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Abstract: This paper presents a mental health analysis model using a
multi-modal feature learning and fusion network to improve assessment
accuracy. It integrates data from text, images, and speech, processed with
CNNs, RNNs, and LSTMs for feature extraction and fusion. Experimental
results show the multi-modal model achieves 85% classification accuracy,
outperforming single-modal models (75%). Analysis of feature weights
indicates audio and visual modalities significantly influence emotional
fluctuation (30%) and coping ability (40%), while physiological signals are
crucial across all traits. The model enhances assessment comprehensiveness
and offers effective support for early diagnosis and personalised intervention.
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1 Introduction

In today’s society, the seriousness of mental health problems has become increasingly
obvious, and it has become a major public health issue that has attracted global attention
(Atlam et al., 2025). With the change of lifestyle and the increase of social pressure, the
prevalence of mental illness is constantly rising, especially among young people, and the
frequent occurrence of mental health problems is more prominent (Bauer et al., 2025). At
the same time, traditional mental health assessment methods, including questionnaire
surveys and face-to-face consultations, have limitations because they rely on subjective
judgment. To deeply understand individual mental health status and conduct accurate
analysis, the application of computer science technologies — including data analysis and
artificial intelligence — in mental health research has become one of the mainstream
trends.

As a new research field, multi-modal feature learning can effectively fuse information
from multiple sources, such as text, images, and speech, thereby improving the accuracy
and comprehensiveness of analysis results (Bai et al., 2025). In mental health analysis,
patients’ emotional state, speech expression, facial expression and other signals provide
key clues for mental health assessment. The analysis, combined with multi-modal
features, can not only gain insight into individual mental health status from multiple
angles but also enhance the robustness and adaptability of the model.

With the rapid development of deep learning technology, particularly the excellent
performance of convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) in image and text data processing, mental health analysis models based on deep
learning have become the focus of academic attention (Chai and Lu, 2025). By
implementing deep mining and fusion strategies on multi-modal data, the model can
automatically extract potential and complex psychological characteristics, thus providing
more accurate decision support for mental health analysis (Chen et al., 2025). However,
current research still faces challenges, such as data incompleteness, the fuzziness of
feature selection, and the complexity of cross-modal information fusion.

This paper aims to construct a mental health analysis model based on multi-modal
feature learning and a fusion framework. The model integrates multiple data types,
including speech, images, and text, and utilises deep neural networks to perform feature
extraction and fusion, thereby achieving a comprehensive assessment and prediction of
an individual’s mental health status. Through model design and experimental verification,
this paper presents an innovative analysis method for the field of mental health, providing
core technical support for future exploration of early identification and intervention
strategies for mental illness.
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2 Theoretical basis and related research

2.1 Multimodal feature theory

Multimodal feature learning refers to the method of fusing heterogeneous modal data,
such as images, text, and audio, to enhance model performance and analysis capabilities
(Han et al., 2025; He et al., 2025). Traditional single-modal analysis often reveals
limitations when addressing complex tasks, particularly in highly complex and subjective
fields that involve human emotions and psychological states. Single-modal features may
not be sufficient to fully capture the entire picture of the problem (Huang et al., 2025b).
In contrast, multimodal feature learning can integrate multiple information sources to
obtain richer and more accurate feature representations. In the field of mental health
analysis, the expression of emotion and psychological state is not only reflected in
language but also encompasses signals in multiple dimensions, such as facial expressions,
tone of voice, intonation, and body language. Through multimodal feature learning, this
paper can comprehensively capture multiple aspects of an individual’s mental health,
thereby improving the accuracy and reliability of diagnosis.

In multimodal feature learning, the core issue is feature fusion among different
modes. Each mode shows a different structure and representation form. The text contains
grammatical and semantic information of the language, the image conveys visual
perception content, and the speech reflects emotional tone characteristics (Ji et al., 2025).
The effective integration of these heterogeneous data becomes the key to constructing
efficient mental health analysis models. The multimodal fusion network proposed in the
field of deep learning aims to solve this challenge. By designing a specific network
architecture, different modal features are mapped to a unified high-dimensional space,
allowing for a seamless connection of information (Liu et al., 2025a). Fusion strategies
mainly include early fusion, late fusion, and hybrid fusion, among others. Various
strategies can be employed to optimise model performance according to specific task
requirements.

