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Abstract: Accurate meteorological forecasting is vital for disaster prevention. However, existing
approaches often suffer from significant heterogeneity in meteorological data. To address these
challenges, this paper introduces a data assimilation method based on particle swarm
optimisation and particle filtering to derive assimilated meteorological observation variables.
Subsequently, the seasonal-trend decomposition using LOESS is applied to disaggregate
meteorological series. The trend component is predicted using a gated recurrent unit model,
while the seasonal and residual components are formulated as state variables. This reformulation
transforms forecasting problems into the multi-dimensional decision-making task, facilitating the
training of a reinforcement learning model to improve forecasting accuracy. Experimental results
show that the proposed model reduces the root mean square error by at least 13.93% and 15.21%
for forecast lead times of 6 and 24 days, respectively, demonstrating its potential as an effective
technical solution for high-precision meteorological forecasting across diverse climatic regions.

Keywords: multi-scale meteorological forecasting; data assimilation; reinforcement learning;
seasonal-trend decomposition using LOESS; gated recurrent unit.
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Introduction

on human production and life (Fathi et al., 2022). Therefore,
accurate short-term meteorological forecasting is crucial for

Meteorology refers to various elements that indicate the
physical state and phenomena of the atmosphere, directly
affecting the formation and changes of regional
meteorological and climate, thus having a significant impact

various practical applications (Biswas et al., 2018), such as
disaster ~ prevention, agricultural  production, and
environmental monitoring. Traditional —meteorological
forecasting methods often employ unified forecasting
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models and parameter settings, which find it difficult to
fully consider the differences in geographical environment,
climate characteristics, and meteorological elements across
different regions, making it impossible to meet the needs of
region-specific meteorological forecasting (Neal et al.,
2016). To address this challenge, artificial intelligence
algorithms have been used for fine-grained modelling of
specific areas to improve the accuracy and timeliness of
meteorological forecasting. However, the heterogeneity of
meteorological data also poses challenges for the
application of artificial intelligence algorithms (Conti,
2024). The heterogeneity of meteorological data is reflected
in its enormous differences in form and scale, increasing the
difficulty of parsing and fusing these data (Aalto et al.,
2017). Given this, it is particularly important to develop a
region-specific meteorological forecasting model that can
uniformly process multiple types of data and deeply mine
the intrinsic relationships between them.

Traditional meteorological forecasting methods mainly
analyse long-term historical data to establish functional
models between the historical data and the target for
prediction, including statistical analysis methods such as
autoregressive models (Abdallah et al., 2020), moving
average models (Rigby et al., 2024), autoregressive moving
average models (Lai and Dzombak, 2020), etc. Al-Hajj
(2025) used the Nadaraya-Watson estimator to further
propose a time-adaptive kernel density estimation method
for wind speed forecasting; however, there was considerable
error in meteorological forecasting. Eberle et al. (2022)
suggested a forecasting model in light of enhanced Hidden
Markov models (HMM), using fuzzy smoothing methods to
overcome performance degradation and adopting roulette
selection methods to determine probabilities for the
predicted results, thereby handling uncertainty. Matolepsza
et al. (2024) adopted adaptive resampling combined with
fuzzy reasoning to construct prediction intervals, obtaining
a complete probability distribution of meteorological
forecasts by simultaneously generating prediction intervals
at different confidence levels. Statistical methods have
advantages such as simplicity, ease of implementation, and
strong interpretability (Finkel et al., 2023).

Artificial intelligence methods refer to meteorological
forecasting approaches based on machine learning and deep
learning. These methods, based on historical data, establish
neural networks that describe the relationship between
historical inputs and outputs through various machine
learning and deep learning rules, and further use this model
to predict future meteorological conditions. Helmert et al.
(2018) introduced a data assimilation method to improve the
heterogeneity of meteorological data and integrated random
forests, support vector machines, and neural networks for
predicting extreme temperatures in the coming day.
Gyamerah and Owusu (2024) proposed a regional
meteorological forecasting approach based on feedforward
neural networks, combining upper-lower bound estimation
and bootstrap methods to quantify uncertainty. Veeramsetty
et al. (2023) combined chaos theory with an artificial bee
colony algorithm to optimise radial basis function neural

