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Abstract: This study presents a method for constructing digital art knowledge
graphs based on deep recurrent neural network (DRNN). A digital art
knowledge graph is initially constructed by extracting visual features with
ResNet50 and identifying textual entities via a CNN-BIiLSTM-CRF model.
Then, a DRDA model with bidirectional gated recurrent unit (GRU) and
neighbour-aware attention is proposed for graph completion. Experiments on
DBPedia50k and DBPedia500k show DRDA’s superiority over three baselines.
On DBPedia50k, DRDA improves head prediction MRR by up to 55% and
achieves the lowest MR in tail prediction, though trailing slightly in Hits@10.
On DBPedia500k, DRDA consistently outperforms baselines with MR
reductions of 59-406 and MRR gains of 2%-19%. Further analysis identifies
optimal depth and neighbour parameters, validating the model’s scalability and
its effectiveness in capturing complex semantic dependencies in large-scale
multimodal art data.
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1 Introduction

Knowledge graphs are a promising tool for exploring diverse, dynamic, and large-scale
datasets. They combine deductive and inductive techniques (Hogan et al., 2021) and have
become a fundamental tool in the field of artificial intelligence for modelling structured
information, capturing semantic relationships, and enabling cross-domain intelligent
reasoning (Peng et al., 2023). By representing entities and relationships as triples in a
graph structure, knowledge graphs facilitate question-answering systems, tailored
recommendations, and semantic search, with broad applications in technology (Wang
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et al., 2023), education (Abu-Salih and Alotaibi, 2024), art (Castellano et al., 2022).
About the art, knowledge graphs have demonstrated significant value in areas such as art
management, automated analysis, and cultural dissemination (Huang et al., 2023).

However, with the continuous development of digital humanities and digital art,
traditional knowledge graph construction methods are no longer able to adapt to the
numerous characteristics of modern digital art. Specifically, conventional approaches to
knowledge graph construction primarily depend on human curation, which requires
domain-specific expertise and often demands significant human resources in many
complex construction scenarios (Yu et al., 2024). Although artificial intelligence progress
has made machine learning applicable to knowledge graph building, and initial success
has been achieved in areas such as entity learning and ontology learning (Zhao et al.,
2024), thereby addressing the time-consuming and labour-intensive issues of manual
construction, these methods typically involve pre-processing and analysing text
descriptions using specific algorithms (Chen et al., 2020; Zhong et al., 2023), they still
face issues such as error propagation and a lack of guiding information during model
training. Additionally, existing automatic extraction techniques often fail to adequately
consider the associative information between entities and relationships, leading to
incomplete or inaccurate knowledge representations. The static nature of traditional
knowledge graph construction methods also cannot capture the dynamic evolution of art
movements or the continuously expanding digital art ecosystem, resulting in knowledge
graphs becoming quickly outdated or containing significant coverage gaps. Furthermore,
digital artworks inherently possess composite multimodal attributes (Chun, 2011), and
this multimodal nature requires knowledge graph construction to integrate information
from diverse data sources while preserving the complex interdependencies between
different modalities. Digital artworks present unique challenges for knowledge graph
construction, necessitating deeper integration across different modalities.

In this context, deep recurrent neural network (DRNN) demonstrates significant
advantages. Data in the field of digital art is highly heterogeneous and temporal,
containing not only visual information such as images but also temporal semantic
features such as descriptive text, creative background, and stylistic evolution.
Conventional approaches to building knowledge graphs typically depend on structured or
static text, making it difficult to effectively integrate and model these multimodal,
dynamically interconnected data. DRNN with its capable of capturing temporal
dependencies in input data through its recurrent structure. Compared to traditional neural
networks, DRNN possesses stronger contextual modelling capabilities (Guo et al., 2019),
widely applied in natural language processing and speech recognition tasks, can capture
contextual dependencies and semantic progression in art work descriptions, particularly
suited for handling features that evolve over time, such as style and theme. This
effectively enhances the accuracy and generalisation capabilities of tasks like art work
attribute prediction and relationship inference (Li et al., 2022; Ye et al., 2022).
Additionally, by incorporating gating mechanisms, such as gated recurrent unit (GRU),
DRNN can effectively remember long-range dependencies, thereby strengthening the
connection between entities and relationships in the graph. Furthermore, DRNN
structures combined with attention mechanisms can dynamically focus on key
information, achieving deep associations between image features and text entities in
multimodal fusion. In summary, DRNN can improve the construction accuracy of digital
art knowledge graphs and is an ideal choice for addressing complex multi-modal data
knowledge graph construction problems in the field of digital art.
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Building upon these foundations, the present study introduces an RNN-based digital
art knowledge graph construction method to enhance the recognition accuracy and
processing capability of multimodal artistic data. First, ResNet50 is employed for
visual feature extraction from digital art images to achieve efficient image classification
and semantic understanding. Second, a CNN-BiLSTM-CRF model is used to ensure
extraction precision for artistic descriptions. Additionally, an attention-enhanced
bidirectional GRU encoding mechanism 1is introduced to processes long-span
dependencies in multimodal sequential inputs, and a dynamic knowledge graph
completion approach is designed to infer absent entities and relationships.

