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Abstract: With the rapid expansion of university laboratories, cost overruns have become a 
critical issue due to accelerating hardware iterations, rising hidden costs, and significant 
interdisciplinary disparities. Traditional risk assessment methods, such as multiple linear 
regression and Monte Carlo simulation, struggle to handle nonlinear interactions and data 
heterogeneity. To address these challenges, this paper proposes a dynamic weight-adjusted 
AdaBoost algorithm for cost risk assessment. The approach incorporates a multimodal feature 
fusion mechanism integrating hardware, software, and implicit cost domains, alongside a 
domain-knowledge guided weighting strategy. Experimental results on a multi-disciplinary 
dataset show that the proposed method reduces the mean absolute percentage error by 26.5% and 
improves the F1-score for high-risk event identification to 0.893, significantly outperforming 
existing benchmarks. The framework also enables earlier risk warnings and more effective cost 
control strategies. 
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1 Introduction 
University laboratories serve as the core platforms for 
scientific and technological innovation and talent 
cultivation, with their construction costs growing 
exponentially. According to statistics from the Ministry of 
Education in 2024, China’s universities spend more than 
320 billion Yuan annually on laboratories, but the cost 
overrun rate is as high as 23.7%. Especially in cutting-edge 
fields such as computer science and artificial intelligence, 
laboratory construction faces three major challenges: 
Accelerated hardware iteration: GPU clusters, quantum 
computing equipment, and other devices cost more than one 
million Yuan each, with a lifespan shortened to 2–3 years 
(Babaei et al., 2024); Soaring hidden costs: Security 
maintenance, energy management, and insufficient 
equipment utilisation rates, with an average utilisation rate 
below 45%, resulting in indirect losses accounting for 34% 
of total costs; Significant interdisciplinary differences: 
Science and engineering laboratories face 2.8 times higher 
cost overrun risks than liberal arts laboratories, such as 

biological laboratories where compliance reviews cause 
delay costs accounting for 18% of total costs. 

Numerous scholars have conducted extensive academic 
research on cost overrun prediction. This paper combines 
Bayesian networks with Monte Carlo simulations to provide 
more accurate cost overrun predictions and risk decision 
support throughout the entire lifecycle of large-scale 
infrastructure projects (Canesi et al., 2025). This paper 
accurately predicts the actual completion costs of Saudi 
construction projects and potential cost overruns or savings 
by identifying key cost risk factors and simulating their 
dynamic feedback mechanisms (Alsugair et al., 2024). This 
study breaks down the complex problem of cost overrun 
prediction into three key steps to address the pain points 
where traditional linear regression or statistical models 
struggle to handle ambiguity and expert experience (Saeid 
et al., 2024). This paper employs artificial neural network 
machine learning algorithms to address the common 
challenges of predicting schedule delays and cost overruns 
in construction projects (Rakan et al., 2023). This paper 
primarily investigates the use of machine learning and 
statistical regression methods, combined with historical data 
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and key influencing factors, to construct predictive models 
that identify cost overrun risks in infrastructure projects and 
support early decision-making (Deshmukh and Kambekar, 
2022). 

This paper proposes a risk allocation framework 
integrating game theory with Bayesian probability models 
to address uncertainties arising from material price 
fluctuations in construction projects (Jezzini et al., 2025). 

Monte Carlo simulation is also often used as a cost risk 
assessment algorithm. Custer analysed the energy and 
incidence angle of sputtered atoms through Monte Carlo 
simulation to characterise the grain structure of  
sputter-deposited molybdenum thin films (Custer et al., 
2024). Cohn and Holm use graph convolutional networks to 
predict abnormal grain growth in Monte Carlo simulations, 
outperforming traditional methods with an accuracy rate of 
73% (Cohn and Holm, 2024). Sy (2024) optimisation of 
XGBoost-CatBoost hybrid model combined with Monte 
Carlo simulation for concrete strength prediction and 
reliability analysis. However, this method is not very 
suitable for newly established laboratories with limited 
historical data. 

In addition, many scholars have conducted extensive 
research on the application of machine learning in this area. 
Wei proposed an automatic classification model for shiitake 
mushrooms based on image processing and support vector 
machines (SVM), achieving high-precision classification 
through pre-processing and SVM classification, and 
verifying its effectiveness (Wei, 2024). Samsuzzaman et al. 
(2024) proposed a method combining SVM and image 
features to improve segmentation accuracy and efficiency in 
agricultural image processing. Lin et al. (2024) proposed a 
novel retrieval strategy based on manual features and SVM 
for the retrieval of coloured spun fabrics. However, SVM 
are prone to overfitting in small sample scenarios. Random 
forests are also widely used. Zhao and Teng (2025) 
proposed a deep mixing soil layer classification method that 
combines optimised random forests with the AB-SMOTE 
method to handle imbalanced data. Luo and Su (2025) 
proposed spatio-temporal random forests and spatio-
temporal stacked trees for modelling nonlinear problems in 
spatio-temporal non-stationarity. Xefteris et al. (2025) 
proposed a multimodal fusion method based on a hybrid 
LSTM-random forest fusion network for 3D human pose 
estimation. Harsha et al. (2024) proposed an improved 
Monte Carlo dropBlock method for modelling uncertainty 
in object detection to enhance the robustness and reliability 
of object detection tasks. 

Tan et al. (2024) proposed a method for classifying 
seabed sediment types based on extreme learning machine 
adaptive boosting sonar images, which outperforms 
traditional methods in terms of classification accuracy and 
efficiency. Prabhakar et al. (2024) proposed a method based 
on feature extraction, feature selection, and hybrid machine 
learning classifiers for the automatic classification of 
snoring sounds. Gamil et al. (2024) developed an AI method 
combining principal component analysis (PCA), the 
AdaBoost algorithm, and EfficientNet B0 for skin cancer 

detection and classification. Shan et al. (2024) proposes a 
random feature mapping method based on the AdaBoost 
algorithm, combined with result fusion technology, to 
enhance classification performance. Multimodal fusion 
technology is also used as an improvement method. Xie  
et al. (2024) proposed a multimodal image fusion method 
called Fusion Mamba, which aims to address the limitations 
of traditional image fusion methods when processing 
multimodal data. Fu and Lim (2024) proposed a hierarchical 
feature fusion method for cross-modal pedestrian  
re-identification. Fan et al. (2024) proposed a cross-modal 
feature fusion method that enhances weed recognition 
capabilities by fusing features from RGB and near-infrared 
images. 

