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Abstract: This study presents a method for constructing digital art knowledge 
graphs based on deep recurrent neural network (DRNN). A digital art 
knowledge graph is initially constructed by extracting visual features with 
ResNet50 and identifying textual entities via a CNN-BiLSTM-CRF model. 
Then, a DRDA model with bidirectional gated recurrent unit (GRU) and 
neighbour-aware attention is proposed for graph completion. Experiments on 
DBPedia50k and DBPedia500k show DRDA’s superiority over three baselines. 
On DBPedia50k, DRDA improves head prediction MRR by up to 55% and 
achieves the lowest MR in tail prediction, though trailing slightly in Hits@10. 
On DBPedia500k, DRDA consistently outperforms baselines with MR 
reductions of 59–406 and MRR gains of 2%–19%. Further analysis identifies 
optimal depth and neighbour parameters, validating the model’s scalability and 
its effectiveness in capturing complex semantic dependencies in large-scale 
multimodal art data. 

Keywords: digital art; knowledge graph; deep recurrent neural network; 
DRNN. 
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1 Introduction 

Knowledge graphs are a promising tool for exploring diverse, dynamic, and large-scale 
datasets. They combine deductive and inductive techniques (Hogan et al., 2021) and have 
become a fundamental tool in the field of artificial intelligence for modelling structured 
information, capturing semantic relationships, and enabling cross-domain intelligent 
reasoning (Peng et al., 2023). By representing entities and relationships as triples in a 
graph structure, knowledge graphs facilitate question-answering systems, tailored 
recommendations, and semantic search, with broad applications in technology (Wang  
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et al., 2023), education (Abu-Salih and Alotaibi, 2024), art (Castellano et al., 2022). 
About the art, knowledge graphs have demonstrated significant value in areas such as art 
management, automated analysis, and cultural dissemination (Huang et al., 2023). 

However, with the continuous development of digital humanities and digital art, 
traditional knowledge graph construction methods are no longer able to adapt to the 
numerous characteristics of modern digital art. Specifically, conventional approaches to 
knowledge graph construction primarily depend on human curation, which requires 
domain-specific expertise and often demands significant human resources in many 
complex construction scenarios (Yu et al., 2024). Although artificial intelligence progress 
has made machine learning applicable to knowledge graph building, and initial success 
has been achieved in areas such as entity learning and ontology learning (Zhao et al., 
2024), thereby addressing the time-consuming and labour-intensive issues of manual 
construction, these methods typically involve pre-processing and analysing text 
descriptions using specific algorithms (Chen et al., 2020; Zhong et al., 2023), they still 
face issues such as error propagation and a lack of guiding information during model 
training. Additionally, existing automatic extraction techniques often fail to adequately 
consider the associative information between entities and relationships, leading to 
incomplete or inaccurate knowledge representations. The static nature of traditional 
knowledge graph construction methods also cannot capture the dynamic evolution of art 
movements or the continuously expanding digital art ecosystem, resulting in knowledge 
graphs becoming quickly outdated or containing significant coverage gaps. Furthermore, 
digital artworks inherently possess composite multimodal attributes (Chun, 2011), and 
this multimodal nature requires knowledge graph construction to integrate information 
from diverse data sources while preserving the complex interdependencies between 
different modalities. Digital artworks present unique challenges for knowledge graph 
construction, necessitating deeper integration across different modalities. 

In this context, deep recurrent neural network (DRNN) demonstrates significant 
advantages. Data in the field of digital art is highly heterogeneous and temporal, 
containing not only visual information such as images but also temporal semantic 
features such as descriptive text, creative background, and stylistic evolution. 
Conventional approaches to building knowledge graphs typically depend on structured or 
static text, making it difficult to effectively integrate and model these multimodal, 
dynamically interconnected data. DRNN with its capable of capturing temporal 
dependencies in input data through its recurrent structure. Compared to traditional neural 
networks, DRNN possesses stronger contextual modelling capabilities (Guo et al., 2019), 
widely applied in natural language processing and speech recognition tasks, can capture 
contextual dependencies and semantic progression in art work descriptions, particularly 
suited for handling features that evolve over time, such as style and theme. This 
effectively enhances the accuracy and generalisation capabilities of tasks like art work 
attribute prediction and relationship inference (Li et al., 2022; Ye et al., 2022). 
Additionally, by incorporating gating mechanisms, such as gated recurrent unit (GRU), 
DRNN can effectively remember long-range dependencies, thereby strengthening the 
connection between entities and relationships in the graph. Furthermore, DRNN 
structures combined with attention mechanisms can dynamically focus on key 
information, achieving deep associations between image features and text entities in 
multimodal fusion. In summary, DRNN can improve the construction accuracy of digital 
art knowledge graphs and is an ideal choice for addressing complex multi-modal data 
knowledge graph construction problems in the field of digital art. 
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Building upon these foundations, the present study introduces an RNN-based digital 
art knowledge graph construction method to enhance the recognition accuracy and 
processing capability of multimodal artistic data. First, ResNet50 is employed for  
visual feature extraction from digital art images to achieve efficient image classification 
and semantic understanding. Second, a CNN-BiLSTM-CRF model is used to ensure 
extraction precision for artistic descriptions. Additionally, an attention-enhanced 
bidirectional GRU encoding mechanism is introduced to processes long-span 
dependencies in multimodal sequential inputs, and a dynamic knowledge graph 
completion approach is designed to infer absent entities and relationships. 

