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Abstract: Oil paintings, watercolours and digital art convey human emotions. 
Complex emotions when visual elements blend with semantic information. 
Existing methods have three flaws: over reliance on low-level visual features 
misjudges serene loneliness; treating emotions as discrete labels misses 
ambiguity; and poor genre adaptability. This study proposes the spatial domain 
semantic collaborative recognition model for art complex emotions, via a  
dual-branch framework: spatial branch uses multi-scale convolutional neural 
network for global features, and semantic branch adopts graph attention 
network for semantic links. A cross-branch attention mechanism tunes visual; a 
Gaussian mixture model-based module quantifies emotion distribution. 
Experiments on two self-built datasets and public ArtEmis show: vs. traditional 
convolutional neural network and single-semantic models, it boosts accuracy 
by 28.3%, cuts mean absolute error by 32.1%, and maintains over 89% cross-
genre accuracy. This work bridges the semantic-visual-emotional gap, 
supporting intelligent art curation, emotional interaction design and art therapy. 

Keywords: artistic image; complex emotion recognition; spatial-semantic 
collaboration; graph attention network; Gaussian mixture model; style 
adaptability. 
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1 Introduction 

Artistic images stand as a unique form of human cultural expression, with creators 
infusing subjective emotions into visual elements to stir resonance in viewers. Unlike 
natural images, they lean on stylised techniques – Impressionist colour blending or Cubist 
geometric decomposition – to convey complex emotions: these are emotional states 
woven from multiple intertwined components, not single discrete categories, like 
nostalgic joy merging longing for the past with present happiness, or melancholic calm 
blending sadness and tranquility (Deng et al., 2024). As digital art resources grow 
rapidly, demand for intelligent analysis of artistic emotions has spiked: art museums need 
to curate exhibitions around emotional themes, digital art platforms must recommend 
works matching users’ real-time emotional needs, and art therapy institutions require 
images that aid emotional regulation (Al-Tameemi et al., 2024). The core of these 
applications is accurate recognition of complex emotions in artistic images, yet the 
stylised nature of artistic creation and ambiguity of complex emotions make this task 
highly challenging (Li et al., 2022). A survey by the International Association of Art 
Informatics notes existing emotion recognition systems for artistic images have an 
average error rate over 45% with complex emotions, far exceeding the 20% error rate for 
simple emotions, a gap rooted in misalignment between traditional methods and the traits 
of artistic complex emotions (Hou et al., 2022). 

Three key challenges hinder progress in complex emotion recognition for artistic 
images (Elkobaisi et al., 2022). First, visual features and semantic information are 
separated: traditional methods focus on low-level visual features like colour histograms 
or texture entropy but overlook semantic correlations between elements – a rainy street in 
an oil painting might convey melancholy with dim lighting yet romance with a couple 
sharing an umbrella, and without semantic association modelling, models cannot tell 
these emotional differences apart (Lyu et al., 2024). Second, continuous emotions are 
labelled discretely: most studies use discrete labels to train models, but complex emotions 
are continuous and ambiguous; nostalgia, for instance, ranges from mild warm nostalgia 
to intense sorrowful nostalgia, and discrete labels fail to capture this gradient, with many 
viewers perceiving complex emotions in artistic images as a mix of multiple categories 
rather than a single label (Zhang et al., 2022a). Third, adaptability to artistic style 
differences is poor: different genres follow distinct expression rules – ink wash paintings 
use blank space to imply emotions, while pop art employs bright contrasting colours for 
direct emotional expression – and traditional models trained on one genre often struggle 
to generalise to others, with accuracy dropping significantly when tested on unfamiliar 
genres (Zhang et al., 2022b). 

