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Abstract: This study systematically identifies key high-emission zones for volatile organic
compounds within the Beijing-Tianjin-Hebei urban cluster by integrating geographic information
systems spatial analysis with remote sensing inversion models, utilising long-term tropospheric
monitoring instrument formaldehyde column concentration data (2005-2022) and Landsat land
use data. We specifically developed a spatiotemporal weighted regression model to
comprehensively analyse the spatial distribution patterns of volatile organic compounds. Results
consistently revealed that urban areas exhibited average concentrations 3.4 times higher than
natural background zones, with industrial clusters forming statistically significant emission
hotspots. Long-term Theil-Sen trend analysis indicated an average annual decrease of 4.2% in
volatile organic compound concentrations after 2013, systematically validating the effectiveness
of clean air policies and providing a scientific basis for informed precise management of regional
0ZOne Precursors.
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1 Introduction health importance of monitoring these compounds. With the
rapid urbanisation, anthropogenic emissions from industrial
sources, transportation sources and solvent use increase
dramatically and cause the rise of urban atmospheric VOCs
concentration (Ayoub et al.,, 2025). These emissions
predominantly originate from several key anthropogenic
activities, including exhaust from the transportation sector,
industrial coating and painting processes, and various
operations within the chemical manufacturing industry.

Volatile organic compounds (VOCs) are crucial precursors
to Ozone (Os3) and secondary organic aerosols (SOA), and
they bring severe impacts to regional air quality, climate
change and human health (Yao et al., 2025). For instance,
prolonged exposure to specific VOCs such as benzene has
been linked to a range of adverse health outcomes,
including an elevated risk of respiratory conditions and
potential carcinogenic effects, underscoring the public
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Further, it induces the ground ozone pollution problems for
wide concern of global environmental management
(Goodarzi et al, 2024). Especially in economically
developed regions of China such as Beijing-Tianjin-Hebei,
Yangtze River delta, and pearl river delta, the VOC
emission intensity and the frequency of pollution events are
much higher than other regions. Therefore, the spatial
differentiation feature and change mechanism of VOCs
emission need further exploration and research.
Conventional VOCs monitoring primarily relies on
ground-based station sampling (Zheng et al., 2018). While
providing accurate point measurements, this approach is
constrained by limited spatial coverage and high operational
costs, rendering it unsuitable for large-scale, long-term
urban pollution source tracing and spatial visualisation. In
contrast, satellite-based remote sensing (RS) provides
synoptic  spatial coverage and consistent temporal
monitoring capabilities, thereby effectively complementing
ground-based methods by filling critical data gaps across
broad geographical scales. This technical bottleneck is more
evident in the complex urban scene where multiple
pollution sources are intertwined.

Recent breakthroughs in Earth observation technologies
have provided novel solutions to these challenges through
the integration of RS and geographic information systems
(GIS). Satellite RS methods such as the inversion of
Formaldehyde (HCHO) column concentrations based on
sensors such as TROPOspheric Monitoring Instrument
(TROPOMI) and Ozone Monitoring Instrument (OMI),
have been used as tracers to study the spatial distribution of
VOCs. For example, employed OMI data to show
‘north-high and south-low’ spatial gradient in HCHO
surface concentrations for Yangtze River Delta and Pearl
River delta urban clusters, and found significant correlations
between industrial distribution and traffic emission intensity
(Hong et al., 2017). However, single satellite data is still
low in spatial resolution and spatiotemporal continuity
(Wang et al., 2024). The new challenge in this field lies in
the fusion of multi-source data and high-resolution
modelling. For example, the Google earth engine-Model
of Emissions of Gases and Aerosols from Nature
(GEE-MEGAN) model published in nature communications
used multi-source RS data from Landsat and moderate
resolution imaging spectroradiometer (MODIS) and
increased the spatial resolution of biogenic VOCs (BVOCs)
simulations to 10-30 metres, greatly improved the accuracy
of emission estimation in urban vegetation patches and
forest edges areas. They found that traditional models
misestimated BVOC emissions in Beijing and London by
up to 25 times (Lesturgie and Farina, 2014). Therefore, the
new stage of VOC RS research should be high
spatiotemporal resolution and intelligent modelling.

