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Abstract: This study systematically identifies key high-emission zones for volatile organic 
compounds within the Beijing-Tianjin-Hebei urban cluster by integrating geographic information 
systems spatial analysis with remote sensing inversion models, utilising long-term tropospheric 
monitoring instrument formaldehyde column concentration data (2005–2022) and Landsat land 
use data. We specifically developed a spatiotemporal weighted regression model to 
comprehensively analyse the spatial distribution patterns of volatile organic compounds. Results 
consistently revealed that urban areas exhibited average concentrations 3.4 times higher than 
natural background zones, with industrial clusters forming statistically significant emission 
hotspots. Long-term Theil-Sen trend analysis indicated an average annual decrease of 4.2% in 
volatile organic compound concentrations after 2013, systematically validating the effectiveness 
of clean air policies and providing a scientific basis for informed precise management of regional 
ozone precursors. 
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1 Introduction 
Volatile organic compounds (VOCs) are crucial precursors 
to Ozone (O3) and secondary organic aerosols (SOA), and 
they bring severe impacts to regional air quality, climate 
change and human health (Yao et al., 2025). For instance, 
prolonged exposure to specific VOCs such as benzene has 
been linked to a range of adverse health outcomes, 
including an elevated risk of respiratory conditions and 
potential carcinogenic effects, underscoring the public 

health importance of monitoring these compounds. With the 
rapid urbanisation, anthropogenic emissions from industrial 
sources, transportation sources and solvent use increase 
dramatically and cause the rise of urban atmospheric VOCs 
concentration (Ayoub et al., 2025). These emissions 
predominantly originate from several key anthropogenic 
activities, including exhaust from the transportation sector, 
industrial coating and painting processes, and various 
operations within the chemical manufacturing industry. 
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Further, it induces the ground ozone pollution problems for 
wide concern of global environmental management 
(Goodarzi et al., 2024). Especially in economically 
developed regions of China such as Beijing-Tianjin-Hebei, 
Yangtze River delta, and pearl river delta, the VOC 
emission intensity and the frequency of pollution events are 
much higher than other regions. Therefore, the spatial 
differentiation feature and change mechanism of VOCs 
emission need further exploration and research. 
Conventional VOCs monitoring primarily relies on  
ground-based station sampling (Zheng et al., 2018). While 
providing accurate point measurements, this approach is 
constrained by limited spatial coverage and high operational 
costs, rendering it unsuitable for large-scale, long-term 
urban pollution source tracing and spatial visualisation. In 
contrast, satellite-based remote sensing (RS) provides 
synoptic spatial coverage and consistent temporal 
monitoring capabilities, thereby effectively complementing  
ground-based methods by filling critical data gaps across 
broad geographical scales. This technical bottleneck is more 
evident in the complex urban scene where multiple 
pollution sources are intertwined. 

Recent breakthroughs in Earth observation technologies 
have provided novel solutions to these challenges through 
the integration of RS and geographic information systems 
(GIS). Satellite RS methods such as the inversion of 
Formaldehyde (HCHO) column concentrations based on 
sensors such as TROPOspheric Monitoring Instrument 
(TROPOMI) and Ozone Monitoring Instrument (OMI), 
have been used as tracers to study the spatial distribution of 
VOCs. For example, employed OMI data to show  
‘north-high and south-low’ spatial gradient in HCHO 
surface concentrations for Yangtze River Delta and Pearl 
River delta urban clusters, and found significant correlations 
between industrial distribution and traffic emission intensity 
(Hong et al., 2017). However, single satellite data is still 
low in spatial resolution and spatiotemporal continuity 
(Wang et al., 2024). The new challenge in this field lies in 
the fusion of multi-source data and high-resolution 
modelling. For example, the Google earth engine-Model  
of Emissions of Gases and Aerosols from Nature  
(GEE-MEGAN) model published in nature communications 
used multi-source RS data from Landsat and moderate 
resolution imaging spectroradiometer (MODIS) and 
increased the spatial resolution of biogenic VOCs (BVOCs) 
simulations to 10–30 metres, greatly improved the accuracy 
of emission estimation in urban vegetation patches and 
forest edges areas. They found that traditional models 
misestimated BVOC emissions in Beijing and London by 
up to 25 times (Lesturgie and Farina, 2014). Therefore, the 
new stage of VOC RS research should be high 
spatiotemporal resolution and intelligent modelling. 