Scholars globally have done extensive research on image emotion recognition, but 
few have focused on the specific scenario of artistic complex emotions (Nie et al., 2024). 
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In natural image emotion recognition, early studies used handcrafted features to predict 
emotions; recent years have seen deep learning methods take the lead, with convolutional 
neural network (CNN) models extracting high-level visual features and transformer 
models capturing global spatial relationships (Zhang and Tan, 2024). Yet these methods 
are built for natural images and cannot handle the stylised features of artistic images, 
leading to low accuracy when applied to artistic works (Chen and Ibrahim, 2023). In 
artistic image analysis, research has centred on style classification and content 
recognition rather than emotion recognition: some models generate images of specific 
styles or recognise image themes but ignore emotional information, and even the small 
number of emotion-related studies use crowd-sourced labels to train CNN models, still 
treating emotions as discrete categories and failing to address semantic correlation or 
style adaptability (Manakitsa et al., 2024). In complex emotion modelling, psychology’s 
Plutchik’s emotion wheel divides complex emotions into combinations of basic emotions, 
but this theoretical framework has not been effectively integrated into computational 
models; in computer science, some studies use multi-label classification for mixed 
emotions but cannot capture continuous intensity of each emotional component, and 
while Gaussian mixture models (GMM) have been used to model continuous emotions in 
speech and text, their application in artistic images is rare (Bansal et al., 2024). 

This study aims to solve the complex emotion recognition problem in artistic images 
by building a spatial domain semantic collaborative recognition model (SDSCRM), with 
three core goals: integrating spatial visual features and semantic information to establish 
a visual-semantic-emotional mapping relationship, modelling complex emotions as 
continuous probability distributions to capture their ambiguity and gradient traits, and 
enhancing the model’s adaptability to different artistic genres to ensure stable recognition 
performance across styles (Liu et al., 2024). Its contributions are threefold. Theoretically, 
it proposes a spatial-semantic collaborative framework for artistic complex emotions, 
breaking the separation of visual and semantic analysis in traditional methods and laying 
a theoretical foundation for bridging the emotional gap in artistic image computing (Nie 
et al., 2024). Methodologically, it designs a multi-scale CNN-GAT dual-branch structure 
to extract spatial features and model semantic associations simultaneously, develops a 
cross-branch attention fusion mechanism that adjusts feature weights dynamically based 
on artistic style, and introduces a GMM-based continuous emotion regression module to 
quantify the intensity distribution of complex emotions (Wimpff et al., 2024). Practically, 
it constructs two high-quality datasets for artistic complex emotions to support 
subsequent research and verifies the model’s application value in art curation, emotional 
recommendation, and art therapy through case studies (Chen et al., 2024). 

2 Relevant technologies 

2.1 Complex emotion representation in artistic images 

Combining Plutchik’s emotion wheel with artistic expression traits, this study defines 
complex emotions in artistic images as emotional states – woven from 2–3 basic 
emotions with continuous intensity gradients – conveyed through the interplay of visual 
elements and semantic context. The selection of the six specific categories – nostalgic 
joy, melancholic calm, excited anxiety, serene loneliness, sentimental sorrow, and 
hopeful fear – was guided by a systematic process that integrated the polarity and 
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complementarity of basic emotions from Plutchik’s framework with their frequency of 
manifestation in artistic works. An initial pool of ten candidate complex emotions was 
evaluated by three art psychology experts through a structured scoring process, and the 
final six categories were retained based on their high inter-expert consistency exceeding 
85%, ensuring both psychological plausibility and artistic relevance. These emotions fall 
into six categories: nostalgic joy, melancholic calm, excited anxiety, serene loneliness, 
sentimental sorrow, and hopeful fear, each expressed via genre-specific visual language 
(Wang et al., 2023). 

Complex emotions in artistic images rely on two carriers for transmission. Visual 
carriers cover colour hue, saturation, brightness, composition symmetry, centering, blank 
space, and texture brush strokes, texture density – low saturation, asymmetric 
composition, and rough texture often signal melancholic calm (Liu et al., 2023). Semantic 
carriers include thematic context and cultural symbols, where specific elements implicitly 
link to emotions. To quantify these carriers, three core metrics are defined:  

Visual feature intensity: quantifies visual elements’ emotional contribution, 
calculated as: 

c l tVFI ω C ω L ω T= × + × + ×  (1) 

where C denotes colour emotion score, L composition emotion score, T texture  
emotion score, and ωc, ωl, ωt are style-dependent weights summing to measures 
semantic-element-to-emotion correlation via semantic and emotion vector cosine 
similarity: 

| | | |
s eSAD

s e
⋅=
×

 
   (2) 

where s  is the semantic element vector and e  is the emotion vector. 

