for 
predicting extreme temperatures in the coming day. 
Gyamerah and Owusu (2024) proposed a regional 
meteorological forecasting approach based on feedforward 
neural networks, combining upper-lower bound estimation 
and bootstrap methods to quantify uncertainty. Veeramsetty 
et al. (2023) combined chaos theory with an artificial bee 
colony algorithm to optimise radial basis function neural 

networks for meteorological prediction, significantly 
improving the prediction accuracy. Suleman and Shridevi 
(2022) used long short-term memory (LSTM) neural 
network to predict uncertainties in meteorological and 
employed a Gaussian mixture model to analyse the 
distribution characteristics of prediction errors. Utku and 
Can (2023) utilised wavelet transforms to decompose 
original meteorological sequences into sub-sequences with 
different frequencies, using multi-scale convolutional neural 
networks (CNN) to learn nonlinear features in each 
component for multiscale probabilistic predictions of 
meteorological data. Hewage et al. (2020) proposed a 
decomposition-aggregation temporal convolutional 
network-based meteorological forecasting model and 
conducted analysis and prediction on Beijing 
meteorological station data, achieving smaller prediction 
errors compared to individual models. Liu et al. (2020) 
developed a wind speed prediction method based on CNN 
and LSTM, and introduced deep reinforcement learning for 
error compensation prediction, significantly improving 
prediction accuracy. Zhao et al. (2024) utilised 
reinforcement learning to combine predictions from 
multiple neural networks to obtain future meteorological 
conditions. Jethva (2025) employed particle filter 
algorithms for meteorological observation data assimilation 
and proposed an integrated model dynamic weighting 
forecasting method based on reinforcement learning, which 
can dynamically allocate and update the weight of each 
model at different times according to the characteristics of 
the data and individual model predictions. 

Based on the analysis of the aforementioned studies 
related to meteorological forecasting, it is evident that 
current meteorological models are often affected by initial 
field error accumulation, complex multi-scale 
meteorological system coupling mechanisms, and element 
heterogeneity, making it difficult to meet customised 
prediction needs across different regions. To address this 
issue, this paper proposes a region-specific, multi-scale 
meteorological prediction model based on data assimilation 
and reinforcement learning. The main work of this model 
can be summarised in the following four aspects. 

1 To address the dependency on future observations in 
particle filter data assimilation algorithms, a particle 
filter data assimilation method based on particle swarm 
optimisation (PSO) is proposed. This approach utilises 
historical reanalysis data to replace future observations. 
Leveraging the PSO algorithm’s capability to adjust 
particle positions, particles are guided toward 
observations. The resulting assimilated meteorological 
variables serve as input for subsequent forecast models. 

2 Decompose the assimilated meteorological sequence 
using the seasonal-trend decomposition using LOESS 
(STL) algorithm. Separate the sequence into trend, 
seasonal, and residual components, selecting different 
components for learning based on the characteristics of 
deep learning and reinforcement learning. 
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3 The GRU model is employed to forecast the distinct 
trend component, while the remaining seasonal 
component and residual component are treated as 
states. This reframes the meteorological sequence 
forecasting problem as a Markov decision process 
(MDP) decision problem, enabling learning through 
reinforcement learning models. By integrating the 
strengths of deep learning and reinforcement learning, 
the accuracy of multi-scale meteorological forecasting 
is enhanced. 

4 The experimental results show that when the prediction 
lengths are 6 and 24, the RMSE of the proposed model 
is 14.58 and 18.25 respectively. The prediction error is 
significantly lower than that of the benchmark model, 
and it can accurately achieve multi-scale 
meteorological prediction, opening up a new idea for 
realising regional customised multi-scale 
meteorological prediction. 

2 Relevant theory 
2.1 Particle filter data assimilation method 
The particle filter data assimilation method is a nonlinear, 
non-Gaussian data assimilation technique based on 
Bayesian estimation (Maclean and Van, 2021), which uses 
Monte Carlo simulations to generate a large number of 
weighted particles to approximate the posterior probability 
distribution, thereby achieving dynamic data estimation. 