networks for meteorological prediction, significantly
improving the prediction accuracy. Suleman and Shridevi
(2022) wused long short-term memory (LSTM) neural
network to predict uncertainties in meteorological and
employed a Gaussian mixture model to analyse the
distribution characteristics of prediction errors. Utku and
Can (2023) utilised wavelet transforms to decompose
original meteorological sequences into sub-sequences with
different frequencies, using multi-scale convolutional neural
networks (CNN) to learn nonlinear features in each
component for multiscale probabilistic predictions of
meteorological data. Hewage et al. (2020) proposed a
decomposition-aggregation temporal convolutional
network-based meteorological forecasting model and
conducted analysis and prediction on  Beijing
meteorological station data, achieving smaller prediction
errors compared to individual models. Liu et al. (2020)
developed a wind speed prediction method based on CNN
and LSTM, and introduced deep reinforcement learning for
error compensation prediction, significantly improving
prediction accuracy. Zhao et al. (2024) utilised
reinforcement learning to combine predictions from
multiple neural networks to obtain future meteorological
conditions. Jethva (2025) employed particle filter
algorithms for meteorological observation data assimilation
and proposed an integrated model dynamic weighting
forecasting method based on reinforcement learning, which
can dynamically allocate and update the weight of each
model at different times according to the characteristics of
the data and individual model predictions.

Based on the analysis of the aforementioned studies
related to meteorological forecasting, it is evident that
current meteorological models are often affected by initial
field error  accumulation, complex  multi-scale
meteorological system coupling mechanisms, and element
heterogeneity, making it difficult to meet customised
prediction needs across different regions. To address this
issue, this paper proposes a region-specific, multi-scale
meteorological prediction model based on data assimilation
and reinforcement learning. The main work of this model
can be summarised in the following four aspects.

1 To address the dependency on future observations in
particle filter data assimilation algorithms, a particle
filter data assimilation method based on particle swarm
optimisation (PSO) is proposed. This approach utilises
historical reanalysis data to replace future observations.
Leveraging the PSO algorithm’s capability to adjust
particle positions, particles are guided toward
observations. The resulting assimilated meteorological
variables serve as input for subsequent forecast models.

2 Decompose the assimilated meteorological sequence
using the seasonal-trend decomposition using LOESS
(STL) algorithm. Separate the sequence into trend,
seasonal, and residual components, selecting different
components for learning based on the characteristics of
deep learning and reinforcement learning.
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3 The GRU model is employed to forecast the distinct
trend component, while the remaining seasonal
component and residual component are treated as
states. This reframes the meteorological sequence
forecasting problem as a Markov decision process
(MDP) decision problem, enabling learning through
reinforcement learning models. By integrating the
strengths of deep learning and reinforcement learning,
the accuracy of multi-scale meteorological forecasting
is enhanced.

4  The experimental results show that when the prediction
lengths are 6 and 24, the RMSE of the proposed model
is 14.58 and 18.25 respectively. The prediction error is
significantly lower than that of the benchmark model,
and it can accurately achieve multi-scale
meteorological prediction, opening up a new idea for
realising regional customised multi-scale
meteorological prediction.

2 Relevant theory
2.1 Particle filter data assimilation method

The particle filter data assimilation method is a nonlinear,
non-Gaussian data assimilation technique based on
Bayesian estimation (Maclean and Van, 2021), which uses
Monte Carlo simulations to generate a large number of
weighted particles to approximate the posterior probability
distribution, thereby achieving dynamic data estimation.

The particle filter is a sequential data assimilation
method where particles represent model states and a
collection of particles forms a model state ensemble (Rémy

et al., 2012). Assuming the initial state of the particles is x;'
and the number of particles in the set is N, then the prior

probability density function (PDF) is as follows.
p(x") = ia(x"—xf’) (1)
N

Between two observations, the states of these particles are
integrated from time to time according to model equations,
and this integration process is represented as follows.

=)+ g (2)

where f(x) he model integration function, and A" represents
discretisation error. It is generally assumed that model
errors follow a distribution N(0, Q). Observations are
essential in the assimilation process. Therefore,
observations are represented as ), where observation errors
follow a distribution N(0, R). These observational values "
achieve assimilation by multiplying the above prior PDF
with the likelihood of each possible state. According to
Bayes’ theorem, the posterior PDF is as follows.

plaryr) =220 (py('!,,);n ) p(x") (€)

where p(x"|y") is the probability density of the observation
vector, for a given state x", the observation )" equals the
observation error £ translated as follows.