The main innovations and contributions of this work include: 

1 Multimodal feature integration: to overcome the constraints of conventional 
knowledge graph construction approaches in processing multimodal digital art data, 
this paper employs ResNet50 for image feature extraction and CNN-BiLSTM-CRF 
(Chiu and Nichols, 2016) for textual entity recognition. The integration of visual and 
textual features through similarity-based alignment effectively improves the 
comprehensiveness of knowledge representation, resulting in substantial 
enhancement in multimodal data processing capability. This improvement is 
particularly significant in digital art environments where visual and textual 
information need to be jointly analysed. 

2 Deep RNN-based sequence modelling: to cope with the challenges of complex 
semantic relationships and long-term dependencies in artistic descriptions, this paper 
employs deep bidirectional GRU networks with attention mechanisms. The 
attention-enhanced RNN architecture effectively captures contextual semantic 
information and reduces interference from irrelevant information, which enhances 
the precision of entity and relation extraction. This improvement significantly 
enhances the understanding capability of the system for complex artistic concepts 
and cultural contexts. 

3 Dynamic knowledge completion mechanism: this paper introduces an RNN-driven 
dynamic completion approach based on neighbour information and translation 
principles to predict missing entities and relationships in the knowledge graph. The 
N-attention module adaptively weights entity and relation information according to 
structural patterns, which improves the flexibility and effectiveness of knowledge 
graph completion. Meanwhile, the scoring function combining similarity and 
translation models further reduces computational complexity and improves 
completion accuracy. 

2 Digital art knowledge graph initial construction 

2.1 Image feature extraction based on ResNet50. 

The image information in the digital art knowledge graph constructed in this research is 
sourced from the ArtDL electronic art dataset. This paper employs the ResNet50 model 
for image classification. The ResNet50 model incorporates residual blocks, enabling 
information to flow directly from the input layer to the output layer, thereby avoiding the 
issue of gradient vanishing. In the ResNet50 model, each residual block contains multiple 
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convolutional layers, including shortcut connections, enabling the network to be deeper 
while maintaining gradient stability. As a result, the ResNet50 model performs 
exceptionally well in image classification and is widely adopted. 

Figure 1 ResNet50 model architecture (see online version for colours) 
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We first use methods such as scaling, cropping and filling, and adjusting image 
proportions to resize and normalise the original images, and then perform image 
classification based on the ResNet50 model. The residual structure of ResNet50 helps 
preserve visual features across layers and alleviates vanishing gradients, making it 
suitable for capturing fine-grained details in digital art images. The model structure 
diagram is shown in Figure 1. This model consists of multiple residual blocks, each 
containing multiple convolutional layers and batch normalisation (BN) layers. The model 
is primarily divided into an input layer, convolutional layers and pooling layers, residual 
blocks, a global average pooling layer, a fully connected layer, and an output layer. 

The model is primarily divided into an input layer, convolution layers and pooling 
layers, residual blocks, global average pooling layers, fully connected layers, and an 
output layer:  

1 Input layer: image data after pre-processing 

2 Convolution layers and pooling layers: used for feature extraction and down 
sampling of image data 

3 Residual blocks: the ResNet50 model has a total of 4 residual blocks, containing 3, 4, 
6, and 3 residual units respectively, with a total of 50 layers. Each residual block 
includes multiple convolutional layers and a cross-layer connection, which directly 
passes the input to the output, thereby addressing the issue of gradient vanishing. The 
Equation for the residual block are shown in equation (1) and equation (2) 

4 Global average pooling layer: use a global average pooling layer to convert feature 
maps into vectors, which are then used as input for the classifier 

5 Fully connected layer and output layer: convert feature vectors into classification 
scores, then map the scores to category probabilities via a softmax output layer. The 
equation for the ResNet50 model is shown in equation (3). 

{ }( )0 0, iy F x W x= +  (1) 

where F(⋅) denotes the mapping function of the residual block, and Wi denotes the 
parameters of that residual block. F(x0, {Wi}) denotes the mapping function from input x0 
to output y, which can be expressed as: 

{ }( ) ( )0 2 1 3, iF x W W σ W x W= +  (2) 

where W1 and W2 are the weight matrices of the convolution layer, and W3 is the bias 
vector. 