In response to the aforementioned challenges, this paper 
proposes a cost-risk assessment framework based on 
dynamic weight AdaBoost (AdaBoost-DW), with the 
following core innovations: 

1 Three key domains – hardware costs, software costs, 
and implicit costs – were established. The challenge of 
heterogeneous data fusion was addressed by 
introducing domain-knowledge-constrained weighting 
factors. 

2 An error-sensitive weight decay function was designed. 
When the error fluctuation of consecutive base 
classifiers exceeds a threshold, the weights of noisy 
samples are automatically reduced to suppress 
overfitting in small-sample scenarios. 

3 A disciplinary risk transfer coefficient matrix R has 
been established to quantify cross-disciplinary cost 
spillover effects, enabling more precise cross-domain 
risk assessment. 

4 The algorithm is particularly well-suited for complex 
scenarios involving small samples and multimodal data. 
Its dynamic weight decay mechanism effectively 
mitigates overfitting issues caused by insufficient 
samples, while achieving efficient fusion of 
heterogeneous data through domain knowledge-guided 
weighting strategies. 

2 AdaBoost for Univ lab cost risk 
2.1 Cost risk assessment methods and ensemble 

learning applications 
The system architecture represents a typical three-tier 
‘cloud-edge-end’ converged architecture designed to deliver 
on-demand, low-latency, high-quality educational services 
to a massive population of lifelong learners. 

Accurately quantifying the impact of uncertainties on 
budgets is central to cost risk assessment in university 
laboratories. Existing approaches can be categorised into 
three groups, each with distinct limitations in this context. 

The first category is qualitative analysis methods, 
specifically the activity-based costing (ABC) method, which 
classifies risk levels based on cost drivers: Category A: 
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equipment procurement, Category B: operations and 
maintenance, and Category C: human resources. However, 
this method relies on expert experience, and subjective bias 
can reach up to 32%. The Delphi method achieves 
consensus through multiple rounds of expert consultation, 
but it takes 4–6 weeks, making it difficult to respond to the 
rapid iteration requirements of computer laboratory 
construction. 

The second category is statistical modelling methods, 
specifically multiple linear regression (MLR), which 
assumes that cost variables are linearly related. The basic 
model is as follows: 

0
1

n

i i
i

Cost X
=

= + + ∈β β  (1) 

where cost is the dependent variable of the model, 
representing cost. β0 is the intercept term of the model. βi is 
the regression coefficient related to the independent variable 
Xi, Xi is the independent variable of the model, is the error 
term, representing the portion of cost variation that cannot 
be explained by the model. 

The third category is machine learning methods. 
Support vector regression (SVR) maps high-dimensional 
spaces through kernel functions, enabling the capture of 
nonlinear relationships between independent and dependent 
variables (Watanabe et al., 2025). However, the limitation 
of this method lies in its sensitivity to small sample sizes 
during hyperparameter optimisation. Therefore, when 
applying SVR, careful optimisation and validation of 
hyperparameters are required. 

AdaBoost iteratively adjusts sample weights, forcing 
base classifiers to focus on difficult samples, thereby 
improving the detection rate of low-frequency, high-risk 
events: 
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where αt is the weight of the base classifier in the tth 
iteration, errt is the classification error rate of the base 
classifier in the tth iteration. 
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where Dt+1(i) is the weight of sample i in the t + 1 iteration. 
Dt(i) is the weight of sample i in the tth iteration. αt is the 
weight of the base classifier in the tth iteration. yi is the true 
label of sample i, ht(xt) is the prediction result of the base 
classifier for sample i in the tth iteration, Zt is the 
normalisation factor. 

The above equation ensures that the high-precision base 
model gains greater influence, thereby playing a more 
significant role in the final prediction. Simultaneously, 
increasing the weight of misclassified samples enhances 
sensitivity to minority class risk signals, enabling the model 
to better focus on and learn from these critical samples. Its 
weight update mechanism is the key to achieving high 

performance, ensuring that the high-precision base model 
gains greater influence and enhances sensitivity to minority 
class risk signals. 

2.2 Evolution and limitations of the AdaBoost 
algorithm 

Since Freund and Schapire proposed the basic AdaBoost 
algorithm, its evolution has mainly focused on three key 
directions: multi-class extension, loss function optimisation, 
and robustness enhancement. These improvements have not 
only enhanced the applicability and performance of the 
algorithm, but also broadened its scope of application in 
different fields. 

First, the multi-class extension SAMME.R: this 
algorithm employs additive modelling via a multi-class 
exponential loss function to effectively address multi-class 
classification problems. Its prediction function is defined as: 

( )( )

1

( ) arg max 1 ( )
T

t
k k t t

t

h x h x k
=

= ⋅ =α  (4) 

where ( ) ( )t
kh x  represents the probability of predicting 

sample x as belonging to class k in the tth iteration. argmaxk 
represents the class k that maximises the value of the 
expression below among all classes k. αt represents the 
weight of the weak learner in the tth iteration. ht(x) 
represents the prediction result of the weak learner in the tth 
iteration for sample x. 1(ht(x) = k) denotes the indicator 
function. 

The SAMME.R algorithm performs exceptionally well 
in assessing disciplinary risk differentiation, such as 
distinguishing the risk levels of computer and biology 
laboratories. 

To further improve the accuracy of the AdaBoost 
algorithm in regression tasks, the gradient boosting 
algorithm was proposed, replacing weight adjustment with 
gradient descent to enhance regression task accuracy. Its 
prediction function is: 

0

( ) ( )
T

t t
t

F x γ h x
=

=  (5) 

where F(x) represents the final prediction result. γt 
represents the weight of the weak learner in round t, ht(x) 
represents the prediction result of the weak learner in round 
t for sample x. 

By replacing weight adjustment with gradient descent, 
the accuracy of regression tasks is significantly improved, 
and the mean absolute error (MAE) of cost prediction is 
reduced. For example, in engineering infrastructure, 
XGBoost’s MAE is only 8.3%. 

To enhance the robustness of the AdaBoost algorithm in 
noisy data, the BrownBoost and linear programming 
boosting (LPBoost) algorithms are proposed. BrownBoost 
introduces a time decay factor but has high parameter 
sensitivity; LPBoost constrains the weight distribution 
through linear programming, significantly enhancing the 
algorithm’s robustness in noisy data. It can be seen that the 
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AdaBoost algorithm and its improved versions have made 
significant progress in multi-classification, loss function 
optimisation, and robustness enhancement. However, 
further research is still needed to overcome existing 
limitations and improve the algorithm’s performance in 
complex scenarios. 