The main innovations and contributions of this work include:

1 Multimodal feature integration: to overcome the constraints of conventional
knowledge graph construction approaches in processing multimodal digital art data,
this paper employs ResNet50 for image feature extraction and CNN-BiLSTM-CRF
(Chiu and Nichols, 2016) for textual entity recognition. The integration of visual and
textual features through similarity-based alignment effectively improves the
comprehensiveness of knowledge representation, resulting in substantial
enhancement in multimodal data processing capability. This improvement is
particularly significant in digital art environments where visual and textual
information need to be jointly analysed.

2 Deep RNN-based sequence modelling: to cope with the challenges of complex
semantic relationships and long-term dependencies in artistic descriptions, this paper
employs deep bidirectional GRU networks with attention mechanisms. The
attention-enhanced RNN architecture effectively captures contextual semantic
information and reduces interference from irrelevant information, which enhances
the precision of entity and relation extraction. This improvement significantly
enhances the understanding capability of the system for complex artistic concepts
and cultural contexts.

3 Dynamic knowledge completion mechanism: this paper introduces an RNN-driven
dynamic completion approach based on neighbour information and translation
principles to predict missing entities and relationships in the knowledge graph. The
N-attention module adaptively weights entity and relation information according to
structural patterns, which improves the flexibility and effectiveness of knowledge
graph completion. Meanwhile, the scoring function combining similarity and
translation models further reduces computational complexity and improves
completion accuracy.

2 Digital art knowledge graph initial construction

2.1 Image feature extraction based on ResNet50.

The image information in the digital art knowledge graph constructed in this research is
sourced from the ArtDL electronic art dataset. This paper employs the ResNet50 model
for image classification. The ResNet50 model incorporates residual blocks, enabling
information to flow directly from the input layer to the output layer, thereby avoiding the
issue of gradient vanishing. In the ResNet50 model, each residual block contains multiple
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convolutional layers, including shortcut connections, enabling the network to be deeper
while maintaining gradient stability. As a result, the ResNet50 model performs
exceptionally well in image classification and is widely adopted.

Figure 1 ResNet50 model architecture (see online version for colours)
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We first use methods such as scaling, cropping and filling, and adjusting image
proportions to resize and normalise the original images, and then perform image
classification based on the ResNet50 model. The residual structure of ResNet50 helps
preserve visual features across layers and alleviates vanishing gradients, making it
suitable for capturing fine-grained details in digital art images. The model structure
diagram is shown in Figure 1. This model consists of multiple residual blocks, each
containing multiple convolutional layers and batch normalisation (BN) layers. The model
is primarily divided into an input layer, convolutional layers and pooling layers, residual
blocks, a global average pooling layer, a fully connected layer, and an output layer.

The model is primarily divided into an input layer, convolution layers and pooling
layers, residual blocks, global average pooling layers, fully connected layers, and an
output layer:

1 Input layer: image data after pre-processing

2 Convolution layers and pooling layers: used for feature extraction and down
sampling of image data

3 Residual blocks: the ResNet50 model has a total of 4 residual blocks, containing 3, 4,
6, and 3 residual units respectively, with a total of 50 layers. Each residual block
includes multiple convolutional layers and a cross-layer connection, which directly
passes the input to the output, thereby addressing the issue of gradient vanishing. The
Equation for the residual block are shown in equation (1) and equation (2)

4  Global average pooling layer: use a global average pooling layer to convert feature
maps into vectors, which are then used as input for the classifier

5 Fully connected layer and output layer: convert feature vectors into classification
scores, then map the scores to category probabilities via a softmax output layer. The
equation for the ResNet50 model is shown in equation (3).

y=F(x.{W})+x, ()

where F(-) denotes the mapping function of the residual block, and W; denotes the
parameters of that residual block. F(xo, {W:}) denotes the mapping function from input xo
to output y, which can be expressed as:

F(xo,{Wi})=W20(W1x+W3) @

where W, and W, are the weight matrices of the convolution layer, and 3 is the bias
vector.

