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Abstract: With the rapid expansion of university laboratories, cost overruns have become a
critical issue due to accelerating hardware iterations, rising hidden costs, and significant
interdisciplinary disparities. Traditional risk assessment methods, such as multiple linear
regression and Monte Carlo simulation, struggle to handle nonlinear interactions and data
heterogeneity. To address these challenges, this paper proposes a dynamic weight-adjusted
AdaBoost algorithm for cost risk assessment. The approach incorporates a multimodal feature
fusion mechanism integrating hardware, software, and implicit cost domains, alongside a
domain-knowledge guided weighting strategy. Experimental results on a multi-disciplinary
dataset show that the proposed method reduces the mean absolute percentage error by 26.5% and
improves the Fl-score for high-risk event identification to 0.893, significantly outperforming
existing benchmarks. The framework also enables earlier risk warnings and more effective cost
control strategies.
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Introduction

biological laboratories where compliance reviews cause
delay costs accounting for 18% of total costs.

University laboratories serve as the core platforms for
scientific and technological innovation and talent
cultivation, with their construction costs growing
exponentially. According to statistics from the Ministry of
Education in 2024, China’s universities spend more than
320 billion Yuan annually on laboratories, but the cost
overrun rate is as high as 23.7%. Especially in cutting-edge
fields such as computer science and artificial intelligence,
laboratory construction faces three major challenges:
Accelerated hardware iteration: GPU clusters, quantum
computing equipment, and other devices cost more than one
million Yuan each, with a lifespan shortened to 2—3 years
(Babaei et al., 2024); Soaring hidden costs: Security
maintenance, energy management, and insufficient
equipment utilisation rates, with an average utilisation rate
below 45%, resulting in indirect losses accounting for 34%
of total costs; Significant interdisciplinary differences:
Science and engineering laboratories face 2.8 times higher
cost overrun risks than liberal arts laboratories, such as

Numerous scholars have conducted extensive academic
research on cost overrun prediction. This paper combines
Bayesian networks with Monte Carlo simulations to provide
more accurate cost overrun predictions and risk decision
support throughout the entire lifecycle of large-scale
infrastructure projects (Canesi et al., 2025). This paper
accurately predicts the actual completion costs of Saudi
construction projects and potential cost overruns or savings
by identifying key cost risk factors and simulating their
dynamic feedback mechanisms (Alsugair et al., 2024). This
study breaks down the complex problem of cost overrun
prediction into three key steps to address the pain points
where traditional linear regression or statistical models
struggle to handle ambiguity and expert experience (Saeid
et al., 2024). This paper employs artificial neural network
machine learning algorithms to address the common
challenges of predicting schedule delays and cost overruns
in construction projects (Rakan et al., 2023). This paper
primarily investigates the use of machine learning and
statistical regression methods, combined with historical data
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and key influencing factors, to construct predictive models
that identify cost overrun risks in infrastructure projects and
support early decision-making (Deshmukh and Kambekar,
2022).

This paper proposes a risk allocation framework
integrating game theory with Bayesian probability models
to address uncertainties arising from material price
fluctuations in construction projects (Jezzini et al., 2025).

Monte Carlo simulation is also often used as a cost risk
assessment algorithm. Custer analysed the energy and
incidence angle of sputtered atoms through Monte Carlo
simulation to characterise the grain structure of
sputter-deposited molybdenum thin films (Custer et al.,
2024). Cohn and Holm use graph convolutional networks to
predict abnormal grain growth in Monte Carlo simulations,
outperforming traditional methods with an accuracy rate of
73% (Cohn and Holm, 2024). Sy (2024) optimisation of
XGBoost-CatBoost hybrid model combined with Monte
Carlo simulation for concrete strength prediction and
reliability analysis. However, this method is not very
suitable for newly established laboratories with limited
historical data.

In addition, many scholars have conducted extensive
research on the application of machine learning in this area.
Wei proposed an automatic classification model for shiitake
mushrooms based on image processing and support vector
machines (SVM), achieving high-precision classification
through pre-processing and SVM classification, and
verifying its effectiveness (Wei, 2024). Samsuzzaman et al.
(2024) proposed a method combining SVM and image
features to improve segmentation accuracy and efficiency in
agricultural image processing. Lin et al. (2024) proposed a
novel retrieval strategy based on manual features and SVM
for the retrieval of coloured spun fabrics. However, SVM
are prone to overfitting in small sample scenarios. Random
forests are also widely used. Zhao and Teng (2025)
proposed a deep mixing soil layer classification method that
combines optimised random forests with the AB-SMOTE
method to handle imbalanced data. Luo and Su (2025)
proposed spatio-temporal random forests and spatio-
temporal stacked trees for modelling nonlinear problems in
spatio-temporal non-stationarity. Xefteris et al. (2025)
proposed a multimodal fusion method based on a hybrid
LSTM-random forest fusion network for 3D human pose
estimation. Harsha et al. (2024) proposed an improved
Monte Carlo dropBlock method for modelling uncertainty
in object detection to enhance the robustness and reliability
of object detection tasks.

Tan et al. (2024) proposed a method for classifying
seabed sediment types based on extreme learning machine
adaptive boosting sonar images, which outperforms
traditional methods in terms of classification accuracy and
efficiency. Prabhakar et al. (2024) proposed a method based
on feature extraction, feature selection, and hybrid machine
learning classifiers for the automatic classification of
snoring sounds. Gamil et al. (2024) developed an Al method
combining principal component analysis (PCA), the
AdaBoost algorithm, and EfficientNet BO for skin cancer

detection and classification. Shan et al. (2024) proposes a
random feature mapping method based on the AdaBoost
algorithm, combined with result fusion technology, to
enhance classification performance. Multimodal fusion
technology is also used as an improvement method. Xie
et al. (2024) proposed a multimodal image fusion method
called Fusion Mamba, which aims to address the limitations
of traditional image fusion methods when processing
multimodal data. Fu and Lim (2024) proposed a hierarchical
feature fusion method for cross-modal pedestrian
re-identification. Fan et al. (2024) proposed a cross-modal
feature fusion method that enhances weed recognition
capabilities by fusing features from RGB and near-infrared
images.

In response to the aforementioned challenges, this paper
proposes a cost-risk assessment framework based on
dynamic weight AdaBoost (AdaBoost-DW), with the
following core innovations:

1 Three key domains — hardware costs, software costs,
and implicit costs — were established. The challenge of
heterogeneous data fusion was addressed by
introducing domain-knowledge-constrained weighting
factors.

2 An error-sensitive weight decay function was designed.
When the error fluctuation of consecutive base
classifiers exceeds a threshold, the weights of noisy
samples are automatically reduced to suppress
overfitting in small-sample scenarios.

3 A disciplinary risk transfer coefficient matrix R has
been established to quantify cross-disciplinary cost
spillover effects, enabling more precise cross-domain
risk assessment.

4 The algorithm is particularly well-suited for complex
scenarios involving small samples and multimodal data.
Its dynamic weight decay mechanism effectively
mitigates overfitting issues caused by insufficient
samples, while achieving efficient fusion of
heterogeneous data through domain knowledge-guided
weighting strategies.

