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Abstract: Oil paintings, watercolours and digital art convey human emotions.
Complex emotions when visual elements blend with semantic information.
Existing methods have three flaws: over reliance on low-level visual features
misjudges serene loneliness; treating emotions as discrete labels misses
ambiguity; and poor genre adaptability. This study proposes the spatial domain
semantic collaborative recognition model for art complex emotions, via a
dual-branch framework: spatial branch uses multi-scale convolutional neural
network for global features, and semantic branch adopts graph attention
network for semantic links. A cross-branch attention mechanism tunes visual; a
Gaussian mixture model-based module quantifies emotion distribution.
Experiments on two self-built datasets and public ArtEmis show: vs. traditional
convolutional neural network and single-semantic models, it boosts accuracy
by 28.3%, cuts mean absolute error by 32.1%, and maintains over 89% cross-
genre accuracy. This work bridges the semantic-visual-emotional gap,
supporting intelligent art curation, emotional interaction design and art therapy.
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1 Introduction

Artistic images stand as a unique form of human cultural expression, with creators
infusing subjective emotions into visual elements to stir resonance in viewers. Unlike
natural images, they lean on stylised techniques — Impressionist colour blending or Cubist
geometric decomposition — to convey complex emotions: these are emotional states
woven from multiple intertwined components, not single discrete categories, like
nostalgic joy merging longing for the past with present happiness, or melancholic calm
blending sadness and tranquility (Deng et al., 2024). As digital art resources grow
rapidly, demand for intelligent analysis of artistic emotions has spiked: art museums need
to curate exhibitions around emotional themes, digital art platforms must recommend
works matching users’ real-time emotional needs, and art therapy institutions require
images that aid emotional regulation (Al-Tameemi et al., 2024). The core of these
applications is accurate recognition of complex emotions in artistic images, yet the
stylised nature of artistic creation and ambiguity of complex emotions make this task
highly challenging (Li et al., 2022). A survey by the International Association of Art
Informatics notes existing emotion recognition systems for artistic images have an
average error rate over 45% with complex emotions, far exceeding the 20% error rate for
simple emotions, a gap rooted in misalignment between traditional methods and the traits
of artistic complex emotions (Hou et al., 2022).

Three key challenges hinder progress in complex emotion recognition for artistic
images (Elkobaisi et al., 2022). First, visual features and semantic information are
separated: traditional methods focus on low-level visual features like colour histograms
or texture entropy but overlook semantic correlations between elements — a rainy street in
an oil painting might convey melancholy with dim lighting yet romance with a couple
sharing an umbrella, and without semantic association modelling, models cannot tell
these emotional differences apart (Lyu et al., 2024). Second, continuous emotions are
labelled discretely: most studies use discrete labels to train models, but complex emotions
are continuous and ambiguous; nostalgia, for instance, ranges from mild warm nostalgia
to intense sorrowful nostalgia, and discrete labels fail to capture this gradient, with many
viewers perceiving complex emotions in artistic images as a mix of multiple categories
rather than a single label (Zhang et al., 2022a). Third, adaptability to artistic style
differences is poor: different genres follow distinct expression rules — ink wash paintings
use blank space to imply emotions, while pop art employs bright contrasting colours for
direct emotional expression — and traditional models trained on one genre often struggle
to generalise to others, with accuracy dropping significantly when tested on unfamiliar
genres (Zhang et al., 2022b).