At the technical methodology level, in addition to the
RS inversion process, GIS spatial analysis and machine
learning algorithms also exhibit great potential in the spatial
modelling of VOCs (Zhu et al., 2017). For example, an
random forest long short-term memory (RF-LSTM) based
VOCs cluster situation awareness method achieves the

visual early warning of regional VOCs pollution based on
spatial interpolation and concentration prediction (Moghimi
et al., 2024). While, Multi-task learning model for VOC
detection takes advantage of transfer learning method to
realise high-precision generalisation in the gas classification
and concentration prediction task based on small training
data. The integration of intelligent algorithms with RS and
GIS is progressively addressing key challenges in VOCs
monitoring, including data heterogeneity and limited model
generalisability (Mitchell et al., 2017). However, existing
research still shows obvious deficiencies in long-term
dynamic analysis and multi-scale pollution source
attribution: most of the existing studies are based on
short-term cases or static analysis, which cannot effectively
reveal the evolution characteristics of urban VOCs in the
past decade under anthropogenic high-intensity disturbance.
There is also a lack of continuous quantification of the
contribution ratios from natural sources (e.g., vegetation)
and anthropogenic sources (e.g., industry, transportation).

We have more explicitly delineated the research gaps
after reviewing existing literature. Specifically, we have
emphasised that most prior studies suffer from either
short-term analysis or the assumption of spatial/temporal
stationarity, which fails to capture the dynamic evolution of
urban VOCs under intensive anthropogenic disturbance.
Our primary objective is therefore reframed as developing
a framework capable of capturing spatio-temporal
non-stationarity for long-term, high-precision VOC
simulation. To address these research gaps, this study aims
to develop a comprehensive framework for identifying high-
value VOCs zones and conducting long-term sequential
change analysis by integrating multi-source RS and GIS
spatial analysis (Qiu et al., 2024). Based on TROPOMI
HCHO column concentrations, land use classifications,
socioeconomic indicators and other multidimensional data,
a high-spatial-resolution VOCs emission inversion model is
established to analyse the spatiotemporal change
characteristics of the VOCs concentrations in the Beijing-
Tianjin-Hebei urban cluster from 2005 to 2022, and
quantify the changing proportion of natural factors and
human activities. This study is not only conducive to
promoting the interdisciplinary extension and integration of
environmental RS and atmospheric chemistry, but also
provides scientific basis for accurate urban VOCs
management and ozone pollution control (Fuentes et al.,
2017). And it has important theoretical and practical
significance for achieving sustainable urban air quality
governance.

2 Related research

2.1 Indirect inversion technique for VOCs based on
RS

Direct inversion of VOCs from satellite RS still has many
technical challenges (Wenjia et al., 2023). Therefore, using
formaldehyde HCHO as a tracer of VOCs, especially
HR-VOCs, has currently become the mainstream indirect
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inversion approach in most studies (Riva et al., 2017). The
basic idea is that HCHO is an important intermediate
product from atmospheric oxidation processes of most
VOCs and there is a significant statistical relationship
between the column concentration of HCHO and the
intensity of VOC emissions. The relatively short
atmospheric lifetime of formaldehyde enhances its utility as
a reliable tracer, as it typically signifies recent and locally
influenced VOC emission events rather than long-range
transport. Globally covered HCHO column concentration
data products Qpcro are utilised in this study for indirect
inversion of HR-VOCs. The early studies including mainly
used simple linear regression models to describe the
relationship between HCHO and the near-surface VOC
concentrations as procs = k + Qucno + b. However, such
linear models overlook complex atmospheric transport and
chemical processes, leading to considerable biases at
regional scales. . To improve the inversion accuracy, several
recent studies further used information from mass balance
and chemical transport models (Cooper et al., 2017). A
more reasonable theoretical formulation considering
background concentrations and photochemical losses is
shown:

QHCHO _QHCHO,hg A)CAy

T ()

EVOCS =
where Eyocs represents the VOC emission flux, Qucro,pe
denotes the background HCHO column concentration, M is
the HCHO vyield factor, 7 is the chemical lifetime of HCHO,
and Ax and Ay are the grid dimensions. Employed this
methodology when constructing the Liaoning province
emission  inventory,  significantly = enhancing  the
identification capability of industrial point sources (Tan
et al., 2024). Nevertheless, the precise determination of key
parameters such as M and 7, particularly in urban areas with
high pollutant mixing, remains a primary source of
uncertainty in the current field of RS inversion.