2.3 Risk assessment indicator system 
The core of cost risk in university laboratories is the 
coupling effect between budget execution deviation  
(Δ = actual cost/budget cost) and risk triggering events 
(such as equipment failure and safety accidents). Through 
attribution analysis of 217 historical projects, a three-level 
assessment indicator system was established to 
comprehensively evaluate and manage laboratory cost risks. 

First is the hardware cost domain, accounting for 58.7%, 
which is the dominant risk and the primary source of 
laboratory cost risks. Its risk assessment indicator system 
includes two aspects: equipment procurement costs and 
maintenance costs. For equipment procurement costs, it is 
an important component of laboratory hardware costs, with 
key indicators including unit price, quantity and 
depreciation rate. Rapid depreciation caused by 
technological iteration is a significant risk factor for 
equipment procurement costs. For example, GPU models 
have decreased in price by 52% over three years, which will 
significantly impact the laboratory’s equipment 
procurement and update strategies. 

Regarding maintenance costs, they are another 
important component of laboratory hardware costs, 
including dynamic failure rate models and associated 
indicators. Dynamic failure rate models are used to predict 
how equipment failure rates change over time, with the 
equation being: 

0( ) ktλ t λ e=  (6) 

where λ(t) represents the failure rate at a given time. λ0 
represents the initial failure rate. k represents the discipline 
aging coefficient. t represents time, typically measured in 
years. 

Related metrics include mean time to repair (MTTR) 
and spare parts inventory costs. The former refers to the 
average time required to repair a device after a failure, 
reflecting the device’s maintainability and repair efficiency. 
The latter refers to the cost of spare parts stockpiled to 
address device failures. A reasonable spare parts inventory 
can reduce repair time and costs, but excessive inventory 
increases capital tied up and management costs. 

Next is the soft cost domain, accounting for 31.2%, 
which includes human resource costs and energy 
management costs. The human resource cost component 
primarily consists of training costs, which are expenses 
incurred by the company to enhance employees’ skills and 
knowledge. Additionally, the production efficiency of new 
equipment may decrease during the adaptation period, 
typically dropping to 63% of normal levels, with a standard 
deviation of ±11%. This means that during the initial phase 

of new equipment introduction, production efficiency will 
significantly decrease due to employees’ unfamiliarity with 
the new equipment, thereby increasing costs. 

In certain high-load tasks, such as AI training tasks, 
power consumption exhibits intermittent high-load 
characteristics, which significantly impact costs. Therefore, 
it is necessary to calculate the cluster power consumption 
peak ratio: 

max

avg
p

PR
P

=  (7) 

where Rp is the peak power consumption ratio of the cluster. 
Pmax is the maximum power consumption. Pavg is the 
average power consumption. 

This ratio is non-linearly correlated with electricity 
costs, and its calculation equation is: 

2

0
( )

T

energy pCost a R t b dt  = ⋅ +  (8) 

where Costenergy is the energy management cost. t is the time 
period. a and b are constants. Rp(t) is the peak power 
consumption ratio of the cluster at time t. Rp(t)2 is the 
quadratic term, used to capture the marginal cost increase of 
peak power consumption. 

The quadratic term coefficient a in the equation is used 
to capture the marginal cost increase of peak power 
consumption. In certain high-load tasks (such as AI training 
tasks), power consumption exhibits intermittent high-load 
characteristics, which significantly impact costs. For 
example, when a = 1.2, each increase of 0.1 results in a 
4.7% increase in cost. 

Implicit costs account for 10.1% of the total, and are 
often underestimated. They include safety risk costs and 
utilisation deficiency costs. The former mainly refers to 
losses caused by safety incidents such as accidents and 
malfunctions. Effective utilisation refers to the ratio of 
effective working time to total time. Utilisation deficiency 
leads to cost losses. The equation for calculating utilisation 
is as follows: 

( )Loss= 1 DepreciationeU− ×  (9) 

where Loss refers to cost losses caused by insufficient 
utilisation. Ue is the effective utilisation rate, which 
represents the proportion of effective working time in the 
total time of the equipment. Depreciation refers to the 
depreciation cost of the equipment. 

When biological instruments are used, losses increase 
sharply, indicating that low equipment utilisation will lead 
to significant cost increases. 

2.4 Multi-source data fusion architecture 
Addressing the challenges of integrating heterogeneous data 
– structured procurement tables, time-series operational 
logs, and text-based safety supervision reports – we propose 
a three-stage fusion framework aimed at effectively 
integrating data from different sources and formats to 
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achieve more accurate and comprehensive risk assessment 
and decision support. 

For unstructured data, the text report utilises the BERT 
model to extract keyword frequencies from security 
incidents. Input consists of tokenised text sequences  
with a maximum length of 512 tokens. Output is a  
768-dimensional vector for each text, centred on the 
classification token. Time series logs employ LSTM models 
to capture failure cycle patterns. Input sequences of length T 
(T = 30 days) feature six-dimensional metrics at each time 
step, including failure type and duration. The output 
represents the hidden state at the final time step (128 
dimensions), revealing the autocorrelation in GPU failure 
intervals. Through time-series analysis, potential fault 
cycles and patterns can be identified, providing a basis for 
fault prediction and prevention. 

For structured data, such as device parameters, 
standardised methods are used to eliminate unit differences 
when processing structured data, ensuring comparability 
and consistency among different features: 

num
X μX
σ′
−=  (10) 

where Xnum is the standardised numerical feature. X is the 
original numerical feature. μ is the mean of the original 
numerical feature. σ is the standard deviation of the original 
numerical feature. 

This method can solve the problem of disparate feature 
scales. Through standardisation, all numerical features will 
follow a standard normal distribution (mean, standard 
deviation), thereby improving the stability of subsequent 
weighted fusion. 

In order to further improve the effectiveness of feature 
fusion, a domain knowledge-driven feature weighting 
method is introduced: 

( )
Disciplinary Correction Factor

Information Value

IV CFf f dW X= ×


 (11) 

where Wf is the global importance of feature f. IV(Xf) is the 
information value of feature f. CFd is the subject correction 
factor. 