( )( )( )( )( )5 4 3 2 1 0Softmax (y W g W f W e W d W c x=  (3) 

The model uses ReLU as the activation function to represent non-linear transformation. 
Where x0 represents the input image data, c(⋅) represents the first convolutional layer, d(⋅) 
represents the second max pooling layer, e(⋅) represents the residual blocks from the third 
to the sixteenth layers, f(⋅) represents the global average pooling layers from the 
thirteenth to the sixteenth layers, and g(⋅) represents the fully connected layer. Wi 
represents the weight parameters for each layer. 
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2.2 Text information extraction based on CNN-BiLSTM-CRF 

The textual description information of entities in the digital art knowledge graph 
constructed by this research also comes from the ArtDL electronic art dataset, using the 
descriptions of these works as textual knowledge for the digital art knowledge graph. 
This paper uses a CNN-BiLSTM-CRF model, thoroughly mines these unstructured 
textual data. The choice of CNN-BiLSTM-CRF architecture is motivated by the 
complementary strengths of its components. The CNN layer is effective in extracting 
local patterns such as syntactic or stylistic phrases commonly found in art descriptions. 
The BiLSTM captures bidirectional contextual dependencies, which is essential for 
understanding sequential and thematic coherence in descriptive narratives. The CRF layer 
ensures optimal global label consistency in the final prediction, improving the accuracy 
of named entity recognition. This combination is particularly suitable for digital art texts, 
where entity boundaries and artistic context often require joint modelling of local features 
and long-range dependencies. 

Figure 2 CNN-BILSTM-CRF model architecture (see online version for colours) 
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It is worth noting that some artistic terms in the dataset may present ambiguity or 
polysemy (e.g., ‘impression’ could refer to an art style or a specific artwork title). While 
the CNN-BiLSTM-CRF model captures contextual features to improve entity recognition 
accuracy, explicit disambiguation mechanisms (such as entity linking to external 
ontologies or context-based clustering) are not integrated in the current version. This 
remains a potential direction for future work, particularly in domains like digital art 
where symbolic overlaps are common. 

2.2.1 BiLSTM model 
The long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) comprises 
several key components: input at time t, cell state, candidate cell state, hidden state, and 
three types of gates – forget, input (memory), and output. The model operates by 
selectively retaining or discarding information through these gates, enabling it to preserve 
relevant features across time steps. The hidden state undergoes modification and is output 
at every step, with the activation of gates being a function of both the immediately 
preceding hidden state and the current input. 
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Bi-directional long short-term memory (BiLSTM) extends this architecture by 
incorporating two parallel LSTMs: one layer processes the sequence in the forward 
direction, while the other handles it backward, enabling the model to incorporate both 
historical and future context, producing richer representations from both directions: 

{ }1 2 3, , , ,R R R R Rnh h h h h= …  (4) 

Then, process the sequence backwards to the LSTM to obtain the output vector: 

{ }1 2 3, , , ,L L L L Lnh h h h h= …  (5) 

Next, concatenate the forward and backward hidden vectors: 

[ ]t Rt Lth h h= ⊕  (6) 

where ht represents the hidden layer vector of BiLSTM at time t, and finally obtains the 
final BiLSTM output result h = {h1, h2, h3, …, hn}. 

2.2.2 Model structure of CNN-BiLSTM-CRF 
The CNN-BiLSTM-CRF model consists of four main components: a Keras embedding 
layer, a CNN layer, a BiLSTM layer, and a CRF layer. The model takes as input text 
descriptions related to digital art, which are aggregated and annotated to build a 
comprehensive dataset. The embedding layer transforms the input text into dense vector 
representations. Next, the CNN layer captures local contextual features, while the 
BiLSTM layer extracts long-range dependencies and global semantic patterns, leveraging 
its bidirectional structure to consider both past and future context. The outputs of the 
character-level and word-level representations are concatenated and passed through a 
fully connected layer, followed by the CRF layer for structured sequence labelling. The 
model outputs predicted entity labels after decoding. Finally, post-processing steps, 
including entity prediction and deduplication, are applied to construct the cleaned and 
finalised dataset. 

2.3 Similarity-based data alignment 

Based on the text and image modal data obtained in the preceding section, this paper 
employs a label alignment algorithm to preliminarily construct a digital art knowledge 
graph:  

1 Multi-modal data label extraction: input the obtained multi-modal dataset, and 
perform semantic label extraction on the text and image data separately. The text 
data is annotated using a CNN-BiLSTM-CRF model, with the semantic labels stored 
in a table; the image data is extracted using ResNet50 to form an image semantic 
label set 

2 Construction of data label sets: the extracted labels from each modality are 
aggregated and stored separately as text and image label sets 

3 Similarity calculation: the longest common subsequence (LCS) text similarity 
algorithm is used to find the LCS between labels of different modalities and calculate 
the similarity of the label group 
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4 Similarity sorting: first, sort the calculated similarity scores. 