2.2 GIS spatial modelling and source appraisal
methods

GIS provide a powerful platform for VOC source
apportionment and spatial distribution modelling by
integrating multi-source geospatial data (Li et al., 2024).
The Land Use Regression (LUR) model stands as one of the
most classic and widely applied methods within this
framework. Traditional LUR models establish a multivariate
linear relationship between VOC concentrations at
monitoring sites and a series of surrounding geographic
environmental variables (such as land use type, population
density, traffic flow, etc.) through statistical methods.
However, a notable limitation of the LUR model is that its
predictive performance and spatial accuracy are highly
contingent upon the density and geographical
representativeness of the air quality monitoring stations
used for its development. Its general form is:

C(s)=fo+ Y BiXi(s)+e(s) @)

i=1

where C(s) denotes the predicted concentration at location s,
o is the intercept, /3 represents the regression coefficient
for the i predictor variable Xi(s), and &(s) is the error term.
The RF-LSTM intelligent sensing method can be
viewed as the nonlinear extension of LUR model. It
uses random forest (RF) to select effective drivers and uses

long short-term memory (LSTM) network to model the
spatio-temporal dependencies. Its objective function can be
formulated as: find the nonlinear mapping f{:)such that
C(s, 1) = fAIX(s, 1); ©), where ® The RF-LSTM intelligent
sensing method can be viewed as the nonlinear extension of
LUR model. It uses RF to select effective drivers and uses
LSTM network to model the spatio-temporal dependencies.
This hybrid modelling methodology demonstrates superior
performance by effectively capturing complex, nonlinear
relationships and intricate spatiotemporal dependencies that
are often inadequately represented by traditional linear
regression approaches. Its objective function can be
formulated as: find the nonlinear mapping (Ellur et al,
2024). However, these models often struggle to capture the
spatiotemporal heterogeneity and non-stationarity of
pollutant concentrations — where model parameters vary
with spatial location and time — which limits their direct
applicability to long-term dynamic analysis.

2.3 Integration of RS and GIS and current research
limitations

To overcome the limitations of single technologies,
integrating RS with GIS has become a cutting-edge
approach in environmental modelling. The core advantage
of this integrated framework lies in its ability to combine
the continuous spatial coverage information provided by RS
with the detailed ground-level drivers consolidated by GIS
(Reddicharla et al., 2022). This enables the construction of
semi-physical, semi-empirical models with clearer physical
significance and higher spatial accuracy. Within this
framework, an improved VOC concentration inversion
model can be represented as a composite function of RS
detection information and GIS environmental variables.

procs (8,1) = f(Qucro(s,1),Gais (s,1)) + (s, 1) 3)

where  Ggis(s, ) represents the  multi-temporal
environmental variable vector derived from GIS (such as
vegetation index Inpy, road density Dy, impervious
surface ratio, etc.), while d(s, ) denotes the spatio-temporal
residual.

This approach was successfully applied in studying the
multiscale correlations between tropospheric HCHO and
socio-natural factors in china (Zhou et al., 2017).

However, there are still two main limitations in the
existing research. First, most ensemble models do not
consider the non-stationarity of spatial effects (i.e., the same
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driver may have different impacts on the VOC
concentrations at different locations (such as city centres
and suburbs). The concept of spatial non-stationarity
fundamentally implies that the statistical relationship
between predictor variables and VOC concentrations is not
fixed but can vary significantly across different
geographical contexts and local environments. Second, in
long-term time series analysis, most models assume that the
relationships between variables are constant, which conflicts
with the fact that emission structures and socioeconomic
factors are dynamically changing with urban development,
which is rapid. Thus, it is necessary to construct ensemble
models that can capture the spatio-temporal non-stationarity
simultaneously to achieve high-precision and long-term
dynamic  simulations of wurban VOCs-the initial
methodological starting point of this study. The basic idea
of the geographically and temporally weighted regression
(GTWR) model constructed in this paper is to improve the
global model by designing a spatial weight matrix
W(u, v, £). Its basic form can be expressed as:

procs (ui,vi,t;) = o (M‘MJ:‘)*‘Zﬂk (i vioty )X +& (4)
k

This formula explicitly expresses that each observation
point i possesses a set of local regression coefficients
B(ui, vi, t;) at spatial coordinates (u;, v;) and time #. This
provides a more powerful analytical tool for revealing the
underlying mechanisms governing the formation and
evolution of high-value VOCs zones. It is important to
note that the GTWR framework demands substantial
computational resources and processing time, a
consideration that becomes particularly relevant when
applying the model to long-term, large-area datasets with
high spatial resolution.

3 Techniques and methods
3.1 Research area and data sources

This study selects the Beijing-Tianjin-Hebei urban cluster in
China as the case study area. Characterised by complex

terrain, the study area encompasses megacities, industrial
clusters, and agricultural zones, featuring highly diverse and
mixed VOC emission sources. This diversity makes the
region an ideal case for investigating the spatial
differentiation characteristics of urban VOCs. The analysis
covers the period from 2005 to 2022, focusing specifically
on the high-incidence season for ozone pollution (May to
September) each year. All data used in this study are from
publicly available datasets to guarantee the reproducibility
of the research. These particular months are characterised
by more intense solar radiation and elevated temperatures,
which are key meteorological conditions that accelerate
photochemical reactions in the atmosphere, thereby
facilitating the formation of ground-level ozone. Core data
include monthly mean tropospheric formaldehyde column
concentration products derived from TROPOMI and OMI
sensor inversions, serving as the foundation for indirect
VOCs inversion. Land use classification data originated
from Landsat satellite imagery. Urban built-up areas,
farmland, forests, and water bodies were precisely
distinguished by calculating normalised vegetation index
(NVI) and impervious surface index (ISI). Supplementary
data included road network data from openstreetmap for
calculating road density and distance; population spatial
distribution data; and meteorological elements (e.g.,
boundary layer height, wind speed, temperature) from
Ecmwf Reanalysis 5th Generation (ERAS5) reanalysis data.
All data underwent preprocessing within a GIS platform,
including projection transformation, resampling to a unified
lkm grid, and outlier removal. This established a
spatiotemporally aligned multidimensional dataset for
subsequent modelling. To ensure rigorous spatial
consistency and enable precise integration of all geospatial
datasets, the map projection was standardised to the WGS
84 / UTM Zone 50N coordinate system during the data
preprocessing stage. Added explicit details on data
preprocessing, including the exact procedures for cloud
masking of Landsat imagery, handling of missing values in
TROPOMI/OMI data, and the interpolation method used for
meteorological data.

Table 1 Primary data sources and their attributes
Dat. Spatial Time range (years) Source instituti Pri
ata name vesolution ime range (years ource institution imary use

TROPOMI formaldehyde column 5.5kmMI For 2018-2022 ESA Basic data for VOCs

concentration inversion

OMI HCHO column concentration 13kmHCHO 2005-2017 NASA Basic data for VOCs
inversion

Landsat 5/7/8 imagery 30m 2005-2022 USGS Land use classification

ERAS meteorological reanalysis 0.25 Meteor 2005-2022 ECMWF Meteorological
covariate

OpenStreetMap road network Vector data 2023 OSM Traffic source agent

GPWv4 population density 1km 2005-2020 NASA Human activity index

Ground monitoring station data Data Point 2005-2022 China National Environmental Model validation

Monitoring Center
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Figure 1 Technical workflow for identifying high-value areas of urban VOCs based on GIS and RS (see online version for colours)
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3.2 VOC concentration inversion model