2 AdaBoost for Univ lab cost risk

2.1 Cost risk assessment methods and ensemble
learning applications

The system architecture represents a typical three-tier
‘cloud-edge-end’ converged architecture designed to deliver
on-demand, low-latency, high-quality educational services
to a massive population of lifelong learners.

Accurately quantifying the impact of uncertainties on
budgets is central to cost risk assessment in university
laboratories. Existing approaches can be categorised into
three groups, each with distinct limitations in this context.

The first category is qualitative analysis methods,
specifically the activity-based costing (ABC) method, which
classifies risk levels based on cost drivers: Category A:



12 P. Zhao

equipment procurement, Category B: operations and
maintenance, and Category C: human resources. However,
this method relies on expert experience, and subjective bias
can reach up to 32%. The Delphi method achieves
consensus through multiple rounds of expert consultation,
but it takes 4-6 weeks, making it difficult to respond to the
rapid iteration requirements of computer laboratory
construction.

The second category is statistical modelling methods,
specifically multiple linear regression (MLR), which
assumes that cost variables are linearly related. The basic
model is as follows:

Cost=,30+z,Bin.+e (1)
i=1

where cost is the dependent variable of the model,
representing cost. /% is the intercept term of the model. 5 is
the regression coefficient related to the independent variable
X, X; is the independent variable of the model, is the error
term, representing the portion of cost variation that cannot
be explained by the model.

The third category is machine learning methods.
Support vector regression (SVR) maps high-dimensional
spaces through kernel functions, enabling the capture of
nonlinear relationships between independent and dependent
variables (Watanabe et al., 2025). However, the limitation
of this method lies in its sensitivity to small sample sizes
during hyperparameter optimisation. Therefore, when
applying SVR, careful optimisation and validation of
hyperparameters are required.

AdaBoost iteratively adjusts sample weights, forcing
base classifiers to focus on difficult samples, thereby
improving the detection rate of low-frequency, high-risk
events:

o :%m(l_er’?] ?)

err,

where ¢ is the weight of the base classifier in the #"
iteration, err, is the classification error rate of the base
classifier in the 7" iteration.

D, (i) exp (_atyiht (xi))
4

t

D)=

3)

where D;+1(i) is the weight of sample 7 in the ¢ + 1 iteration.
D(i) is the weight of sample i in the £" iteration. ¢ is the
weight of the base classifier in the " iteration. y; is the true
label of sample i, //(x;) is the prediction result of the base
classifier for sample i in the #" iteration, Z, is the
normalisation factor.

The above equation ensures that the high-precision base
model gains greater influence, thereby playing a more
significant role in the final prediction. Simultaneously,
increasing the weight of misclassified samples enhances
sensitivity to minority class risk signals, enabling the model
to better focus on and learn from these critical samples. Its
weight update mechanism is the key to achieving high

performance, ensuring that the high-precision base model
gains greater influence and enhances sensitivity to minority
class risk signals.

2.2 Evolution and limitations of the AdaBoost
algorithm

Since Freund and Schapire proposed the basic AdaBoost
algorithm, its evolution has mainly focused on three key
directions: multi-class extension, loss function optimisation,
and robustness enhancement. These improvements have not
only enhanced the applicability and performance of the
algorithm, but also broadened its scope of application in
different fields.

First, the multi-class extension SAMME.R: this
algorithm employs additive modelling via a multi-class
exponential loss function to effectively address multi-class
classification problems. Its prediction function is defined as:

T
B (x) = arg max,, 20{[ 1(h,(x)=k) 4)

t=1

where h,Et)(x) represents the probability of predicting

sample x as belonging to class k in the £ iteration. argmax;
represents the class & that maximises the value of the
expression below among all classes k. ¢; represents the
weight of the weak learner in the £ iteration. /h,(x)
represents the prediction result of the weak learner in the £
iteration for sample x. 1(h(x) = k) denotes the indicator
function.

The SAMME.R algorithm performs exceptionally well
in assessing disciplinary risk differentiation, such as
distinguishing the risk levels of computer and biology
laboratories.

To further improve the accuracy of the AdaBoost
algorithm in regression tasks, the gradient boosting
algorithm was proposed, replacing weight adjustment with
gradient descent to enhance regression task accuracy. Its
prediction function is:

T
F(x) =) yh(x) (5)

t=0

where F(x) represents the final prediction result. ¥
represents the weight of the weak learner in round ¢, A.(x)
represents the prediction result of the weak learner in round
t for sample x.

By replacing weight adjustment with gradient descent,
the accuracy of regression tasks is significantly improved,
and the mean absolute error (MAE) of cost prediction is
reduced. For example, in engineering infrastructure,
XGBoost’s MAE is only 8.3%.

To enhance the robustness of the AdaBoost algorithm in
noisy data, the BrownBoost and linear programming
boosting (LPBoost) algorithms are proposed. BrownBoost
introduces a time decay factor but has high parameter
sensitivity; LPBoost constrains the weight distribution
through linear programming, significantly enhancing the
algorithm’s robustness in noisy data. It can be seen that the
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AdaBoost algorithm and its improved versions have made
significant progress in multi-classification, loss function
optimisation, and robustness enhancement. However,
further research is still needed to overcome existing
limitations and improve the algorithm’s performance in
complex scenarios.

2.3 Risk assessment indicator system

The core of cost risk in university laboratories is the
coupling effect between budget execution deviation
(A = actual cost/budget cost) and risk triggering events
(such as equipment failure and safety accidents). Through
attribution analysis of 217 historical projects, a three-level
assessment  indicator system was established to
comprehensively evaluate and manage laboratory cost risks.

First is the hardware cost domain, accounting for 58.7%,
which is the dominant risk and the primary source of
laboratory cost risks. Its risk assessment indicator system
includes two aspects: equipment procurement costs and
maintenance costs. For equipment procurement costs, it is
an important component of laboratory hardware costs, with
key indicators including unit price, quantity and
depreciation rate. Rapid depreciation caused by
technological iteration is a significant risk factor for
equipment procurement costs. For example, GPU models
have decreased in price by 52% over three years, which will
significantly  impact the laboratory’s  equipment
procurement and update strategies.

Regarding maintenance costs, they are another
important component of laboratory hardware costs,
including dynamic failure rate models and associated
indicators. Dynamic failure rate models are used to predict
how equipment failure rates change over time, with the
equation being:

A1) = A€ (6)

where A(f) represents the failure rate at a given time. Ao
represents the initial failure rate. k represents the discipline
aging coefficient. ¢ represents time, typically measured in
years.

Related metrics include mean time to repair (MTTR)
and spare parts inventory costs. The former refers to the
average time required to repair a device after a failure,
reflecting the device’s maintainability and repair efficiency.
The latter refers to the cost of spare parts stockpiled to
address device failures. A reasonable spare parts inventory
can reduce repair time and costs, but excessive inventory
increases capital tied up and management costs.