The particle filter is a sequential data assimilation 
method where particles represent model states and a 
collection of particles forms a model state ensemble (Rémy 
et al., 2012). Assuming the initial state of the particles is n

ix  
and the number of particles in the set is N, then the prior 
probability density function (PDF) is as follows. 

( ) ( )
1

1N
n n n

i
i

p x δ x x
N=

≈ −  (1) 

Between two observations, the states of these particles are 
integrated from time to time according to model equations, 
and this integration process is represented as follows. 

( )1n n nx f x −= + β  (2) 

where f(x) he model integration function, and βn represents 
discretisation error. It is generally assumed that model 
errors follow a distribution N(0, Q). Observations are 
essential in the assimilation process. Therefore, 
observations are represented as yn, where observation errors 
follow a distribution N(0, R). These observational values yn 
achieve assimilation by multiplying the above prior PDF 
with the likelihood of each possible state. According to 
Bayes’ theorem, the posterior PDF is as follows. 
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where p(xn|yn) is the probability density of the observation 
vector, for a given state xn, the observation yn equals the 
observation error ε translated as follows. 

( ) ( ){ }|n n n n
εp y x p y H x= −  (4) 

From the above equation it can be seen that all terms are 
known values; therefore the particle weights form a number. 
After normalising the particle weights, they represent the 
posterior probability density. 

Compared to the ensemble Kalman filter method, the 
particle filter approach has a simpler computational process. 
Moreover, during algorithm computation, particle states are 
not adjusted but only their weights are modified. However, 
this method may suffer from particle degeneracy. 

2.2 Reinforcement Learning 
Reinforcement learning emphasises trial-and-error learning 
through interaction, with the goal of taking an action in the 
current environment to maximise the numerical reward 
signal. It is also different from unsupervised learning; its 
purpose is not to find specific structures hidden in unlabeled 
data but rather to identify actions that maximise rewards. 
Therefore, reinforcement learning involves continuous  
trial-and-error and weighing each decision step-by-step. 
Therefore, reinforcement learning is regarded as the third 
major machine learning paradigm alongside supervised 
learning and unsupervised learning. 

Reinforcement learning problems are typically 
formulated as MDP for policy learning (Mehta, 2020). The 
MDP includes a state space S, actions A, strategies π, 
reward function R, and discount factor γ. The discount 
factor is used to calculate the total return. In reinforcement 
learning formulated as an MDP, agents obtain the next state 
st+1 after taking action at in a given state st by using the state 
transition probability function P. 

( )1 | ,t t tP s S s A a+ = =  (5) 

When transitioning to state st+1, rewards rt+1 = R(at, st, st+1) 
will be obtained based on reward function R(at, st, st+1). 

The reward depends on the current state, the next state, 
and the action taken. The target policy learned by the 
reinforcement learning agent is π, which maximises the 
expected return under the initial distribution. The state 
visitation distribution represented as ρπ indicates π. The 
value function Qπ(st, at) describes the expected return after 
taking actions according to π. 

( ) [ ], ,, | ,
i i i

π
t t r t s t E a t π t t tQ s a E R s a≥ ≥ ∼ > ∼=  (6) 
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3 Regional meteorological observation data 
assimilation based on an improved particle 
filter data assimilation method 

3.1 Overview of meteorological observation data 
assimilation method 

Data assimilation is a general method used to estimate 
meteorological variables. This method aims to combine any 
type of measurement data with estimates from geophysical 
models. The acquisition of key atmospheric variables via 
data assimilation enhances the accuracy of predictions when 
applied to subsequent applications such as meteorological 
forecasting. The particle filter’s capability to manage 
nonlinear and non-Gaussian features has led to its growing 
prominence as a topic of study in data assimilation. 
Therefore, how to effectively integrate sparse and unevenly 
distributed observational data with meteorological 
numerical models using the particle filter method to 
improve the accuracy of meteorological element analysis 
and forecasting is an urgent problem that needs to be 
addressed. This study is based on the particle filter method 
and combines it with the characteristic of the PSO algorithm 
(Wang et al., 2021) to search for global optimal solutions. It 
investigates and analyses the shortcomings of conventional 
particle filter approaches, which rely on future observation 
information to adjust particles. A particle filter data 
assimilation approach in light of the PSO algorithm is 
proposed to improve the assimilation efficiency of nonlinear 
and non-Gaussian meteorological element information. 