Especially in the field of mental health analysis, core tasks such as emotion
recognition, psychological state assessment and mental disorder prediction urgently
require models to integrate the multi-dimensional psychological characteristics of
individuals for consideration (Pan et al., 2025). In this paper, by integrating a multimodal
feature learning mechanism, the model can conduct in-depth emotion analysis based on
diversified information sources, such as speech emotion fluctuations, facial expression
changes, and body language movements, and combine text information to achieve
accurate recognition of individual psychological states. The system can more accurately
evaluate an individual’s mental health state by analysing the emotional tendency in the
user’s dialogue text, taking into account changes in pronunciation and intonation, as well
as emotional expressions in facial expressions. The multi-level and multi-angle analysis
framework provides a powerful tool for researchers and clinicians to comprehensively
understand individual psychological states, laying a solid foundation for early diagnosis
and effective intervention in mental health.

Although multimodal feature learning technology shows great potential in mental
health analysis, its practical application is still hindered by multiple challenges, including
low efficiency in data processing and fusion, information inconsistency between modes,
privacy protection, and ethical considerations (Sun et al., 2025; Wang et al., 2025a). The
research focuses on effectively handling the heterogeneity of multimodal data to ensure
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that each heterogeneous feature can be efficiently utilised within a unified model. Given
that mental health data involves personal privacy, implementing modal data collection
and analysis while ensuring data security and user privacy has become a pressing future
challenge for multimodal mental health analysis models. In the future, with the
continuous advancement of technology, particularly the ongoing development of deep
learning and big data analysis, the mental health analysis model based on multimodal
feature learning and fusion networks will gradually mature, providing more intelligent
and personalised diagnosis and intervention plans for the field of mental health.

Based on the above background and challenges, this paper first introduces the
theoretical basis of multimodal feature learning and the current research status of mental
health analysis (Section 2), then elaborates on the design and implementation of the
multimodal mental health analysis model (Section 3), and finally verifies the model’s
performance through experiments and summarises the research conclusions (Section 4
and Section 5).

2.2 Current state of mental health with multimodal feature learning and fusion
networks

With the rapid development of society and the acceleration of the pace of life, mental
health issues have increasingly become the focus of global attention. In recent years,
mental health assessment and intervention have faced limitations in traditional methods,
such as questionnaire surveys and face-to-face diagnoses, which are often influenced by
subjective factors, resulting in uncertainty and limitations in their results. Given this,
many researchers have begun to explore the application of computer technology,
particularly deep learning methods, in the field of artificial intelligence, aiming to achieve
more objective, comprehensive, and accurate mental health assessments (Wang and Dou,
2025b). Multimodal feature learning and fusion network provides a solid technical
foundation for this field. By integrating multimodal information, such as text, speech, and
images, it is possible to build a more accurate mental health analysis model, thereby
providing a new perspective for early diagnosis, emotion analysis, and personalised
treatment of mental health problems (Wang et al., 2026).

The factors covered by mental health analysis are extremely complex. Individual
emotional states and mental disorders are typically manifested as multidimensional
information, encompassing various modal signals such as words, speech, facial
expressions, and behaviours (Wang et al., 2025¢). Traditional single-modal analysis
methods often struggle to comprehensively capture this multi-level and
multi-dimensional information, leading to inaccurate analysis results. Multimodal feature
learning can effectively integrate information from different modes and overcome the
limitations of single-modal methods (Wei et al., 2025). Especially in mental health
analysis, the variation in intonation, the subtle changes in facial expressions, and the
fluctuation of speech emotions are key clues to reveal an individual’s psychological state.
The analysis method based on multimodal feature learning and fusion network presented
in this paper can synthesise the characteristics of various signal sources, enhance the
accuracy and robustness of the model, and provide a more comprehensive and profound
insight into mental health analysis.

Many mental health analysis models relying on multimodal feature learning have
achieved remarkable results in the fields of emotion recognition and psychological
disorder prediction (Xia et al., 2025; Xiong et al., 2025). The emotion recognition model,
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which combines speech and facial expression data, can accurately determine an
individual’s emotional state by analysing emotional information and facial expression
changes in their speech, and then evaluate their mental health. At the same time, this
paper utilises a deep learning model to analyse the sentiment of text information, which
can provide a deeper exploration of the potential factors affecting individual mental
health. In addition, the application of this paper in the fusion network facilitates the
collaborative analysis of different modal features within the same framework, effectively
addressing the issue of information processing between modes (Zhang et al., 2025a). The
integration of such technologies not only improves the accuracy of mental health analysis
but also accelerates the intelligent development in the field of mental health.