At the technical methodology level, in addition to the 
RS inversion process, GIS spatial analysis and machine 
learning algorithms also exhibit great potential in the spatial 
modelling of VOCs (Zhu et al., 2017). For example, an 
random forest long short-term memory (RF-LSTM) based 
VOCs cluster situation awareness method achieves the 

visual early warning of regional VOCs pollution based on 
spatial interpolation and concentration prediction (Moghimi 
et al., 2024). While, Multi-task learning model for VOC 
detection takes advantage of transfer learning method to 
realise high-precision generalisation in the gas classification 
and concentration prediction task based on small training 
data. The integration of intelligent algorithms with RS and 
GIS is progressively addressing key challenges in VOCs 
monitoring, including data heterogeneity and limited model 
generalisability (Mitchell et al., 2017). However, existing 
research still shows obvious deficiencies in long-term 
dynamic analysis and multi-scale pollution source 
attribution: most of the existing studies are based on  
short-term cases or static analysis, which cannot effectively 
reveal the evolution characteristics of urban VOCs in the 
past decade under anthropogenic high-intensity disturbance. 
There is also a lack of continuous quantification of the 
contribution ratios from natural sources (e.g., vegetation) 
and anthropogenic sources (e.g., industry, transportation). 

We have more explicitly delineated the research gaps 
after reviewing existing literature. Specifically, we have 
emphasised that most prior studies suffer from either  
short-term analysis or the assumption of spatial/temporal 
stationarity, which fails to capture the dynamic evolution of 
urban VOCs under intensive anthropogenic disturbance. 
Our primary objective is therefore reframed as developing  
a framework capable of capturing spatio-temporal  
non-stationarity for long-term, high-precision VOC 
simulation. To address these research gaps, this study aims 
to develop a comprehensive framework for identifying high-
value VOCs zones and conducting long-term sequential 
change analysis by integrating multi-source RS and GIS 
spatial analysis (Qiu et al., 2024). Based on TROPOMI 
HCHO column concentrations, land use classifications, 
socioeconomic indicators and other multidimensional data, 
a high-spatial-resolution VOCs emission inversion model is 
established to analyse the spatiotemporal change 
characteristics of the VOCs concentrations in the Beijing-
Tianjin-Hebei urban cluster from 2005 to 2022, and 
quantify the changing proportion of natural factors and 
human activities. This study is not only conducive to 
promoting the interdisciplinary extension and integration of 
environmental RS and atmospheric chemistry, but also 
provides scientific basis for accurate urban VOCs 
management and ozone pollution control (Fuentes et al., 
2017). And it has important theoretical and practical 
significance for achieving sustainable urban air quality 
governance. 

2 Related research 
2.1 Indirect inversion technique for VOCs based on 

RS 
Direct inversion of VOCs from satellite RS still has many 
technical challenges (Wenjia et al., 2023). Therefore, using 
formaldehyde HCHO as a tracer of VOCs, especially  
HR-VOCs, has currently become the mainstream indirect 
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inversion approach in most studies (Riva et al., 2017). The 
basic idea is that HCHO is an important intermediate 
product from atmospheric oxidation processes of most 
VOCs and there is a significant statistical relationship 
between the column concentration of HCHO and the 
intensity of VOC emissions. The relatively short 
atmospheric lifetime of formaldehyde enhances its utility as 
a reliable tracer, as it typically signifies recent and locally 
influenced VOC emission events rather than long-range 
transport. Globally covered HCHO column concentration 
data products ΩHCHO are utilised in this study for indirect 
inversion of HR-VOCs. The early studies including mainly 
used simple linear regression models to describe the 
relationship between HCHO and the near-surface VOC 
concentrations as ρVOCs ≈ k ∙ ΩHCHO + b. However, such 
linear models overlook complex atmospheric transport and 
chemical processes, leading to considerable biases at 
regional scales. . To improve the inversion accuracy, several 
recent studies further used information from mass balance 
and chemical transport models (Cooper et al., 2017). A 
more reasonable theoretical formulation considering 
background concentrations and photochemical losses is 
shown: 

,Ω Ω
Δ ΔHCHO HCHO bg

VOCsE x y
M τ
−

= ⋅ ⋅
⋅

 (1) 

where EVOCs represents the VOC emission flux, ΩHCHO,bg 
denotes the background HCHO column concentration, M is 
the HCHO yield factor, τ is the chemical lifetime of HCHO, 
and Δx and Δy are the grid dimensions. Employed this 
methodology when constructing the Liaoning province 
emission inventory, significantly enhancing the 
identification capability of industrial point sources (Tan  
et al., 2024). Nevertheless, the precise determination of key 
parameters such as M and τ, particularly in urban areas with 
high pollutant mixing, remains a primary source of 
uncertainty in the current field of RS inversion. 