Emotion intensity gradient: captures continuous variation in complex emotions via 
Euclidean distance between image emotion distribution and basic emotion standard 
distribution: 

( )2

1

n

i i
i

EIG p q
=

= −  (3) 

where pi is the probability of the ith basic emotion in the image, and qi is its standard 
probability. 

2.2 Semantic-spatial feature modelling for emotion capture 

Traditional CNN’s with fixed convolution kernels fail to fully capture artistic images’ 
multi-scale spatial features – small brush strokes and large layout alike. This study 
proposes a multi-scale CNN (MS-CNN) with three parallel branches: 3 × 3 kernel for 
local details brush edges, colour transitions, 5 × 5 kernel for regional features object 
shapes, and 7 × 7 kernel for global layout light distribution, blank space ratio. Branch 
outputs are fused via concatenation, with a batch normalisation layer added to mitigate 
overfitting; the fused feature map follows H × W × C, height H, width W, channel count 
C, summing branch channels (Zhang et al., 2022a). A spatial attention module is 
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appended post-MS-CNN to focus on emotion-relevant regions. It first compresses the 
MS-CNN feature maps channel dimension via global average pooling to get a spatial 
weight matrix ,H WA ×∈  then normalises A to [0, 1] using sigmoid higher values mark 
emotion-relevant regions, and finally multiplies the original feature map by A to 
highlight key areas. For semantic association modelling, GAT is adopted – modelling 
element semantic links as a graph and adaptively assigning edge attention weights to 
prioritise critical links. The process has three steps:  

Node embedding: extracts element semantic vectors via a pre-trained,  
art-caption-fine-tuned BERT model, yielding node features .d

ih ∈  

Attention calculation: computes node i–j attention weight using a shared linear layer 
and LeakyReLU: 

( )( )
[ ]( )( )

exp Re

exp Re
i

T
i j

ij T
i k

k

Leaky LU a Wh Wh

Leaky LU a Wh Wh
∈

  =


 
 

α



 (4) 

where W is the linear transformation matrix, a  is the attention vector, and i  is 
node neighbourhood. 

Node update: updates node features via neighbourhood feature weighted summation: 

i

i ij j
j

h σ α Wh′
∈

 =
 
 



 (5) 

where denotes the sigmoid function. 

Post-update node features are mapped to emotion space via a fully connected layer: 
ei = FC(ht), .m

ie ∈  The image’s final semantic emotion feature is the average of all 
node emotion vectors: 

1

1 n

sem i
i

E e
n =

=   (6) 

where n is the number of semantic nodes. Given complex emotions continuity and 
ambiguity, GMM is used to model their probability distribution – assuming image 
emotion intensity arises from K Gaussian distributions each corresponding to a basic 
emotion component: 

( )2

1

( ) | ,
K

k k k
k

p x π x μ σ
=

=   (7) 

where x is the emotion intensity vector, πk summing to 1 is the kth basic emotion’s 
proportion, μk is its average intensity, and 2

kσ  is its uncertainty. The EM algorithm 

estimates GMM parameters 2, , ,k k kπ μ σ  with model output being each basic emotion’s 
probability distribution – directly reflecting complex emotions composition and intensity 
(Wang et al., 2024). 
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In the modelling of complex emotions in artistic images, the collaborative analysis of 
visual carriers and semantic carriers is core. The process of multi-scale spatial feature 
extraction – semantic association modelling – emotion distribution quantification 
proposed in modular connection to achieve a complete mapping from original images to 
emotion distributions Lian et al. (2023). To intuitively present the logical connections 
between key steps in this process and the corresponding relationships between input and 
output of each module, this study integrates the core calculations and module functions 
defined into a process diagram. It clearly demonstrates the technical chain of  
spatial-semantic dual-branch parallel modelling, style-aware fusion, and GMM emotion 
quantification. The specific process is shown in Figure 1. 