Next is the soft cost domain, accounting for 31.2%,
which includes human resource costs and energy
management costs. The human resource cost component
primarily consists of training costs, which are expenses
incurred by the company to enhance employees’ skills and
knowledge. Additionally, the production efficiency of new
equipment may decrease during the adaptation period,
typically dropping to 63% of normal levels, with a standard
deviation of +11%. This means that during the initial phase

of new equipment introduction, production efficiency will
significantly decrease due to employees’ unfamiliarity with
the new equipment, thereby increasing costs.

In certain high-load tasks, such as Al training tasks,
power consumption exhibits intermittent high-load
characteristics, which significantly impact costs. Therefore,
it is necessary to calculate the cluster power consumption
peak ratio:

R, = % @)
avg
where R, is the peak power consumption ratio of the cluster.
Py 1s the maximum power consumption. Pge is the
average power consumption.

This ratio is non-linearly correlated with electricity

costs, and its calculation equation is:

T
COSt gy = J'O [a-R, (1) +b Jar 8)

where Costenerqy 1s the energy management cost. 7 is the time
period. ¢ and b are constants. R,(f) is the peak power
consumption ratio of the cluster at time . R,(f)* is the
quadratic term, used to capture the marginal cost increase of
peak power consumption.

The quadratic term coefficient a in the equation is used
to capture the marginal cost increase of peak power
consumption. In certain high-load tasks (such as Al training
tasks), power consumption exhibits intermittent high-load
characteristics, which significantly impact costs. For
example, when a = 1.2, each increase of 0.1 results in a
4.7% increase in cost.

Implicit costs account for 10.1% of the total, and are
often underestimated. They include safety risk costs and
utilisation deficiency costs. The former mainly refers to
losses caused by safety incidents such as accidents and
malfunctions. Effective utilisation refers to the ratio of
effective working time to total time. Utilisation deficiency
leads to cost losses. The equation for calculating utilisation
is as follows:

Loss=(1-U, ) x Depreciation 9)

where Loss refers to cost losses caused by insufficient
utilisation. U, is the effective utilisation rate, which
represents the proportion of effective working time in the
total time of the equipment. Depreciation refers to the
depreciation cost of the equipment.

When biological instruments are used, losses increase
sharply, indicating that low equipment utilisation will lead
to significant cost increases.

2.4 Multi-source data fusion architecture

Addressing the challenges of integrating heterogeneous data
— structured procurement tables, time-series operational
logs, and text-based safety supervision reports — we propose
a three-stage fusion framework aimed at -effectively
integrating data from different sources and formats to
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achieve more accurate and comprehensive risk assessment
and decision support.

For unstructured data, the text report utilises the BERT
model to extract keyword frequencies from security
incidents. Input consists of tokenised text sequences
with a maximum length of 512 tokens. Output is a
768-dimensional vector for each text, centred on the
classification token. Time series logs employ LSTM models
to capture failure cycle patterns. Input sequences of length T
(T = 30 days) feature six-dimensional metrics at each time
step, including failure type and duration. The output
represents the hidden state at the final time step (128
dimensions), revealing the autocorrelation in GPU failure
intervals. Through time-series analysis, potential fault
cycles and patterns can be identified, providing a basis for
fault prediction and prevention.

For structured data, such as device parameters,
standardised methods are used to eliminate unit differences
when processing structured data, ensuring comparability
and consistency among different features:

x . =X=H (10)

num
g

where X, is the standardised numerical feature. X is the
original numerical feature. y is the mean of the original
numerical feature. ois the standard deviation of the original
numerical feature.

This method can solve the problem of disparate feature
scales. Through standardisation, all numerical features will
follow a standard normal distribution (mean, standard
deviation), thereby improving the stability of subsequent
weighted fusion.

In order to further improve the effectiveness of feature
fusion, a domain knowledge-driven feature weighting
method is introduced:

Disciplinary Correction Factor
—
W= IV(X,) x CF, (11)
| —
Information Value

where W, is the global importance of feature f. IV(X)) is the
information value of feature f. CF, is the subject correction
factor.

Feature = weight Wy  determination  integrates
domain-specific prior knowledge with data-driven methods:
First, initial weights are established for different disciplines
through expert interviews and historical project analysis.
Second, these initial weights are calibrated using
information value IV(X;) and feature importance
assessments. Discipline adjustment factors CF, derives from
domain experts’ consensus ratings on cross-disciplinary risk
transmission effects, validated through regression analysis
of historical data. Consequently, weight allocation is neither
purely subjective nor entirely data-driven, but rather a
knowledge-guided, interpretable  hybrid = weighting
mechanism.

In the process of constructing feature correlation
tensors, in order to effectively explore the interactions
between different modalities and reveal how hidden costs

indirectly increase total costs through hardware failures,
tensor analysis methods are used to capture the complex
relationships between multimodal data. To further explore
cross-modal interactions, Tucker decomposition methods
are used to decompose tensors:

T =Gx AV x, AP x;, AP (12)

where 7 is the feature correlation tensor. G is the core
tensor. A® is the factor matrix, and d represents the latent
semantic representation of the A" modality, where k=1, 2, 3
correspond to hardware, soft, and latent modalities,
respectively.

Tucker decomposition reveals interactions between
features of different modalities. This provides a theoretical
foundation for feature selection and model construction.
Additionally, the decomposed core tensor and factor matrix
can be used for feature dimensionality reduction and data
compression, improving the computational efficiency and
generalisation ability of the model.

In this task, the BERT model is employed to process
text-based security supervision reports. The input consists
of a sequence of tokenised text with a maximum length of
512 tokens, and the output is a 768-dimensional vector for
each text, centred on the CLS token. The LSTM model
processes time-series data such as device failure logs. Input
consists of sequences of length T (T = 30 days), with each
time step featuring six-dimensional indicators including
failure type and duration. Output comprises the hidden state
at the final time step (128 dimensions), representing failure
cycle patterns.

2.5 Interdisciplinary risk migration coefficient
matrix

To quantify the cost-risk spillover effects between
laboratories of different disciplines, this paper introduces a
cross-disciplinary risk migration coefficient matrix R.
Matrix R is constructed based on the co-occurrence
relationships of risk events in historical projects and the cost
correlations across disciplines. Its calculation first counts
the sequential occurrence frequency of high-risk cost events
between different disciplines, yielding the conditional
probability estimate P.

B =" (13)

where Nj represents the number of projects where subject j
exhibits abnormal cost fluctuations following a high-risk
cost event in subject i during the same time period. N;
represents the total number of high-risk incidents occurring
in subject 7.

The final transfer coefficient R; is obtained by
weighting the conditional probability using the Pearson
correlation coefficient p; derived from the interdisciplinary
cost time series.
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max (p;,0)+1

Ry=2F+(1-1)- 5

(14)
where A = 06 is an empirical weighting factor that ensures
both event co-occurrence and trend correlation are
considered simultaneously.

This matrix primarily captures four interdisciplinary risk
transmission patterns: hardware sharing risks, security
compliance spillovers, resource competition effects, and
synchronised technological iteration.

Within the AdaBoost-DW prediction framework, matrix
R interacts with model outputs through three mechanisms.
First, at the feature level, the raw feature vector x; for
discipline j receives risk-weighted features from other
disciplines:

x}=x,-+ZRU-'Zi (15)

where z; denotes the mean vector of recent risk features for
subject .