2.2 GIS spatial modelling and source appraisal 
methods 

GIS provide a powerful platform for VOC source 
apportionment and spatial distribution modelling by 
integrating multi-source geospatial data (Li et al., 2024). 
The Land Use Regression (LUR) model stands as one of the 
most classic and widely applied methods within this 
framework. Traditional LUR models establish a multivariate 
linear relationship between VOC concentrations at 
monitoring sites and a series of surrounding geographic 
environmental variables (such as land use type, population 
density, traffic flow, etc.) through statistical methods. 
However, a notable limitation of the LUR model is that its 
predictive performance and spatial accuracy are highly 
contingent upon the density and geographical 
representativeness of the air quality monitoring stations 
used for its development. Its general form is: 

0
1

( ) ( ) ( )
n

i i
i

C s X s ε s
=

= + +β β  (2) 

where C(s) denotes the predicted concentration at location s, 
β0 is the intercept, βi represents the regression coefficient 
for the ith predictor variable Xi(s), and ε(s) is the error term. 

The RF-LSTM intelligent sensing method can be 
viewed as the nonlinear extension of LUR model. It  
uses random forest (RF) to select effective drivers and uses  
 
 
long short-term memory (LSTM) network to model the 
spatio-temporal dependencies. Its objective function can be 
formulated as: find the nonlinear mapping f(∙)such that  
C(s, t) = f(X(s, t); Θ), where Θ The RF-LSTM intelligent 
sensing method can be viewed as the nonlinear extension of 
LUR model. It uses RF to select effective drivers and uses 
LSTM network to model the spatio-temporal dependencies. 
This hybrid modelling methodology demonstrates superior 
performance by effectively capturing complex, nonlinear 
relationships and intricate spatiotemporal dependencies that 
are often inadequately represented by traditional linear 
regression approaches. Its objective function can be 
formulated as: find the nonlinear mapping (Ellur et al., 
2024). However, these models often struggle to capture the 
spatiotemporal heterogeneity and non-stationarity of 
pollutant concentrations – where model parameters vary 
with spatial location and time – which limits their direct 
applicability to long-term dynamic analysis. 

2.3 Integration of RS and GIS and current research 
limitations 

To overcome the limitations of single technologies, 
integrating RS with GIS has become a cutting-edge 
approach in environmental modelling. The core advantage 
of this integrated framework lies in its ability to combine 
the continuous spatial coverage information provided by RS 
with the detailed ground-level drivers consolidated by GIS 
(Reddicharla et al., 2022). This enables the construction of 
semi-physical, semi-empirical models with clearer physical 
significance and higher spatial accuracy. Within this 
framework, an improved VOC concentration inversion 
model can be represented as a composite function of RS 
detection information and GIS environmental variables. 

( )( , ) Ω ( , ), ( , ) ( , )VOCs HCHO GISρ s t f s t s t δ s t= +G  (3) 

where GGIS(s, t) represents the multi-temporal 
environmental variable vector derived from GIS (such as 
vegetation index INDVI, road density Droad, impervious 
surface ratio, etc.), while δ(s, t) denotes the spatio-temporal 
residual. 

This approach was successfully applied in studying the 
multiscale correlations between tropospheric HCHO and 
socio-natural factors in china (Zhou et al., 2017). 

However, there are still two main limitations in the 
existing research. First, most ensemble models do not 
consider the non-stationarity of spatial effects (i.e., the same 
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driver may have different impacts on the VOC 
concentrations at different locations (such as city centres 
and suburbs). The concept of spatial non-stationarity 
fundamentally implies that the statistical relationship 
between predictor variables and VOC concentrations is not 
fixed but can vary significantly across different 
geographical contexts and local environments. Second, in 
long-term time series analysis, most models assume that the 
relationships between variables are constant, which conflicts 
with the fact that emission structures and socioeconomic 
factors are dynamically changing with urban development, 
which is rapid. Thus, it is necessary to construct ensemble 
models that can capture the spatio-temporal non-stationarity 
simultaneously to achieve high-precision and long-term 
dynamic simulations of urban VOCs-the initial 
methodological starting point of this study. The basic idea 
of the geographically and temporally weighted regression 
(GTWR) model constructed in this paper is to improve the 
global model by designing a spatial weight matrix  
W(u, v, t). Its basic form can be expressed as: 