Then, select the group with the highest similarity between text and image labels for 
matching entities in the entity set. To associate these labels with entities, link the images 
and text in the label group to their corresponding entities. Finally, output the 
corresponding data pairs. 

During multimodal fusion, inconsistencies may arise when semantic labels extracted 
from images and text do not align. To address this, we incorporate a similarity threshold 
in the alignment step to filter out weak matches. Additionally, attention mechanisms in 
the downstream model dynamically weigh modality-specific features, reducing the 
influence of noisy or conflicting information. These strategies help mitigate information 
loss and enhance the robustness of the constructed knowledge graph in the presence of 
imperfect modality alignment. 

2.4 Data integration and storage 

Neo4j graph database offers a flexible approach to data modelling through its  
graph-based structure. In contrast to conventional relational databases, it does not require 
significant time and effort to redefine the data structure and type of tables, and it allows 
for the creation of entirely new tables. The final statistics for digital art data include the 
annotation of 57 types of entities, 26 types of relationships, and 16 types of attributes, 
with a total of 6,378 annotated nodes and over 19,000 entity relationships. After 
extracting the digital art entities and relationships, they were organised, deduplicated, 
converted to CSV format, and uploaded to the Neo4j graph database in UTF-8 encoding 
format, facilitating subsequent research on digital art knowledge graphs, including 
inference and retrieval. 

3 Deep RNN-based knowledge graph completion 

Based on the above, we propose a knowledge graph completion model based on deep 
RNN coding and double attention mechanism (DRDA), as shown in the Figure 3: It 
embeds the semantic feature information extracted from entity description text into the 
structured information of the original knowledge graph, thereby fully learning the internal 
association information of each triplet. However, ConMask does not consider the 
associative learning between external text feature information and internal structural 
information. Therefore, the DRDA model considers reconstructing the structural 
information of the original knowledge graph based on the semantic association 
information between entities and relationships, and treats each reconstructed tuple (head 
entity, association information between the head entity and the relationship, relationship, 
association information between the tail entity and the relationship, tail entity) as a short 
sequence representation. Then, a deep bidirectional gate recurrent unit (GRU) encoding 
network with different RNN units is used to learn the dependency information between 
external text information and internal structural information. Subsequently, an  
N-Attention layer is employed to enhance the weight information between entities and 
relationships as well as between two entities. Finally, the decoding layer of the GRU is 
used to decode the encoded short sequence information, restoring it to a tuple 
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representation, and a comprehensive score is calculated using similarity and translation 
principles (Schuster and Paliwal, 1997). 

Figure 3 Knowledge graph completion model based on deep RNN 
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3.1 Deep Bi-GRU encoding layer 

In NLP encoding tasks, the Bi-GRU layer is effective in capturing the contextual 
semantics of each word within a sequence. Initially, the word vector layer transforms 
every word in the input into a dense vector representation. Thus, an input sequence can 
be represented as W = {w1, …, wt, wi+1, ..., wn}, where d

tw ∈  denotes the  
d-dimensional embedding of the tttth word, and n is the total length of the sequence. After 
word embedding, two GRU layers operate in parallel: a forward GRU and a backward 
GRU. For each word wt, it is encoded by the forward GRU layer based on the context 
information from w1 to wn, denoted as .th


 Simultaneously, each word wt is also encoded 

by the backward GRU layer based on the context information from wn to wn, denoted as 
.th


 The detailed computational process is as follows (Schuster and Paliwal, 1997): 

( )1
T T

t xz t hz t zz σ W x W h b−= + +  (7) 
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( )1
T T

t xr t hr t rr σ W x W h b−= + +  (8) 

( )( )1tanh T T
t xg t hg t t gg W x W r h b−= + ⊗ +  (9) 

( ) ( )11 tanh T
t t t xg t t ty h z W h z g−= = − ⊗ + ⊗  (10) 

where z and r represent the update gate and reset gate, respectively. The update gate 
controls the extent to which previous information is retained and propagated forward, 
while the reset gate determines which portions of historical information should be 
excluded or forgotten. bα denotes the bias value corresponding to each gate unit, ⊗ 
denotes the cross product, tanh is the activation function, yt denotes the semantic 
information transmitted between multi-layer Bi-GRUs, and W(A, B) denotes the weight 
parameters between A and B. For each word wt, the forward GRU layer considers the text 
information from w1 to wt during the encoding process, resulting in vector .th


 The 

backward GRU layer considers the text information from wt to wt, resulting in vector .th


 

Finally, connecting these two vectors yields , .t t th h h =  
 

 

3.2 N-attention module 

The N-attention layer is composed of two main components: an attention layer 
implementing the attention mechanism, and a neighbours layer responsible for 
incorporating neighbourhood information. For clarity in the subsequent explanation, the 
encoded representation of the short sequence is denoted as [h, hr, r, tr, t], Let nh and nt 
represent the number of direct neighbours for the head and tail entities, respectively, and 
let N denote the number of relation neighbours. Additional parameters include the entity 
neighbour threshold ϑ, the relation neighbour threshold is π, the entity neighbour 
parameter is δ, RN is the set of relation neighbour tuples {(hn1, tn1), (hn2, tn2), …, (hni, tni)}, 
and the relation neighbour parameter is μ. 