y:Softmax(VVSg(W4f(VI/3e(W2d(VVlc(xO))))) 3

The model uses ReLU as the activation function to represent non-linear transformation.
Where x, represents the input image data, c(-) represents the first convolutional layer, d(-)
represents the second max pooling layer, e(-) represents the residual blocks from the third
to the sixteenth layers, f{-) represents the global average pooling layers from the
thirteenth to the sixteenth layers, and g(-) represents the fully connected layer. W;
represents the weight parameters for each layer.
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2.2 Text information extraction based on CNN-BiLSTM-CRF

The textual description information of entities in the digital art knowledge graph
constructed by this research also comes from the ArtDL electronic art dataset, using the
descriptions of these works as textual knowledge for the digital art knowledge graph.
This paper uses a CNN-BiLSTM-CRF model, thoroughly mines these unstructured
textual data. The choice of CNN-BILSTM-CRF architecture is motivated by the
complementary strengths of its components. The CNN layer is effective in extracting
local patterns such as syntactic or stylistic phrases commonly found in art descriptions.
The BiLSTM captures bidirectional contextual dependencies, which is essential for
understanding sequential and thematic coherence in descriptive narratives. The CRF layer
ensures optimal global label consistency in the final prediction, improving the accuracy
of named entity recognition. This combination is particularly suitable for digital art texts,
where entity boundaries and artistic context often require joint modelling of local features
and long-range dependencies.

Figure 2 CNN-BILSTM-CRF model architecture (see online version for colours)
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It is worth noting that some artistic terms in the dataset may present ambiguity or
polysemy (e.g., ‘impression’ could refer to an art style or a specific artwork title). While
the CNN-BiLSTM-CRF model captures contextual features to improve entity recognition
accuracy, explicit disambiguation mechanisms (such as entity linking to external
ontologies or context-based clustering) are not integrated in the current version. This
remains a potential direction for future work, particularly in domains like digital art
where symbolic overlaps are common.

2.2.1 BiLSTM model

The long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) comprises
several key components: input at time t, cell state, candidate cell state, hidden state, and
three types of gates — forget, input (memory), and output. The model operates by
selectively retaining or discarding information through these gates, enabling it to preserve
relevant features across time steps. The hidden state undergoes modification and is output
at every step, with the activation of gates being a function of both the immediately
preceding hidden state and the current input.
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Bi-directional long short-term memory (BiLSTM) extends this architecture by
incorporating two parallel LSTMs: one layer processes the sequence in the forward
direction, while the other handles it backward, enabling the model to incorporate both
historical and future context, producing richer representations from both directions:

hy :{hR17hR27hR3""7hRn} (4)
Then, process the sequence backwards to the LSTM to obtain the output vector:

hy ={hy by by by, 5)
Next, concatenate the forward and backward hidden vectors:

hy =, @ by, ] ©)

where /4, represents the hidden layer vector of BILSTM at time ¢, and finally obtains the
final BiLSTM output result & = {h, ha, hs, ..., ha}.

2.2.2 Model structure of CNN-BiLSTM-CRF

The CNN-BiLSTM-CRF model consists of four main components: a Keras embedding
layer, a CNN layer, a BiLSTM layer, and a CRF layer. The model takes as input text
descriptions related to digital art, which are aggregated and annotated to build a
comprehensive dataset. The embedding layer transforms the input text into dense vector
representations. Next, the CNN layer captures local contextual features, while the
BiLSTM layer extracts long-range dependencies and global semantic patterns, leveraging
its bidirectional structure to consider both past and future context. The outputs of the
character-level and word-level representations are concatenated and passed through a
fully connected layer, followed by the CRF layer for structured sequence labelling. The
model outputs predicted entity labels after decoding. Finally, post-processing steps,
including entity prediction and deduplication, are applied to construct the cleaned and
finalised dataset.

2.3 Similarity-based data alignment

Based on the text and image modal data obtained in the preceding section, this paper
employs a label alignment algorithm to preliminarily construct a digital art knowledge
graph:

1 Multi-modal data label extraction: input the obtained multi-modal dataset, and
perform semantic label extraction on the text and image data separately. The text
data is annotated using a CNN-BiLSTM-CRF model, with the semantic labels stored
in a table; the image data is extracted using ResNet50 to form an image semantic
label set

2 Construction of data label sets: the extracted labels from each modality are
aggregated and stored separately as text and image label sets

3 Similarity calculation: the longest common subsequence (LCS) text similarity
algorithm is used to find the LCS between labels of different modalities and calculate
the similarity of the label group
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4 Similarity sorting: first, sort the calculated similarity scores.