During the weighted voting phase, the weights ¢; of the
base classifiers are dynamically adjusted based on the
strength of risk transfer between disciplines:

, Zing/'It(i’j)
o =, | 1+ = —— (16)

where I(i, j) represents the recognition confidence of the #"
classifier for the subject pair (i, j), K denotes the number of
subject categories.

The final risk score incorporates interdisciplinary
adjustments through the following equation:

RiskScore (x) = RiskScore(x) + 3, '(roRs) 17)

where 1; is the historical risk vector for subject j, s is the
current school-wide risk state vector, . is an adjustable
parameter.

Through the aforementioned mechanism, R enables
models to explicitly capture interdisciplinary risk
dependencies, enhancing the ability to identify implicit and
transmissible costs. This capability proves particularly
significant in scenarios where high-risk projects are
concentrated or where resources are shared across multiple
disciplines.

2.6 Challenges in Univ lab cost risk

The traditional AdaBoost algorithm faces three key
challenges in university laboratory cost-risk assessment:
First, in highly heterogeneous multimodal data
environments, noisy samples easily trigger weight drift,
causing the model to overemphasise outliers while
neglecting core risk signals. Second, the absence of domain-
knowledge-guided feature weighting mechanisms prevents
effective enhancement of contributions from implicit costs
and interdisciplinary features. Third, its insufficient
generalisation capability in small-sample scenarios makes it
difficult to quantify cross-disciplinary risk spillover effects.

These limitations underscore the urgent need to refine
traditional algorithms. To address this, Section 3 proposes
the AdaBoost-DW algorithm with dynamic weight
adjustment. By incorporating an error-sensitive weight
decay function and a domain-knowledge-driven feature
weighting strategy, it establishes a novel framework capable
of effectively handling multimodal data fusion and
interdisciplinary risk assessment. This enhancement not
only resolves inherent issues in traditional algorithms but
also provides more precise decision support for laboratory
cost management.

3 Improvements to the AdaBoost-DW algorithm
principle

3.1 Algorithm framework design

Based on the multimodal feature system constructed in
Section 3, this paper propose an ensemble learning
algorithm based on the Adaboost algorithm, as shown in
Figure 1, which aims to construct a strong classifier by
combining multiple weak classifiers. This architecture
enhances prediction accuracy and robustness through
multi-level feature processing and model integration.

The AdaBoost-DW algorithm executes in a sequential
flow from feature fusion to risk probability output: first,
based on a multi-source data fusion architecture, hardware,
software, and hidden cost features are standardised and
weighted for fusion, forming a unified multimodal feature
vector; subsequently, it dynamically selects base classifiers
based on the signal-to-noise ratio (SNR) features. Building
upon this, an error-sensitive weight decay mechanism
adjusts the weights of noisy samples according to error
change rates to suppress weight drift. It also incorporates a
feature uncertainty factor to amplify the influence of
high-confidence features. Finally, risk scores are computed
based on weighted voting results and converted into
interpretable risk probabilities via a Sigmoid function to
support tiered early warning.

Figure 1 AdaBoost-DW algorithm architecture (see online
version for colours)

> -

Training ST Strong
Cl  d —> >

“—- -

The base classifier layer employs multiple machine learning
algorithms, leveraging the strengths of different algorithms
in processing various feature types. First, the CART
(classification and regression trees) decision tree is applied
to structured features such as hardware costs.
To suppress overfitting and enhance model generalisation,
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the tree’s maximum depth is set to max depth = 5.
Further parameters include min samples split = 10 and
min_samples_leaf = 5, with the Gini index serving as the
splitting criterion. Second, SVM with a radial basis
function kernel were employed to map features into
high-dimensional space, capturing nonlinear patterns like
hidden costs. After Bayesian optimisation, the penalty
parameter C = 2.5 and kernel coefficient ¥ = 0.3 were
determined. The third approach is a dynamic allocation
mechanism that dynamically selects the most suitable base
classifier based on the SNR of features.

For low SNR features like text security reports, SVM is
prioritised for processing; for numerical features like failure
rates, CART decision trees are prioritised. This dynamic
selection strategy fully leverages the advantages of different
algorithms to improve the overall predictive performance of
the model.

At the integration strategy layer, in order to establish
mapping rules from base model differences to final
decisions, a weighted majority voting method is used to fuse
the outputs of the base classifiers, calculated using the
following equation:

t=1

T
H(x)= sign[z a,h, (x)] (18)

where H(x) is the final prediction result. Z/(x) is the
prediction result of the ' base classifier for the input
sample x. ¢ is the weight of the /" base classified. T is the
total number of base classifiers.

By assigning higher weights to high-accuracy models,
this strategy can effectively improve the overall prediction
performance of the ensemble model, ensuring the accuracy
and reliability of the final decision.

3.2 Dynamic weighting mechanism

The classic AdaBoost algorithm is prone to weight drift
issues when handling noisy samples, leading to a decline in
model performance. As shown in Figure 2, the interference
from noisy samples causes the model to continuously adjust
weights during the iteration process, ultimately resulting in
the model overemphasising noisy samples while neglecting
truly important ones. To address this issue, we propose a
dynamic weight adjustment mechanism based on
error-sensitive weight decay, aiming to enhance the model’s
robustness and generalisation capability.

In each iteration, the weighted error rate of the base
classifiers is first calculated. The specific steps are as
follows:

el’r;=iDt(i)']I(ht(xi)¢yi) (12)

i=1

where err, is the weighted error rate of the /" iteration. D7)
is the weight of sample i in the ¢t iteration. m is the total
number of samples. %,(x;) is the prediction result of the base
classifier for sample i in the £ iteration. y, is the true label
of sample x;. I(-) is an indicator function that takes the

value 1 when the condition inside the parentheses is true,
and 0 otherwise.

Figure 2 Dynamic weighting mechanism comparison (see online
version for colours)

Classic AdaBoost AdaBoost-DW (Proposed Method)

This equation is used to quantify the current model’s fit to
difficult samples. A lower weighted error rate indicates that
the model’s prediction for the current sample set is more
accurate and has higher confidence.

To suppress weight oscillations caused by large
fluctuations in error during continuous iterations, this paper
introduces an error change rate sensitivity factor:

L 1
" 1+exp(=f | Aer, )

(20)

where 4, is the sensitivity factor for the error change rate in
the #" iteration. [ is the attenuation intensity parameter, set
empirically. Aerr, is the error change between the /" and
(&=1)" iterations. The parameter A, controls the decay
strength. When Aerr, is high, A, decreases significantly,
applying strong decay to the weights of samples associated
with that iteration’s high error, preventing the model from
overfitting to potential outliers. When error is stable, A, ~ 1,
preserving the weight update rule of standard AdaBoost to
focus on consistently misclassified samples.

This equation is used to dynamically adjust model
weights to adapt to the sensitivity of error changes. When
Aerr, > 0.3, 4, — 0, indicating a significant error change, the
weights of noisy samples are strongly attenuated to prevent
the model from overemphasising noisy samples. When Aerr;
< 0.1, & — 1, indicating a small error change, model
weights remain stable to retain information-rich samples.