Feature weight Wf determination integrates  
domain-specific prior knowledge with data-driven methods: 
First, initial weights are established for different disciplines 
through expert interviews and historical project analysis. 
Second, these initial weights are calibrated using 
information value IV(Xf) and feature importance 
assessments. Discipline adjustment factors CFd derives from 
domain experts’ consensus ratings on cross-disciplinary risk 
transmission effects, validated through regression analysis 
of historical data. Consequently, weight allocation is neither 
purely subjective nor entirely data-driven, but rather a 
knowledge-guided, interpretable hybrid weighting 
mechanism. 

In the process of constructing feature correlation 
tensors, in order to effectively explore the interactions 
between different modalities and reveal how hidden costs 

indirectly increase total costs through hardware failures, 
tensor analysis methods are used to capture the complex 
relationships between multimodal data. To further explore 
cross-modal interactions, Tucker decomposition methods 
are used to decompose tensors: 

(1) (2) (3)
1 2 3A A A× ×≈ ×   (12) 

where   is the feature correlation tensor.   is the core 
tensor. A(k) is the factor matrix, and d represents the latent 
semantic representation of the kth modality, where k = 1, 2, 3 
correspond to hardware, soft, and latent modalities, 
respectively. 

Tucker decomposition reveals interactions between 
features of different modalities. This provides a theoretical 
foundation for feature selection and model construction. 
Additionally, the decomposed core tensor and factor matrix 
can be used for feature dimensionality reduction and data 
compression, improving the computational efficiency and 
generalisation ability of the model. 

In this task, the BERT model is employed to process 
text-based security supervision reports. The input consists 
of a sequence of tokenised text with a maximum length of 
512 tokens, and the output is a 768-dimensional vector for 
each text, centred on the CLS token. The LSTM model 
processes time-series data such as device failure logs. Input 
consists of sequences of length T (T = 30 days), with each 
time step featuring six-dimensional indicators including 
failure type and duration. Output comprises the hidden state 
at the final time step (128 dimensions), representing failure 
cycle patterns. 

2.5 Interdisciplinary risk migration coefficient 
matrix 

To quantify the cost-risk spillover effects between 
laboratories of different disciplines, this paper introduces a 
cross-disciplinary risk migration coefficient matrix R. 
Matrix R is constructed based on the co-occurrence 
relationships of risk events in historical projects and the cost 
correlations across disciplines. Its calculation first counts 
the sequential occurrence frequency of high-risk cost events 
between different disciplines, yielding the conditional 
probability estimate Pij. 

ij
ij

i

N
P

N
=  (13) 

where Nij represents the number of projects where subject j 
exhibits abnormal cost fluctuations following a high-risk 
cost event in subject i during the same time period. Ni 
represents the total number of high-risk incidents occurring 
in subject i. 

The final transfer coefficient Rij is obtained by 
weighting the conditional probability using the Pearson 
correlation coefficient ρij derived from the interdisciplinary 
cost time series. 
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1

2
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R λP λ

+
= + − ⋅  (14) 

where λ = 06 is an empirical weighting factor that ensures 
both event co-occurrence and trend correlation are 
considered simultaneously. 

This matrix primarily captures four interdisciplinary risk 
transmission patterns: hardware sharing risks, security 
compliance spillovers, resource competition effects, and 
synchronised technological iteration. 

Within the AdaBoost-DW prediction framework, matrix 
R interacts with model outputs through three mechanisms. 
First, at the feature level, the raw feature vector xj for 
discipline j receives risk-weighted features from other 
disciplines: 

j j ij i
i j

x x R z
≠

′ = + ⋅  (15) 

where zi denotes the mean vector of recent risk features for 
subject i. 

During the weighted voting phase, the weights αt of the 
base classifiers are dynamically adjusted based on the 
strength of risk transfer between disciplines: 

,'
( , )

1
ij ti j

t t

R I i j

K

 ⋅
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 


α α  (16) 

where It(i, j) represents the recognition confidence of the tth 
classifier for the subject pair (i, j), K denotes the number of 
subject categories. 

The final risk score incorporates interdisciplinary 
adjustments through the following equation: 

( )' TRiskScore ( ) RiskScore( ) r Rsr jx x= + ⋅β  (17) 

where rj is the historical risk vector for subject j, s is the 
current school-wide risk state vector, βr is an adjustable 
parameter. 

Through the aforementioned mechanism, R enables 
models to explicitly capture interdisciplinary risk 
dependencies, enhancing the ability to identify implicit and 
transmissible costs. This capability proves particularly 
significant in scenarios where high-risk projects are 
concentrated or where resources are shared across multiple 
disciplines. 

2.6 Challenges in Univ lab cost risk 
The traditional AdaBoost algorithm faces three key 
challenges in university laboratory cost-risk assessment: 
First, in highly heterogeneous multimodal data 
environments, noisy samples easily trigger weight drift, 
causing the model to overemphasise outliers while 
neglecting core risk signals. Second, the absence of domain-
knowledge-guided feature weighting mechanisms prevents 
effective enhancement of contributions from implicit costs 
and interdisciplinary features. Third, its insufficient 
generalisation capability in small-sample scenarios makes it 
difficult to quantify cross-disciplinary risk spillover effects. 

These limitations underscore the urgent need to refine 
traditional algorithms. To address this, Section 3 proposes 
the AdaBoost-DW algorithm with dynamic weight 
adjustment. By incorporating an error-sensitive weight 
decay function and a domain-knowledge-driven feature 
weighting strategy, it establishes a novel framework capable 
of effectively handling multimodal data fusion and 
interdisciplinary risk assessment. This enhancement not 
only resolves inherent issues in traditional algorithms but 
also provides more precise decision support for laboratory 
cost management. 

3 Improvements to the AdaBoost-DW algorithm 
principle 

3.1 Algorithm framework design 
Based on the multimodal feature system constructed in 
Section 3, this paper propose an ensemble learning 
algorithm based on the Adaboost algorithm, as shown in 
Figure 1, which aims to construct a strong classifier by 
combining multiple weak classifiers. This architecture 
enhances prediction accuracy and robustness through  
multi-level feature processing and model integration. 

The AdaBoost-DW algorithm executes in a sequential 
flow from feature fusion to risk probability output: first, 
based on a multi-source data fusion architecture, hardware, 
software, and hidden cost features are standardised and 
weighted for fusion, forming a unified multimodal feature 
vector; subsequently, it dynamically selects base classifiers 
based on the signal-to-noise ratio (SNR) features. Building 
upon this, an error-sensitive weight decay mechanism 
adjusts the weights of noisy samples according to error 
change rates to suppress weight drift. It also incorporates a 
feature uncertainty factor to amplify the influence of  
high-confidence features. Finally, risk scores are computed 
based on weighted voting results and converted into 
interpretable risk probabilities via a Sigmoid function to 
support tiered early warning. 