The neighbours layer primarily utilises neighbour structure information to add 
additional weight information to each position in short sequence information. 

1 For the position weights of the head and tail entities (h, t), if the number of direct 
neighbours of the head and tail entities is greater than ϑ or there are entity 
neighbours with the same path as the current relationship r, then the head and tail 
entities are considered to have high confidence and should be given sufficient 
attention. If the opposite is true, then they are not processed. 

2 For the position weights of (hr, tr) in the short sequence, if the direct neighbours of 
the head and tail entities also appear in their respective descriptive text information, 
then a higher weight should be assigned. If not, then no processing is performed. 

3 For relation r, if the number of neighbours of the relation (the number of triples 
containing the relation) is greater than τ, then the weight information for the current 
relation is increased. If not, no processing is performed. 

Additionally, the translation characteristic (h + r ≈ t) is considered as a scoring factor for 
relation neighbours. In summary, the neighbour information gain layer primarily 
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maintains a weight matrix ϕ, which is a multidimensional matrix with the same 
dimension as the input short sequence information. That is: 

1 ,1 , ,1 , 1hr td hd tr
g

h t h t

n n n nφ δ R δ
n n n n

    = + + + +    
    

 (11) 

( , )

1
| |

n n N

g
n nh t R

μR σ
N h r t∈

 =  + − 
  (12) 

1, , 1,
,

, , ,
h t

h t

n n N τ
δ μ

δ n n μ N τ
≤ ≤ 

= = > >

ϑ
ϑ

 (13) 

where ϕ is a dynamic hyperparameter matrix and also the core processing scheme for 
weight enhancement achieved by obtaining neighbour information. The hyperparameter 
matrix ϕ is set through specific experiments. Initially, the hyperparameter matrix ϕ is 
initialised to 1, i.e., ϕ = [1, 1, 1, 1, 1], and then the value at each position of the matrix ϕ 
is calculated using neighbour information. According to equation (13), the values of δ 
and μ are determined by the number of neighbours, σ is the activation function, nhr and 
ntr are the number of neighbours in the head and tail entities that share the same 
relationship path as r, ntd is the number of times the neighbouring entities in the tail entity 
appear in the text description of the tail entity, and nhd is the number of times the 
neighbouring entities in the tail entity appear in the text description of the tail entity. 
Therefore, based on the neighbour information of the entity relationship and the 
description information of the entity, the value of each parameter in the hyperparameter 
matrix ϕ can be calculated. 

For the attention layer in the N-attention module, given the output of the encoding 
layer H = [h1, h2, …, hn] (hi∈Rd), where d is the number of hidden layer neurons in the 
LSTM, and n is the length of the input short sequence. The attention mechanism can be 
used to calculate attention probabilities, thereby highlighting the importance of each part 
of the sequence to the overall input sequence. The specific calculation process is as 
follows: 

( )tanhNt a a N c t ah U U h U h b= + +  (14) 

( )

( )
1

exp

exp

Nt
Nt m

Nj
j

h
a

h
=

=


 (15) 

1

m

t Nt t
i

h φ a h
=

′ =   (16) 

where Ua, Ub and Uc represent the weight matrices of the attention mechanism, ba 
represents the bias vector value of the attention mechanism, and ht′ represents the new 
feature output of the tth element. In equation (16), the feature output is multiplied by the 
hyperparameter matrix ϕ and the feature output of the conventional attention layer to 
obtain the new feature output. 
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3.3 Bi-GRU decoding layer and scoring function 

Use the GRU network to decode and generate a decoding sequence. When detecting the 
label of word wt, the input to the decoding layer is: 1th +′  calculated through the attention 
mechanism, the previous label prediction vector Tt−1, and the hidden layer vector ht−1 
from the previous decoding layer. The specific calculation process is as follows (Schuster 
and Paliwal, 1997): 

( )(2) (2) (2) (2) (2)
1 1 1t wz t hz t tz t zz σ W h W h W T b− − −′= + + +  (17) 

( )(2) (2) (2) (2) (2)
1 1 1t wr t hr t tr t rr σ W h W h W T b+ − −′= + + +  (18) 