In order to improve the robustness and accuracy of the
model, feature uncertainty factors are introduced to quantify
and correct the credibility of features. A feature weight
correction equation based on data volatility is proposed to
ensure that the model can more effectively utilise
high-credibility data sources:

2
. (O
D (j)=1—exp (——Tf j 21)

where af is the variance of feature j. 7 is an adjustment

parameter with a default value of 0.1. D,(fe‘”)( j) is the

feature uncertainty factor.
The core idea of this equation is to adjust feature
weights based on data volatility. When the variance of

feature j is small, the value of Dt(-ﬂ"”)( j) approaches 1,
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indicating that the feature has high credibility and
significant influence in the model. Conversely, when the

variance is large, the value of D,(/é’”)( J) decreases,

indicating that the feature has low credibility and limited
influence in the model.

Intuitively, the core mechanism by which dynamic
weighting prevents overfitting lies in ‘suppressing the
over-learning of noisy samples’. The error-sensitive weight
decay function introduced in this paper automatically
reduces the weights of samples exhibiting significant error
fluctuations during consecutive iterations, thereby
preventing the model from placing excessive emphasis on
them.

3.3 Risk probability quantification model

In the field of risk assessment, it is crucial to convert
classification results into interpretable risk probabilities,
which not only helps to understand the severity of potential
risks but also supports a graded early warning mechanism.
Therefore, we propose a risk probability quantification
model based on weighted voting results to generate
continuous scores. The specific equation is as follows:

ZT: a,h,(x)

RiskScore(x)==2——— (22)

T
1=

2

1

where RiskScore(x) denotes the function, where x is the
input variable. ¢; denotes the weight of the # model. /,(x)
denotes the prediction result of the ! model for the input x.

The normalised score ranges from —1 to 1, with negative
values indicating low risk and positive values indicating
high risk. For example, when the score is less than —0.3, it
indicates low risk; when the score is close to 1, it indicates
high risk. In a computer lab, if GPU failure is a significant
feature, the score may rise from 0.2 to 0.52, indicating a
significant increase in risk.

In risk management, converting scores into probabilities
is a crucial step that helps managers intuitively understand
the likelihood of risks occurring. The Sigmoid function is
used to convert risk scores into risk probabilities:

1
1+exp(—k - RiskScore,;)

B (x) = (23)

where P,;#(x) represents the probability of risk occurrence,
with a value range of [0, 1]. &k represents the slope
parameter. RiskScore,q; represents the adjusted risk score.
This equation meets managers’ intuitive needs for ‘risk
occurrence probability’. By converting the score into a
probability, managers can more clearly understand the
severity of the risk and take corresponding management
measures accordingly. When k = 3, if P, > 0.7, a red alert
is triggered, indicating extremely high risk, and immediate
action is required. When RiskScore.q > 0.4, P.g > 0.85,

indicating extremely high risk, and urgent intervention is
required.

Table 1 Risk level decision threshold

Task Risk P Alert Management

no. score risk level measures

1 <-0.3 <0.35 Green  Normal budget
execution

2 [-0.3,0.2] [0.35,0.65] Yellow Monthly cost
audit

3 >0.2 >0.65 Orange  Freeze
non-essential
purchases

4 >0.4 >0.85 Red Activate
emergency

response plan

As shown in Table 2, the system compares the differences
among the three algorithms in terms of weighting
mechanisms, multimodal fusion, and noise handling,
highlighting the innovation and applicable scenarios of
AdaBoost-DW.

Table 2 Comparison of AdaBoost-DW, XGBoost, and
LightGBM
Task Comparison. 1 poostDW  XGBoost  LightGBM
no. dimensions
1 Weight Error-sensitive Node splitting Histogram-
update dynamic optimisation  accelerated
mechanism weight decay based on gradient

second-order  boosting

gradients
2 Multi-modal Explicit fusion Implicit fusion Relies on
fusion feature
strategy engineering
3 Noise Strong Moderate Moderate

adaptability (attenuates (suppresses  (more
noisy sample overfitting via sensitive to

weights) regularisation) noisy
samples)
4 Suitable Small-sample, Large-scale, Large-scale,
scenarios high-noise, structured data high-
multimodal ~ with high dimensional,
heterogeneous feature sparse data
data dimensions

As shown in the table above, AdaBoost-DW possesses
distinct advantages in dynamic weight decay and explicit
multimodal fusion, making it particularly suitable for
university laboratory cost-risk assessment scenarios
characterised by limited sample sizes, significant noise, and
heterogeneous feature sources. In contrast, XGBoost and
LightGBM are better suited for scenarios involving large
datasets and homogeneous features, where optimisation
focuses on computational efficiency and model accuracy
rather than explicit control over sample weights and modal
interactions. In this paper, AdaBoost-DW is employed to
fuse multimodal features and accurately predict cost overrun
risks in university laboratory construction, supporting early
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risk warning and tiered management. The specific steps are
as follows:

Step 1 Initialise the sample weight vector WV,

Step 2 Initialise the strong classifier H(x) as an empty set,
iteration counter ¢ = 1.

Step 3 In each iteration ¢.

Step 3.1 Train a base classifier 4,(x) based on the
current sample weights WO,

Step 3.2 Calculate the weighted error rate €, of base
classifier 2,(x).

Step 3.3 If €,> 0.5, discard the base classifier and
retrain; otherwise, compute its weight o;.

Step 3.4 Update sample weights w,.(”l).

Step 3.5 Add A(x) and its weight ¢. to the strong
classifier.

Step 3.6  If either ¢ > T OF € < € in, terminate

iteration; otherwise, set = ¢ + 1 and return to
Step 3.

Step 4 Output the final strong classifier H(x) as the risk
assessment model.

Step 5 Use H(x) to calculate the risk score for the input
sample and convert it into a risk probability via the

Sigmoid function.

4 Experimental design and results analysis

4.1 Dataset construction and multidisciplinary
feature analysis

This study aims to validate the -effectiveness and
generalisation of AdaBoost-DW. For this purpose, we
constructed a large-scale dataset called LabRisk-2024. It
covers multiple disciplines and years. The dataset comprises
217 laboratory construction projects from eight universities
between 2018 and 2023, with each project containing
32-dimensional refined feature annotations and records of
actual cost overruns.

The core advantages of the dataset lie in its
comprehensive disciplinary coverage, multi-modal feature
dimensions, and time-series segmentation.

First, in terms of comprehensive disciplinary coverage,
the dataset covers five representative disciplines: computer
science (70 projects), biomedical science (61 projects),
chemical engineering (40 projects), physics (28 projects),
and materials science (18 projects), with significant
differences in cost composition. In computer laboratories,
the procurement and power consumption costs of GPU
clusters account for as much as 41.7 £ 6.3% of total costs.
In biological laboratories, costs related to BSL-2/3 biosafety
compliance requirements account for 28.9 + 4.1% of total
costs. In chemical engineering laboratories, costs related to
exhaust gas treatment and special maintenance account for
as much as 23.6 £ 5.2% of total costs. This multidisciplinary

composition provides an ideal foundation for validating the
generalisation performance of the model.