Scholars globally have done extensive research on image emotion recognition, but
few have focused on the specific scenario of artistic complex emotions (Nie et al., 2024).
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In natural image emotion recognition, early studies used handcrafted features to predict
emotions; recent years have seen deep learning methods take the lead, with convolutional
neural network (CNN) models extracting high-level visual features and transformer
models capturing global spatial relationships (Zhang and Tan, 2024). Yet these methods
are built for natural images and cannot handle the stylised features of artistic images,
leading to low accuracy when applied to artistic works (Chen and Ibrahim, 2023). In
artistic image analysis, research has centred on style classification and content
recognition rather than emotion recognition: some models generate images of specific
styles or recognise image themes but ignore emotional information, and even the small
number of emotion-related studies use crowd-sourced labels to train CNN models, still
treating emotions as discrete categories and failing to address semantic correlation or
style adaptability (Manakitsa et al., 2024). In complex emotion modelling, psychology’s
Plutchik’s emotion wheel divides complex emotions into combinations of basic emotions,
but this theoretical framework has not been effectively integrated into computational
models; in computer science, some studies use multi-label classification for mixed
emotions but cannot capture continuous intensity of each emotional component, and
while Gaussian mixture models (GMM) have been used to model continuous emotions in
speech and text, their application in artistic images is rare (Bansal et al., 2024).

This study aims to solve the complex emotion recognition problem in artistic images
by building a spatial domain semantic collaborative recognition model (SDSCRM), with
three core goals: integrating spatial visual features and semantic information to establish
a visual-semantic-emotional mapping relationship, modelling complex emotions as
continuous probability distributions to capture their ambiguity and gradient traits, and
enhancing the model’s adaptability to different artistic genres to ensure stable recognition
performance across styles (Liu et al., 2024). Its contributions are threefold. Theoretically,
it proposes a spatial-semantic collaborative framework for artistic complex emotions,
breaking the separation of visual and semantic analysis in traditional methods and laying
a theoretical foundation for bridging the emotional gap in artistic image computing (Nie
et al., 2024). Methodologically, it designs a multi-scale CNN-GAT dual-branch structure
to extract spatial features and model semantic associations simultaneously, develops a
cross-branch attention fusion mechanism that adjusts feature weights dynamically based
on artistic style, and introduces a GMM-based continuous emotion regression module to
quantify the intensity distribution of complex emotions (Wimpff et al., 2024). Practically,
it constructs two high-quality datasets for artistic complex emotions to support
subsequent research and verifies the model’s application value in art curation, emotional
recommendation, and art therapy through case studies (Chen et al., 2024).

2 Relevant technologies

2.1 Complex emotion representation in artistic images

Combining Plutchik’s emotion wheel with artistic expression traits, this study defines
complex emotions in artistic images as emotional states — woven from 2-3 basic
emotions with continuous intensity gradients — conveyed through the interplay of visual
elements and semantic context. The selection of the six specific categories — nostalgic
joy, melancholic calm, excited anxiety, serene loneliness, sentimental sorrow, and
hopeful fear — was guided by a systematic process that integrated the polarity and
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complementarity of basic emotions from Plutchik’s framework with their frequency of
manifestation in artistic works. An initial pool of ten candidate complex emotions was
evaluated by three art psychology experts through a structured scoring process, and the
final six categories were retained based on their high inter-expert consistency exceeding
85%, ensuring both psychological plausibility and artistic relevance. These emotions fall
into six categories: nostalgic joy, melancholic calm, excited anxiety, serene loneliness,
sentimental sorrow, and hopeful fear, each expressed via genre-specific visual language
(Wang et al., 2023).

Complex emotions in artistic images rely on two carriers for transmission. Visual
carriers cover colour hue, saturation, brightness, composition symmetry, centering, blank
space, and texture brush strokes, texture density — low saturation, asymmetric
composition, and rough texture often signal melancholic calm (Liu et al., 2023). Semantic
carriers include thematic context and cultural symbols, where specific elements implicitly
link to emotions. To quantify these carriers, three core metrics are defined:

Visual feature intensity: quantifies visual elements’ emotional contribution,
calculated as:

VFI =0, XC+w; XL+ w,XT )

where C denotes colour emotion score, L composition emotion score, 7 texture

emotion score, and @, @, @; are style-dependent weights summing to measures

semantic-element-to-emotion correlation via semantic and emotion vector cosine

similarity:

SAD=—""°— 2)
|s[x|é]

where § is the semantic element vector and € is the emotion vector.