Figure 1 Overall framework of semantic-spatial collaborative feature modelling for complex 
emotions in artistic image (see online version for colours) 
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3 Mathematical model of spatial domain semantic collaborative 
recognition 

For an artistic image I, the core goal of the SDSCRM is to map I to a continuous emotion 
distribution: 

{ }1 2, , , mP p p p= …  (8) 

where pk denotes the probability of the kth basic emotion, m = 8 total basic emotions, and 

1

1.
m

k
k

p
=

=  This mapping relies on three key steps, each formalised with equations 
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integrating critical parameters: For 3,H WI × ×∈  RGB channels, height H, width W, the 
MS-CNN extracts small, medium, and large-scale features: 

1 2 3
1 2 3,  ,  H W C H W C H W C

spa spa spaF F F× × × × × ×∈ ∈ ∈    (9) 

Where (C1, C2, C3) are channel counts for 3 × 3, 5 × 5, 7 × 7 convolution branches, with 
pre-attention fused features calculated as: 

( ) ( 1 2 3)
_ 1 2 3, , H W C C C

spa pre spa spa spaF Concat F F F × × + += ∈  (10) 

where Concat denotes the channel-wise concatenation operation. The attention weight 
matrix A for highlighting emotion-relevant regions is computed as: 

( )( )_spa pre a aA Sigmoid GAP F W b= ⋅ +  (11) 

where GAP is global average pooling, wa is the attention layer weight matrix, ba is the 
bias term, and Sigmoid normalises weights to [0, 1]; the final spatial feature is: 

_spa spa preF F A=   (12) 

where   represents element-wise multiplication. Style features k
styleS ∈ , k = 8 is the 

number of artistic genres, are extracted via a pre-trained VGG19-based style classifier. 
The classifier was trained on 50,000 artistic images across 8 genres with 95.2% accuracy, 
using categorical cross-entropy loss and Adam optimiser. The style probability outputs 
serve as the quantitative basis for weight adjustment in the cross-branch attention 
mechanism: 

( ) , 1spa style spa spa sem spaω Sigmoid S W b ω ω= ⋅ + = −  (13) 

where Wspa and bspa are the style-aware layer’s weight and bias; the fused feature is: 

( )fusion spa spa sem semF ω Flatten F ω F= ⋅ + ⋅  (14) 

where Flatten converts 2D spatial features to 1D vectors, and Fsem is the GAT-extracted 
semantic emotion feature. The fused feature Ffusion feeds a fully connected layer to predict 
GMM parameters, with the final emotion distribution being GMM’s mixing coefficients: 
P = [π1, π2, …, πm] where πk output from denotes the proportion of the kth basic emotion, 
μk is its mean intensity, 2

kσ  is its variance, and FC is the fully connected layer. The total 
loss balancing dominant emotion classification and intensity regression is: 

( ) ( )2
, , ,

1 1 1

1 ˆlog (1 )
i

N N m

total i c i k i k
i i k

L p μ μ
N m= = =

   
= ⋅ − + − ⋅ −      ⋅   

 α α  (15) 

where α = 0.5, cross-validated balance weight, N is the number of samples, ci is the ith 
sample’s dominant emotion label, pi, ci is the predicted probability of ci, μi,k is the 
predicted mean intensity of the kth emotion for the ith sample, and ,ˆi kμ  is its ground-truth 
intensity. 

In the mathematical modelling of the SDSCRM, the GMM module plays a core role 
in quantifying the continuous distribution of complex emotions. The estimation accuracy 
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of its parameters directly determines the fitting effect of the emotion distribution, and the 
parameter optimisation process needs to be achieved by minimising the GMM parameter 
estimation loss. To intuitively present the optimisation and convergence trend of GMM 
parameters during training, this study uses training epochs as the horizontal axis and 
GMM parameter estimation loss as the vertical axis to track the variation law of the loss 
value with the number of iterations. This loss curve not only verifies the effectiveness of 
the EM algorithm in optimising GMM parameters but also helps determine whether the 
model reaches a stable convergence state.  

Figure 2 GMM loss vs. training epochs (see online version for colours) 
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4 Model implementation and dataset construction 