Then, select the group with the highest similarity between text and image labels for
matching entities in the entity set. To associate these labels with entities, link the images
and text in the label group to their corresponding entities. Finally, output the
corresponding data pairs.

During multimodal fusion, inconsistencies may arise when semantic labels extracted
from images and text do not align. To address this, we incorporate a similarity threshold
in the alignment step to filter out weak matches. Additionally, attention mechanisms in
the downstream model dynamically weigh modality-specific features, reducing the
influence of noisy or conflicting information. These strategies help mitigate information
loss and enhance the robustness of the constructed knowledge graph in the presence of
imperfect modality alignment.

2.4 Data integration and storage

Neo4j graph database offers a flexible approach to data modelling through its
graph-based structure. In contrast to conventional relational databases, it does not require
significant time and effort to redefine the data structure and type of tables, and it allows
for the creation of entirely new tables. The final statistics for digital art data include the
annotation of 57 types of entities, 26 types of relationships, and 16 types of attributes,
with a total of 6,378 annotated nodes and over 19,000 entity relationships. After
extracting the digital art entities and relationships, they were organised, deduplicated,
converted to CSV format, and uploaded to the Neo4j graph database in UTF-8 encoding
format, facilitating subsequent research on digital art knowledge graphs, including
inference and retrieval.

3 Deep RNN-based knowledge graph completion

Based on the above, we propose a knowledge graph completion model based on deep
RNN coding and double attention mechanism (DRDA), as shown in the Figure 3: It
embeds the semantic feature information extracted from entity description text into the
structured information of the original knowledge graph, thereby fully learning the internal
association information of each triplet. However, ConMask does not consider the
associative learning between external text feature information and internal structural
information. Therefore, the DRDA model considers reconstructing the structural
information of the original knowledge graph based on the semantic association
information between entities and relationships, and treats each reconstructed tuple (head
entity, association information between the head entity and the relationship, relationship,
association information between the tail entity and the relationship, tail entity) as a short
sequence representation. Then, a deep bidirectional gate recurrent unit (GRU) encoding
network with different RNN units is used to learn the dependency information between
external text information and internal structural information. Subsequently, an
N-Attention layer is employed to enhance the weight information between entities and
relationships as well as between two entities. Finally, the decoding layer of the GRU is
used to decode the encoded short sequence information, restoring it to a tuple
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representation, and a comprehensive score is calculated using similarity and translation
principles (Schuster and Paliwal, 1997).

Figure 3 Knowledge graph completion model based on deep RNN

Output layer ;

Evaluation layer Attention Layer Score Function
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Head Entity Tail Entity Relationship Head Entity Tail Entity \
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3.1 Deep Bi-GRU encoding layer

In NLP encoding tasks, the Bi-GRU layer is effective in capturing the contextual
semantics of each word within a sequence. Initially, the word vector layer transforms
every word in the input into a dense vector representation. Thus, an input sequence can

be represented as W = {wi, ..., W, Wai, .., Wy}, where wteRd denotes the

d-dimensional embedding of the #™" word, and 7 is the total length of the sequence. After
word embedding, two GRU layers operate in parallel: a forward GRU and a backward
GRU. For each word w;, it is encoded by the forward GRU layer based on the context

information from w; to w,, denoted as ﬁt. Simultaneously, each word w; is also encoded
by the backward GRU layer based on the context information from w, to w,, denoted as
/—zt. The detailed computational process is as follows (Schuster and Paliwal, 1997):

4 = O'(szxt + Vthht—l + bz) (7
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r=o(Whx +Wih_ +b,) ®)
g =tanh (W, x, + W,  (n®h_)+b,) 9)
yo=h=(1-z)@tanh(W, h_+zOg,) (10)

where z and r represent the update gate and reset gate, respectively. The update gate
controls the extent to which previous information is retained and propagated forward,
while the reset gate determines which portions of historical information should be
excluded or forgotten. bn denotes the bias value corresponding to each gate unit, ®
denotes the cross product, tanh is the activation function, y; denotes the semantic
information transmitted between multi-layer Bi-GRUs, and W, 5 denotes the weight
parameters between A and B. For each word w, the forward GRU layer considers the text

information from w; to w; during the encoding process, resulting in vector ftt The
backward GRU layer considers the text information from w; to w;, resulting in vector h_t

Finally, connecting these two vectors yields 4, = [ﬁ ﬁ]

12"

3.2  N-attention module

The N-attention layer is composed of two main components: an attention layer
implementing the attention mechanism, and a neighbours layer responsible for
incorporating neighbourhood information. For clarity in the subsequent explanation, the
encoded representation of the short sequence is denoted as [4, A, 7, t. t], Let n, and n;
represent the number of direct neighbours for the head and tail entities, respectively, and
let N denote the number of relation neighbours. Additional parameters include the entity
neighbour threshold ¢ the relation neighbour threshold is 7z, the entity neighbour
parameter is &, RN is the set of relation neighbour tuples {(7n1, 1), (hu2, t2), ..., (i, ti)},
and the relation neighbour parameter is /.