( )(2) (2) (2)
1 1 1tanh ( )T T T

t wg t hg t t tg t gg W h W r h W T b− − −′= + ⊗ + +  (19) 

( )( )(2) (2)
1 1 1

T
t pw t pn t pm t

T T
t ph σ W h W T W r h b+ − −′ ′= + + ⊗ +  (20) 

( )tanht ts t tsT W h b′= +  (21) 

( ) ( )(2)
1 11 tanh

T T
t t t xg t xk t t t ty h z W h W T z g T− −= = − ⊗ + + ⊗ +  (22) 

Subsequently, at time step t, the output from the decoding layer is represented as (ϕ′(h), 
σ′(t), δ′ (r), σ′(ℎ), ϕ′(t), which correspond to the transformed sequences of (h, hr, r, tr, t) 
after decoding. These outputs are reconstructed into tuples for pairwise comparison, and 
their similarity is evaluated using the cosine similarity metric. This process yields a new 
set of sequence features ht′ = {h1, h2, …, an}. where hn denotes the mean vector computed 
by averaging the first n vectors. Taking the final similarity calculation output as an 
example, the vector wn is fed into the model’s encoding layer to obtain the corresponding 
feature representation hn. The attention probability of the tth element for the Nth element is 
aNt, calculated as follows: 

( )tanhNt a a N c t ah U U h U h b= + +  (23) 

( )

( )
1

exp

exp

Nt
Nt m

Nj
j

h
a

h
=

=


 (24) 

where Ua, Ub, Uc represent the weight matrices of the attention mechanism, and ba 
represents the bias vector value of the attention mechanism. Then, the average score of 
each element at time t can be obtained as follows: 

1

1 m

t Nt
i

s a
m =

=   (24) 

In addition to calculating similarity scores, a new scoring function based on translation 
models will also be used: 

( ) ( ) ( ) 2

2
, , , ,r r r rf h h r t t h h r t t= + + − +  (25) 
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Therefore, combining the two scoring mechanisms yields the final output layer result: 

( )( ), ( ), ( ), ( ), ( )t t to f φ h σ t δ r σ h φ t s′ ′ ′ ′ ′= +  (26) 

where f is the scoring function based on the translation model, st is the scoring result 
based on similarity at time t, and Ot is the overall output score of the DRDA model. A 
bidirectional GRU network is used for association modelling of short sequence tuples, 
thereby learning internal dependencies and deep dependencies within the sequence. The 
reason for choosing GRU is primarily because it has a faster convergence rate than 
LSTM, making it highly effective for training deep RNNs. 

To accelerate the training speed of the DRDA model, the following objective function 
is designed to achieve the experimental objectives. The optimiser uses the Adagrad 
algorithm proposed by Duchi et al. (2011), and the objective function is defined as: 
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  (27) 

where pc denotes the blocking probability factor sampled from a uniform distribution 
U[0, 1]. If pc > 0.5, the tail entity t of the input remains unchanged, while the positive and 
negative samples are generated by modifying the head entity. Conversely, if pc ≤ 0.5, the 
head entity ℎ of the input remains unchanged, and variations are introduced to the tail 
entity to form positive and negative samples. E+ and E− are the sets of positive and 
negative entities obtained from their respective target distributions P+, P− of positive and 
negative samples, respectively, and P+, P− are also obtained using a simple uniform 
distribution. When pc ≤ 0.5, P+ is the uniform distribution over the entity set {t+ | 〈h, r, t+〉 
∉T}, and P− is the uniform distribution of entities in {t−|〈h, h, t−〉 ∉T}. When pc > 0.5, 
P+ is the uniform distribution of the entity in {ℎ+ | 〈ℎ+, r, t〉∉T}, and P− is the uniform 
distribution of the entity in {h− | 〈h−, r, t〉 ∉T}. S represents the softmax-normalised 
output generated by DRDA: 
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 (28) 

In fact, the main purpose of this objective function is to give correct triples a high score 
and incorrect triples a low score in the triplet prediction task. This allows for accurate 
prediction of correct entities when performing entity linking prediction tasks. 
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4 Experimental results and analyses 

To evaluate the performance of the DRDA model, this study used the open-source dataset 
DBPedia as experimental data for performance assessment. Three evaluation metrics 
(MR, MRR, Hit@10) were used as evaluation criteria for the DRDA model. 
Additionally, each entity-link prediction task was run 10 times, and the average results of 
the model across the three metrics were calculated. Based on this, a variable analysis was 
conducted on the depth h of the deep bidirectional GRU network and the neighbour gain 
parameter p to observe the impact of these two hyperparameters on model performance. 