(¥ 1x") = p Ay —H () )

From the above equation it can be seen that all terms are
known values; therefore the particle weights form a number.
After normalising the particle weights, they represent the
posterior probability density.

Compared to the ensemble Kalman filter method, the
particle filter approach has a simpler computational process.
Moreover, during algorithm computation, particle states are
not adjusted but only their weights are modified. However,
this method may suffer from particle degeneracy.

2.2 Reinforcement Learning

Reinforcement learning emphasises trial-and-error learning
through interaction, with the goal of taking an action in the
current environment to maximise the numerical reward
signal. It is also different from unsupervised learning; its
purpose is not to find specific structures hidden in unlabeled
data but rather to identify actions that maximise rewards.
Therefore, reinforcement learning involves continuous
trial-and-error and weighing each decision step-by-step.
Therefore, reinforcement learning is regarded as the third
major machine learning paradigm alongside supervised
learning and unsupervised learning.

Reinforcement learning problems are typically
formulated as MDP for policy learning (Mehta, 2020). The
MDP includes a state space S, actions A, strategies 7,
reward function R, and discount factor % The discount
factor is used to calculate the total return. In reinforcement
learning formulated as an MDP, agents obtain the next state
s+ after taking action a; in a given state s; by using the state
transition probability function P.

P(St+1|S=St,A=a[) Q)

When transitioning to state s+, rewards r1 = R(ay, i, Si+1)
will be obtained based on reward function R(a;, s, Si+1).

The reward depends on the current state, the next state,
and the action taken. The target policy learned by the
reinforcement learning agent is 7z, which maximises the
expected return under the initial distribution. The state
visitation distribution represented as " indicates z. The
value function Q"(s,, a;) describes the expected return after
taking actions according to 7.

o (St’ a ) = Erl-zt,sl-Zt~E,a,->t~7r [Rt s, at] (6)
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3 Regional meteorological observation data
assimilation based on an improved particle
filter data assimilation method

3.1 Overview of meteorological observation data
assimilation method

Data assimilation is a general method used to estimate
meteorological variables. This method aims to combine any
type of measurement data with estimates from geophysical
models. The acquisition of key atmospheric variables via
data assimilation enhances the accuracy of predictions when
applied to subsequent applications such as meteorological
forecasting. The particle filter’s capability to manage
nonlinear and non-Gaussian features has led to its growing
prominence as a topic of study in data assimilation.
Therefore, how to effectively integrate sparse and unevenly
distributed observational data with meteorological
numerical models using the particle filter method to
improve the accuracy of meteorological element analysis
and forecasting is an urgent problem that needs to be
addressed. This study is based on the particle filter method
and combines it with the characteristic of the PSO algorithm
(Wang et al., 2021) to search for global optimal solutions. It
investigates and analyses the shortcomings of conventional
particle filter approaches, which rely on future observation
information to adjust particles. A particle filter data
assimilation approach in light of the PSO algorithm is
proposed to improve the assimilation efficiency of nonlinear
and non-Gaussian meteorological element information.

PSO and the particle filter algorithm share certain
common principles. First, the PSO algorithm updates a
particle’s position by assigning it a velocity in order to find
a global optimal solution, while the particle filter algorithm
adjusts particles’ weights through proposal density to
approximate the posterior probability density; both methods
approach an optimal target through adjustments to the
particles. Finally, in the PSO algorithm, particles’ velocities
and positions are updated based on their fitness values to
search for global optimal solutions, while in the equally
weighted particle filter algorithm, particle weights are
updated through the computed proposal density to guide
particles ~ toward  observation  information.  The
aforementioned similarities indicate that it is feasible to
apply the PSO algorithm to address the issue where the
particle filter algorithm relies on future meteorological
observation information to compute the proposal density
and guide particles toward meteorological observations.