PSO and the particle filter algorithm share certain 
common principles. First, the PSO algorithm updates a 
particle’s position by assigning it a velocity in order to find 
a global optimal solution, while the particle filter algorithm 
adjusts particles’ weights through proposal density to 
approximate the posterior probability density; both methods 
approach an optimal target through adjustments to the 
particles. Finally, in the PSO algorithm, particles’ velocities 
and positions are updated based on their fitness values to 
search for global optimal solutions, while in the equally 
weighted particle filter algorithm, particle weights are 
updated through the computed proposal density to guide 
particles toward observation information. The 
aforementioned similarities indicate that it is feasible to 
apply the PSO algorithm to address the issue where the 
particle filter algorithm relies on future meteorological 
observation information to compute the proposal density 
and guide particles toward meteorological observations. 

3.2 Particle filter data assimilation method based on 
PSO improvement 

When the PSO algorithm is combined with the particle filter 
algorithm, premature phenomena often occur. Therefore, 
weight self-adaptive adjustments are necessary for the PSO 
algorithm to avoid its problem of local convergence. 
Compared to the standard PSO algorithm, the PSO 
algorithm used in this study introduces adaptive adjustment 

of inertia weight and learning factors, while also employing 
a mutation algorithm to enhance particle diversity. 

The fitness value of each particle is calculated using 
traditional PSO. Then, each particle’s fitness value is 
compared with the overall average fitness of the entire 
particle set. The self-adaptive adjustment method for inertia 
weight is as follows. 

( ) ( )

( )

max max min
min

min

min max min

( ) ,

( ) ( ) / ,

mean
mean

mean

f F w w
w t w F f

f f
w t w w w iter t iter F f

− ∗ −
= +

−
= + − ∗ − >








(7) 

where fmin is the minimum fitness value among particles in 
the swarm, fmax is the average fitness of the particle swarm, 
and F is the fitness value of this particle. wmax and wmin 
represent the maximum and minimum values of inertia 
weight in the particle swarm, respectively; iter represents 
the maximum number of iterations, and t represents the 
current iteration count. 

Adjusting the learning factors adaptively can change the 
ability of particles to move toward an optimal target point. 
In this study, exponential curves are used to update the 
learning factors c1 and c2. During the early stage of 
algorithm iterations, it enhances the global search capability 
of particles, avoiding them from falling into local optima. In 
the later stage of algorithm iterations, it improves the speed 
at which particles move toward an optimal target point to 
achieve higher-quality solutions. The update formulas for c1 
and c2 are as follows, where iter represents the maximum 
number of iterations and t represents the current iteration 
count. By adaptively updating c1 and c2, particles possess 
strong global search capabilities during the early stage of 
algorithm iterations, quickly locating a global optimal 
solution. During the later stage of algorithm iterations, they 
have stronger local search capabilities, enabling them to 
rapidly find an optimal solution in their vicinity. 

1

10( 1)exp 1
11.5

exp(10) 1

t
iterc

− −
−= +

−
 (8) 

2

10( 1)exp 1
12.5

exp(10) 1

t
iterc

− −
−= −

−
 (9) 

To improve the diversity of particles after algorithm 
optimisation, mutation operations are introduced to 
randomly mutate the particles. First, set a random function 
rand and then establish a threshold; if the random function 
exceeds this threshold, the particle positions are updated 
randomly, making the particles more dispersed and avoiding 
loss of diversity due to concentrated particle positions. 
Particle position updates follow the equation below, where 
Rmax is the maximum radius of the particle search space. 

max( )x t R rand= ∗  (10) 

The main steps of the particle filter algorithm based on 
improved PSO optimisation are as follows. 
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1 Initialisation. Randomly draw a set of particles  
{xn, n = 1, 2, …, N} from the prior PDF and randomly 
assign initial velocities V1, V2, …, Vn to these particles. 