Regarding the experimental parameter settings, the dimension of the word vectors is 
set to 300, and the dropout radio is set to 0.5. Each layer of the BiGRU encoding layer 
contains 400 nodes, and each layer of the GRU decoding layer contains 500 nodes. The 
number of encoding layers h is 3, the entity neighbour parameter δ is set to 1.5, the entity 
neighbour threshold ϑ is set to 5, the relation neighbour parameter μ is set to 1.5, and the 
relation neighbour threshold τ is set to 8. 

To validate the comprehensive performance of DRDA, the DRDA model is compared 
with KBGC model (Lin et al., 2024), ConvRot model (Le et al., 2023), HPGAT model 
(Han et al., 2024). 
Table 1 Experimental results of various models on the DBPedia50k dataset for the completion 

task 

Model 
Head  Tail 

MR Hits@10 MRR  MR Hits@10 MRR 
KBGC 134 0.66 0.69  96 0.67 0.56 
ConvRot 203 0.64 0.59  138 0.65 0.49 
HPGAT 225 0.62 0.56  91 0.67 0.53 
DRDA 96 0.31 0.25  79 0.54 0.57 

Table 2 Experimental results of various models on the DBPedia500k dataset for the 
completion task 

Model 
Head  Tail 

MR Hits@10 MRR  MR Hits@10 MRR 
KBGC 1,425 0.28 0.34  591 0.41 0.57 
ConvRot 2,248 0.22 0.26  765 0.39 0.45 
HPGAT 1,056 0.32 0.43  418 0.45 0.59 
DRDA 983 0.34 0.44  359 0.52 0.64 

Based on the experimental results in Tables 1 and 2, DRDA demonstrates performance 
improvements over the other three models in the head entity prediction task. Specifically, 
on the DBPedia50k dataset, DRDA outperformed the other models in the head prediction 
task by 38–1265 ranks in the MR metric, by 6%–9% in Hits@10, and by 25%–55% in 
MRR. These improvements can be attributed to the model’s ability to integrate internal 
structural information with external semantic signals, thus enhancing the alignment 
between textual context and graph structure. However, in the tail entity prediction on the 
DBPedia50k dataset, DRDA’s performance is more nuanced: although it achieved the 
lowest MR among all models, it underperformed KBGC by 13% in Hits@10 and showed 
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a 1% higher MRR than KBGC, while outperforming ConvRot and HPGAT by 4–8% in 
MRR. This may suggest that in certain tail prediction cases, the sparse local subgraph 
structure limits the model’s capacity to leverage semantic associations effectively. 
Alternatively, suboptimal neighbour aggregation strategies or hyperparameter 
configurations (e.g., in the neighbour layer) might introduce noise, impairing 
representation learning for tail entities. 

As shown in Table 2, on the larger DBPedia500k dataset, DRDA again achieves 
consistent improvements in both head and tail entity prediction tasks. In head prediction, 
DRDA reduced the MR by 73–126 ranks, improved Hits@10 by 2%–12%, and boosted 
MRR by 2%–18%. In tail prediction, it outperformed the best baseline by 59–406 ranks 
in MR, by 7%–13% in Hits@10, and by 5%–19% in MRR. These results indicate that 
DRDA scales effectively with larger datasets. Unlike conventional knowledge 
representation models that rely solely on structured triples, DRDA benefits from jointly 
modelling textual semantics and local structural patterns, thereby enhancing relational 
reasoning over complex and expansive knowledge graphs. 

Figure 4 Impact of the en-depth parameter on model performance (see online version  
for colours) 

 

The results show that the DRDA model performs poorly on certain metrics on the  
small-scale dataset DBPedia50k. Therefore, to investigate the reasons for the poor 
performance of DRDA on small-scale datasets, this section explores the depth  
(en-depth) of the Bi-GRU encoding layer. Additionally, for the large-scale dataset 
DBPedia500k, this section observes the hyperparameters ϑ, μ, and δ of the neighbour 
layer to investigate their impact on the model’s overall performance. First, we explore the 
encoding layer depth parameter (en-depth) for the open knowledge graph completion task 
on the small-scale dataset (DBPedia50k), observing the impact of the en-depth parameter 
on the head-tail entity link prediction task. As shown in Figure 4, the prediction results 
for tail entities are better than those for head entities, possibly because the head entities 
extract a lot of semantic information about the relationships between tail entities from the 
text information, making the tail entity representation learning more complete. 
Additionally, as the number of Bi-GRU encoding layers increases, the Hit@10 metric 
continues to rise. When the en-depth value reaches 4, Hit@10 reaches its peak. When the 
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en-depth value exceeds 4, the Hit@10 metric begins to decrease, indicating that the 
learning capability of the DRDA model starts to decline. Therefore, it can be concluded 
that when the en-depth value is less than 4, the model is continuously learning deep 
associative semantic information between entities, resulting in a continuous increase in 
the Hit@10 value. When the en-depth value exceeds 4, the number of encoding layers 
becomes excessive, and entities and relationships are encoded into higher-dimensional 
semantic representations, leading to inaccurate learned associative information and 
ultimately reduced performance. 