Emotion intensity gradient: captures continuous variation in complex emotions via
Euclidean distance between image emotion distribution and basic emotion standard
distribution:

3

where p; is the probability of the it basic emotion in the image, and ¢; is its standard
probability.

2.2 Semantic-spatial feature modelling for emotion capture

Traditional CNN’s with fixed convolution kernels fail to fully capture artistic images’
multi-scale spatial features — small brush strokes and large layout alike. This study
proposes a multi-scale CNN (MS-CNN) with three parallel branches: 3 x 3 kernel for
local details brush edges, colour transitions, 5 x 5 kernel for regional features object
shapes, and 7 x 7 kernel for global layout light distribution, blank space ratio. Branch
outputs are fused via concatenation, with a batch normalisation layer added to mitigate
overfitting; the fused feature map follows H x W x C, height H, width W, channel count
C, summing branch channels (Zhang et al., 2022a). A spatial attention module is



90 J. Wang and D. Zou

appended post-MS-CNN to focus on emotion-relevant regions. It first compresses the

MS-CNN feature maps channel dimension via global average pooling to get a spatial

RHXW

weight matrix 4e€ , then normalises A to [0, 1] using sigmoid higher values mark

emotion-relevant regions, and finally multiplies the original feature map by A to
highlight key areas. For semantic association modelling, GAT is adopted — modelling
element semantic links as a graph and adaptively assigning edge attention weights to
prioritise critical links. The process has three steps:

Node embedding: extracts element semantic vectors via a pre-trained,
art-caption-fine-tuned BERT model, yielding node features #, € RY.

Attention calculation: computes node i—j attention weight using a shared linear layer
and LeakyReLU:

exp(LeakyReLU(aT [Wh, | Whj]))
= 4
% > exp(LeakyRe LU (@ [Wh, || Wh])) @
keN;

where W is the linear transformation matrix, @ is the attention vector, and N, is

node neighbourhood.
Node update: updates node features via neighbourhood feature weighted summation:
hy =0(ZaijWhjj ()
JeN;
where denotes the sigmoid function.
Post-update node features are mapped to emotion space via a fully connected layer:

e; = FC(h;), e;€ R™. The image’s final semantic emotion feature is the average of all

node emotion vectors:

E,, =%Ze ©)

where 7 is the number of semantic nodes. Given complex emotions continuity and
ambiguity, GMM is used to model their probability distribution — assuming image
emotion intensity arises from K Gaussian distributions each corresponding to a basic
emotion component:

K
p(x) =D mN (x| .07) (7
k=1

where x is the emotion intensity vector, 7z summing to 1 is the A" basic emotion’s
proportion, i is its average intensity, and o',f is its uncertainty. The EM algorithm
estimates GMM parameters nk,,uk,a,f, with model output being each basic emotion’s

probability distribution — directly reflecting complex emotions composition and intensity
(Wang et al., 2024).
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In the modelling of complex emotions in artistic images, the collaborative analysis of
visual carriers and semantic carriers is core. The process of multi-scale spatial feature
extraction — semantic association modelling — emotion distribution quantification
proposed in modular connection to achieve a complete mapping from original images to
emotion distributions Lian et al. (2023). To intuitively present the logical connections
between key steps in this process and the corresponding relationships between input and
output of each module, this study integrates the core calculations and module functions
defined into a process diagram. It clearly demonstrates the technical chain of
spatial-semantic dual-branch parallel modelling, style-aware fusion, and GMM emotion
quantification. The specific process is shown in Figure 1.