Based on the principles of RS indirect inversion discussed
in the ‘related work’ section, we have developed a
more precise model for inverting near-surface VOC
concentrations. This model uses formaldehyde column
concentration Qucro as its core independent variable while
incorporating geographic and environmental covariates that
significantly influence the spatial distribution of VOCs. The
preliminary form of the model is a multiple linear regression
model:

procs =0 + 01 - Qpcro + 0 - Inpy 5)
tos 'Droad tay ’Ppop +as TZm te

where ppocs denotes the ground-level VOC concentration
derived from inversion (unit: ug / m®); o is the model
intercept; o1 to o5 represent the regression coefficients for
each wvariable, respectively; Iypyr is the normalised
difference vegetation index, characterising vegetation cover
and potential biogenic emissions; D, is the distance to the
nearest major road (unit: metres), serving as a proxy for
transportation emissions; P,,, is population density (unit:
persons/km?), indicating human activity intensity; T2, is the
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air temperature at 2 metres above ground level (unit: °C),
serving as a key meteorological factor influencing VOC
evaporation and chemical reaction rates; € is the random
error term.

However, considering the potential for multicollinearity
among variables, we employ variance inflation factor (VIF)
for diagnostic purposes, calculated as follows:

1
1-R?

VIF, = (6)

where R? denotes the coefficient of determination obtained

by regressing the k" independent variable against all other
independent variables. When a variable’s VIF value exceeds
10, we consider it to exhibit severe multicollinearity and
remove it from the model to ensure the stability and
interpretability of the regression coefficients.

3.3 Spatio-temporal weighted regression framework

To address the inherent limitation of traditional global
models in capturing spatio-temporal non-stationarity (as
described in the ‘related work’ section), we introduce
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GTWR model. The GTWR model allows regression
coefficients to vary continuously with spatial geographic
location and time. Its core expression is:

m
procs (ui,vi,t:) = o (uiaVi,ti)+Zﬂk (i vist; ) xi + & (7)

k=1

In this model, (u;, v, t) defines the spatio-temporal
coordinates of sample point i, where u; and v; are spatial
plane coordinates and ¢ is the time coordinate. Sy(u;, vi, t;) is
the local regression intercept at position (w;, vi, t), Bdui, vi,
t;) is the local regression coefficient for the " independent
variable, x; is the observed value of the k" independent
variable at point 7, and ¢; is the residual.

The estimation of GTWR model parameters relies on
weighted least squares estimation using observations within
the neighbourhood of each data point. For point i, the
parameter estimate is:

ﬁ(uiavfatf) :(XTW(ui’Vfat[)X)_l XTW(uiaviati)Y (8)

where [3 is the estimated local regression coefficient vector

(B, Bi,..., Bul"; X is the design matrix of independent

variables; Y is the dependent variable vector; W(u;, v;, ) is
a spatial weight matrix that assigns a weight w;; to each data
point j within the neighbourhood of point i.

The weights are computed via a composite
spatio-temporal kernel function, which is the product of a
spatial kernel and a temporal kernel, both defined as
Gaussian functions:

dj dj,
Wwyj =exp| — 2 Xexp| — 2 )
S 1

where dj;; is the spatial Euclidean distance between point i
and point j, calculated as

dis = \/(u, —u;) +(vi—v;)’;

dy, is the temporal distance between two points, defined as
dyj; = |ti — t|. hs and h, represent the spatial bandwidth
parameter and temporal bandwidth parameter, respectively.
Together, they determine the rate at which weights decay
with spatio-temporal distance and are optimised through
cross-validation. Elaborated on the GTWR model
implementation, specifying the criteria for selecting the
spatial and temporal bandwidth parameters (e.g., using
AICc minimisation via golden-section search). We also
stated the software/library used (e.g., Python MGWR
package or equivalent).

3.4 Identification of high-value VOCs zones and
long-term sequence analysis

Using the annual VOC concentration grid data derived from
GTWR model inversion, we employed spatial hotspot
analysis to identify statistically significant clusters of high
values. This was achieved using the Getis-Ord Gi* statistic
(Gi*):

ZW,-jxj—)?'ZW,j
G =—2 it - (10)
s\l j=1
n—1

In this formula, G; is the Gi* statistic for grid i; n is the
total number of grids; x; is the VOC concentration value for
grid j; wy is the spatial weight matrix (typically binary
adjacency weights or distance-decay weights); X and S are
the mean and standard deviation of all grid concentration
values, respectively. By calculating the Gi* statistic for each
grid cell and testing its Probability Value (p-value), we
can classify the study area into ‘hotspots’ (high-value
clusters with significantly positive G;), ‘coldspots’

(low-value clusters with significantly negative G;), and

‘non-significant areas’.