Figure 1 AdaBoost-DW algorithm architecture (see online 
version for colours) 

D 

（D,W1） 

（D,W2） 

（D,W3） 

Classifier   
C1 

R1 
Classifier 
weights 

Adjust sample 
weights 

Classifier 
C1 

Classifier 
weights 

Adjustsample 
weights 

Classifier 
C1 

Classifier 
weights 

Initi
alize 
weig
ht 

Training 

Training 

Training 

Strong 
classifier R1 

R1 

 

The base classifier layer employs multiple machine learning 
algorithms, leveraging the strengths of different algorithms 
in processing various feature types. First, the CART 
(classification and regression trees) decision tree is applied 
to structured features such as hardware costs.  
To suppress overfitting and enhance model generalisation, 



16 P. Zhao  

the tree’s maximum depth is set to max_depth = 5.  
Further parameters include min_samples_split = 10 and 
min_samples_leaf = 5, with the Gini index serving as the 
splitting criterion. Second, SVM with a radial basis  
function kernel were employed to map features into  
high-dimensional space, capturing nonlinear patterns like 
hidden costs. After Bayesian optimisation, the penalty 
parameter C = 2.5 and kernel coefficient γ = 0.3 were 
determined. The third approach is a dynamic allocation 
mechanism that dynamically selects the most suitable base 
classifier based on the SNR of features. 

For low SNR features like text security reports, SVM is 
prioritised for processing; for numerical features like failure 
rates, CART decision trees are prioritised. This dynamic 
selection strategy fully leverages the advantages of different 
algorithms to improve the overall predictive performance of 
the model. 

At the integration strategy layer, in order to establish 
mapping rules from base model differences to final 
decisions, a weighted majority voting method is used to fuse 
the outputs of the base classifiers, calculated using the 
following equation: 

1

( ) sign ( )
T

t t
t

H x h x
=

 
=   

 
α  (18) 

where H(x) is the final prediction result. ht(x) is the 
prediction result of the tth base classifier for the input 
sample x. αt is the weight of the tth base classified. T is the 
total number of base classifiers. 

By assigning higher weights to high-accuracy models, 
this strategy can effectively improve the overall prediction 
performance of the ensemble model, ensuring the accuracy 
and reliability of the final decision. 

3.2 Dynamic weighting mechanism 
The classic AdaBoost algorithm is prone to weight drift 
issues when handling noisy samples, leading to a decline in 
model performance. As shown in Figure 2, the interference 
from noisy samples causes the model to continuously adjust 
weights during the iteration process, ultimately resulting in 
the model overemphasising noisy samples while neglecting 
truly important ones. To address this issue, we propose a 
dynamic weight adjustment mechanism based on  
error-sensitive weight decay, aiming to enhance the model’s 
robustness and generalisation capability. 

In each iteration, the weighted error rate of the base 
classifiers is first calculated. The specific steps are as 
follows: 

( )
1

err ( ) ( )
m

t t t i i
i

D i h x y
=

= ⋅ ≠   (19) 

where errt is the weighted error rate of the tth iteration. Dt(i) 
is the weight of sample i in the tth iteration. m is the total 
number of samples. ht(xi) is the prediction result of the base 
classifier for sample i in the tth iteration. yt is the true label 
of sample xi. ( )⋅  is an indicator function that takes the 

value 1 when the condition inside the parentheses is true, 
and 0 otherwise. 

Figure 2 Dynamic weighting mechanism comparison (see online 
version for colours) 

 

This equation is used to quantify the current model’s fit to 
difficult samples. A lower weighted error rate indicates that 
the model’s prediction for the current sample set is more 
accurate and has higher confidence. 

To suppress weight oscillations caused by large 
fluctuations in error during continuous iterations, this paper 
introduces an error change rate sensitivity factor: 

1
1 exp( |Δerr |)t

t
λ =

+ − ⋅β
 (20) 

where λt is the sensitivity factor for the error change rate in 
the tth iteration. β is the attenuation intensity parameter, set 
empirically. Δerrt is the error change between the tth and  
(t–1)th iterations. The parameter λt controls the decay 
strength. When Δerrt is high, λt decreases significantly, 
applying strong decay to the weights of samples associated 
with that iteration’s high error, preventing the model from 
overfitting to potential outliers. When error is stable, λt ≈ 1, 
preserving the weight update rule of standard AdaBoost to 
focus on consistently misclassified samples. 

This equation is used to dynamically adjust model 
weights to adapt to the sensitivity of error changes. When 
Δerrt > 0.3, λt → 0, indicating a significant error change, the 
weights of noisy samples are strongly attenuated to prevent 
the model from overemphasising noisy samples. When Δerrt 
< 0.1, λt → 1, indicating a small error change, model 
weights remain stable to retain information-rich samples. 

In order to improve the robustness and accuracy of the 
model, feature uncertainty factors are introduced to quantify 
and correct the credibility of features. A feature weight 
correction equation based on data volatility is proposed to 
ensure that the model can more effectively utilise  
high-credibility data sources: 

2
( ) ( ) 1 exp jfeat
t

σ
D j

τ
 

= − − 
 

 (21) 

where 2
jσ  is the variance of feature j. τ is an adjustment 

parameter with a default value of 0.1. ( ) ( )feat
tD j  is the 

feature uncertainty factor. 
The core idea of this equation is to adjust feature 

weights based on data volatility. When the variance of 
feature j is small, the value of ( ) ( )feat

tD j  approaches 1, 
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indicating that the feature has high credibility and 
significant influence in the model. Conversely, when the 
variance is large, the value of ( ) ( )feat

tD j  decreases, 
indicating that the feature has low credibility and limited 
influence in the model. 

Intuitively, the core mechanism by which dynamic 
weighting prevents overfitting lies in ‘suppressing the  
over-learning of noisy samples’. The error-sensitive weight 
decay function introduced in this paper automatically 
reduces the weights of samples exhibiting significant error 
fluctuations during consecutive iterations, thereby 
preventing the model from placing excessive emphasis on 
them. 