( ) ( ) ( )0, , , , , ,VOCs i i i i i i k i i i ik i
k

ρ u v t u v t u v t x ε= + +β β  (4) 

This formula explicitly expresses that each observation 
point i possesses a set of local regression coefficients  
βk(ui, vi, ti) at spatial coordinates (ui, vi) and time ti. This 
provides a more powerful analytical tool for revealing the 
underlying mechanisms governing the formation and 
evolution of high-value VOCs zones. It is important to  
note that the GTWR framework demands substantial 
computational resources and processing time, a 
consideration that becomes particularly relevant when 
applying the model to long-term, large-area datasets with 
high spatial resolution. 

3 Techniques and methods 
3.1 Research area and data sources 
This study selects the Beijing-Tianjin-Hebei urban cluster in 
China as the case study area. Characterised by complex 

terrain, the study area encompasses megacities, industrial 
clusters, and agricultural zones, featuring highly diverse and 
mixed VOC emission sources. This diversity makes the 
region an ideal case for investigating the spatial 
differentiation characteristics of urban VOCs. The analysis 
covers the period from 2005 to 2022, focusing specifically 
on the high-incidence season for ozone pollution (May to 
September) each year. All data used in this study are from 
publicly available datasets to guarantee the reproducibility 
of the research. These particular months are characterised 
by more intense solar radiation and elevated temperatures, 
which are key meteorological conditions that accelerate 
photochemical reactions in the atmosphere, thereby 
facilitating the formation of ground-level ozone. Core data 
include monthly mean tropospheric formaldehyde column 
concentration products derived from TROPOMI and OMI 
sensor inversions, serving as the foundation for indirect 
VOCs inversion. Land use classification data originated 
from Landsat satellite imagery. Urban built-up areas, 
farmland, forests, and water bodies were precisely 
distinguished by calculating normalised vegetation index 
(NVI) and impervious surface index (ISI). Supplementary 
data included road network data from openstreetmap for 
calculating road density and distance; population spatial 
distribution data; and meteorological elements (e.g., 
boundary layer height, wind speed, temperature) from 
Ecmwf Reanalysis 5th Generation (ERA5) reanalysis data. 
All data underwent preprocessing within a GIS platform, 
including projection transformation, resampling to a unified 
1km grid, and outlier removal. This established a 
spatiotemporally aligned multidimensional dataset for 
subsequent modelling. To ensure rigorous spatial 
consistency and enable precise integration of all geospatial 
datasets, the map projection was standardised to the WGS 
84 / UTM Zone 50N coordinate system during the data 
preprocessing stage. Added explicit details on data 
preprocessing, including the exact procedures for cloud 
masking of Landsat imagery, handling of missing values in 
TROPOMI/OMI data, and the interpolation method used for 
meteorological data. 

Table 1 Primary data sources and their attributes 

Data name Spatial 
resolution Time range (years) Source institution Primary use 

TROPOMI formaldehyde column 
concentration 

5.5kmMI For 2018–2022 ESA Basic data for VOCs 
inversion 

OMI HCHO column concentration 13kmHCHO 2005–2017 NASA Basic data for VOCs 
inversion 

Landsat 5/7/8 imagery 30m 2005–2022 USGS Land use classification 
ERA5 meteorological reanalysis 0.25 Meteor 2005–2022 ECMWF Meteorological 

covariate 
OpenStreetMap road network Vector data 2023 OSM Traffic source agent 
GPWv4 population density 1km 2005–2020 NASA Human activity index 
Ground monitoring station data Data Point 2005–2022 China National Environmental 

Monitoring Center 
Model validation 
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Figure 1 Technical workflow for identifying high-value areas of urban VOCs based on GIS and RS (see online version for colours) 
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3.2 VOC concentration inversion model 
Based on the principles of RS indirect inversion discussed 
in the ‘related work’ section, we have developed a  
more precise model for inverting near-surface VOC 
concentrations. This model uses formaldehyde column 
concentration ΩHCHO as its core independent variable while 
incorporating geographic and environmental covariates that 
significantly influence the spatial distribution of VOCs. The 
preliminary form of the model is a multiple linear regression 
model: 