The neighbours layer primarily utilises neighbour structure information to add
additional weight information to each position in short sequence information.

1 For the position weights of the head and tail entities (4, £), if the number of direct
neighbours of the head and tail entities is greater than ¢ or there are entity
neighbours with the same path as the current relationship r, then the head and tail
entities are considered to have high confidence and should be given sufficient
attention. If the opposite is true, then they are not processed.

2 For the position weights of (4., #.) in the short sequence, if the direct neighbours of
the head and tail entities also appear in their respective descriptive text information,
then a higher weight should be assigned. If not, then no processing is performed.

3 For relation r, if the number of neighbours of the relation (the number of triples
containing the relation) is greater than 7z, then the weight information for the current
relation is increased. If not, no processing is performed.

Additionally, the translation characteristic (% + r = t) is considered as a scoring factor for
relation neighbours. In summary, the neighbour information gain layer primarily
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maintains a weight matrix ¢, which is a multidimensional matrix with the same
dimension as the input short sequence information. That is:

0= {5[“”’”)1+M,Rg,1+"ﬂ,5[1+ﬁﬂ (11)
nh nt nh nt
R=E Y . [ j (12)
g
NS I +r=1,]
L, n,n <0 I, N<zt
5= . u= (13)
5: nhant>19 U, N>t

where @ is a dynamic hyperparameter matrix and also the core processing scheme for
weight enhancement achieved by obtaining neighbour information. The hyperparameter
matrix @ is set through specific experiments. Initially, the hyperparameter matrix ¢ is
initialised to 1, i.e., @ =[1, 1, 1, 1, 1], and then the value at each position of the matrix ¢
is calculated using neighbour information. According to equation (13), the values of &
and 4 are determined by the number of neighbours, ¢ is the activation function, n- and
n, are the number of neighbours in the head and tail entities that share the same
relationship path as r, n, is the number of times the neighbouring entities in the tail entity
appear in the text description of the tail entity, and s is the number of times the
neighbouring entities in the tail entity appear in the text description of the tail entity.
Therefore, based on the neighbour information of the entity relationship and the
description information of the entity, the value of each parameter in the hyperparameter
matrix ¢ can be calculated.

For the attention layer in the N-attention module, given the output of the encoding
layer H = [h, ha, ..., ha] (hi€ RY), where d is the number of hidden layer neurons in the
LSTM, and # is the length of the input short sequence. The attention mechanism can be
used to calculate attention probabilities, thereby highlighting the importance of each part
of the sequence to the overall input sequence. The specific calculation process is as
follows:

hy, =U, tanh (U, hy +U_h, +b,) (14)
h
ay, :—me"p( x) (15)
Zexp ()
Jj=l
=0 ayh (16)
i=1

where U,, U, and U. represent the weight matrices of the attention mechanism, b,
represents the bias vector value of the attention mechanism, and %, represents the new
feature output of the /! element. In equation (16), the feature output is multiplied by the
hyperparameter matrix ¢ and the feature output of the conventional attention layer to
obtain the new feature output.
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3.3 Bi-GRU decoding layer and scoring function

Use the GRU network to decode and generate a decoding sequence. When detecting the
label of word wy, the input to the decoding layer is: A/, calculated through the attention
mechanism, the previous label prediction vector 7;-1, and the hidden layer vector /-

from the previous decoding layer. The specific calculation process is as follows (Schuster
and Paliwal, 1997):

o = (WM, AW T ) a7
12 =a(WPH, +WPh2) + W, T +b®) (18)
g? =tanh (WL, +W," (@ KQ)+WLT_ +b) (19)
W=o(W, Hy+ W T +W, T (r®h®)+b2) (20)
T, = tanh (W, h/ +b,,) 21
=h® =(1-z,) @ tanh (W h_, +WLT_ +2,®g,)+T, (22)