2 Use the improved PSO algorithm to adjust particle 
positions and use fitness values to evaluate the distance 
between particles and meteorological observation 
information, as shown below. 

( )2
| 1

1( ) exp
2 n n nP y z z

R −
 = − −  

 (11) 

where R is the measurement noise variance, zn is the 
particle’s measured value, and zn|n–1 is the predicted 
measurement value. Compare the calculated current 
fitness value with the individual optimal solution of this 
particle and also compare it with the global optimal 
solution. The inertial weight is adaptively updated by 
comparing the fitness value and the average swarm 
fitness. Meanwhile, update c1 and c2. After parameter 
adjustment, update the velocity and position of the 
particles. Subsequently, if the particles are overly 
concentrated, randomly mutate them using a mutation 
method. Continuously loop and iterate this step until 
reaching the maximum number of iterations or 
achieving an ideal precision for the global optimal 
solution; at that point, use the updated particle positions 
to replace the original ones. 

3 Weight update. Update the particle weights based on 
the latest measurement information and normalise them 
as follows, where i

nω  and 1
i
nω −  are the weights. 

( ) ( )
( )1

1

| |
| ,

i i
n n n ni i

n n i
n n n

p z x p x x
ω ω

q x x z−
−

∞  (12) 

4 Resampling. After updating the particle weights and 
states, resample the entire set of particles and re-sample 
20% of the particles in the set that do not reach the 
target weight. 

5 State output. According to the state output formula 
from the particle filter method, output the system’s 
state estimate and error statistics to obtain 
meteorological observation variables after assimilation 
for input into subsequent forecasting models. 

4 Regional customised meteorological multiscale 
forecasting based on data decomposition and 
reinforcement learning 

4.1 Meteorological observation sequence 
decomposition based on STL algorithm 

Traditional meteorological forecasting models have issues 
like insufficient dynamic error correction capability and low 
prediction accuracy, making it difficult to meet the needs 
for customised predictions in different regions. To address 
these challenges, this paper proposes a regionally 
customised multiscale meteorological forecasting method 

that integrates data decomposition and reinforcement 
learning based on meteorological observation data 
assimilation. The overall model framework of the suggested 
method is shown in Figure 1. Firstly, the STL algorithm 
(Krake et al., 2024) is adopted to decompose the 
meteorological sequence into trend, seasonal, and residual 
components. Based on the characteristics of deep learning 
and reinforcement learning, different components are 
selected for learning. Finally, the prediction results are 
combined to further improve the accuracy of multiscale 
meteorological forecasting. 

Figure 1 The overall model framework of the suggested 
prediction method (see online version for colours) 
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For the trends, seasonal patterns, and residuals in a 
meteorological sequence, this proposed model uses the STL 
algorithm to decompose the meteorological observation 
sequences. The STL algorithm is one of the most commonly 
used decomposition algorithms (Gordan et al., 2024). 
Compared to other decomposition methods, it has strong 
robustness against outliers in the data, thereby generating 
robust sub-sequences. The robustness of these component 
sequences can further improve the accuracy of forecasting 
using those subsequences. 

The STL algorithm is a filtering process for 
decomposing meteorological sequences Yt into three 
components: trend, seasonal, and residual. These are 
represented as follows with Tt, St, and Rt. 

t t t tY T S R= + +  (13) 

STL consists of two recursive processes: an inner loop 
nested within the outer loop. Each iteration of the inner loop 
comprises a seasonal smoothing step to refine the seasonal 
component, followed by a subsequent trend smoothing step 
to update the trend component. The calculation process for 
the kth iteration of the inner loop is as bellow. 