0 1 2

3 4 5 2

ΩVOCs HCHO NDVI

road pop m

ρ I
D P T

= + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅ +
α α α

α α α 
 (5) 

where ρVOCs denotes the ground-level VOC concentration 
derived from inversion (unit: μg / m3); α0 is the model 
intercept; α1 to α5 represent the regression coefficients for 
each variable, respectively; INDVI is the normalised 
difference vegetation index, characterising vegetation cover 
and potential biogenic emissions; Droad is the distance to the 
nearest major road (unit: metres), serving as a proxy for 
transportation emissions; Ppop is population density (unit: 
persons/km2), indicating human activity intensity; T2m is the 

air temperature at 2 metres above ground level (unit: °C), 
serving as a key meteorological factor influencing VOC 
evaporation and chemical reaction rates; ϵ is the random 
error term. 

However, considering the potential for multicollinearity 
among variables, we employ variance inflation factor (VIF) 
for diagnostic purposes, calculated as follows: 

2
1

1k
k

VIF
R

=
−

 (6) 

where 2
kR  denotes the coefficient of determination obtained 

by regressing the kth independent variable against all other 
independent variables. When a variable’s VIF value exceeds 
10, we consider it to exhibit severe multicollinearity and 
remove it from the model to ensure the stability and 
interpretability of the regression coefficients. 

3.3 Spatio-temporal weighted regression framework 
To address the inherent limitation of traditional global 
models in capturing spatio-temporal non-stationarity (as 
described in the ‘related work’ section), we introduce 
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GTWR model. The GTWR model allows regression 
coefficients to vary continuously with spatial geographic 
location and time. Its core expression is: 

( ) ( ) ( )0
1

, , , , , ,
m

VOCs i i i i i i k i i i ik i
k

ρ u v t u v t u v t x ε
=

= + +β β  (7) 

In this model, (ui, vi, ti) defines the spatio-temporal 
coordinates of sample point i, where ui and vi are spatial 
plane coordinates and ti is the time coordinate. β0(ui, vi, ti) is 
the local regression intercept at position (ui, vi, ti), βk(ui, vi, 
ti) is the local regression coefficient for the kth independent 
variable, xik is the observed value of the kth independent 
variable at point i, and εi is the residual. 

The estimation of GTWR model parameters relies on 
weighted least squares estimation using observations within 
the neighbourhood of each data point. For point i, the 
parameter estimate is: 

 ( ) ( )( ) ( )1, , , , , ,i i i i i i i i iu v t u v t u v t−
= X W X X W Y β  (8) 

where β  is the estimated local regression coefficient vector 
[β0, β1,…, βm]; X is the design matrix of independent 
variables; Y is the dependent variable vector; W(ui, vi, ti) is 
a spatial weight matrix that assigns a weight wij to each data 
point j within the neighbourhood of point i. 

The weights are computed via a composite  
spatio-temporal kernel function, which is the product of a 
spatial kernel and a temporal kernel, both defined as 
Gaussian functions: 

2 2
, ,
2 2

exp expij s ij t
ij

s t

d d
w

h h
   

= − × −   
   

 (9) 

where dij,s is the spatial Euclidean distance between point i 
and point j, calculated as 

( ) ( )2 2
, ;ij s i j i jd u u v v= − + −  

dij,t is the temporal distance between two points, defined as 
dij,t = |ti – tj|. hs and ht represent the spatial bandwidth 
parameter and temporal bandwidth parameter, respectively. 
Together, they determine the rate at which weights decay 
with spatio-temporal distance and are optimised through 
cross-validation. Elaborated on the GTWR model 
implementation, specifying the criteria for selecting the 
spatial and temporal bandwidth parameters (e.g., using 
AICc minimisation via golden-section search). We also 
stated the software/library used (e.g., Python MGWR 
package or equivalent). 

3.4 Identification of high-value VOCs zones and 
long-term sequence analysis 

Using the annual VOC concentration grid data derived from 
GTWR model inversion, we employed spatial hotspot 
analysis to identify statistically significant clusters of high 
values. This was achieved using the Getis-Ord Gi* statistic 
(Gi*): 

1 1*
2

2

1 1

1

n n

ij j ij
j j

i
n n

ijij
j j

w x X w

G

n w w

S
n

= =

= =

−

=
 
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 
−

 

 
 (10) 

In this formula, *
iG  is the Gi* statistic for grid i; n is the 

total number of grids; xj is the VOC concentration value for 
grid j; wij is the spatial weight matrix (typically binary 
adjacency weights or distance-decay weights); X  and S are 
the mean and standard deviation of all grid concentration 
values, respectively. By calculating the Gi* statistic for each 
grid cell and testing its Probability Value (p-value), we  
can classify the study area into ‘hotspots’ (high-value  
clusters with significantly positive *),iG  ‘coldspots’  
(low-value clusters with significantly negative *),iG  and  
‘non-significant areas’. 