Additionally, to investigate the impact of the three hyperparameters in the neighbours 
layer on model performance, we plotted line charts showing how various performance 
metrics change with each hyperparameter. Furthermore, since subgraphs in large-scale 
datasets are more densely populated, entity neighbour information is richer, making it 
easier to observe experimental effects. Therefore, we selected the large-scale dataset 
DBPedia500k for testing. 

Figure 5 Curve showing the variation of the hit@10 metric of the DRDA model with respect to 
the ϑ parameter (see online version for colours) 

 

Figure 6 Curve showing the variation of the MRR metric of the DRDA model with respect to the 
ϑ parameter (see online version for colours) 
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First, we conducted experimental observations on the threshold parameter ϑ of the 
neighbour layer. As shown in Figures 5 and 6, (a) and (b) respectively present the curves 
of the Hit@10 and MRR metrics as a function of the ϑ parameter. From the figures, it 
can be observed that if the ϑ parameter is set too small, the performance of the Hit@10 
and MRR metrics will decline. When ϑ reaches a certain value, the values of both metrics 
reach a peak, after which the model’s performance begins to decline again. Therefore, 
based on the above analysis, it is concluded that setting ϑ to 4–6 is appropriate, as this 
yields the best model performance. Setting ϑ too high may result in the loss of neighbour 
information, while setting it too low may cause unreliable entities to be assigned higher 
weights, leading to performance degradation. 

Figure 7 MRR, Hit@10, and hit@1 metrics of the DRDA model as a function of the δ parameter 
(see online version for colours) 

 

Figure 8 MRR, Hit@10, and hit@1 metrics of the DRDA model as a function of the μ parameter 
(see online version for colours) 

 

The following is an experimental exploration of the hyperparameters for entities and 
relations. As shown in Figure 7, the three metrics (MRR, Hit@10, and Hit@1) of the 
DRDA model are plotted as line charts as a function of the entity neighbour parameter δ. 
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From the experimental results, it can be concluded that when the entity neighbour 
parameter δ is less than 1.5, the model’s performance shows an overall upward trend. 
when δ is within the range of 1.4 to 1.6, the MRR and Hit@10 metrics show a slight 
downward trend, but the Hit@1 metric remains stable. Therefore, it can be concluded that 
setting δ within the range of 1.5 to 1.7 yields the best model performance. Additionally, if 
the entity neighbour hyperparameter is set too high, other weight information may be 
ignored, leading to a decline in model performance. If the parameter is set too low, the 
entity’s neighbour information may not be prioritised, failing to influence the model’s 
overall performance. As shown in Figure 8, similar experiments were conducted on the 
relationship neighbour hyperparameters. It can be observed that the trends of the 
relationship hyperparameter μ and the entity hyperparameter δ are largely similar, with 
the optimal model performance occurring within the range of 1.5–1.7. This may be 
because the relationship neighbour parameters are influenced by the entity neighbour 
parameters, resulting in similar trends in the impact of entity neighbour hyperparameters 
and relationship neighbour hyperparameters on the model’s overall performance. 

5 Conclusions 

In this paper, a deep RNN-based approach for digital art knowledge graph construction 
was proposed, which effectively addresses the limitations of traditional methods in 
handling multimodal data and capturing complex semantic relationships. By integrating 
ResNet50 for visual feature extraction and CNN-BiLSTM-CRF for textual entity 
recognition, the multimodal data processing capability is significantly improved. The 
attention-enhanced bidirectional GRU network is introduced to capture long-term 
dependencies and contextual semantic information. Additionally, a dynamic completion 
mechanism with N-attention module is designed to predict missing entities and 
relationships through neighbour information integration. Through comparative 
experiments, it was found that: 

1 Deep RNN-based completion models demonstrate improvements in knowledge 
graph completion accuracy, while bidirectional GRU networks prove effective at 
modelling complex semantic relationships in multimodal representations. 

2 The introduction of the N-attention mechanism in deep RNNs can effectively 
enhance the weight information between entities and relationships. 

3 The optimised knowledge graph construction method based on deep RNN models 
demonstrates good scalability on large-scale knowledge graph datasets, validating 
the effectiveness and practicality of DRNNs in digital art knowledge graph 
construction tasks. 

The experimental outcomes validate the enhanced efficiency and superiority of the 
suggested method when compared to traditional knowledge graph construction 
approaches. However, the constructed knowledge graph is only targeted at image-based 
digital art works, which may limit the applicability of the model to other types of artistic 
media such as digital animations, interactive media, and virtual reality art. Future work 
should consider incorporating diverse artistic forms and multimedia content to further 
validate the model’s effectiveness in more comprehensive digital humanities scenarios. 
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