Although multimodal feature learning and fusion networks have made several
advances in the field of mental health analysis, they still face multiple challenges. The
primary challenge is that the acquisition of mental health data is often restricted by
privacy and ethical issues. Collecting sufficient high-quality data while ensuring user
privacy has become a major problem in research (Zhang et al., 2025b). Secondly, given
the heterogeneity among modal data, designing efficient algorithms to handle such
heterogeneous data and ensure the effective fusion of features remains a technical
bottleneck that needs to be overcome urgently. Finally, given the multidimensional
factors involved in mental health assessment, it is a core trend in future research to utilise
deep learning technology to develop a refined model that meets the analysis needs of
various mental health problems. As technology continues to evolve and research deepens,
mental health analysis models based on multimodal feature learning and fusion networks
are expected to play an increasingly important role in the field of early diagnosis,
intervention, and treatment of mental health.

On the basis of clarifying the theoretical basis and current research status, the next
chapter will focus on the specific design of the mental health analysis model — including
the overall framework, data preprocessing, and feature learning and fusion modules — to
solve the existing problems in traditional models.

3 Establishment of mental health analysis model based on multi-modal
and fusion network

3.1 Model framework and its design

In this study, a mental health analysis model based on multimodal feature learning and
fusion network is constructed (Zhao et al., 2025). The goal of this model is to integrate
data from various modalities, including text, speech, and images, to achieve a
multidimensional analysis of an individual’s mental health status (Costa and
Moreira-Almeida, 2025). By integrating the advantages of multimodal data, this
framework can effectively overcome the limitations of a single data source in mental
health analysis, thereby providing more comprehensive and accurate evaluation results.
The model framework comprises three core components: a data acquisition and
preprocessing module, a multimodal feature learning module, and a fusion network
module. The collaborative work of these modules is helpful in analysing individual
mental health from multiple angles and levels, and in promoting personalised mental
health assessments. The multimodal data fusion formula is shown in (1).
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Ffusion Zf(T, V’ 1) (1)

Among them, Fjsion represents the fused mental health analysis features, T represents the
feature vector of text modality, V' represents the feature vector of speech modality, and /
represents the feature vector of image modality. The formula of feature learning and
extraction is shown in (2).

Hlearned = g(Ta V: [» 0) (2)

Among them, Hjeamea represents the features learned from multi-modal data, T, V, [
represent the input data of text, speech and image modalities respectively, g represents
the function of extracting high-level features from the data through neural network or
other machine learning models, and 6 represents the parameters of the learning model.
This multimodal learning and fusion framework is selected in this study, primarily due to
the complexity and diversity of mental health problems (Halladay et al., 2025). A mental
health assessment encompasses multiple dimensions, including an individual’s emotional
state, cognitive abilities, and behavioural patterns. This dimensional information is often
displayed through various signals and modalities such as speech emotional fluctuations,
subtle changes in facial expressions, and text emotional tendencies. Given the difficulty
of single-modal data in fully reflecting an individual’s psychological state, fusion
analysis based on multimodal data can provide a deeper exploration of the intrinsic value
of information, thereby improving the accuracy and reliability of model analysis. The
application process of the multimodal fusion framework in mental health assessment is
shown in Figure 1.

Figure 1 Application process of multimodal fusion framework in mental health assessment
(see online version for colours)

Multimodal Data Collection \ ,, Cross-modal Feature Fusion

W=
i m@m&l!-“

Text Feature Learning Q
L

A\'ievvmem

Memal %
Heahh %
7 S
=

o

\

O—r & subgraph Multimodal Fusion Core

) ? i Physiological Feature Learning
~‘(—-m»m ]_] R e
4 ! ;

O ) e

Risk Audio Feature Learning
0—» o— 2
Warning

This figure shows the application process of the multimodal fusion framework in mental
health assessment.

Feedback & Application Video Feature j—> '[

Preprocessing

Treatmem
“Suggestions n

1 the system collects text, video, audio and physiological feature data through
multimodal data acquisition modules, and processes them through corresponding
feature learning modules respectively



Construction of mental health analysis model 7

2 after the system undergoes the cross-modal feature fusion of LSTM and CNN, the
model generates mental health assessment results, including health reports,
assessment models, and treatment recommendations

3 The system provides risk warnings and treatment suggestions through feedback and
application modules to support users’ health management.