To quantify long-term trends, we apply theil-sen trend 
estimation to the annual concentration series of each grid 
cell. This robust non-parametric method is insensitive to 
outliers. For any grid cell, its trend slope θ is the median of 
the rates of change between all adjacent years: 

median j ix x
θ i j

j i
− = ∀ < − 

 (11) 

where xi and xj represent the VOC concentrations in the ith 
and jth years, respectively. To assess the statistical 
significance of trends, we further employ the Mann-Kendall 
trend test. The Mann-Kendall statistic S  is calculated using 
the following formula: 

( )
1

1 1

sgn
n n

j i
i j i

S x x
−

= = +

= −  (12) 

where sgn denotes the sign function. When S > 0, it 
indicates an upward trend; when S < 0, it indicates a 
downward trend. The standardised form Z of the statistic S 
approximates a standard normal distribution and can be 
used to calculate the significance p-value, thereby 
determining whether the trend is statistically significant. 

3.5 Model validation strategy 
Clarified the validation strategy by detailing how the ground 
station data were temporally aggregated (e.g., monthly 
averages to match the inversion data) and spatially matched 
to the 1-km grid cells, including the buffer distance used  
for point-to-grid association. For the inversion VOC 
concentrations, we use the ground-based measured VOC 
concentration data from national environmental monitoring 
stations in the study area direct validation of inversion VOC 
concentrations using ground-based measured VOC 
concentration data from national environmental monitoring 
stations in the study area. Model accuracy is quantified by 
calculating the coefficient of Coefficient of Determination 
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(R2), root mean square error (RMSE), and mean absolute 
error (MAE): 

( )

( )
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ˆ
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n

i i
i

MAE y y
n =

= −  (15) 

where yi denotes the observed concentration at site i, ˆiy  
represents the corresponding model-inverted concentration, 
and y  is the average of all observed concentrations. To 
demonstrate the superiority of the GTWR model over 
traditional global regression models, we will compare the 
RMSE and MAE of both models on the same validation  
set. This comparison will prove that incorporating  
spatio-temporal non-stationarity effectively enhances 
simulation accuracy. 

4 Experiments have demonstrated 
4.1 Experimental setup and comparison algorithms 
This study selected the Beijing-Tianjin-Hebei urban cluster 
in China as the test region, covering the time period from 
2005 to 2022 (with a focus on the high-incidence period for 
ozone from may to September each year). All data utilised 
originated from publicly available datasets: the foundational 
data for VOCs inversion included TROPOMI HCHO 
column concentration products and Landsat series land use 
classification data; validation data comprised ground-based 
VOC concentration measurements from the china national 
environmental monitoring centre (37 stations covering 
urban, suburban, and background areas). All data were 
uniformly resampled to 1 km grid resolution within a GIS 
platform and spatially-temporally aligned. 

To comprehensively evaluate the performance of the 
proposed geospatially weighted regression model, three 
widely adopted advanced algorithms were introduced as 
comparative benchmarks: Traditional land-use regression 
model: This model simulates spatial patterns by  
establishing a multivariate linear relationship between VOC 
concentrations and multiple geographic environmental 
variables (e.g., road density, vegetation indices, population 
distribution), representing a classic spatial modelling 
approach in environmental science. 

• GEE-MEGAN model: nature communications The 
GEE-MEGAN model improves the estimation accuracy 
and spatial resolution of biogenic VOC emissions 
through the fusion of multi-source RS data and machine 
learning algorithms. We also combine the derived 

BVOC data derived from this model as covariates into 
comparison experiments to explore the amount of 
contribution from this model to total VOC simulations. 

As PLS-DA is an efficient and powerful method for 
classification and feature extraction in chemical source 
apportionment, we applied PLS-DA to classify and identify 
VOC emission sources based on studies about application in 
forensic chemistry journal Identifying sources of chemical 
contaminants in the environment using partial least  
squares discriminant analysis (PLS-DA). Coefficient of 
determination, RMSE and MAE were used for evaluation. 
All comparison experiments used 10-fold cross validation. 