Subsequently, at time step t, the output from the decoding layer is represented as (¢f(h),
o), & (r), o'(h), ¢(¢), which correspond to the transformed sequences of (4, 4, r, t, £)
after decoding. These outputs are reconstructed into tuples for pairwise comparison, and
their similarity is evaluated using the cosine similarity metric. This process yields a new
set of sequence features i/ = {hi, ha, ..., an,}. where h, denotes the mean vector computed
by averaging the first n vectors. Taking the final similarity calculation output as an
example, the vector w;, is fed into the model’s encoding layer to obtain the corresponding
feature representation /,. The attention probability of the /" element for the N element is
an, calculated as follows:

hy, =U, tanh (U hy +U_h +b,) (23)

gy, =P Uh) exp(hy,) (24)

i exp

J=1

where U,, U, U. represent the weight matrices of the attention mechanism, and b,
represents the bias vector value of the attention mechanism. Then, the average score of
each element at time 7 can be obtained as follows:

1 m
5= ay (24)
i=1

In addition to calculating similarity scores, a new scoring function based on translation
models will also be used:

f(hhrtt)=|(h+ b +r)= (2, +0); (25)

LR
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Therefore, combining the two scoring mechanisms yields the final output layer result:
0, = f,(¢(h),a’(1),0"(r), o’ (h), (1)) +5, (26)

where f is the scoring function based on the translation model, st is the scoring result
based on similarity at time ¢, and O, is the overall output score of the DRDA model. A
bidirectional GRU network is used for association modelling of short sequence tuples,
thereby learning internal dependencies and deep dependencies within the sequence. The
reason for choosing GRU is primarily because it has a faster convergence rate than
LSTM, making it highly effective for training deep RNNSs.

To accelerate the training speed of the DRDA model, the following objective function
is designed to achieve the experimental objectives. The optimiser uses the Adagrad
algorithm proposed by Duchi et al. (2011), and the objective function is defined as:

¥ log($(h,rt BT UE))

, p.>05
. E" | p. >
L(h,r,t)=4" (27)
log (S (h,r,t, E* UE))
> - , p.<05
t,eE” ‘E+ |

where p. denotes the blocking probability factor sampled from a uniform distribution
U[0, 1]. If p. > 0.5, the tail entity ¢ of the input remains unchanged, while the positive and
negative samples are generated by modifying the head entity. Conversely, if p. < 0.5, the
head entity % of the input remains unchanged, and variations are introduced to the tail
entity to form positive and negative samples. E* and E~ are the sets of positive and
negative entities obtained from their respective target distributions P*, P~ of positive and
negative samples, respectively, and P, P~ are also obtained using a simple uniform
distribution. When p. < 0.5, P* is the uniform distribution over the entity set {t+ | (&, r, )
¢ T}, and P~ is the uniform distribution of entities in {t—|(k, h, t=) ¢ T}. When p. > 0.5,
P* is the uniform distribution of the entity in {h+ | (h+, r, )¢ T}, and P~ is the uniform
distribution of the entity in {h— | (h—, r, t) ¢ T}. S represents the softmax-normalised
output generated by DRDA:

exp(DKGC-DRDA (4, 7, 1))
Z exp(DKGC-DRDA (e, 7,7))

S(hrt E*)=1<F (28)
exp(DKGC-DRDA(h, r,1)) <05

Z exp(DKGC-DRDA(h, r,e))”

ecE*

p.>0.5

c

In fact, the main purpose of this objective function is to give correct triples a high score
and incorrect triples a low score in the triplet prediction task. This allows for accurate
prediction of correct entities when performing entity linking prediction tasks.
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4 Experimental results and analyses

To evaluate the performance of the DRDA model, this study used the open-source dataset
DBPedia as experimental data for performance assessment. Three evaluation metrics
(MR, MRR, Hit@10) were used as evaluation criteria for the DRDA model.
Additionally, each entity-link prediction task was run 10 times, and the average results of
the model across the three metrics were calculated. Based on this, a variable analysis was
conducted on the depth h of the deep bidirectional GRU network and the neighbour gain
parameter p to observe the impact of these two hyperparameters on model performance.

Regarding the experimental parameter settings, the dimension of the word vectors is
set to 300, and the dropout radio is set to 0.5. Each layer of the BiGRU encoding layer
contains 400 nodes, and each layer of the GRU decoding layer contains 500 nodes. The
number of encoding layers /% is 3, the entity neighbour parameter J1is set to 1.5, the entity
neighbour threshold #}is set to 5, the relation neighbour parameter # is set to 1.5, and the
relation neighbour threshold 7is set to 8.

To validate the comprehensive performance of DRDA, the DRDA model is compared
with KBGC model (Lin et al., 2024), ConvRot model (Le et al., 2023), HPGAT model
(Han et al., 2024).