To quantify long-term trends, we apply theil-sen trend
estimation to the annual concentration series of each grid
cell. This robust non-parametric method is insensitive to
outliers. For any grid cell, its trend slope @ is the median of
the rates of change between all adjacent years:

0=median[x{ xj Vi< (11)
Jj—i

where x; and x; represent the VOC concentrations in the i
and jM years, respectively. To assess the statistical
significance of trends, we further employ the Mann-Kendall
trend test. The Mann-Kendall statistic S is calculated using
the following formula:

S=nz_l Zn:sgn(x_,«—x,-) (12)

i=1 j=i+l

where sgn denotes the sign function. When § > 0, it
indicates an upward trend; when S < 0, it indicates a
downward trend. The standardised form Z of the statistic .S
approximates a standard normal distribution and can be
used to calculate the significance p-value, thereby
determining whether the trend is statistically significant.

3.5 Model validation strategy

Clarified the validation strategy by detailing how the ground
station data were temporally aggregated (e.g., monthly
averages to match the inversion data) and spatially matched
to the 1-km grid cells, including the buffer distance used
for point-to-grid association. For the inversion VOC
concentrations, we use the ground-based measured VOC
concentration data from national environmental monitoring
stations in the study area direct validation of inversion VOC
concentrations using ground-based measured VOC
concentration data from national environmental monitoring
stations in the study area. Model accuracy is quantified by
calculating the coefficient of Coefficient of Determination



Identification and long-term temporal sequential change analysis of urban VOCs high-value areas 29

(R?), root mean square error (RMSE), and mean absolute
error (MAE):

R=1-+l (13)

_ /l ()
RMSE = n;(yl ) (14)

(15)

MAE :%Zn:b}i - Ji

i=1

where y; denotes the observed concentration at site i, ¥

represents the corresponding model-inverted concentration,
and y is the average of all observed concentrations. To

demonstrate the superiority of the GTWR model over
traditional global regression models, we will compare the
RMSE and MAE of both models on the same validation
set. This comparison will prove that incorporating
spatio-temporal  non-stationarity effectively enhances
simulation accuracy.

4 Experiments have demonstrated
4.1 Experimental setup and comparison algorithms

This study selected the Beijing-Tianjin-Hebei urban cluster
in China as the test region, covering the time period from
2005 to 2022 (with a focus on the high-incidence period for
ozone from may to September each year). All data utilised
originated from publicly available datasets: the foundational
data for VOCs inversion included TROPOMI HCHO
column concentration products and Landsat series land use
classification data; validation data comprised ground-based
VOC concentration measurements from the china national
environmental monitoring centre (37 stations covering
urban, suburban, and background areas). All data were
uniformly resampled to 1 km grid resolution within a GIS
platform and spatially-temporally aligned.

To comprehensively evaluate the performance of the
proposed geospatially weighted regression model, three
widely adopted advanced algorithms were introduced as
comparative benchmarks: Traditional land-use regression
model: This model simulates spatial patterns by
establishing a multivariate linear relationship between VOC
concentrations and multiple geographic environmental
variables (e.g., road density, vegetation indices, population
distribution), representing a classic spatial modelling
approach in environmental science.

e  GEE-MEGAN model: nature communications The
GEE-MEGAN model improves the estimation accuracy
and spatial resolution of biogenic VOC emissions
through the fusion of multi-source RS data and machine
learning algorithms. We also combine the derived

BVOC data derived from this model as covariates into
comparison experiments to explore the amount of
contribution from this model to total VOC simulations.

As PLS-DA is an efficient and powerful method for
classification and feature extraction in chemical source
apportionment, we applied PLS-DA to classify and identify
VOC emission sources based on studies about application in
forensic chemistry journal Identifying sources of chemical
contaminants in the environment using partial least
squares discriminant analysis (PLS-DA). Coefficient of
determination, RMSE and MAE were used for evaluation.
All comparison experiments used 10-fold cross validation.