3.3 Risk probability quantification model 
In the field of risk assessment, it is crucial to convert 
classification results into interpretable risk probabilities, 
which not only helps to understand the severity of potential 
risks but also supports a graded early warning mechanism. 
Therefore, we propose a risk probability quantification 
model based on weighted voting results to generate 
continuous scores. The specific equation is as follows: 

1
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t t
t
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t

h x
x =

=
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



α

α
 (22) 

where RiskScore(x) denotes the function, where x is the 
input variable. αt denotes the weight of the tth model. ht(x) 
denotes the prediction result of the tth model for the input x. 

The normalised score ranges from –1 to 1, with negative 
values indicating low risk and positive values indicating 
high risk. For example, when the score is less than –0.3, it 
indicates low risk; when the score is close to 1, it indicates 
high risk. In a computer lab, if GPU failure is a significant 
feature, the score may rise from 0.2 to 0.52, indicating a 
significant increase in risk. 

In risk management, converting scores into probabilities 
is a crucial step that helps managers intuitively understand 
the likelihood of risks occurring. The Sigmoid function is 
used to convert risk scores into risk probabilities: 

( )
1( )

1 exprisk
adj

P x
k RiskScore

=
+ − ⋅

 (23) 

where Prisk(x) represents the probability of risk occurrence, 
with a value range of [0, 1]. k represents the slope 
parameter. RiskScoreadj represents the adjusted risk score. 

This equation meets managers’ intuitive needs for ‘risk 
occurrence probability’. By converting the score into a 
probability, managers can more clearly understand the 
severity of the risk and take corresponding management 
measures accordingly. When k = 3, if Prisk > 0.7, a red alert 
is triggered, indicating extremely high risk, and immediate 
action is required. When RiskScoreadj > 0.4, Prisk > 0.85, 

indicating extremely high risk, and urgent intervention is 
required. 

Table 1 Risk level decision threshold 

Task 
no. 

Risk 
score Prisk Alert 

level 
Management 

measures 

1 < –0.3 < 0.35 Green Normal budget 
execution 

2 [–0.3,0.2] [0.35, 0.65] Yellow Monthly cost 
audit 

3 > 0.2 > 0.65 Orange Freeze  
non-essential 
purchases 

4 > 0.4 > 0.85 Red Activate 
emergency 
response plan 

As shown in Table 2, the system compares the differences 
among the three algorithms in terms of weighting 
mechanisms, multimodal fusion, and noise handling, 
highlighting the innovation and applicable scenarios of 
AdaBoost-DW. 

Table 2 Comparison of AdaBoost-DW, XGBoost, and 
LightGBM 

Task 
no. 

Comparison 
dimensions AdaBoost-DW XGBoost LightGBM 

1 Weight 
update 
mechanism 

Error-sensitive 
dynamic 
weight decay 

Node splitting 
optimisation 
based on 
second-order 
gradients  

Histogram-
accelerated 
gradient 
boosting 

2 Multi-modal 
fusion 
strategy 

Explicit fusion Implicit fusion Relies on 
feature 
engineering 

3 Noise 
adaptability 

Strong 
(attenuates 
noisy sample 
weights) 

Moderate 
(suppresses 
overfitting via 
regularisation) 

Moderate 
(more 
sensitive to 
noisy 
samples) 

4 Suitable 
scenarios 

Small-sample, 
high-noise, 
multimodal 
heterogeneous 
data 

Large-scale, 
structured data 
with high 
feature 
dimensions 

Large-scale, 
high-
dimensional, 
sparse data 

As shown in the table above, AdaBoost-DW possesses 
distinct advantages in dynamic weight decay and explicit 
multimodal fusion, making it particularly suitable for 
university laboratory cost-risk assessment scenarios 
characterised by limited sample sizes, significant noise, and 
heterogeneous feature sources. In contrast, XGBoost and 
LightGBM are better suited for scenarios involving large 
datasets and homogeneous features, where optimisation 
focuses on computational efficiency and model accuracy 
rather than explicit control over sample weights and modal 
interactions. In this paper, AdaBoost-DW is employed to 
fuse multimodal features and accurately predict cost overrun 
risks in university laboratory construction, supporting early 
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risk warning and tiered management. The specific steps are 
as follows: 

Step 1 Initialise the sample weight vector W(1). 

Step 2 Initialise the strong classifier H(x) as an empty set, 
iteration counter t = 1. 

Step 3 In each iteration t. 
Step 3.1 Train a base classifier ht(x) based on the 

current sample weights W(1). 
Step 3.2 Calculate the weighted error rate ∈t of base 

classifier ht(x). 
Step 3.3 If ∈t > 0.5, discard the base classifier and 

retrain; otherwise, compute its weight αt. 

Step 3.4 Update sample weights ( 1).t
iω

+  

Step 3.5 Add ht(x) and its weight αt. to the strong 
classifier. 

Step 3.6 If either t > Tmax or ∈t < ∈min, terminate 
iteration; otherwise, set t = t + 1 and return to 
Step 3. 

Step 4 Output the final strong classifier H(x) as the risk 
assessment model. 

Step 5 Use H(x) to calculate the risk score for the input 
sample and convert it into a risk probability via the 
Sigmoid function. 

4 Experimental design and results analysis 
4.1 Dataset construction and multidisciplinary 

feature analysis 
This study aims to validate the effectiveness and 
generalisation of AdaBoost-DW. For this purpose, we 
constructed a large-scale dataset called LabRisk-2024. It 
covers multiple disciplines and years. The dataset comprises 
217 laboratory construction projects from eight universities 
between 2018 and 2023, with each project containing  
32-dimensional refined feature annotations and records of 
actual cost overruns. 

The core advantages of the dataset lie in its 
comprehensive disciplinary coverage, multi-modal feature 
dimensions, and time-series segmentation. 

First, in terms of comprehensive disciplinary coverage, 
the dataset covers five representative disciplines: computer 
science (70 projects), biomedical science (61 projects), 
chemical engineering (40 projects), physics (28 projects), 
and materials science (18 projects), with significant 
differences in cost composition. In computer laboratories, 
the procurement and power consumption costs of GPU 
clusters account for as much as 41.7 ± 6.3% of total costs. 
In biological laboratories, costs related to BSL-2/3 biosafety 
compliance requirements account for 28.9 ± 4.1% of total 
costs. In chemical engineering laboratories, costs related to 
exhaust gas treatment and special maintenance account for 
as much as 23.6 ± 5.2% of total costs. This multidisciplinary 

composition provides an ideal foundation for validating the 
generalisation performance of the model. 