In terms of multimodal features, feature engineering
strictly follows the indicator system defined in Section 3,
covering 12 hardware features such as equipment purchase
price, depreciation rate, and MTBF failure rate; 10 soft
features such as training duration, energy consumption
coefficient, and human resource allocation ratio; and 10
implicit features such as safety incident frequency,
equipment utilisation rate, and technology iteration risk
index. The quantification and annotation of implicit features
fill a gap in existing research.

To strictly prevent data leakage and respect temporal
causality, this paper employs a time-ordered rolling window
segmentation strategy. The dataset is first sorted
chronologically by project start date. Training windows are
constructed solely from earlier time periods, while testing
windows encompass subsequent, unseen periods. This
yields 158 training samples and 59 temporally lagged
testing samples, ensuring no future information is utilised
during model training. This approach accurately simulates
real-world forecasting scenarios.

All names and identifiers referring to specific
universities, laboratories, and suppliers have been
generalised and anonymised (e.g., replaced with ‘University
A,” ‘Computer Lab Project 01’). Numerical data such as
costs have undergone normalisation through proportional
scaling and distribution preservation.

4.2  Comparison methods and evaluation metrics

In constructing the comparison methods and evaluation
metrics, this paper selected five representative comparison
methods for comprehensive benchmark testing to ensure the
scientific and reliable nature of the experimental results. To
ensure fair and rigorous comparisons, all machine learning
and ensemble methods employed the same Bayesian
optimisation framework for hyperparameter tuning, based
on the tree structure parsing estimator algorithm. Each
model underwent 50 iterations of optimisation and was
allocated identical computational resources (Intel Xeon
Gold 6248R CPU, 128GB RAM).

Traditional statistical models include MLR (Rahman
et al.,, 2024) and support vector regression (SVR-RBF
kernel) (Aldhafferi, 2024), which have extensive
applications and theoretical foundations in the field of
statistics. Machine learning benchmark methods include
random forest (RF, set to 200 trees) and gradient boosting
trees (GBDT) (Zhou et al., 2024), which excel in handling
complex datasets and feature selection. State-of-the-art
(SOTA) ensemble learning methods include XGBoost
(ForouzeshNejad et al., 2024) and LightGBM (Daniel,
2024), which have achieved outstanding results in recent
machine learning competitions, demonstrating high
predictive accuracy and computational efficiency. The
classic ensemble method AdaBoost (CART-based classifier,
set to 200 iterations with early stopping) is also included in
the comparison to assess its performance on different
datasets. The proposed method AdaBoost-DW innovates
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and optimises the aforementioned methods to further
enhance the model’s generalisation ability and robustness.

In cost risk assessment, balancing numerical prediction
accuracy and risk classification capability is crucial.
Traditional metrics such as mean squared error (MSE)
symmetrically handle overruns and savings, failing to
reflect the actual need for risk management to focus more
on overrun bias. To address this, this paper introduces a pair
of complementary percentage error metrics.

100% <
MAPE = ——
)

i=1

yi_yi‘ (24)
Vi

C100% < |y -9
SMAPE =— Z

25
=1y 1+15,1)/2 (25)

where y; is the true value of the /™ sample. p, is the
predicted value of the i sample. n is the total number of

samples. i il s the absolute percentage error of the i
Vi
|y,' -V . .
samplee. ————"— is the symmetric absolute
(lyi1+13:0)/2

percentage error of the i sample.

The dual-indicator approach focuses on the ability to
capture cost overrun risks while ensuring that the model
performs stably in both cost-saving and cost-overrun
scenarios, overcoming the shortcomings of a single
indicator.

Additionally, cost overruns of > 15% are defined as
high-risk events, with risk identification capability assessed
using the F1-Score (a harmonic mean of precision and
recall), supplemented by AUC-ROC to measure ranking
performance. From a management practice perspective, we
innovatively propose the early warning time (EWT) and
intervention effectiveness (IE) metrics to quantify the
timeliness of warnings and the benefits of measures.

4.3 Results and analysis

Figure 3 presents the distribution of MAPE values across
100 experimental runs for each algorithm, visualised
through box plots augmented with individual data points.
The proposed AdaBoost-DW algorithm achieves the lowest
median MAPE of 7.2% with minimal dispersion,
indicating both superior accuracy and enhanced stability.
The performance hierarchy observed is as follows:
AdaBoost-DW (7.2%) > XGBoost (9.8%) > LightGBM
(10.5%) > AdaBoost (11.5%) > RF (12.3%) > GBDT
(13.1%) > MLR (15.4%) > SVR (16.2%).

To ascertain the statistical significance of these
performance differences, we employed paired t-tests
comparing AdaBoost-DW against each competing method.
The null hypothesis posited no systematic difference in
MAPE between AdaBoost-DW and the alternative method,
while the alternative hypothesis asserted superiority of
AdaBoost-DW. Significance levels were classified as: ***
for p <0.001 , ** for p < 0.01, * for p < 0.05, and ‘ns’ for

non-significant results (p > 0.05). To further elucidate the
magnitude and consistency of performance differences,
Figure 3 illustrates the paired differences in MAPE between
each comparison method and AdaBoost-DW. The violin
plots depict the probability density of differences, while
embedded box plots highlight median values and
interquartile ranges. The red dashed line at zero difference
represents parity with the baseline AdaBoost-DW
performance.

Figure 3  Statistical significance experiment (see online version
for colours)
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All observed differences are strictly positive, confirming the
consistent superiority of AdaBoost-DW across all
experimental runs. The 95% confidence intervals (Cls) for
mean differences were computed using the t-distribution.
Critically, none of these Cls include zero, with all lower
bounds remaining positive. This provides additional
confirmation that the performance advantages are
statistically significant at the level.
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The magnitude of performance improvement varies
substantially across comparison pairs. The most pronounced
difference occurs between AdaBoost-DW and SVR (mean
difference: 9.0%, CI: [8.6, 9.4]), while the smallest yet still
significant difference is observed between AdaBoost-DW
and XGBoost (mean difference: 2.6%, CI: [2.3, 2.9]). This
gradient of improvement aligns with the algorithmic
complexity and modelling capabilities of the competing
methods.

To quantitatively analyse the contributions of each
innovative module, this paper designed systematic ablation
experiments, with results shown in Figure 4. The results
indicate that the complete AdaBoost-DW model achieved
benchmark performance. Removing dynamic weights
resulted in a significant performance degradation,
confirming that the error-sensitive decay mechanism is the
core component for suppressing noise and enhancing
robustness, particularly when handling outliers in equipment
quotes, where this module contributed to a 40.6% reduction
in error.

After removing feature weighting, the implicit cost
identification rate dropped sharply, and the underreporting
rate of costs associated with biological laboratory safety
incidents increased by 22.4%, highlighting the critical value
of domain knowledge-guided feature fusion in capturing
complex, indirect risk chains. When only the base
framework (Base) was retained, performance degraded to
near baseline levels, validating the synergistic effect of the
overall architecture rather than the dominance of a single
module.