This process enhances the accuracy and comprehensiveness of mental health assessments
by integrating multimodal features.

This study adopts a multimodal feature extraction and alignment framework: for text,
speech, and image data, Bi RNN+attention mechanism, CNN-LSTM hybrid network, and
fine-tuning ResNet-50 are used for modality specific feature extraction, respectively;
Subsequently, the maximum mean difference (MMD) alignment module is used to
minimise the distribution differences of different modal features in high-dimensional
space, achieving cross modal feature fusion.

This study adopts a privacy protection scheme that covers the entire lifecycle of data,
implementing anonymisation and informed consent authorisation during the data
collection stage; The storage phase adopts national encryption algorithm end-to-end
encryption and role-based distributed access control; The processing stage integrates
three major technologies: federated learning, differential privacy, and homomorphic
encryption to ensure privacy and security throughout the entire process from data source
to feature extraction.

The model utilises deep learning technology to learn and extract multimodal features,
and effectively integrates this information through fusion network mechanisms to achieve
more accurate mental health analysis. Compared to the traditional single-modal analysis
method, this model is based on a multidimensional examination of an individual’s
psychological state, including language, emotion, behaviour, and other information,
which makes the final evaluation result more objective and accurate. By using this
method, this study can not only realise/recognise emotions but also provide strong
support for the early prediction and intervention of mental illness. See (3) for formulas
related to modal feature learning and representation.

Xfmgd =0[X1+ﬁX2 +yX3 (3)

Among them, Xj.. represents the fused multi-modal eigenvector, Xi, X2, and X3 represent
the eigenvectors of different modes, and ¢, 3, and y represent the weighting coefficients
of modal features. The CNN formula is shown in (4).

Y =f(W=X_+b) 4

Among them, Y; represents the output feature map of the [/ layer, W, represents the
convolution kernel of the / layer, b; represents the bias term of the / layer, and f represents
the activation function. Compared to traditional methods, the model proposed in this
paper employs multi-modal fusion technology based on deep learning, particularly in its
application to mental health analysis, which is still in the preliminary exploration stage
(Huang et al., 2025a). Therefore, the model integrates the latest DNN, CNN, and SOM
technologies, which not only strengthens the system’s generalisation performance but
also improves its multi-modal data processing capability. In addition, the model design
prioritises data privacy protection, ensuring that user data will not be leaked during the
mental health analysis process through a robust privacy protection mechanism.
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3.2 Data acquisition and preprocessing module

Data acquisition and preprocessing constitute the primary module of this model
framework. Its core responsibility is to gather data from multiple sources and execute
corresponding processing and cleaning processes, thereby laying a high-quality data
foundation for subsequent multimodal feature learning and fusion. In the field of mental
health analysis, data sources often encompass text data, speech data, and image data,
which exhibit significant diversity in format, structure, and quality (Ju et al., 2025). This
paper implements efficient processing for such heterogeneous data, which becomes the
key link to ensure the analysis accuracy. Please refer to formulas (5) and (6) for the text
data preprocessing formula and multimodal self-attention mechanism formula,
respectively.

y=f(Wx+b) (5)

A = softmax ( ?/_I;T ] (6)
k

where y represents the output, W represents the weight matrix, x represents the input
eigenvector, b represents the bias term, f represents the activation function, Q, K
represent the matrix of queries and keys, di represents the dimension of keys, and 4
represents the attention matrix.

Text data mainly comes from users’ input content or conversation records, and
contains individual emotional expression, psychological tendency and other information.
To enable the model to extract effective features from the text, this paper utilises NLP
technology for text cleaning and preprocessing, including steps such as removing noisy
words, word segmentation, and word vectorisation (Kumpasoglu et al., 2025). Through
these preprocessing techniques, this paper can transform the original text into structured
data, enabling the model to understand better and analyse the emotional information
contained within the text. The word frequency formula is shown in (7).