1 Detrending. A new sequence detrend ( )k
t t tY Y T= −  is 

achieved through subtracting the trend component ( )k
tT  

from the original meteorological sequence values Yt. 
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2 Cyclic subseries smoothing. Smooth each cyclic 
subsequence of the detrended sequences using a loess 
smoother to obtain an initial seasonal sequence ( ).k l

tC +  

3 Low-pass filtering. The preliminary seasonal sequence 
obtained in Step (2) is processed by a low-pass filter 
and then smoothed with a loess smoother to gain the 
residual trend sequence ( 1) .k

tL +  

4 Detrending. The seasonal component 
( 1) ( 1) ( 1)k k k
t t tS C L+ + += −  is obtained by subtracting the 

remaining part ( 1)k
tL +  from ( 1).k

tC +  

5 Deseasonalising. A deseasonalised sequence 
deseason ( )k l
t t tX Y S += −  is obtained by subtracting ( 1)k

tS +  
from Yt. 

6 Smoothing trend: The trend sequence ( 1)k
tT +  is obtained 

by applying a loess smoother to .deseason
tX  

In every outer loop, an inner loop is executed first, followed 
by the determination of robustness weights. These weights 
are utilised in the next inner iteration to suppress short-lived 
or irregular effects in the trend and seasonal elements. 
Through the initial operation of the inner loop, Tt and St are 
obtained, while Rt is expressed as Rt = Yt–Tt–St. 

4.2 Regional customised meteorological multi-scale 
forecasting based on GRU model and 
reinforcement learning 

After decomposing the meteorological variable  
sequence using the STL decomposition algorithm above, a 
GRU model (Wu et al., 2020) is used to predict the  
feature-rich trend component, while the remaining seasonal 
component and residual component are used as states. The 
meteorological sequence prediction problem is 
reconstructed as an MDP decision-making problem, and a 
reinforcement learning model is used for learning. By 
combining the advantages of deep learning and 
reinforcement learning, the accuracy of forecasting is 
improved. 

In terms of environment state construction, first use the 
STL algorithm to decompose the meteorological sequence 
Yt, obtaining Tt, St and Rt. A GRU network is used to predict 
the decomposed trend sequence Tt. Since the action 
selection of an agent in reinforcement learning is affected 
by a constantly changing environment, agents are used to 
predict the remaining fluctuations. Therefore, the state of 
reinforcement learning is the residual fluctuation sequence 
of the meteorological variable sequence, namely the 
seasonal component and the residual component, that is 
state = St + Rt. 

The action output by the agent is not the direct 
meteorological sequence value corresponding to the next 
time step, but rather the prediction of the remaining 
fluctuation part after the GRU network model predicts the 
trend tt of the decomposed Tt. That is, the fluctuation value 

of the meteorological sequence. Therefore, the agent action 
is defined as a continuous action in the action space, where 
the action space is the normalised fluctuation range. The 
reward function for the agent is designed as follows: rt is the 
reward value, at is the action value of the agent on 
meteorological element t, tt is the trend value, and lt is the 
corresponding meteorological variable sequence value at 
meteorological element t. In addition, in order to allow the 
agent to gain sufficient experience to learn, a noise 
parameter k is added; during the first k episodes, noise is 
added to the agent’s actions, then removed so that the agent 
can focus more on improving prediction accuracy. 

t t t tr a t l= − + −  (14) 

For the state transition corresponding to the environment, 
since meteorological sequence data are continuous, the 
states start and end in time order. That is, after the agent 
makes an action response to the current state, it transitions 
to the next state in chronological order. To learn more 
experience, the start and end of environmental states are 
selected according to the following equation. 

( )0 ,start maxstate random state state=  (15) 

( )( ),end start max maxstate min state step state= +  (16) 

where statestart represents the start state for agent 
exploration, and rando’ is a random function indicating that 
a position is randomly selected between state0 and statemax 
as the starting state for agent exploration. state0 and statemax 
indicate the beginning and end of the meteorological 
sequence state space, respectively. stepmax represents the 
maximum number of steps an agent can explore within a 
single episode. 