Figure 1 Overall framework of semantic-spatial collaborative feature modelling for complex
emotions in artistic image (see online version for colours)
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3 Mathematical model of spatial domain semantic collaborative
recognition

For an artistic image /, the core goal of the SDSCRM is to map / to a continuous emotion
distribution:

P={pi.psses P} ®)
where py denotes the probability of the & basic emotion, m = 8 total basic emotions, and

Z p, =1. This mapping relies on three key steps, each formalised with equations
k=1
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integrating critical parameters: For /e R"”® RGB channels, height H, width W7, the
MS-CNN extracts small, medium, and large-scale features:

F 16 RHXWXCI’ F

HxWxC2
spa spa2 eR > F,

spa3

c RHXWXC3 (9)

Where (C1, C2, C3) are channel counts for 3 x 3, 5 x 5, 7 x 7 convolution branches, with
pre-attention fused features calculated as:

F = Concat (F

spa_ pre spal>

F;paz,F;pa3)€ RHXWX(C]+C2+C3) (10)
where Concat denotes the channel-wise concatenation operation. The attention weight
matrix A for highlighting emotion-relevant regions is computed as:

A= Sigmoid (GAP(F,, ) W, +b,) (11
where GAP is global average pooling, w, is the attention layer weight matrix, b, is the
bias term, and Sigmoid normalises weights to [0, 1]; the final spatial feature is:

F_ =F 04 (12)

spa spa _ pre

e RY, k=28 is the

number of artistic genres, are extracted via a pre-trained VGG19-based style classifier.
The classifier was trained on 50,000 artistic images across 8 genres with 95.2% accuracy,
using categorical cross-entropy loss and Adam optimiser. The style probability outputs
serve as the quantitative basis for weight adjustment in the cross-branch attention
mechanism:

where © represents element-wise multiplication. Style features S,

Wy = Sigmoid (S, Wy +by, ), @, =1-0y, (13)

style spa spa
where W,, and by, are the style-aware layer’s weight and bias; the fused feature is:

F

fusion

=aw,,, - Flatten(F,,, )+ o,  F,, (14)
where Flatten converts 2D spatial features to 1D vectors, and Fi., is the GAT-extracted
semantic emotion feature. The fused feature Fjio, feeds a fully connected layer to predict
GMM parameters, with the final emotion distribution being GMM’s mixing coefficients:
P=[m, m, ..., T] where m output from denotes the proportion of the k* basic emotion,
M 1s its mean intensity, o',f is its variance, and FC is the fully connected layer. The total

loss balancing dominant emotion classification and intensity regression is:

Ly =0+ [_Z IOg(Pi,c,. )) +(1-a)- [ﬁZZ(ﬂzk i )zj (15)

i=1 i=l k=l

where o = 0.5, cross-validated balance weight, N is the number of samples, ¢; is the it
sample’s dominant emotion label, p;, ¢; is the predicted probability of c¢;, i is the
predicted mean intensity of the k™ emotion for the i sample, and f, is its ground-truth
intensity.

In the mathematical modelling of the SDSCRM, the GMM module plays a core role
in quantifying the continuous distribution of complex emotions. The estimation accuracy
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of its parameters directly determines the fitting effect of the emotion distribution, and the
parameter optimisation process needs to be achieved by minimising the GMM parameter
estimation loss. To intuitively present the optimisation and convergence trend of GMM
parameters during training, this study uses training epochs as the horizontal axis and
GMM parameter estimation loss as the vertical axis to track the variation law of the loss
value with the number of iterations. This loss curve not only verifies the effectiveness of
the EM algorithm in optimising GMM parameters but also helps determine whether the
model reaches a stable convergence state.

Figure2 GMM loss vs. training epochs (see online version for colours)
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4 Model implementation and dataset construction