4.2 Results and analysis 
Spatial distribution and identification of high-value areas. In 
Figure 2, the spatial distribution of average VOC 
concentrations in the Beijing-Tianjin-Hebei region in 
summer of 2022 was reconstructed using the GTWR model. 
The results show that when the concentration is above 85 
μg/m3, there are obvious spatial clustering areas. These 
zones are mainly distributed in the petrochemical industrial 
park in southeastern Beijing, the large port industrial belt in 
Tianjin Binhai new area and the steel and pharmaceutical 
enterprise clusters in central Hebei. Getis-Ord Gi* hotspot 
analysis identified statistically significant high-value zones 
(Gi* > 2.58, p < 0.01) in these three regions. These hotspots 
covered approximately 12.5% of the study area but 
contributed an estimated 41.3% of the region’s total 
emissions in cumulative emission intensity. Overlay 
analysis with BVOCs results from the GEE-MEGAN model 
revealed less than 15% spatial overlap between urban VOCs 
hotspots and BVOCs. This indicates that anthropogenic 
sources (industry and transportation) are the key factors 
driving the spatial pattern of urban VOCs. 

Figure 2 Three-dimensional spatial distribution and hotspots of 
VOC concentrations in the Beijing-Tianjin-Hebei 
region during summer 2022 (see online version  
for colours) 
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Model accuracy comparison and validation. The  
VOC concentration inversion results for the  
Beijing-Tianjin-Hebei region during summer 2022, derived 
from the GTWR model, reveal a distinct spatial pattern 
characterised by a ‘multicentric, clustered distribution’. 
High-concentration columns (>85 μg/m3, corresponding to 
red to dark red areas in the figure) appear as distinct 
‘pollution towers’ in three-dimensional space, clearly 
highlighted above the petrochemical industrial park in 
southeast Beijing, the large port industrial belt in Tianjin 
Binhai new area, and the steel and pharmaceutical enterprise 
clusters in central Hebei. 

Unlike the 2D map, in addition to showing horizontal 
distribution, the 3D surface map also show concentration 
gradient of hotspots between grid cells with z-axis height. 
For example, the concentration of grid cells in Tianjin 
Binhai New Area reached 92.1 μg/m3 at the peak. It was 
easy to distinguish the z-axis height was significantly higher 
than the z-axis height of other areas. Getis-Ord Gi* hotspot 
analysis results (Figure 5) showed black contour lines on 3D 
surface base statistically proved the significance of high 
value area (Gi* > 2.58, p < 0.01). The total volume of 3D 
hotspot areas only occupied about 11.8% of the total 
volume of study region. However, the cumulative emission 
intensity of these 3D hotspot areas might reach 42.5% of all 
cumulative emission intensity in the study region. Overlay 
analysis with BVOCs results from GEE-MEGAN model 
showed that there was less than 15% spatial overlap 
between urban VOC hotspots and BVOCs. Therefore, 
anthropogenic sources (industry and transportation) are the 
main driving force to determine the three-dimensional 
spatial pattern of urban VOCs. Urban VOCs have distinct 
spatial heterogeneity in three-dimensional direction 
(concentration intensity) 

Figure 3 Scatter plot comparison of VOC concentrations 
inverted from different models and ground-based 
observations (see online version for colours) 
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Table 2 Comparison of accuracy evaluation metrics across 
different models 

Model R2 RMSE (μg/m3) MAE (μg/m3) 

GTWR (ours) 0.86 7.32 5.14 
Traditional LUR 0.71 11.45 8.67 
GEE-MEGAN 0.63 14.28 10.95 
PLS-DA 0.58 16.01 12.33 