In terms of multimodal features, feature engineering 
strictly follows the indicator system defined in Section 3, 
covering 12 hardware features such as equipment purchase 
price, depreciation rate, and MTBF failure rate; 10 soft 
features such as training duration, energy consumption 
coefficient, and human resource allocation ratio; and 10 
implicit features such as safety incident frequency, 
equipment utilisation rate, and technology iteration risk 
index. The quantification and annotation of implicit features 
fill a gap in existing research. 

To strictly prevent data leakage and respect temporal 
causality, this paper employs a time-ordered rolling window 
segmentation strategy. The dataset is first sorted 
chronologically by project start date. Training windows are 
constructed solely from earlier time periods, while testing 
windows encompass subsequent, unseen periods. This 
yields 158 training samples and 59 temporally lagged 
testing samples, ensuring no future information is utilised 
during model training. This approach accurately simulates 
real-world forecasting scenarios. 

All names and identifiers referring to specific 
universities, laboratories, and suppliers have been 
generalised and anonymised (e.g., replaced with ‘University 
A,’ ‘Computer Lab Project_01’). Numerical data such as 
costs have undergone normalisation through proportional 
scaling and distribution preservation. 

4.2 Comparison methods and evaluation metrics 
In constructing the comparison methods and evaluation 
metrics, this paper selected five representative comparison 
methods for comprehensive benchmark testing to ensure the 
scientific and reliable nature of the experimental results. To 
ensure fair and rigorous comparisons, all machine learning 
and ensemble methods employed the same Bayesian 
optimisation framework for hyperparameter tuning, based 
on the tree structure parsing estimator algorithm. Each 
model underwent 50 iterations of optimisation and was 
allocated identical computational resources (Intel Xeon 
Gold 6248R CPU, 128GB RAM). 

Traditional statistical models include MLR (Rahman  
et al., 2024) and support vector regression (SVR-RBF 
kernel) (Aldhafferi, 2024), which have extensive 
applications and theoretical foundations in the field of 
statistics. Machine learning benchmark methods include 
random forest (RF, set to 200 trees) and gradient boosting 
trees (GBDT) (Zhou et al., 2024), which excel in handling 
complex datasets and feature selection. State-of-the-art 
(SOTA) ensemble learning methods include XGBoost 
(ForouzeshNejad et al., 2024) and LightGBM (Daniel, 
2024), which have achieved outstanding results in recent 
machine learning competitions, demonstrating high 
predictive accuracy and computational efficiency. The 
classic ensemble method AdaBoost (CART-based classifier, 
set to 200 iterations with early stopping) is also included in 
the comparison to assess its performance on different 
datasets. The proposed method AdaBoost-DW innovates 
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and optimises the aforementioned methods to further 
enhance the model’s generalisation ability and robustness. 

In cost risk assessment, balancing numerical prediction 
accuracy and risk classification capability is crucial. 
Traditional metrics such as mean squared error (MSE) 
symmetrically handle overruns and savings, failing to 
reflect the actual need for risk management to focus more 
on overrun bias. To address this, this paper introduces a pair 
of complementary percentage error metrics. 

1
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where yi is the true value of the ith sample. ˆiy  is the 
predicted value of the ith sample. n is the total number of 
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 is the symmetric absolute 

percentage error of the ith sample. 
The dual-indicator approach focuses on the ability to 

capture cost overrun risks while ensuring that the model 
performs stably in both cost-saving and cost-overrun 
scenarios, overcoming the shortcomings of a single 
indicator. 

Additionally, cost overruns of ≥ 15% are defined as 
high-risk events, with risk identification capability assessed 
using the F1-Score (a harmonic mean of precision and 
recall), supplemented by AUC-ROC to measure ranking 
performance. From a management practice perspective, we 
innovatively propose the early warning time (EWT) and 
intervention effectiveness (IE) metrics to quantify the 
timeliness of warnings and the benefits of measures. 

4.3 Results and analysis 
Figure 3 presents the distribution of MAPE values across 
100 experimental runs for each algorithm, visualised 
through box plots augmented with individual data points. 
The proposed AdaBoost-DW algorithm achieves the lowest 
median MAPE of 7.2% with minimal dispersion,  
indicating both superior accuracy and enhanced stability. 
The performance hierarchy observed is as follows:  
AdaBoost-DW (7.2%) > XGBoost (9.8%) > LightGBM 
(10.5%) > AdaBoost (11.5%) > RF (12.3%) > GBDT 
(13.1%) > MLR (15.4%) > SVR (16.2%). 

To ascertain the statistical significance of these 
performance differences, we employed paired t-tests 
comparing AdaBoost-DW against each competing method. 
The null hypothesis posited no systematic difference in 
MAPE between AdaBoost-DW and the alternative method, 
while the alternative hypothesis asserted superiority of  
AdaBoost-DW. Significance levels were classified as: *** 
for p < 0.001 , ** for p < 0.01, * for p < 0.05, and ‘ns’ for 

non-significant results (p ≥ 0.05). To further elucidate the 
magnitude and consistency of performance differences, 
Figure 3 illustrates the paired differences in MAPE between 
each comparison method and AdaBoost-DW. The violin 
plots depict the probability density of differences, while 
embedded box plots highlight median values and 
interquartile ranges. The red dashed line at zero difference 
represents parity with the baseline AdaBoost-DW 
performance. 

Figure 3 Statistical significance experiment (see online version 
for colours) 

 

 

All observed differences are strictly positive, confirming the 
consistent superiority of AdaBoost-DW across all 
experimental runs. The 95% confidence intervals (CIs) for 
mean differences were computed using the t-distribution. 
Critically, none of these CIs include zero, with all lower 
bounds remaining positive. This provides additional 
confirmation that the performance advantages are 
statistically significant at the level. 
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The magnitude of performance improvement varies 
substantially across comparison pairs. The most pronounced 
difference occurs between AdaBoost-DW and SVR (mean 
difference: 9.0%, CI: [8.6, 9.4]), while the smallest yet still 
significant difference is observed between AdaBoost-DW 
and XGBoost (mean difference: 2.6%, CI: [2.3, 2.9]). This 
gradient of improvement aligns with the algorithmic 
complexity and modelling capabilities of the competing 
methods. 

To quantitatively analyse the contributions of each 
innovative module, this paper designed systematic ablation 
experiments, with results shown in Figure 4. The results 
indicate that the complete AdaBoost-DW model achieved 
benchmark performance. Removing dynamic weights 
resulted in a significant performance degradation, 
confirming that the error-sensitive decay mechanism is the 
core component for suppressing noise and enhancing 
robustness, particularly when handling outliers in equipment 
quotes, where this module contributed to a 40.6% reduction 
in error. 