3.2 Particle filter data assimilation method based on
PSO improvement

When the PSO algorithm is combined with the particle filter
algorithm, premature phenomena often occur. Therefore,
weight self-adaptive adjustments are necessary for the PSO
algorithm to avoid its problem of local convergence.
Compared to the standard PSO algorithm, the PSO
algorithm used in this study introduces adaptive adjustment

of inertia weight and learning factors, while also employing
a mutation algorithm to enhance particle diversity.

The fitness value of each particle is calculated using
traditional PSO. Then, each particle’s fitness value is
compared with the overall average fitness of the entire
particle set. The self-adaptive adjustment method for inertia
weight is as follows.

(jmax _F)*(Wmax _Wmin)’ F < .f;vzean
fmean - fmin (7)

— Wi ) * (iter —t) / iter, F > f,,

w(t) = Wy, +

W(t) =Wpin T (Wmax ean
where fi» is the minimum fitness value among particles in
the swarm, f,., is the average fitness of the particle swarm,
and F is the fitness value of this particle. Wy and wpin
represent the maximum and minimum values of inertia
weight in the particle swarm, respectively; iter represents
the maximum number of iterations, and ¢ represents the
current iteration count.

Adjusting the learning factors adaptively can change the
ability of particles to move toward an optimal target point.
In this study, exponential curves are used to update the
learning factors ¢; and c¢;. During the early stage of
algorithm iterations, it enhances the global search capability
of particles, avoiding them from falling into local optima. In
the later stage of algorithm iterations, it improves the speed
at which particles move toward an optimal target point to
achieve higher-quality solutions. The update formulas for ¢;
and ¢, are as follows, where iter represents the maximum
number of iterations and t represents the current iteration
count. By adaptively updating ¢; and c,, particles possess
strong global search capabilities during the early stage of
algorithm iterations, quickly locating a global optimal
solution. During the later stage of algorithm iterations, they
have stronger local search capabilities, enabling them to
rapidly find an optimal solution in their vicinity.

Xp lp(t -1) -1
iter —1 (8)
exp(10)—1

=15+

Lloe-n
P iter —1 (9)
exp(10)—1

¢, =25-

To improve the diversity of particles after algorithm
optimisation, mutation operations are introduced to
randomly mutate the particles. First, set a random function
rand and then establish a threshold; if the random function
exceeds this threshold, the particle positions are updated
randomly, making the particles more dispersed and avoiding
loss of diversity due to concentrated particle positions.
Particle position updates follow the equation below, where
Ryax 1s the maximum radius of the particle search space.

x(t) =R, *rand (10)

The main steps of the particle filter algorithm based on
improved PSO optimisation are as follows.
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1 Initialisation. Randomly draw a set of particles
{xn, n=1,2, ..., N} from the prior PDF and randomly
assign initial velocities Vi, V>, ..., V), to these particles.

2 Use the improved PSO algorithm to adjust particle
positions and use fitness values to evaluate the distance
between particles and meteorological observation
information, as shown below.

P =exp| - (2,240 ) | an

where R is the measurement noise variance, z, is the
particle’s measured value, and z,|,1 is the predicted
measurement value. Compare the calculated current
fitness value with the individual optimal solution of this
particle and also compare it with the global optimal
solution. The inertial weight is adaptively updated by
comparing the fitness value and the average swarm
fitness. Meanwhile, update c; and c¢,. After parameter
adjustment, update the velocity and position of the
particles. Subsequently, if the particles are overly
concentrated, randomly mutate them using a mutation
method. Continuously loop and iterate this step until
reaching the maximum number of iterations or
achieving an ideal precision for the global optimal
solution; at that point, use the updated particle positions
to replace the original ones.

3 Weight update. Update the particle weights based on
the latest measurement information and normalise them

as follows, where ) and @', are the weights.

plz,15) p(x, 1)

i
q(xn |xn—1’zn)

(12)

i i
W,>°0,_;

4 Resampling. After updating the particle weights and
states, resample the entire set of particles and re-sample
20% of the particles in the set that do not reach the
target weight.

5 State output. According to the state output formula
from the particle filter method, output the system’s
state estimate and error statistics to obtain
meteorological observation variables after assimilation
for input into subsequent forecasting models.