TF(t,d) = M 7

ZCount(t, d)
i=1

where TF(¢, d) represents the word frequency of the word ¢ in the document d, Count(t, d)
represents the number of occurrences of the word ¢ in the document d, n represents the
total number of words in the document d, and Count(#;, d) represents the number of
occurrences of all words in the document. The formula of the LSTM network is shown in

(8).
h =0, otanh(C,) (3

where 7, represents the hidden state at the current moment, o, represents the output gate,
and C; represents the cell state. The collection of speech data mainly depends on
microphones and other devices. To obtain individual voice information, the factors
contained within it, such as emotional changes, intonation fluctuations, and speech speed,
can effectively reflect an individual’s psychological state. The first step of the
preprocessing stage involves noise cancellation and segmentation of speech signals,
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followed by the extraction of conventional audio features, such as Mel frequency
cepstrum coefficients. Such features can efficiently capture the nuances of speech
emotions and provide a solid foundation for subsequent mental health analysis. Figure 2:
Speech data collection and emotion feature extraction process.

This figure shows the process of speech data collection and emotional feature
extraction. The system collects speech data and performs signal preprocessing, including
noise removal and pre-emphasis. Relevant features were extracted using the OpenSMILE
tool, which employs time and frequency domain feature extraction, and acoustic features
were extracted using Wav2Vec 2.0. The deep feature extraction module combines
emotion feature fusion and utilises attention weighting to fuse multimodal features,
ultimately outputting sentiment analysis results. This process effectively extracts
emotional information from speech and provides support for mental health analysis.

Figure 2 Speech data collection and emotion feature extraction process (see online version
for colours)
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This study implemented specialised optimisation for different modalities during the data
preprocessing stage: the text processing introduced a psychological term enhancement
mechanism, which increased the TF-IDF weight of relevant terms to improve the
accuracy of feature extraction for key psychological information by 7.2%; The speech
processing adopts a combination of adaptive wavelet threshold denoising and emotion
segment segmentation based on pitch energy, which improves the feature
signal-to-noise ratio by 15.3%; Image processing improves feature extraction stability by
9.1% under different conditions by aligning facial keypoints and normalising Retinex
lighting.

This study proposes a triple solution for the heterogeneity of multimodal data, which
uses feature normalisation to unify the scale, modality specific embedding layers to
achieve dimension alignment, and cross modal correlation learning to bridge the semantic
gap; In joint modelling optimisation, multi task joint training, adaptive learning rate
adjustment, and combined regularisation strategies are adopted to solve the core problems
of heterogeneous data fusion and model generalisation.

Image data is often derived from an individual’s facial expressions or body
movements and is captured by a camera. In the preprocessing stage, this study applies
denoising and standardisation operations to the image data to ensure data quality. In this
paper, computer vision technology is used to recognise facial expressions and extract key
emotional features (Liu et al., 2025b). In this paper, facial expressions such as smiling
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and frowning can serve as core indicators of emotional fluctuation. The preprocessing of
image data not only lays the foundation stone for multi-modal fusion steps, but also
provides data support for accurate mental health analysis.

3.3 Multimodal feature learning and fusion module

The multi-modal feature learning and fusion module constitutes the core of the model. To
extract effective features from the preprocessed multi-modal data, a fusion network is
used to analyse each modal dataset comprehensively. Mental health status assessment is a
multi-dimensional issue, and each modal data provides diverse perspectives and
information (Mkinga et al., 2025). Therefore, the effective fusion of these modal data
helps achieve a more comprehensive and accurate analysis of an individual’s
psychological state.

This neural network adopts a multimodal mental health feature extraction and fusion
architecture: the text is reinforced with keyword weights through Bi RNN combined with
attention mechanism; The speech adopts a combination of CNN and LSTM, taking into
account both local and global features; The image is fine tuned based on pre trained
ResNet-50, replacing the final fully connected layer to adapt to the psychological health
dimension. In the fusion stage, the weights of each modality are dynamically adjusted
through attention mechanism, and trained with Adam optimiser. Bi RNN solves long
dependency problems and is suitable for psychological text with long span semantics;
CNN-LSTM combined adaptation for speech emotion information extraction; ResNet-50
residual structure alleviates gradient vanishing and pre training accelerates convergence;
Attention fusion conforms to the importance law of multimodal differences.

In the feature learning stage, this study uses deep learning technology to extract
features from each modal data. In this paper, CNN or RNN is used for the semantic
parsing of text data to extract potential emotional features. For speech data, features such
as Mel frequency cepstrum coefficient are extracted, and CNN or LSTM is used to
capture emotional fluctuations in speech. As for image data, this paper utilises a CNN to
recognise facial expressions, thereby extracting emotional information from them
(Morley et al., 2025). This kind of feature learning process can effectively extract key
emotion identifiers from each modal data, and provide reliable data support for the fusion
network input. See equation (9) for the specific formula of image feature extraction.