Figure 4 Contribution of each module to performance
(see online version for colours)

(a) Prediction Accuracy (MAPE) (b) Risk Identification (F1-Score)
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The experiment shows that module utility is
context-dependent. Dynamic weights contribute more in
computer projects with hardware costs. Feature weights
have greater impact in biology and chemical labs with
implicit costs. This contextual characteristic demonstrates
that the algorithm design precisely matches the intrinsic
needs of multidisciplinary risk assessment.

Beyond traditional accuracy metrics, the practical
effectiveness assessed from a risk management perspective
is more persuasive. As shown in Table 3, AdaBoost-DW
achieves an EWT of 3.2 months, a 77.8% improvement over

XGBoost (1.8 months), providing ample time for
intervention measures. Its IE reaches 34.7%, meaning that
measures taken after adopting the warning reduce cost
overruns by more than one-third on average.

Table 3 R comparison of early warning effectiveness for

high-risk projects

Early
warning
lead time
(months)

1 XGBoost 1.8 18.5

Intervention
effectiveness
(%)

Typical case

Task Method .
. cost savings

no

Computer
Lab: GPU
selection
optimisation
(15.2)

Biology lab:
enhanced
safety
training
(28.4)

3 AdaBoost- 32 34.7 Computer:
DW heat
dissipation
design
optimisation
(42.6)

Computer
Lab: GPU
selection
optimisation
(15.2)

2 LightGBM 2.1 223

4 XGBoost 1.8 18.5

To explore this issue in greater depth, this paper selects a
typical case study: an artificial intelligence laboratory at a
certain university, with a budget of 8.2 million Yuan and
actual expenditure of 9.9 million Yuan (20.7% over budget).

The classic AdaBoost was disrupted by early GPU price
outliers, resulting in a prediction bias of up to 34.5%. While
XGBoost captured the main trend in hardware costs, it
underestimated the costs associated with upgrading cooling
systems due to high computing power requirements
(approximately 800,000 Yuan). AdaBoost-DW, however,
performed consistently robustly throughout: first, it
suppressed GPU market price volatility noise through A
second, it accurately quantified the cooling system upgrade
costs for high-power devices through Wj; and finally, it
anticipated the increased labour costs resulting from
software ecosystem adaptation through an interdisciplinary
risk transmission matrix (R = 0.38). Post-analysis indicated
that if all its recommendations were fully adopted, cost
overruns could be controlled within 8%.

5 Conclusions

This study addresses three major challenges in cost risk
assessment for university laboratory construction: the
difficulty of integrating multi-source heterogeneous data,
overfitting with small samples, and nonlinear risk
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transmission. It proposes an assessment framework based
on AdaBoost-DW:

1 Proposed the AdaBoost-DW evaluation framework to
address challenges in multi-source heterogeneous data
fusion, small sample overfitting, and nonlinear risk
propagation in cost risk assessment for university
laboratories. This framework incorporates a dynamic
weight adjustment mechanism and a multi-modal
feature fusion method.

2 Designed a multi-modal feature weighted fusion
mechanism, combining hardware, soft, and implicit
cost domain features, and introducing domain
knowledge-constrained weighting factors to enhance
cross-disciplinary data fusion capabilities.

3 Proposed an error-sensitive dynamic weight decay
strategy to effectively suppress noise sample
interference and enhance model robustness in small
sample high-noise environments, with training stability
improved by 40.6% compared to classic AdaBoost.

Its scientific significance lies in: the proposed
error-sensitive  weight decay mechanism effectively
suppresses weight drift in traditional ensemble learning,
enhancing model robustness. The domain-knowledge-
guided multimodal feature fusion paradigm provides
methodological guidance for developing trustworthy,
explainable domain-specific intelligent systems. The
interdisciplinary risk migration matrix enables quantitative
modelling of risk spillover effects in complex systems,
advancing risk management from isolated analysis to
systemic evaluation.

The model can be deployed across cloud, edge, and
endpoint architectures, with single-inference processing
taking approximately 150 milliseconds. It supports
incremental updates (triggering retraining when > 20 new
data points are added) and includes a reserved online
learning interface to ensure system implementation
feasibility.

The framework proposed in this study may encounter
two primary challenges during actual deployment: First,
data compliance issues arise from inconsistent data formats
and existing barriers across departments, necessitating the
establishment of unified governance processes. Second,
system integration requires interfacing with universities’
existing financial and management systems. Future work
will focus on developing a lightweight toolkit and
advancing practical implementation through pilot projects.

Although the proposed AdaBoost-DW framework
demonstrates  significant improvements in cost-risk
assessment for university laboratories, several limitations
remain: the dataset of 217 samples used in experiments is
limited in scale, and the model may still overfit under
high-dimensional features; feature weighting relies on
expert prior knowledge and lacks adaptability; The
computational complexity of BERT, LSTM, and Tucker
decomposition methods used in multimodal fusion is high.
Furthermore, the interdisciplinary risk propagation matrix

relies on historical correlation assumptions, failing to
achieve dynamic risk propagation simulation.

Future work will focus on the following directions:
expanding the dataset scale through multi-institutional
collaboration; exploring adaptive weighting mechanisms to
reduce reliance on domain knowledge; designing
lightweight multimodal fusion architectures to enhance
computational efficiency; introducing real-time risk
simulation methods (e.g., agent-based modelling) to more
accurately characterise risk transmission dynamics; and
extending this framework to risk assessment for other high-
cost scientific research infrastructures to enhance its
universality and practicality.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China Young Scientists Fund (No.
62201337), and the Ministry of Education—Industry—
University  Collaborative  Education Program  (No.
240904701044443).

Declarations

All authors declare that they have no conflicts of interest.

References

Aldhafferi, N. (2024) ‘Android Malware detection using support
vector regression for dynamic feature analysis’, Information,
Vol. 15, No. 10, pp.658—658.

Alsugair, A.M., Gahtani, K.S.A., Alsanabani, N.M., Hommadji,
G.M. and Alawshan, M.I. (2024) ‘An integrated DEMATEL
and system dynamic model for project cost prediction’,
Heliyon, Vol. 10, No. 4, p.e26166.

Babaei, N., Rahgozar, R. and Shojaei, S. (2024) ‘Multi-objective
optimization design of buckling-restrained braced frames
based on performance evaluation and risk of repair cost and
time’, Arabian Journal for Science and Engineering, Vol. 50,
No. 3, pp.1-16.

Canesi, R., Gabrielli, L., Marella, G. and Ruggeri, A.G. (2025)
‘Probabilistic risk assessment framework for cost overruns
predictions in infrastructure projects using randomized
simulations’, Computer-Aided Civil and Infrastructure
Engineering, Vol. 40, No. 27, pp.4774—4796.

Cohn, R. and Holm, E.A. (2024) ‘Graph convolutional network for
predicting abnormal grain growth in Monte Carlo simulations
of microstructural evolution’, Scientific Reports, Vol. 14,
No. 1, pp.30-35.