4 Regional customised meteorological multiscale
forecasting based on data decomposition and
reinforcement learning

4.1 Meteorological observation sequence
decomposition based on STL algorithm

Traditional meteorological forecasting models have issues
like insufficient dynamic error correction capability and low
prediction accuracy, making it difficult to meet the needs
for customised predictions in different regions. To address
these challenges, this paper proposes a regionally
customised multiscale meteorological forecasting method

that integrates data decomposition and reinforcement
learning based on meteorological observation data
assimilation. The overall model framework of the suggested
method is shown in Figure 1. Firstly, the STL algorithm
(Krake et al, 2024) is adopted to decompose the
meteorological sequence into trend, seasonal, and residual
components. Based on the characteristics of deep learning
and reinforcement learning, different components are
selected for learning. Finally, the prediction results are
combined to further improve the accuracy of multiscale
meteorological forecasting.

Figure 1 The overall model framework of the suggested
prediction method (see online version for colours)
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For the trends, seasonal patterns, and residuals in a
meteorological sequence, this proposed model uses the STL
algorithm to decompose the meteorological observation
sequences. The STL algorithm is one of the most commonly
used decomposition algorithms (Gordan et al., 2024).
Compared to other decomposition methods, it has strong
robustness against outliers in the data, thereby generating
robust sub-sequences. The robustness of these component
sequences can further improve the accuracy of forecasting
using those subsequences.

The STL algorithm is a filtering process for
decomposing meteorological sequences Y, into three
components: trend, seasonal, and residual. These are
represented as follows with 7}, S, and R,.

Y,=T,+S,+R, (13)

STL consists of two recursive processes: an inner loop
nested within the outer loop. Each iteration of the inner loop
comprises a seasonal smoothing step to refine the seasonal
component, followed by a subsequent trend smoothing step
to update the trend component. The calculation process for
the k™" iteration of the inner loop is as bellow.

1 Detrending. A new sequence ¥ =y, —T7* is

achieved through subtracting the trend component T;(k)

from the original meteorological sequence values 7.
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2 Cyclic subseries smoothing. Smooth each cyclic
subsequence of the detrended sequences using a loess

smoother to obtain an initial seasonal sequence C**".

3 Low-pass filtering. The preliminary seasonal sequence
obtained in Step (2) is processed by a low-pass filter
and then smoothed with a loess smoother to gain the

residual trend sequence L\,

4  Detrending. The seasonal component
S*D = ¢ _ [ s obtained by subtracting the

remaining part L**" from C*™

5 Deseasonalising. A deseasonalised sequence
X lesewon —y _ §*+D s obtained by subtracting S
from Y.

6  Smoothing trend: The trend sequence Tt("“) is obtained
by applying a loess smoother to X /",

In every outer loop, an inner loop is executed first, followed
by the determination of robustness weights. These weights
are utilised in the next inner iteration to suppress short-lived
or irregular effects in the trend and seasonal elements.
Through the initial operation of the inner loop, 7; and S, are
obtained, while R, is expressed as R, = Y~T-S..

4.2 Regional customised meteorological multi-scale
Jforecasting based on GRU model and
reinforcement learning

After  decomposing the  meteorological  variable
sequence using the STL decomposition algorithm above, a
GRU model (Wu et al, 2020) is used to predict the
feature-rich trend component, while the remaining seasonal
component and residual component are used as states. The
meteorological ~ sequence  prediction  problem s
reconstructed as an MDP decision-making problem, and a
reinforcement learning model is used for learning. By
combining the advantages of deep learning and
reinforcement learning, the accuracy of forecasting is
improved.

In terms of environment state construction, first use the
STL algorithm to decompose the meteorological sequence
Y, obtaining T3, S; and R;. A GRU network is used to predict
the decomposed trend sequence 7. Since the action
selection of an agent in reinforcement learning is affected
by a constantly changing environment, agents are used to
predict the remaining fluctuations. Therefore, the state of
reinforcement learning is the residual fluctuation sequence
of the meteorological variable sequence, namely the
seasonal component and the residual component, that is
state = S;+ R..