N

_1 ’_)?
L—N;(y, 1) ©)

where L denotes the loss value, y; denotes the true value of the i sample, )’; denotes the
predicted value of the i sample, and N denotes the total number of samples. The
optimisation algorithm formula is shown in (10).

m; = ﬂlm,,l + (1 _ﬂl )V(,L(G) (10)

where m, denotes the momentum term of the ¢ order, £ denotes the momentum decay
rate, and VoL denotes the gradient of the parameter. After feature extraction, this paper
enters the stage of multi-modal feature fusion. By utilising a fusion network, this paper
combines features from various modes. SOM can map the features of multiple modalities
into a low-dimensional space through unsupervised learning, which facilitates further
data clustering and analysis. The fusion of multi-modal features can not only improve the
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generalisation ability of the model, but also enable the model to provide more multi-angle
and profound analysis results when facing complex mental health problems. The support
vector machine formula is shown in (11).

f(x)=wlx+b (11)

where w denotes the weight of the support vector machine, x denotes the input feature,
and b denotes the bias term. Through such a multi-modal feature learning and fusion
mechanism, this model can effectively identify individual mental health indicators,
such as emotional fluctuations and psychological trends. Compared with traditional
single-modal analysis methods, this paper shows higher accuracy in application scenarios
such as emotion recognition and mental state assessment. In this study, the robustness
and adaptability of the fusion network are enhanced, ensuring the stable operation of the
model in various situations. The design and implementation of this module
comprehensively optimise the effectiveness of mental health analysis, analysing the
scientific evidence to provide a scientific foundation for the formulation of subsequent
personalised intervention and treatment strategies.

This study achieved significant improvement in model performance through a triple
innovation mechanism: a dynamic weight fusion method based on task scenarios was
proposed, which adjusts the weights of each modality in real-time for different evaluation
tasks, resulting in a 4.5%—6.8% increase in task accuracy; Design a heterogeneous feature
mapping module based on adversarial learning, aligning multimodal features into a
unified latent space through a game between the generator and discriminator, reducing
the difference in feature distribution between modalities by 32.1%; Through the
three-level linkage of preprocessing optimisation, feature extraction enhancement, and
fusion mechanism innovation, the overall accuracy of the model was ultimately improved
by 10% compared to traditional single modal methods.

This study constructed a multimodal collaborative analysis framework: the text
modality extracts explicit psychological information from users through semantic
analysis; Speech modality identifies implicit emotional states based on acoustic features
such as speech rate and pitch; Image modality verifies emotional consistency through
facial micro expressions; The physiological signal modality provides objective
physiological indicators, jointly reducing the interference of subjective masking on the
evaluation results and achieving multidimensional evidence complementarity.

4 Experimental results and analysis

The data used in this experiment includes multimodal mental health datasets, which
primarily cover various data forms such as text, images, and physiological signals. The
text data comes from mental health assessment questionnaires and interview records, and
involves information such as emotions, cognitive functions and behavioural patterns; The
image data mainly comes from facial expression recognition and speech emotion
analysis, reflecting the individual’s emotional state; Physiological signal data collects
physiological parameters such as heart rate and blood pressure through wearable devices
to provide physiological auxiliary verification for mental health. All data are standardised
and cleaned. Experimental hardware and software facilities include GPU-accelerated
workstations that support deep learning frameworks such as TensorFlow and PyTorch, as
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well as distributed storage systems designed to meet the needs of large-scale data
processing and storage. During the model training process, multimodal feature fusion
technology, which combines text, images, and physiological signals, is employed. Data
preprocessing, feature extraction, and model evaluation are performed using specialised
software tools to ensure experimental accuracy and consistency. This research
experiment was conducted on a server equipped with 4 x NVIDIA A100 GPUs, using
Ubuntu 22.04 system and TensorFlow 2.15, PyTorch 2.1 framework, combined with
professional tool libraries such as OpenSMILE and Dlib for multimodal data processing.
The model training adopts the AdamW optimiser, with a batch size of 32 and
100 training epochs, and introduces an early stopping mechanism to effectively improve
training efficiency while ensuring experimental reproducibility.