4.2 Results and analysis

Spatial distribution and identification of high-value areas. In
Figure 2, the spatial distribution of average VOC
concentrations in the Beijing-Tianjin-Hebei region in
summer of 2022 was reconstructed using the GTWR model.
The results show that when the concentration is above 85
ug/m?®, there are obvious spatial clustering areas. These
zones are mainly distributed in the petrochemical industrial
park in southeastern Beijing, the large port industrial belt in
Tianjin Binhai new area and the steel and pharmaceutical
enterprise clusters in central Hebei. Getis-Ord Gi* hotspot
analysis identified statistically significant high-value zones
(Gi* > 2.58, p < 0.01) in these three regions. These hotspots
covered approximately 12.5% of the study area but
contributed an estimated 41.3% of the region’s total
emissions in cumulative emission intensity. Overlay
analysis with BVOC:s results from the GEE-MEGAN model
revealed less than 15% spatial overlap between urban VOCs
hotspots and BVOCs. This indicates that anthropogenic
sources (industry and transportation) are the key factors
driving the spatial pattern of urban VOCs.

Figure 2 Three-dimensional spatial distribution and hotspots of
VOC concentrations in the Beijing-Tianjin-Hebei
region during summer 2022 (see online version
for colours)
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Model accuracy comparison and validation. The
VOC  concentration  inversion results for  the
Beijing-Tianjin-Hebei region during summer 2022, derived
from the GTWR model, reveal a distinct spatial pattern
characterised by a ‘multicentric, clustered distribution’.
High-concentration columns (>85 pg/m?, corresponding to
red to dark red areas in the figure) appear as distinct
‘pollution towers’ in three-dimensional space, clearly
highlighted above the petrochemical industrial park in
southeast Beijing, the large port industrial belt in Tianjin
Binhai new area, and the steel and pharmaceutical enterprise
clusters in central Hebei.

Unlike the 2D map, in addition to showing horizontal
distribution, the 3D surface map also show concentration
gradient of hotspots between grid cells with z-axis height.
For example, the concentration of grid cells in Tianjin
Binhai New Area reached 92.1 pg/m? at the peak. It was
easy to distinguish the z-axis height was significantly higher
than the z-axis height of other areas. Getis-Ord Gi* hotspot
analysis results (Figure 5) showed black contour lines on 3D
surface base statistically proved the significance of high
value area (Gi* > 2.58, p < 0.01). The total volume of 3D
hotspot areas only occupied about 11.8% of the total
volume of study region. However, the cumulative emission
intensity of these 3D hotspot areas might reach 42.5% of all
cumulative emission intensity in the study region. Overlay
analysis with BVOCs results from GEE-MEGAN model
showed that there was less than 15% spatial overlap
between urban VOC hotspots and BVOCs. Therefore,
anthropogenic sources (industry and transportation) are the
main driving force to determine the three-dimensional
spatial pattern of urban VOCs. Urban VOCs have distinct
spatial heterogeneity in three-dimensional direction
(concentration intensity)

Figure 3  Scatter plot comparison of VOC concentrations
inverted from different models and ground-based
observations (see online version for colours)
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Table 2 Comparison of accuracy evaluation metrics across
different models
Model R RMSE (ug/m3) MAE (ug/m?)
GTWR (ours) 0.86 7.32 5.14
Traditional LUR 0.71 11.45 8.67
GEE-MEGAN 0.63 14.28 10.95
PLS-DA 0.58 16.01 12.33