5 Analysis of experimental results 
5.1 Analysis of meteorological observation data 

assimilation effect 
This paper selects coastal and plain meteorological data 
collected in 2023 from the literature (Rasp et al., 2020) as 
the dataset, which contains 5,691 records of precipitation, 
humidity, and temperature data. The dataset is based on 
global land data assimilation system (GLDAS) data, Global 
Energy and water cycle experiment-surface radiation 
BUDGET (GEWEX-SRB) radiation data, and tropical 
rainfall measuring mission (TRMM) precipitation data, 
combined with conventional meteorological observation 
data produced by China’s meteorological administration. It 
was divided into training sets, test sets, and validation sets 
in a 6:3:1 ratio. Experiments were conducted using an AMD 
5900X processor, 24GB memory, and an NVIDIA RTX 
3090 GPU, with PyTorch used to implement the model 
presented in this paper. During network training, each batch 
size was set to 64, learning rate at 0.0001, embedding 
dimension at 4, and Adam optimiser applied for 
optimisation. 
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Figure 2 Results of data assimilation for precipitation,  
(a) 20230315, (b) 20230518 (see online version  
for colours) 
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Table 1 Meteorological forecast results after data assimilation 

Date 

Precipitation amount 
Peak time 
difference/ 

h 

Determination
coefficient 

Measured 
value/ 
(m³/s) 

Assimilation 
value/ 
(m³/s) 

Relative 
error/ 

% 

20230315 150 154.486 2.99 0.5 0.868 
20230518 70.2 71.598 1.991 0.5 0.951 

The assimilation calculation of the rainfall-runoff 
simulation results and measured flow data for coastal areas 
in 2023 using the method proposed in this paper, OURS, 
was performed to assimilate update two field runoff events. 
The assimilation results are shown in Table 1 and Figure 2. 
Taking daily precipitation as an example to analyse the 
meteorological forecasting results after data assimilation 
according to Table 1, the flow volume of precipitation on 
March 15th, 2023 after assimilation differs from the 
measured one by only 4.486m³/s with an error of 2.990%. 
The peak occurrence time is 0.5h later than the 
measurement; however, the determination coefficient is 

merely 0.868. The data assimilation method proposed in this 
paper significantly improves the forecast precipitation flow 
without any sudden proximity to observational information 
and can achieve better assimilation results with fewer 
particles. This confirms the feasibility of the proposed 
method and lays a foundation for further experiments on 
subsequent multi-scale meteorological predictions. 

5.2 Effectiveness of meteorological sequence 
decomposition 

To assess the effectiveness of the STL sequence 
decomposition algorithm, the selected dataset was 
decomposed using the STL decomposition algorithm and 
the results after decomposition were analysed. The first 100 
data points of the decomposed data are used to draw curves 
as shown in Figure 3. 

As shown in Figure 3, after the meteorological sequence 
data is decomposed by the STL time series decomposition 
algorithm, the overall trend of the true value curve and the 
trend component curve are consistent; however, the trend 
component curve becomes smoother after decomposition. 
The seasonal component curve shows uniform oscillation 
around zero, and the fluctuation part in the residual 
component curve demonstrates that there is a stronger effect 
when the smoothness between its true value curve and the 
trend curve differs more. Through this analysis, it verifies 
that after using the STL decomposition algorithm for 
decomposition, multi-scale meteorological observation 
sequences successfully separate their trends from 
fluctuations, making it convenient to apply deep learning 
and reinforcement learning models afterward to learn based 
on these characteristics. 