The SDSCRM adopts a modular implementation with clear parameter settings and two
dedicated datasets to ensure experimental validity. For network structure, the MS-CNN
branch uses ResNet50 as backbone due to its proven performance in artistic image
analysis, residual connections that mitigate gradient vanishing in deep networks, and
balanced trade-off between model complexity and feature representation capacity
compared to shallower networks or heavier architectures. The GAT branch has 2 layers,
256-dimensional hidden layers, 64-dimensional attention vectors, and a post-GAT fully
connected layer outputting 8-dimensional emotion vectors corresponding to basic
emotions (Liu et al., 2022). The style classifier based on VGG19 was trained on a
separate dataset of 50,000 artistic images 6,250 per genre with a train/validation/test split
of 70:15:15. Training used categorical cross-entropy loss, Adam optimiser with learning
rate le-4, and data augmentation rotation, flipping, colour jittering. Evaluation metrics
included: accuracy 95.2%, macro-F1 94.8%, and per-genre precision/recall all > 92%,
ensuring reliable style feature extraction for the cross-branch attention mechanism. The
fusion layer leverages VGGI19-based style classifier to extract 8-dimensional style
features k£ = 8, with fusion weights regulated by a 1-layer fully connected network; the
GMM prediction layer’s fully connected network outputs 24 parameters 8 mixing
coefficients, 8 means, 8 variances, and GMM parameters are refined via EM algorithm
during training. For GMM parameter initialisation, the mixing coefficients 7k were set
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uniformly to 1/8, means pk were initialised using K-means clustering on the training set’s

emotion intensity vectors, and covariance matrices Zk were initialised as diagonal

matrices with values of 0.1. This initialisation strategy ensures stable EM convergence
and avoids local optima by leveraging the data distribution characteristics. Hardware for
training includes NVIDIA RTX 4090 GPU 24 GB memory, Intel Core i9-13900K CPU,
and 64 GB RAM, with software environment based on PyTorch 2.0, Python 3.9, Open
CV 4.8, and scikit-learn 1.2; hyperparameters were set as batch size 32, chosen through
grid search over considering GPU memory constraints and training stability. Smaller
batches 16 showed slower convergence, while larger batches 64, 128 caused gradient
noise and reduced final accuracy by 1.5-2.3% in ablation studies. The chosen batch size
32 provides optimal trade-off between convergence speed and model performance
(Zhang and Tan, 2024). Datasets are constructed per three principles: genre diversity 8
genres: oil painting, watercolour, ink wash, acrylic, digital art, pastel, charcoal, pop art,
emotion coverage 6 complex emotions, 8 basic emotions, and label accuracy.

The art caption dataset used for fine-tuning the BERT model was sourced from public
art platforms, comprising 85,000 high-quality art image descriptions. Each caption was
authored by professional curators or art historians, covering themes, elements, styles, and
emotional connotations. The average caption length was 12.5 words. After pre-processing
steps including stop-word removal and lemmatisation, the BERT-base model was
fine-tuned for 3 epochs on 4 NVIDIA V100 GPUs with a learning rate of 2e-5 and a
batch size of 32. The artistic emotion dataset (AED) includes 12,000 images 1,500 per
genre collected through stratified sampling from public art platforms, academic datasets,
and digital art communities. To ensure representativeness within each genre, we
maintained a balanced distribution of historical periods, artistic movements, and regional
origins. The complex emotion annotation dataset (CEAD) selects 5,000 high-ambiguity
images annotator consistency < 0.7 from AED, with each labelled by 3 art psychology
and computer vision experts into continuous emotion distributions 8 GMM mixing
coefficients, 8 means, 8 variances; label consistency is validated via Kullback-Leibler
(KL) divergence, with average KL divergence < 0.1 confirming reliability. Both datasets
are split into training/validation/test sets at 7:1:2, and training sets undergo data
augmentation to enhance generalisation. Key quantitative metrics for dataset quality and
model training effectiveness include: KL divergence for CEAD label consistency:

KL(P| Q)= p, log(%j (16)

i=1

where P and Q are expert-labelled GMM distributions, ensuring average values < 0.1.G

N K
MM parameter estimation loss during training: L, = —z 10g(z TN (xi | 507 )j ,
i=1 k=1
minimising to refine distribution fitting. Data augmentation effectiveness evaluation via
feature variance:

N

Var(F)z%Z( —F) (17)

i=1
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where F is image feature, ensuring augmented features expand variance by > 20% vs.

original. Style classifier accuracy (Acc): Accg,,, = Correctly classified samples

Total samples

maintaining > 92% to guarantee reliable style feature extraction. Annotator consistency
coefficient for AED:

(18)

where N is total annotations, ¢ is emotion categories, n; is annotations per category,
ensuring > 0.65 for label reliability.