Table 1 Experimental results of various models on the DBPediaS0k dataset for the completion
task
Head Tail

Model

MR Hits@10 MRR MR Hits@10 MRR
KBGC 134 0.66 0.69 96 0.67 0.56
ConvRot 203 0.64 0.59 138 0.65 0.49
HPGAT 225 0.62 0.56 91 0.67 0.53
DRDA 96 0.31 0.25 79 0.54 0.57

Table 2 Experimental results of various models on the DBPedia500k dataset for the
completion task

Head Tail
Model
MR Hits@]10 MRR MR Hits@10 MRR
KBGC 1,425 0.28 0.34 591 0.41 0.57
ConvRot 2,248 0.22 0.26 765 0.39 0.45
HPGAT 1,056 0.32 0.43 418 0.45 0.59
DRDA 983 0.34 0.44 359 0.52 0.64

Based on the experimental results in Tables 1 and 2, DRDA demonstrates performance
improvements over the other three models in the head entity prediction task. Specifically,
on the DBPedia50k dataset, DRDA outperformed the other models in the head prediction
task by 38-1265 ranks in the MR metric, by 6%—9% in Hits@10, and by 25%—55% in
MRR. These improvements can be attributed to the model’s ability to integrate internal
structural information with external semantic signals, thus enhancing the alignment
between textual context and graph structure. However, in the tail entity prediction on the
DBPedia50k dataset, DRDA’s performance is more nuanced: although it achieved the
lowest MR among all models, it underperformed KBGC by 13% in Hits@10 and showed
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a 1% higher MRR than KBGC, while outperforming ConvRot and HPGAT by 4-8% in
MRR. This may suggest that in certain tail prediction cases, the sparse local subgraph
structure limits the model’s capacity to leverage semantic associations effectively.
Alternatively, suboptimal neighbour aggregation strategies or hyperparameter
configurations (e.g., in the neighbour layer) might introduce noise, impairing
representation learning for tail entities.

As shown in Table 2, on the larger DBPedia500k dataset, DRDA again achieves
consistent improvements in both head and tail entity prediction tasks. In head prediction,
DRDA reduced the MR by 73—-126 ranks, improved Hits@10 by 2%—12%, and boosted
MRR by 2%—18%. In tail prediction, it outperformed the best baseline by 59-406 ranks
in MR, by 7%-13% in Hits@10, and by 5%-19% in MRR. These results indicate that
DRDA scales effectively with larger datasets. Unlike conventional knowledge
representation models that rely solely on structured triples, DRDA benefits from jointly
modelling textual semantics and local structural patterns, thereby enhancing relational
reasoning over complex and expansive knowledge graphs.

Figure 4 Impact of the en-depth parameter on model performance (see online version
for colours)

0.6
0.5

0.4

0.
0.
0
1 2 3 4 5 6 7

m Head m Tail

W

N

—

The results show that the DRDA model performs poorly on certain metrics on the
small-scale dataset DBPedia50k. Therefore, to investigate the reasons for the poor
performance of DRDA on small-scale datasets, this section explores the depth
(en-depth) of the Bi-GRU encoding layer. Additionally, for the large-scale dataset
DBPedia500k, this section observes the hyperparameters ¢, y, and o of the neighbour
layer to investigate their impact on the model’s overall performance. First, we explore the
encoding layer depth parameter (en-depth) for the open knowledge graph completion task
on the small-scale dataset (DBPedia50k), observing the impact of the en-depth parameter
on the head-tail entity link prediction task. As shown in Figure 4, the prediction results
for tail entities are better than those for head entities, possibly because the head entities
extract a lot of semantic information about the relationships between tail entities from the
text information, making the tail entity representation learning more complete.
Additionally, as the number of Bi-GRU encoding layers increases, the Hit@10 metric
continues to rise. When the en-depth value reaches 4, Hit@10 reaches its peak. When the
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en-depth value exceeds 4, the Hit@10 metric begins to decrease, indicating that the
learning capability of the DRDA model starts to decline. Therefore, it can be concluded
that when the en-depth value is less than 4, the model is continuously learning deep
associative semantic information between entities, resulting in a continuous increase in
the Hit@10 value. When the en-depth value exceeds 4, the number of encoding layers
becomes excessive, and entities and relationships are encoded into higher-dimensional
semantic representations, leading to inaccurate learned associative information and
ultimately reduced performance.