After removing feature weighting, the implicit cost 
identification rate dropped sharply, and the underreporting 
rate of costs associated with biological laboratory safety 
incidents increased by 22.4%, highlighting the critical value 
of domain knowledge-guided feature fusion in capturing 
complex, indirect risk chains. When only the base 
framework (Base) was retained, performance degraded to 
near baseline levels, validating the synergistic effect of the 
overall architecture rather than the dominance of a single 
module. 

Figure 4 Contribution of each module to performance  
(see online version for colours) 

 

The experiment shows that module utility is  
context-dependent. Dynamic weights contribute more in 
computer projects with hardware costs. Feature weights 
have greater impact in biology and chemical labs with 
implicit costs. This contextual characteristic demonstrates 
that the algorithm design precisely matches the intrinsic 
needs of multidisciplinary risk assessment. 

Beyond traditional accuracy metrics, the practical 
effectiveness assessed from a risk management perspective 
is more persuasive. As shown in Table 3, AdaBoost-DW 
achieves an EWT of 3.2 months, a 77.8% improvement over 

XGBoost (1.8 months), providing ample time for 
intervention measures. Its IE reaches 34.7%, meaning that 
measures taken after adopting the warning reduce cost 
overruns by more than one-third on average. 

Table 3 R comparison of early warning effectiveness for 
high-risk projects 

Task 
no. Method 

Early 
warning 
lead time 
(months) 

Intervention 
effectiveness 

(%) 

Typical case 
cost savings 

1 XGBoost 1.8 18.5 Computer 
Lab: GPU 
selection 
optimisation 
(15.2) 

2 LightGBM 2.1 22.3 Biology lab: 
enhanced 
safety 
training 
(28.4) 

3 AdaBoost-
DW 

3.2 34.7 Computer: 
heat 
dissipation 
design 
optimisation 
(42.6) 

4 XGBoost 1.8 18.5 Computer 
Lab: GPU 
selection 
optimisation 
(15.2) 

To explore this issue in greater depth, this paper selects a 
typical case study: an artificial intelligence laboratory at a 
certain university, with a budget of 8.2 million Yuan and 
actual expenditure of 9.9 million Yuan (20.7% over budget). 

The classic AdaBoost was disrupted by early GPU price 
outliers, resulting in a prediction bias of up to 34.5%. While 
XGBoost captured the main trend in hardware costs, it 
underestimated the costs associated with upgrading cooling 
systems due to high computing power requirements 
(approximately 800,000 Yuan). AdaBoost-DW, however, 
performed consistently robustly throughout: first, it 
suppressed GPU market price volatility noise through λt; 
second, it accurately quantified the cooling system upgrade 
costs for high-power devices through Wf; and finally, it 
anticipated the increased labour costs resulting from 
software ecosystem adaptation through an interdisciplinary 
risk transmission matrix (R = 0.38). Post-analysis indicated 
that if all its recommendations were fully adopted, cost 
overruns could be controlled within 8%. 

5 Conclusions 
This study addresses three major challenges in cost risk 
assessment for university laboratory construction: the 
difficulty of integrating multi-source heterogeneous data, 
overfitting with small samples, and nonlinear risk 
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transmission. It proposes an assessment framework based 
on AdaBoost-DW: 

1 Proposed the AdaBoost-DW evaluation framework to 
address challenges in multi-source heterogeneous data 
fusion, small sample overfitting, and nonlinear risk 
propagation in cost risk assessment for university 
laboratories. This framework incorporates a dynamic 
weight adjustment mechanism and a multi-modal 
feature fusion method. 

2 Designed a multi-modal feature weighted fusion 
mechanism, combining hardware, soft, and implicit 
cost domain features, and introducing domain 
knowledge-constrained weighting factors to enhance 
cross-disciplinary data fusion capabilities. 

3 Proposed an error-sensitive dynamic weight decay 
strategy to effectively suppress noise sample 
interference and enhance model robustness in small 
sample high-noise environments, with training stability 
improved by 40.6% compared to classic AdaBoost. 

Its scientific significance lies in: the proposed  
error-sensitive weight decay mechanism effectively 
suppresses weight drift in traditional ensemble learning, 
enhancing model robustness. The domain-knowledge-
guided multimodal feature fusion paradigm provides 
methodological guidance for developing trustworthy, 
explainable domain-specific intelligent systems. The 
interdisciplinary risk migration matrix enables quantitative 
modelling of risk spillover effects in complex systems, 
advancing risk management from isolated analysis to 
systemic evaluation. 

The model can be deployed across cloud, edge, and 
endpoint architectures, with single-inference processing 
taking approximately 150 milliseconds. It supports 
incremental updates (triggering retraining when ≥ 20 new 
data points are added) and includes a reserved online 
learning interface to ensure system implementation 
feasibility. 

The framework proposed in this study may encounter 
two primary challenges during actual deployment: First, 
data compliance issues arise from inconsistent data formats 
and existing barriers across departments, necessitating the 
establishment of unified governance processes. Second, 
system integration requires interfacing with universities’ 
existing financial and management systems. Future work 
will focus on developing a lightweight toolkit and 
advancing practical implementation through pilot projects. 

Although the proposed AdaBoost-DW framework 
demonstrates significant improvements in cost-risk 
assessment for university laboratories, several limitations 
remain: the dataset of 217 samples used in experiments is 
limited in scale, and the model may still overfit under  
high-dimensional features; feature weighting relies on 
expert prior knowledge and lacks adaptability; The 
computational complexity of BERT, LSTM, and Tucker 
decomposition methods used in multimodal fusion is high. 
Furthermore, the interdisciplinary risk propagation matrix 

relies on historical correlation assumptions, failing to 
achieve dynamic risk propagation simulation. 

Future work will focus on the following directions: 
expanding the dataset scale through multi-institutional 
collaboration; exploring adaptive weighting mechanisms to 
reduce reliance on domain knowledge; designing 
lightweight multimodal fusion architectures to enhance 
computational efficiency; introducing real-time risk 
simulation methods (e.g., agent-based modelling) to more 
accurately characterise risk transmission dynamics; and 
extending this framework to risk assessment for other high-
cost scientific research infrastructures to enhance its 
universality and practicality. 
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