Figure 3 Feature variance increase rate after quarterly data augmentation (see online version
for colours)
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The specific results are shown in Figure 3 The AED training set needs to adopt data
augmentation strategies such as random rotation and horizontal flip to expand feature
diversity, and sets a feature variance increase of > 20% after augmentation compared
with the original as the effectiveness standard. Considering that AED samples are
collected quarterly, differences in feature distribution of samples from different quarters
may lead to fluctuations in augmentation effects. To quantify such quarterly differences
and verify whether the augmentation strategy meets the standard globally, this study
calculates the feature variance increase rate after augmentation for each quarter from a
quarterly perspective. This not only intuitively reflects the stability of the augmentation
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effect but also provides data support for adjusting the balance of sample batches in
subsequent model training.

5 Experimental results and analysis

5.1 Model performance benchmarking and distribution modelling

To validate SDSCRM’s effectiveness, five representative models are selected for
comparison: ResNet50 traditional CNN relying on low-level visual features, ViT-B/16
transformer capturing global spatial relations, CNN + BERT simple concatenation of
visual and semantic features without collaboration, GAT + CNN semantic-visual
extraction lacking attention fusion, and SDSCRM w/o GMM SDSCRM stripped of
continuous emotion modelling. Four metrics evaluate performance: Acc for dominant
emotion prediction, macro-F1 for multi-class balance, mean absolute error (MAE) for
emotion intensity regression, and KL Divergence for continuous distribution similarity.
On the AED dataset 12,000 artistic images, SDSCRM achieves 90.4% Acc and 89.2%
macro-F1-45.1% and 49.2% higher than ResNet50—proving spatial-semantic
collaboration eliminates the feature isolation flaw of traditional models. Its MAE for
basic emotion intensity regression hits 0.098, a 65.7% drop from ResNet50’s 0.286,
confirming cross-branch attention fusion and GMM together model continuous emotion
gradients. On the CEAD dataset 5,000 high-ambiguity images, SDSCRM’s KL
divergence reaches 0.087, 89.4% lower than ResNet50’s 0.821; this gap underscores
GMM’s value in capturing complex emotion ambiguity, as discrete label-based models
like SDSCRM w/o GMM, KL = 0.315 fail to resolve the category hardening issue. Key
quantitative relationships include: relative Acc improvement of SDSCRM over baselines:

A -4 - . e
Adce = ZECspscry — ZCChaseline 5 100, | with values hitting 45.1% vs. ResNet50 and

AcCyyetine
21.3% Vs. GAT + CNN.MAE reduction efficiency:
Moae = MAE seine = MAE pscr x100% , reaching 65.7% vs. ResNet50 and 46.2% vs.
MAE, o1
GAT + CNN.KL Divergence compression ratio: y,, = KLy seime , peaking at 9.44 vs.
KLspscru
ResNet50 and 3.62 vs. SDSCRM w/o GMM.
Table 1 The performance of all models on the CEAD
Model KL divergence
ResNet50 0.821
ViT-B/16 0.753
CNN + BERT 0.689
GAT + CNN 0.527
SDSCRM w/o GMM 0.315
SDSCRM 0.087

SDSCRM has the smallest KL divergence, which is 89.4% lower than ResNet50. This
demonstrates that the GMM-based continuous emotion modelling can accurately capture
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the probability distribution of complex emotions, far exceeding the performance of
discrete label-based models.