The SDSCRM adopts a modular implementation with clear parameter settings and two 
dedicated datasets to ensure experimental validity. For network structure, the MS-CNN 
branch uses ResNet50 as backbone due to its proven performance in artistic image 
analysis, residual connections that mitigate gradient vanishing in deep networks, and 
balanced trade-off between model complexity and feature representation capacity 
compared to shallower networks or heavier architectures. The GAT branch has 2 layers, 
256-dimensional hidden layers, 64-dimensional attention vectors, and a post-GAT fully 
connected layer outputting 8-dimensional emotion vectors corresponding to basic 
emotions (Liu et al., 2022). The style classifier based on VGG19 was trained on a 
separate dataset of 50,000 artistic images 6,250 per genre with a train/validation/test split 
of 70:15:15. Training used categorical cross-entropy loss, Adam optimiser with learning 
rate 1e-4, and data augmentation rotation, flipping, colour jittering. Evaluation metrics 
included: accuracy 95.2%, macro-F1 94.8%, and per-genre precision/recall all > 92%, 
ensuring reliable style feature extraction for the cross-branch attention mechanism. The 
fusion layer leverages VGG19-based style classifier to extract 8-dimensional style 
features k = 8, with fusion weights regulated by a 1-layer fully connected network; the 
GMM prediction layer’s fully connected network outputs 24 parameters 8 mixing 
coefficients, 8 means, 8 variances, and GMM parameters are refined via EM algorithm 
during training. For GMM parameter initialisation, the mixing coefficients πk were set 
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uniformly to 1/8, means μk were initialised using K-means clustering on the training set’s 
emotion intensity vectors, and covariance matrices k  were initialised as diagonal 
matrices with values of 0.1. This initialisation strategy ensures stable EM convergence 
and avoids local optima by leveraging the data distribution characteristics. Hardware for 
training includes NVIDIA RTX 4090 GPU 24 GB memory, Intel Core i9-13900K CPU, 
and 64 GB RAM, with software environment based on PyTorch 2.0, Python 3.9, Open 
CV 4.8, and scikit-learn 1.2; hyperparameters were set as batch size 32, chosen through 
grid search over considering GPU memory constraints and training stability. Smaller 
batches 16 showed slower convergence, while larger batches 64, 128 caused gradient 
noise and reduced final accuracy by 1.5–2.3% in ablation studies. The chosen batch size 
32 provides optimal trade-off between convergence speed and model performance 
(Zhang and Tan, 2024). Datasets are constructed per three principles: genre diversity 8 
genres: oil painting, watercolour, ink wash, acrylic, digital art, pastel, charcoal, pop art, 
emotion coverage 6 complex emotions, 8 basic emotions, and label accuracy. 

The art caption dataset used for fine-tuning the BERT model was sourced from public 
art platforms, comprising 85,000 high-quality art image descriptions. Each caption was 
authored by professional curators or art historians, covering themes, elements, styles, and 
emotional connotations. The average caption length was 12.5 words. After pre-processing 
steps including stop-word removal and lemmatisation, the BERT-base model was  
fine-tuned for 3 epochs on 4 NVIDIA V100 GPUs with a learning rate of 2e-5 and a 
batch size of 32. The artistic emotion dataset (AED) includes 12,000 images 1,500 per 
genre collected through stratified sampling from public art platforms, academic datasets, 
and digital art communities. To ensure representativeness within each genre, we 
maintained a balanced distribution of historical periods, artistic movements, and regional 
origins. The complex emotion annotation dataset (CEAD) selects 5,000 high-ambiguity 
images annotator consistency < 0.7 from AED, with each labelled by 3 art psychology 
and computer vision experts into continuous emotion distributions 8 GMM mixing 
coefficients, 8 means, 8 variances; label consistency is validated via Kullback-Leibler 
(KL) divergence, with average KL divergence < 0.1 confirming reliability. Both datasets 
are split into training/validation/test sets at 7:1:2, and training sets undergo data 
augmentation to enhance generalisation. Key quantitative metrics for dataset quality and 
model training effectiveness include: KL divergence for CEAD label consistency: 

1

( || ) log
m

i
i

ii

pKL P Q p
q=

 =  
 

  (16) 

where P and Q are expert-labelled GMM distributions, ensuring average values < 0.1.G 

MM parameter estimation loss during training: ( )2

1 1

log | ,
N K

GMM k i k k
i k

π x μ σ
= =

 
= −   

 
   , 

minimising to refine distribution fitting. Data augmentation effectiveness evaluation via 
feature variance: 

( )2

1

1( )
N

i
i

Var F F F
N =

= −  (17) 
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where F is image feature, ensuring augmented features expand variance by ≥ 20% vs. 

original. Style classifier accuracy (Acc):   ,
 style

Correctly classified samplesAcc
Total samples

=  

maintaining > 92% to guarantee reliable style feature extraction. Annotator consistency 
coefficient for AED: 

2 2

1

2 2

1

1

c

k
k

c

k
k

N n

N n
c

=

=

 
  

= 

−


−


α  (18) 

where N is total annotations, c is emotion categories, nk is annotations per category, 
ensuring ≥ 0.65 for label reliability. 