Additionally, to investigate the impact of the three hyperparameters in the neighbours
layer on model performance, we plotted line charts showing how various performance
metrics change with each hyperparameter. Furthermore, since subgraphs in large-scale
datasets are more densely populated, entity neighbour information is richer, making it
easier to observe experimental effects. Therefore, we selected the large-scale dataset
DBPedia500k for testing.

Figure 5 Curve showing the variation of the hit@10 metric of the DRDA model with respect to
the ¢} parameter (see online version for colours)

0.55

0.50 A/‘/‘/ﬁ\‘_‘\‘_‘

0.45

0.40

0.35

0.25

HIT@10

1 2 3 4 5 6 7 8

—e—Head —&—Tail

Figure 6 Curve showing the variation of the MRR metric of the DRDA model with respect to the
¢} parameter (see online version for colours)
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First, we conducted experimental observations on the threshold parameter ¢ of the
neighbour layer. As shown in Figures 5 and 6, (a) and (b) respectively present the curves
of the Hit@10 and MRR metrics as a function of the ¢} parameter. From the figures, it
can be observed that if the ¢} parameter is set too small, the performance of the Hit@10
and MRR metrics will decline. When ¢}reaches a certain value, the values of both metrics
reach a peak, after which the model’s performance begins to decline again. Therefore,
based on the above analysis, it is concluded that setting ¢} to 4—6 is appropriate, as this
yields the best model performance. Setting ¢} too high may result in the loss of neighbour
information, while setting it too low may cause unreliable entities to be assigned higher
weights, leading to performance degradation.

Figure 7 MRR, Hit@10, and hit@1 metrics of the DRDA model as a function of the d parameter
(see online version for colours)
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Figure 8 MRR, Hit@10, and hit@1 metrics of the DRDA model as a function of the # parameter
(see online version for colours)
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The following is an experimental exploration of the hyperparameters for entities and
relations. As shown in Figure 7, the three metrics (MRR, Hit@10, and Hit@]1) of the
DRDA model are plotted as line charts as a function of the entity neighbour parameter 9.
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From the experimental results, it can be concluded that when the entity neighbour
parameter O is less than 1.5, the model’s performance shows an overall upward trend.
when ¢ is within the range of 1.4 to 1.6, the MRR and Hit@10 metrics show a slight
downward trend, but the Hit@1 metric remains stable. Therefore, it can be concluded that
setting d within the range of 1.5 to 1.7 yields the best model performance. Additionally, if
the entity neighbour hyperparameter is set too high, other weight information may be
ignored, leading to a decline in model performance. If the parameter is set too low, the
entity’s neighbour information may not be prioritised, failing to influence the model’s
overall performance. As shown in Figure 8, similar experiments were conducted on the
relationship neighbour hyperparameters. It can be observed that the trends of the
relationship hyperparameter & and the entity hyperparameter ¢ are largely similar, with
the optimal model performance occurring within the range of 1.5-1.7. This may be
because the relationship neighbour parameters are influenced by the entity neighbour
parameters, resulting in similar trends in the impact of entity neighbour hyperparameters
and relationship neighbour hyperparameters on the model’s overall performance.

5 Conclusions

In this paper, a deep RNN-based approach for digital art knowledge graph construction
was proposed, which effectively addresses the limitations of traditional methods in
handling multimodal data and capturing complex semantic relationships. By integrating
ResNet50 for visual feature extraction and CNN-BILSTM-CRF for textual entity
recognition, the multimodal data processing capability is significantly improved. The
attention-enhanced bidirectional GRU network is introduced to capture long-term
dependencies and contextual semantic information. Additionally, a dynamic completion
mechanism with N-attention module is designed to predict missing entities and
relationships through neighbour information integration. Through comparative
experiments, it was found that:

1  Deep RNN-based completion models demonstrate improvements in knowledge
graph completion accuracy, while bidirectional GRU networks prove effective at
modelling complex semantic relationships in multimodal representations.

2 The introduction of the N-attention mechanism in deep RNNs can effectively
enhance the weight information between entities and relationships.

3 The optimised knowledge graph construction method based on deep RNN models
demonstrates good scalability on large-scale knowledge graph datasets, validating
the effectiveness and practicality of DRNNSs in digital art knowledge graph
construction tasks.

The experimental outcomes validate the enhanced efficiency and superiority of the
suggested method when compared to traditional knowledge graph construction
approaches. However, the constructed knowledge graph is only targeted at image-based
digital art works, which may limit the applicability of the model to other types of artistic
media such as digital animations, interactive media, and virtual reality art. Future work
should consider incorporating diverse artistic forms and multimedia content to further
validate the model’s effectiveness in more comprehensive digital humanities scenarios.
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