Figure 4 Annual variation trends in VOC concentrations in the 
Beijing-Tianjin-Hebei region, 2005–2022 (see online 
version for colours) 
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Quantitative evaluation results (Table 2). The quantitative 
evaluation results showed that the GTWR model proposed 
in this study reached the best performance, the R2 was 0.86, 
the RMSE and MAE were 7.32 μg/m3 and 5.14 μg/m3, 
respectively. While the traditional LUR model accuracy was 
lower (R2 = 0.71, RMSE = 11.45 μg/m3), the result showed 
that if ignoring the spatio-temporal non-stationarity, the 
accuracy of the model would be greatly reduced.  
GEE-MEGAN model performed well in simulating BVOCs. 
For the total VOCs inversion, because the fine-grained 
spatial information on anthropogenic emissions is 
insufficient, the R2 of GEE-MAGEN model was only 0.63. 
This highlights the necessity of coupling high-precision 
biogenic models with anthropogenic models for urban 
VOCs simulation. The PLS-DA model performed well in 
source classification but demonstrated poor accuracy in 
continuous concentration prediction long-term trend 
analysis. The Theil-Sen trend analysis of the regional 
average VOC concentration time series (2005–2022) 
indicates an overall trend characterised by an initial increase 
followed by a subsequent decline (Figure 4). Specifically, 
during 2005–2012, accompanied by rapid industrialisation 
and urbanisation, VOC concentrations increased 
significantly at an average annual rate of 1.8% (M-K test 
statistic S = 145, p < 0.01). Since the implementation of 
china’s air pollution prevention and control action plan in 
2013, VOC concentrations have shifted to a decline at an 
annual rate of 4.2% (S = –218, p < 0.001), driven by clean 
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energy substitution and enhanced end-of-pipe treatment 
measures. Spatial analysis further reveals that the most 
significant VOCs reductions are concentrated in Beijing’s 
urban areas and surrounding former high-concentration 
zones, indicating that the series of environmental policies 
have achieved the expected results. Notably, VOCs 
concentrations in some emerging industrial parks have 
remained stable or even slightly rebounded in recent years, 
suggesting the need for continuous and targeted monitoring 
of pollution hotspots. 

5 Conclusions 
This study successfully developed and applied a 
geospatially and temporally weighted regression framework 
that integrates GIS spatial analysis with multi-source RS 
inversion. This framework was used to accurately identify 
high-value VOCs zones within the Beijing-Tianjin-Hebei 
urban cluster and to quantitatively analyse their long-term 
dynamics from 2005 to 2022. The experimental results 
show that the inversion results of the proposed GTWR 
model have excellent predictive performance, which not 
only have a high coefficient of determination of 0.86 with 
the ground-truth measurement, but also can reduce the 
RMSE to 7.32 μg/m3, which is significantly better than the 
traditional comparison models land use regression. The 
spatial analysis results show that the statistically significant 
hotspots account for about 12.5% of the total study area, but 
they can contribute to 41.3% of the total emission intensity 
of the region. The high-value zones are spatially 
concentrated in some specific industrial clusters and 
transportation hubs, indicating that the anthropogenic 
emission sources play a key role in the spatial distribution 
pattern of urban VOCs. Long-term trend analysis further 
shows that since the implementation of the air pollution 
prevention and control action plan in 2013, the VOC 
concentrations in the study area show a significant overall 
trend of decrease, and the average reduction rate of VOC 
concentration per year is 4.2%. The largest reduction trend 
is presented in the key governance areas, such as Beijing. 
This provides the environmental big data certification for 
the effectiveness of the series of environmental policies. 

The primary theoretical contributions of this study 
reside at the methodological level. First, through the 
introduction of GTWR models to characterise the  
spatio-temporal non-stationarity, it overcomes the limitation 
that traditional global models with constant parameters are 
used to simulate complicated urban environmental 
processes, and provides a more delicate analytical tool to 
explore the dynamic driving mechanism of VOC 
concentrations. Second, the technical scheme of combining 
macro-scale satellite RS tracers (HCHO column 
concentrations) and micro-scale GIS environmental factors 
(land use, road networks, etc.) is initially implemented, 
which demonstrates the huge potential and value of  
cross-referencing multi-source data in improving the 
accuracy of urban-scale environmental monitoring. 

• Data dependency: Our inversion accuracy is inherently 
tied to the precision of the satellite HCHO product and 
the representativeness of ground data used for 
validation. 

• Model assumptions: While GTWR handles  
non-stationarity, it still assumes local linearity within 
each spatio-temporal kernel, which may not capture 
ultra-local, nonlinear chemical interactions. 

• Source apportionment: The study identifies hotspots 
and dominant sources (anthropogenic vs. biogenic) but 
does not perform detailed chemical speciation or 
quantify contributions from specific sub-sector sources 
(e.g., paints vs. fuels). 

• Future work will focus on: Integrating higher-resolution 
satellite data (e.g., Sentinel-5); Coupling GTWR with 
chemical transport models for process-based analysis; 
Incorporating real-time emission inventories for 
dynamic source apportionment. 
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