Figure 3 Feature variance increase rate after quarterly data augmentation (see online version  
for colours) 
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The specific results are shown in Figure 3 The AED training set needs to adopt data 
augmentation strategies such as random rotation and horizontal flip to expand feature 
diversity, and sets a feature variance increase of ≥ 20% after augmentation compared 
with the original as the effectiveness standard. Considering that AED samples are 
collected quarterly, differences in feature distribution of samples from different quarters 
may lead to fluctuations in augmentation effects. To quantify such quarterly differences 
and verify whether the augmentation strategy meets the standard globally, this study 
calculates the feature variance increase rate after augmentation for each quarter from a 
quarterly perspective. This not only intuitively reflects the stability of the augmentation 
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effect but also provides data support for adjusting the balance of sample batches in 
subsequent model training. 

5 Experimental results and analysis 

5.1 Model performance benchmarking and distribution modelling 

To validate SDSCRM’s effectiveness, five representative models are selected for 
comparison: ResNet50 traditional CNN relying on low-level visual features, ViT-B/16 
transformer capturing global spatial relations, CNN + BERT simple concatenation of 
visual and semantic features without collaboration, GAT + CNN semantic-visual 
extraction lacking attention fusion, and SDSCRM w/o GMM SDSCRM stripped of 
continuous emotion modelling. Four metrics evaluate performance: Acc for dominant 
emotion prediction, macro-F1 for multi-class balance, mean absolute error (MAE) for 
emotion intensity regression, and KL Divergence for continuous distribution similarity. 
On the AED dataset 12,000 artistic images, SDSCRM achieves 90.4% Acc and 89.2% 
macro-F1–45.1% and 49.2% higher than ResNet50–proving spatial-semantic 
collaboration eliminates the feature isolation flaw of traditional models. Its MAE for 
basic emotion intensity regression hits 0.098, a 65.7% drop from ResNet50’s 0.286, 
confirming cross-branch attention fusion and GMM together model continuous emotion 
gradients. On the CEAD dataset 5,000 high-ambiguity images, SDSCRM’s KL 
divergence reaches 0.087, 89.4% lower than ResNet50’s 0.821; this gap underscores 
GMM’s value in capturing complex emotion ambiguity, as discrete label-based models 
like SDSCRM w/o GMM, KL = 0.315 fail to resolve the category hardening issue. Key 
quantitative relationships include: relative Acc improvement of SDSCRM over baselines: 

Δ 100%SDSCRM baseline

baseline

Acc AccAcc
Acc

−= × , with values hitting 45.1% vs. ResNet50 and 

21.3% vs. GAT + CNN.MAE reduction efficiency: 

100%baseline SDSCRM
MAE

baseline

MAE MAEη
MAE

−= × , reaching 65.7% vs. ResNet50 and 46.2% vs. 

GAT + CNN.KL Divergence compression ratio: ,baseline
KL

SDSCRM

KLγ
KL

=  peaking at 9.44 vs. 

ResNet50 and 3.62 vs. SDSCRM w/o GMM. 
Table 1 The performance of all models on the CEAD 

Model KL divergence 
ResNet50 0.821 
ViT-B/16 0.753 
CNN + BERT 0.689 
GAT + CNN 0.527 
SDSCRM w/o GMM 0.315 
SDSCRM 0.087 

SDSCRM has the smallest KL divergence, which is 89.4% lower than ResNet50. This 
demonstrates that the GMM-based continuous emotion modelling can accurately capture 
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the probability distribution of complex emotions, far exceeding the performance of 
discrete label-based models. 