The action output by the agent is not the direct
meteorological sequence value corresponding to the next
time step, but rather the prediction of the remaining
fluctuation part after the GRU network model predicts the
trend ¢ of the decomposed T;. That is, the fluctuation value

of the meteorological sequence. Therefore, the agent action
is defined as a continuous action in the action space, where
the action space is the normalised fluctuation range. The
reward function for the agent is designed as follows: r; is the
reward value, a, is the action value of the agent on
meteorological element ¢, # is the trend value, and /; is the
corresponding meteorological variable sequence value at
meteorological element ¢. In addition, in order to allow the
agent to gain sufficient experience to learn, a noise
parameter & is added; during the first £ episodes, noise is
added to the agent’s actions, then removed so that the agent
can focus more on improving prediction accuracy.

n=—la, +t,—1, (14)

For the state transition corresponding to the environment,
since meteorological sequence data are continuous, the
states start and end in time order. That is, after the agent
makes an action response to the current state, it transitions
to the next state in chronological order. To learn more
experience, the start and end of environmental states are
selected according to the following equation.

state

start

= random (state,, state,,, ) (15)

start

state,,, = min ((state,,,, + step,,, ), state,,, ) (16)

where stateq.: represents the start state for agent
exploration, and rando’ is a random function indicating that
a position is randomly selected between statey and statemqx
as the starting state for agent exploration. statey and statemqx
indicate the beginning and end of the meteorological
sequence state space, respectively. step.. represents the
maximum number of steps an agent can explore within a
single episode.

5 Analysis of experimental results

5.1 Analysis of meteorological observation data
assimilation effect

This paper selects coastal and plain meteorological data
collected in 2023 from the literature (Rasp et al., 2020) as
the dataset, which contains 5,691 records of precipitation,
humidity, and temperature data. The dataset is based on
global land data assimilation system (GLDAS) data, Global
Energy and water cycle experiment-surface radiation
BUDGET (GEWEX-SRB) radiation data, and tropical
rainfall measuring mission (TRMM) precipitation data,
combined with conventional meteorological observation
data produced by China’s meteorological administration. It
was divided into training sets, test sets, and validation sets
in a 6:3:1 ratio. Experiments were conducted using an AMD
5900X processor, 24GB memory, and an NVIDIA RTX
3090 GPU, with PyTorch used to implement the model
presented in this paper. During network training, each batch
size was set to 64, learning rate at 0.0001, embedding
dimension at 4, and Adam optimiser applied for
optimisation.
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Figure 2 Results of data assimilation for precipitation,
(a) 20230315, (b) 20230518 (see online version
for colours)
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Table 1 Meteorological forecast results after data assimilation
Precipitation amount )
—— — Peak time D L
Date MeasuredAsszmllatlonRelatzvediﬁference/ etermination
value/ value/  error/ h coefficient
(m%/s) (m%/s) %
20230315 150 154.486  2.99 0.5 0.868
20230518 70.2 71.598 1.991 0.5 0.951

The assimilation calculation of the rainfall-runoff
simulation results and measured flow data for coastal areas
in 2023 using the method proposed in this paper, OURS,
was performed to assimilate update two field runoff events.
The assimilation results are shown in Table 1 and Figure 2.
Taking daily precipitation as an example to analyse the
meteorological forecasting results after data assimilation
according to Table 1, the flow volume of precipitation on
March 15th, 2023 after assimilation differs from the
measured one by only 4.486m?/s with an error of 2.990%.
The peak occurrence time is 0.5h later than the
measurement; however, the determination coefficient is

merely 0.868. The data assimilation method proposed in this
paper significantly improves the forecast precipitation flow
without any sudden proximity to observational information
and can achieve better assimilation results with fewer
particles. This confirms the feasibility of the proposed
method and lays a foundation for further experiments on
subsequent multi-scale meteorological predictions.

5.2 Effectiveness of meteorological sequence
decomposition

To assess the effectiveness of the STL sequence
decomposition algorithm, the selected dataset was
decomposed using the STL decomposition algorithm and
the results after decomposition were analysed. The first 100
data points of the decomposed data are used to draw curves
as shown in Figure 3.

As shown in Figure 3, after the meteorological sequence
data is decomposed by the STL time series decomposition
algorithm, the overall trend of the true value curve and the
trend component curve are consistent; however, the trend
component curve becomes smoother after decomposition.
The seasonal component curve shows uniform oscillation
around zero, and the fluctuation part in the residual
component curve demonstrates that there is a stronger effect
when the smoothness between its true value curve and the
trend curve differs more. Through this analysis, it verifies
that after using the STL decomposition algorithm for
decomposition, multi-scale meteorological observation
sequences successfully separate their trends from
fluctuations, making it convenient to apply deep learning
and reinforcement learning models afterward to learn based
on these characteristics.