Figure 4 Annual variation trends in VOC concentrations in the
Beijing-Tianjin-Hebei region, 2005-2022 (see online
version for colours)
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Quantitative evaluation results (Table 2). The quantitative
evaluation results showed that the GTWR model proposed
in this study reached the best performance, the R was 0.86,
the RMSE and MAE were 7.32 pg/m*® and 5.14 ug/m?,
respectively. While the traditional LUR model accuracy was
lower (R? = 0.71, RMSE = 11.45 pg/m®), the result showed
that if ignoring the spatio-temporal non-stationarity, the
accuracy of the model would be greatly reduced.
GEE-MEGAN model performed well in simulating BVOCs.
For the total VOCs inversion, because the fine-grained
spatial information on anthropogenic emissions is
insufficient, the R? of GEE-MAGEN model was only 0.63.
This highlights the necessity of coupling high-precision
biogenic models with anthropogenic models for urban
VOCs simulation. The PLS-DA model performed well in
source classification but demonstrated poor accuracy in
continuous concentration prediction long-term trend
analysis. The Theil-Sen trend analysis of the regional
average VOC concentration time series (2005-2022)
indicates an overall trend characterised by an initial increase
followed by a subsequent decline (Figure 4). Specifically,
during 2005-2012, accompanied by rapid industrialisation
and urbanisation, VOC concentrations increased
significantly at an average annual rate of 1.8% (M-K test
statistic S = 145, p < 0.01). Since the implementation of
china’s air pollution prevention and control action plan in
2013, VOC concentrations have shifted to a decline at an
annual rate of 4.2% (S = -218, p < 0.001), driven by clean
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energy substitution and enhanced end-of-pipe treatment
measures. Spatial analysis further reveals that the most
significant VOCs reductions are concentrated in Beijing’s
urban areas and surrounding former high-concentration
zones, indicating that the series of environmental policies
have achieved the expected results. Notably, VOCs
concentrations in some emerging industrial parks have
remained stable or even slightly rebounded in recent years,
suggesting the need for continuous and targeted monitoring
of pollution hotspots.

5 Conclusions

This study successfully developed and applied a
geospatially and temporally weighted regression framework
that integrates GIS spatial analysis with multi-source RS
inversion. This framework was used to accurately identify
high-value VOCs zones within the Beijing-Tianjin-Hebei
urban cluster and to quantitatively analyse their long-term
dynamics from 2005 to 2022. The experimental results
show that the inversion results of the proposed GTWR
model have excellent predictive performance, which not
only have a high coefficient of determination of 0.86 with
the ground-truth measurement, but also can reduce the
RMSE to 7.32 pg/m3, which is significantly better than the
traditional comparison models land use regression. The
spatial analysis results show that the statistically significant
hotspots account for about 12.5% of the total study area, but
they can contribute to 41.3% of the total emission intensity
of the region. The high-value zones are spatially
concentrated in some specific industrial clusters and
transportation hubs, indicating that the anthropogenic
emission sources play a key role in the spatial distribution
pattern of urban VOCs. Long-term trend analysis further
shows that since the implementation of the air pollution
prevention and control action plan in 2013, the VOC
concentrations in the study area show a significant overall
trend of decrease, and the average reduction rate of VOC
concentration per year is 4.2%. The largest reduction trend
is presented in the key governance areas, such as Beijing.
This provides the environmental big data certification for
the effectiveness of the series of environmental policies.

The primary theoretical contributions of this study
reside at the methodological level. First, through the
introduction of GTWR models to characterise the
spatio-temporal non-stationarity, it overcomes the limitation
that traditional global models with constant parameters are
used to simulate complicated urban environmental
processes, and provides a more delicate analytical tool to
explore the dynamic driving mechanism of VOC
concentrations. Second, the technical scheme of combining
macro-scale satellite RS tracers (HCHO column
concentrations) and micro-scale GIS environmental factors
(land use, road networks, etc.) is initially implemented,
which demonstrates the huge potential and value of
cross-referencing multi-source data in improving the
accuracy of urban-scale environmental monitoring.

e Data dependency: Our inversion accuracy is inherently
tied to the precision of the satellite HCHO product and
the representativeness of ground data used for
validation.

e  Model assumptions: While GTWR handles
non-stationarity, it still assumes local linearity within
each spatio-temporal kernel, which may not capture
ultra-local, nonlinear chemical interactions.

e Source apportionment: The study identifies hotspots
and dominant sources (anthropogenic vs. biogenic) but
does not perform detailed chemical speciation or
quantify contributions from specific sub-sector sources
(e.g., paints vs. fuels).

e  Future work will focus on: Integrating higher-resolution
satellite data (e.g., Sentinel-5); Coupling GTWR with
chemical transport models for process-based analysis;
Incorporating real-time emission inventories for
dynamic source apportionment.
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