5.2 Style adaptability and module contribution validation

SDSCRM’s style-aware mechanism ensures stable performance across 8 artistic genres,
maintaining over 89% Acc with a max-min fluctuation of only 3.2%. By contrast,
baselines struggle with semantic-reliant genres: ResNet50’s Acc plummets to 45.8% on
ink wash paintings, and ViT-B/16 drops to 52.3% on charcoal works — these models treat
all genres with a one-size-fits-all feature weight, failing to adapt to ink wash’s blank
space semantics or charcoal’s texture ambiguity. SDSCRM dynamically adjusts fusion
weights: for ink wash, it sets @, = 0.6 to prioritise semantic context; for pop art,
Wypa = 0.7 to leverage bold visual cues, as quantified by: Style weight adaptation formula:
Oy, = Sigmoid (S, W, +b,,) (19)
where Sgyie s VGG19-extracted style features, outputting genre-specific weights 0.6 for
ink wash, 0.35 for pop art. Ablation experiments on AED confirm each module’s
irreplaceability: removing spatial attention cuts Acc by 4.7% and raises MAE by 0.034,
as the model loses focus on emotion-critical regions; stripping semantic GAT reduces
Acc by 8.1% and widens KL divergence by 0.131, breaking the element-emotion
semantic link; disabling style fusion increases MAE by 0.043, as fixed weights misalign
with genre traits; omitting GMM spikes KL divergence by 0.228, reverting to discrete
label limitations. The module contribution index: module importance score:

_ Perfyy — Perf,

1 10 modte x100%, with semantic GAT 8.9% and GMM 25.9%

module Pe "ffu”
ranking highest, confirming their role as core engines emotion recognition. A case study
on an ink wash lone boat on misty river further validates practicality: spatial attention
highlights the boat weight = 0.85 and misty sky weight = 0.72; GAT models their
semantic link attention weight=0.91 to output a loneliness-dominant emotion vector; style
fusion sets @yen = 0.65, and GMM outputs a serene loneliness distribution Zoneiiness = 0.5;
M1 =10.8; Zearn = 0.5, 4= 0.7, matching expert labels exactly.

The practical application of the proposed model was validated through case studies
targeting three specific art curation scenarios. In emotional theme-based exhibition
planning, the model successfully analysed and grouped over 150 artworks by emotional
similarity for a ‘melancholy and hope’ thematic exhibition. For personalised artwork
recommendation, the system achieved 78% user satisfaction in matching artworks to
viewers’ self-reported emotional states. In art therapy sessions, professional therapists
reported 85% agreement between model-predicted emotions and patient emotional
responses during guided viewing sessions. The evaluation combined quantitative metrics
including user satisfaction scores and therapist agreement rates with qualitative feedback
from curators and therapists, demonstrating the model’s practical utility in real-world art
curation and therapeutic contexts.

One of the core advantages of the SDSCRM is its ability to dynamically adjust the
spatial-semantic feature weights through a style-aware fusion mechanism to adapt to the
expression characteristics of different artistic genres. Ink wash paintings rely on the
semantics of blank space to convey emotions, requiring an increase in the weight of
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semantic features; oil paintings rely on visual elements such as colours and brushstrokes,
requiring the strengthening of the weight of spatial features. To quantify the
genre-adaptive logic of this weight adjustment, this study selects 8 typical artistic genres
and uses spatial-semantic fusion weights as indicators to compare the differences in
weight distribution among different genres. The comparison results can directly verify the
effectiveness of the style-aware mechanism and also provide preliminary data support for
demonstrating the necessity of the style fusion module in the subsequent ablation
experiments on module contribution. The specific comparison data are shown in Figure 4.

Figure 4 SDSCRM fusion weights by artistic genres (see online version for colours)
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6 Conclusions

This study proposes the SDSCRM to solve complex emotion recognition challenges in
artistic images — visual-semantic separation, discrete labelling, poor style adaptability. Its
MS-CNN-GAT dual-branch framework builds visual-semantic-emotional mapping,
style-aware fusion ensures cross-genre stability, and GMM models continuous emotion
distributions. Experiments on AED and CEAD show it outperforms baselines in accuracy
90.4%, MAE 0.098, and KL divergence 0.087. Limitations include limited rare genre
samples, missing abstract semantic elements, and poor real-time performance; future
work will expand datasets, optimise semantic modelling, improve efficiency, and extend
applications. The model enriches artistic image emotional computing theory and supports
intelligent curation, emotional recommendation, and art therapy.
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