Figure 3 Component curves after STL decomposition
(see online version for colours)
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5.3 Meteorological prediction accuracy analysis

To analyse the outcome of the meteorological forecasting
approach OURS suggested in this paper, multi-scale
meteorological prediction experiments are conducted on the
plain dataset. The evaluation indicators selected include
RMSE, mean absolute percentage error (MAPE), and



8 Z. Sun et al.

determination coefficient R2 Comparative models are
TCN-EWF (Hewage et al.,, 2020), CLS-RL (Liu et al.,
2020), NW-DRL (Zhao et al., 2024), PFA-RL (Jethva,
2025). The humidity prediction error results for different
models with forecast lengths of 6 and 24 are implied in
Table 2 and Table 3, individually.

Table 2 Comparison of prediction performance at a length of
6
Model RMSE MAPE R
TCN-EWF 27.61 39.62 0.8524
CLS-RL 25.84 35.38 0.8862
NW-DRL 21.43 33.46 0.9054
PFA-RL 16.94 27.75 0.9428
OURS 14.58 23.53 0.9715
Table 3 Comparison of prediction performance at a length of
24
Model RMSE MAPE R’
TCN-EWF 32.66 45.29 0.7951
CLS-RL 29.51 41.66 0.8208
NW-DRL 25.08 38.17 0.8715
PFA-RL 23.48 33.53 0.9208
OURS 18.25 30.47 0.9422

As shown in Table 2 and Table 3, the OURS method
performs well on various metrics under different forecast
length settings. When the prediction lengths are 6 and 24,
the RMSE of OURS is 14.58 and 18.25 respectively, which
reduces by at least 13.93% and 15.21% compared to
contrast models. The R?> of OURS is 0.9715 and 0.9422
respectively, which increases by 13.97%, 18.5% compared
to TCN-EWF, 9.63%, 14.79% compared to CLS-RL, 7.3%,
8.11% compared to NW-DRL, and 3.04%, 2.32% compared
to PFA-RL respectively. The OURS method performs well
in meteorological multi-scale forecasting tasks. The OURS
method decomposes the meteorological sequence by ST
with local weighted regression, predicts the features of clear
trend components using GRU, and takes the remaining
seasonal components and residual components as states. It
reconstructs the meteorological forecast problem into an
MDP decision-making problem and improves prediction
accuracy through learning with a reinforcement learning
model.

6 Conclusions

Conventional meteorological forecasting models are often
challenged by the complex coupling of multi-scale
meteorological systems and data heterogeneity, limiting
their ability to provide region-specific predictions. To
address this, we propose a customised multi-scale
forecasting model that integrates data assimilation and
reinforcement learning. A PSO-enhanced particle filter is
introduced to overcome the dependency on future

observations in traditional data assimilation. By leveraging
historical reanalysis data and adaptively guiding particles
toward observations via PSO, the method produces
improved assimilated meteorological variables. The time
series is decomposed using STL algorithm to extract trend,
seasonal, and residual components, enhancing feature
representation. A GRU model predicts the trend, while a
reinforcement learning framework incorporates seasonal
and residual elements as state variables for multi-scale
fluctuation forecasting. This hybrid approach combines the
temporal modelling capability of deep learning with the
adaptive decision-making of reinforcement learning.
Experimental results show that the proposed model achieves
lower RMSE and MAPE, demonstrating high accuracy. It
effectively handles meteorological multi-scale forecasting
adaptively, consistently outperforming baseline models.
These findings offer valuable insights for developing
next-generation intelligent meteorological forecasting
systems.

This paper has certain limitations in research, as the
reinforcement learning model adopted requires interaction
with the environment to obtain data for each learning
process, resulting in longer training times compared to
traditional deep learning methods. For applications
involving large amounts of data, more training time is
needed. In future time series tasks using reinforcement
learning, multiple agents can be employed to work together
to further improve exploration efficiency within the
environment and make faster adjustments to search
strategies through timely feedback, enabling the model to
handle more complex scenarios.
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