5.2 Style adaptability and module contribution validation 

SDSCRM’s style-aware mechanism ensures stable performance across 8 artistic genres, 
maintaining over 89% Acc with a max-min fluctuation of only 3.2%. By contrast, 
baselines struggle with semantic-reliant genres: ResNet50’s Acc plummets to 45.8% on 
ink wash paintings, and ViT-B/16 drops to 52.3% on charcoal works – these models treat 
all genres with a one-size-fits-all feature weight, failing to adapt to ink wash’s blank 
space semantics or charcoal’s texture ambiguity. SDSCRM dynamically adjusts fusion 
weights: for ink wash, it sets ωsem = 0.6 to prioritise semantic context; for pop art,  
ωspa = 0.7 to leverage bold visual cues, as quantified by: Style weight adaptation formula: 

( )sem style spa spaω Sigmoid S W b= ⋅ +  (19) 

where Sstyle is VGG19-extracted style features, outputting genre-specific weights 0.6 for 
ink wash, 0.35 for pop art. Ablation experiments on AED confirm each module’s 
irreplaceability: removing spatial attention cuts Acc by 4.7% and raises MAE by 0.034, 
as the model loses focus on emotion-critical regions; stripping semantic GAT reduces 
Acc by 8.1% and widens KL divergence by 0.131, breaking the element-emotion 
semantic link; disabling style fusion increases MAE by 0.043, as fixed weights misalign 
with genre traits; omitting GMM spikes KL divergence by 0.228, reverting to discrete 
label limitations. The module contribution index: module importance score: 

/  100%,modulefull w o
module

full

Perf Perf
I

Perf
−

= ×  with semantic GAT 8.9% and GMM 25.9% 

ranking highest, confirming their role as core engines emotion recognition. A case study 
on an ink wash lone boat on misty river further validates practicality: spatial attention 
highlights the boat weight = 0.85 and misty sky weight = 0.72; GAT models their 
semantic link attention weight=0.91 to output a loneliness-dominant emotion vector; style 
fusion sets ωsem = 0.65, and GMM outputs a serene loneliness distribution πloneliness = 0.5; 
μ = 0.8; πcalm = 0.5, μ = 0.7, matching expert labels exactly. 

The practical application of the proposed model was validated through case studies 
targeting three specific art curation scenarios. In emotional theme-based exhibition 
planning, the model successfully analysed and grouped over 150 artworks by emotional 
similarity for a ‘melancholy and hope’ thematic exhibition. For personalised artwork 
recommendation, the system achieved 78% user satisfaction in matching artworks to 
viewers’ self-reported emotional states. In art therapy sessions, professional therapists 
reported 85% agreement between model-predicted emotions and patient emotional 
responses during guided viewing sessions. The evaluation combined quantitative metrics 
including user satisfaction scores and therapist agreement rates with qualitative feedback 
from curators and therapists, demonstrating the model’s practical utility in real-world art 
curation and therapeutic contexts. 

One of the core advantages of the SDSCRM is its ability to dynamically adjust the 
spatial-semantic feature weights through a style-aware fusion mechanism to adapt to the 
expression characteristics of different artistic genres. Ink wash paintings rely on the 
semantics of blank space to convey emotions, requiring an increase in the weight of 
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semantic features; oil paintings rely on visual elements such as colours and brushstrokes, 
requiring the strengthening of the weight of spatial features. To quantify the  
genre-adaptive logic of this weight adjustment, this study selects 8 typical artistic genres 
and uses spatial-semantic fusion weights as indicators to compare the differences in 
weight distribution among different genres. The comparison results can directly verify the 
effectiveness of the style-aware mechanism and also provide preliminary data support for 
demonstrating the necessity of the style fusion module in the subsequent ablation 
experiments on module contribution. The specific comparison data are shown in Figure 4. 

Figure 4 SDSCRM fusion weights by artistic genres (see online version for colours) 
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6 Conclusions 

This study proposes the SDSCRM to solve complex emotion recognition challenges in 
artistic images – visual-semantic separation, discrete labelling, poor style adaptability. Its 
MS-CNN-GAT dual-branch framework builds visual-semantic-emotional mapping,  
style-aware fusion ensures cross-genre stability, and GMM models continuous emotion 
distributions. Experiments on AED and CEAD show it outperforms baselines in accuracy 
90.4%, MAE 0.098, and KL divergence 0.087. Limitations include limited rare genre 
samples, missing abstract semantic elements, and poor real-time performance; future 
work will expand datasets, optimise semantic modelling, improve efficiency, and extend 
applications. The model enriches artistic image emotional computing theory and supports 
intelligent curation, emotional recommendation, and art therapy. 
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