Figure 3 Component curves after STL decomposition  
(see online version for colours) 
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5.3 Meteorological prediction accuracy analysis 
To analyse the outcome of the meteorological forecasting 
approach OURS suggested in this paper, multi-scale 
meteorological prediction experiments are conducted on the 
plain dataset. The evaluation indicators selected include 
RMSE, mean absolute percentage error (MAPE), and 
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determination coefficient R2. Comparative models are  
TCN-EWF (Hewage et al., 2020), CLS-RL (Liu et al., 
2020), NW-DRL (Zhao et al., 2024), PFA-RL (Jethva, 
2025). The humidity prediction error results for different 
models with forecast lengths of 6 and 24 are implied in 
Table 2 and Table 3, individually. 

Table 2 Comparison of prediction performance at a length of 
6 

Model RMSE MAPE R2 

TCN-EWF 27.61 39.62 0.8524 
CLS-RL 25.84 35.38 0.8862 
NW-DRL 21.43 33.46 0.9054 
PFA-RL 16.94 27.75 0.9428 
OURS 14.58 23.53 0.9715 

Table 3 Comparison of prediction performance at a length of 
24 

Model RMSE MAPE R2 

TCN-EWF 32.66 45.29 0.7951 
CLS-RL 29.51 41.66 0.8208 
NW-DRL 25.08 38.17 0.8715 
PFA-RL 23.48 33.53 0.9208 
OURS 18.25 30.47 0.9422 

As shown in Table 2 and Table 3, the OURS method 
performs well on various metrics under different forecast 
length settings. When the prediction lengths are 6 and 24, 
the RMSE of OURS is 14.58 and 18.25 respectively, which 
reduces by at least 13.93% and 15.21% compared to 
contrast models. The R2 of OURS is 0.9715 and 0.9422 
respectively, which increases by 13.97%, 18.5% compared 
to TCN-EWF, 9.63%, 14.79% compared to CLS-RL, 7.3%, 
8.11% compared to NW-DRL, and 3.04%, 2.32% compared 
to PFA-RL respectively. The OURS method performs well 
in meteorological multi-scale forecasting tasks. The OURS 
method decomposes the meteorological sequence by ST 
with local weighted regression, predicts the features of clear 
trend components using GRU, and takes the remaining 
seasonal components and residual components as states. It 
reconstructs the meteorological forecast problem into an 
MDP decision-making problem and improves prediction 
accuracy through learning with a reinforcement learning 
model. 

6 Conclusions 
Conventional meteorological forecasting models are often 
challenged by the complex coupling of multi-scale 
meteorological systems and data heterogeneity, limiting 
their ability to provide region-specific predictions. To 
address this, we propose a customised multi-scale 
forecasting model that integrates data assimilation and 
reinforcement learning. A PSO-enhanced particle filter is 
introduced to overcome the dependency on future 

observations in traditional data assimilation. By leveraging 
historical reanalysis data and adaptively guiding particles 
toward observations via PSO, the method produces 
improved assimilated meteorological variables. The time 
series is decomposed using STL algorithm to extract trend, 
seasonal, and residual components, enhancing feature 
representation. A GRU model predicts the trend, while a 
reinforcement learning framework incorporates seasonal 
and residual elements as state variables for multi-scale 
fluctuation forecasting. This hybrid approach combines the 
temporal modelling capability of deep learning with the 
adaptive decision-making of reinforcement learning. 
Experimental results show that the proposed model achieves 
lower RMSE and MAPE, demonstrating high accuracy. It 
effectively handles meteorological multi-scale forecasting 
adaptively, consistently outperforming baseline models. 
These findings offer valuable insights for developing  
next-generation intelligent meteorological forecasting 
systems. 

This paper has certain limitations in research, as the 
reinforcement learning model adopted requires interaction 
with the environment to obtain data for each learning 
process, resulting in longer training times compared to 
traditional deep learning methods. For applications 
involving large amounts of data, more training time is 
needed. In future time series tasks using reinforcement 
learning, multiple agents can be employed to work together 
to further improve exploration efficiency within the 
environment and make faster adjustments to search 
strategies through timely feedback, enabling the model to 
handle more complex scenarios. 
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