Custer, J.O., Kalaswad, M., Kothari, R.S., Kotula, P.G., Ruggles,
T., Hinojos, A., Dingreville, R., Henriksen, A. and Adams,
D.P. (2024) ‘Sputter-Deposited Mo  Thin  Films:
characterization of grain structure and Monte Carlo
simulations of sputtered atom energies and incidence angles’,
Integrating  Materials and Manufacturing Innovation,
Vol. 14, No. 1, pp.1-13.

Daniel, C. (2024) ‘A robust LightGBM model for concrete tensile
strength forecast to aid in resilience-based structure
strategies’, Heliyon, Vol. 10, No. 20, pp.e39679-¢39679.



22 P. Zhao

Deshmukh, S. and Kambekar, A.R. (2022) ‘Prediction model for
cost overruns in infrastructure project’, Journal of Real
Estate, Construction and Management, Vol. 37, No. S2,
pp-192-205.

Fan, X., Ge, C., Yang, X. and Wang, W. (2024) ‘Cross-modal
feature fusion for field weed mapping using RGB and
near-infrared imagery’, Agriculture, Vol. 14, No. 12,
pp-2331-2331.

ForouzeshNejad, A.A., Arabikhan, F. and Aheleroff, S. (2024)
‘Optimizing project time and cost prediction using a hybrid
XGBoost and simulated annealing algorithm’, Machines,
Vol. 12, No. 12, pp.867-867.

Fu, W. and Lim, M. (2024) ‘Hierarchical feature fusion for
cross-modality  person re-identification’,  International
Journal of Pattern Recognition and Artificial Intelligence,
Vol. 38, No. 16, pp.168—180.

Gamil, S., Zeng, F., Alrifaey, M., Asim, M. and Ahmad, N. (2024)
‘An efficient AdaBoost algorithm for enhancing skin cancer
detection and classification’, Algorithms, Vol. 17, No. 8,
pp-353-353.

Harsha, Y.S., Deepshikha, K., Srijith, P.K. and Mohan, C.K.
(2024) ‘Monte Carlo DropBlock for modeling uncertainty in
object detection’, Pattern Recognition, Vol. 146, No. 10,
pp-102—-109.

Jezzini, Y. et al. (2025) ‘Risk allocation model for price
escalations in construction projects: integrating bargaining
game theory and probabilistic bayesian modeling’, Journal of
Construction Engineering and Management, Vol. 151, No. 9,
pp-103—-108.

Lin, Z., Zhang, X., Zhang, N., Xiang, J. and Pan, R. (2024) ‘A
novel retrieval strategy for colored spun yarn fabrics based on
hand-crafted features and support vector machine’, The
Journal of The Textile Institute, Vol. 115, No. 12,
pp-2535-2544.

Luo, Y. and Su, S. (2025) ‘SpatioTemporal random forest and
spatiotemporal stacking tree: a novel spatially explicit
ensemble learning approach to modeling non-linearity in
spatiotemporal non-stationarity’, International Journal of
Applied Earth Observation and Geoinformation, Vol. 136,
pp-104-109.

Prabhakar, S.K., Rajaguru, H. and Won, D.O. (2024) ‘Coherent
Feature extraction with swarm intelligence based hybrid
Adaboost weighted ELM classification for snoring sound
classification’, Diagnostics, Vol. 14, No. 17, pp.1857—-1857.

Rahman, A., Nahid, N., Schuller, B. and Ahad, M.A.R. (2024) ‘A
stacked CNN and random forest ensemble architecture for
complex nursing activity recognition and nurse
identification’, Scientific Reports, Vol. 14, No. 1, pp.21-31.

Rakan, A.m., Sharaf, A.S. and Hamza, A.B. (2023) ‘Machine
learning-aided time and cost overrun prediction in
construction projects: application of artificial neural network’,
Asian Journal of Civil Engineering, Vol. 24, No. 7,
pp.2583-2593.

Saeid, A.-N.Y., A., H.L., Saiful, M., Martin, S. and Ziyad, A.
(2024) ‘Modified Mamdani-fuzzy influence system for
predicting the cost overrun of construction projects’, Applied
Soft Computing, Vol. 151, pp.111-117.

Samsuzzaman, Reza, M.N., Islam, S., Lee, K.H., Haque, M.A.,
Ali, M.R., Cho, Y.J., Noh, D.H. and Chung, S.O. (2024)
‘Automated seedling contour determination and segmentation
using support vector machine and image features’, Agronomy,
Vol. 14, No. 12, pp.294-299.

Shan, W, Li, D., Liu, S., Song, M., Xiao, S. and Zhang, H. (2024)
‘A random feature mapping method based on the AdaBoost
algorithm and results fusion for enhancing classification
performance’, Expert Systems With Applications, Vol. 256,
pp-124-128.

Sy, T.N. (2024) ‘Optimized hybrid XGBoost-CatBoost model for
enhanced prediction of concrete strength and reliability
analysis using Monte Carlo simulations’, Applied Soft
Computing, Vol. 167, No. 7, pp.112-119.

Tan, C., Yin, F. and Jiang, T. (2024) ‘Classification method of
seabed sonar image substrate based on ELM-AdaBoost’,

Journal of Radiation Research and Applied Sciences, Vol. 17,
No. 4, pp.101-108.

Watanabe, R., Sridhara, S.N., Hong, H., Pavez, E., Nonaka, K.,
Kobayashi, T. and Ortega, A. (2025) ‘Full reference point
cloud quality assessment using support vector regression’,
Signal Processing: Image Communication, Vol. 131,
pp-117-123.

Wei, Z. (2024) ‘Automatic sorting model for shiitake mushrooms
based on image processing and support vector machine’,
Journal of Image Processing Theory and Applications,
Vol. 7, No. 1, pp.6—-10.

Xefteris, V.R., Syropoulou, A.C., Pistola, T., Kasnesis, P., Poulios,
I., Tsanousa, A., Symeonidis, S., Diplaris, S., Goulianas, K.,
Chatzimisios, P. and Vrochidis, S. (2025) ‘Multimodal fusion
of inertial sensors and single RGB camera data for 3D human
pose estimation based on a hybrid LSTM-random forest
fusion network’, Internet of Things, Vol. 29, pp.101-115.

Xie, X., Cui, Y., Tan, T., Zheng, X. and Yu, Z. (2024)
‘FusionMamba: dynamic feature enhancement for multimodal
image fusion with Mamba’, Visual Intelligence, Vol. 2, No. 1,
pp.37-42.

Zhao, Y. and Teng, C. (2025) ‘Classification of soil layers in Deep
Cement Mixing using optimized random forest integrated
with AB-SMOTE for imbalance data’, Computers and
Geotechnics, Vol. 179, pp.106-113.

Zhou, K., Meng, Z., He, M., Hou, J. and Li, T. (2020) ‘Design and
Test of a sorting device based on machine vision’, IEEE
Access, Vol. 8, pp.27178-27187.

Zhou, L., Song, J., Li, Z., Hu, Y. and Guo, W. (2024) ‘THGB:
predicting ligand-receptor interactions by combining tree

boosting and histogram-based gradient boosting’, Scientific
Reports, Vol. 14, No. 1, pp.204-211.