The multimodal mental health dataset used in this study combines self built data and
the publicly available dataset DAIC-WOZ, with a total of 1,389 samples. The data covers
text, speech, images, and physiological signals. All samples were annotated by five
professionals on a scale of 0—100 based on 4 dimensions of mental health, and the
annotation consistency was ensured through three-level cross validation. The final
annotation results showed a consistency of 92.3% with clinical diagnosis. The
distribution of characteristics of different mental health states is shown in Table 1.

Table 1 Characteristic distribution of different mental health states
f;);zhological Mood swings Sleep quality intizzggon Coping ability
Anxiety 85 50 30 40
Depressed 70 40 25 30
Pressure 80 60 45 50
Normal 40 80 75 90

It can be seen from the table that there are significant differences in the distribution of
individuals with different psychological states in each characteristic. For example, people
in anxious states perform poorly in mood swings and sleep quality, with mood swings as
high as 85 and sleep quality as low as 50. In the state of depression, there is less social
interaction, with a score of only 25, and the coping ability is also low, showing strong
psychological distress. Normal individuals performed best in all dimensions, especially in
social interaction and coping ability, which were rated at 75 and 90, respectively,
indicating a good level of mental health.

To demonstrate the comparison between the classification accuracy of multi-modal
feature fusion and that of single-modal feature, this paper compares the mental health
score with the classification accuracy of multi-modal feature fusion, as shown in
Figure 3.

As shown in the figure, when the health score is low, the classification accuracy
remains at a low level, approximately 10% to 20%, regardless of the processing time. As
the health score gradually increases, the classification accuracy rate improves
significantly, especially when the processing time is close to 1 hour; the accuracy rate
reaches its highest peak, approaching 50%. This trend remained stable at health scores of
3 to 4, and classification accuracy fluctuated between 30% and 50% over processing
times of 1 to 3 hours.
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To verify the advantages of multimodal models, this study compared them with three
traditional unimodal models in the three core tasks of mental health analysis. The
experimental results show that the proposed multimodal model significantly outperforms
each single modal model in emotion recognition accuracy (85%), psychological state
classification F1 value (83%), and early risk prediction AUC value (0.88) (the highest
being 70%, 67%, and 0.74, respectively), demonstrating the effectiveness and
comprehensiveness of multimodal fusion in mental health assessment.

Figure 3 Comparison of classification accuracy after mental health score and multi-modal feature
fusion (see online version for colours)
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To demonstrate the influence of different modal features on mental health prediction
models, this paper examines the influence weights of various modal features on mental
health prediction, as shown in Figure 4.

Figure 4 Influence weights of different modal characteristics on mental health prediction
(see online version for colours)
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According to the data in the figure, where MFW represents modal feature weight and
MEFE represents multimodal fusion effect. With the increase in health score, the accuracy
of MFW and MFE showed some fluctuations; however, the overall trend is that as the
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health score increases, the classification accuracy also increases. In the low health score
interval, the accuracy of the MFE method fluctuates significantly, with an accuracy rate
of approximately 15%, while the MFW remains at an accuracy level of around 30%. As
the health score gradually increases, especially in the range of 20 to 40, the accuracy rate
of MFE improves significantly, approaching 60%, and gradually approaches the accuracy
rate of MFW. The figure on the right shows that the classification accuracy of MFW and
MEFE is stable between 60% and 75% in the higher health score range. The MFE method
demonstrated relatively stable performance at higher scores. In contrast, the accuracy of
MFW fluctuated significantly at certain points, particularly at the scoring point around
35, with the highest accuracy exceeding 80%.

The multimodal model proposed by the research institute is consistent and
significantly better than each single modal model in terms of accuracy, precision, recall,
F1 score, and AUC in the three core tasks of emotion recognition, psychological state
assessment, and early risk prediction. Among them, the accuracy of the multimodal
model in emotion recognition tasks reached 89.3%, the F1 value of psychological state
assessment reached 82.6%, and the early prediction AUC reached 88.0%, fully verifying
its comprehensive performance advantages.

To illustrate the changing trend of training error with increasing iteration times during
the model’s training process, this paper analyses the relationship between training error
and iteration time in the mental health state prediction model, as shown in Figure 5.

Figure 5 Relationship between training error and time iteration of mental health status prediction
model (see online version for colours)
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Table 2 Weight distribution of multimodal features
. . Social Coping
Modal characteristics A/f;):id }; tvlv’llng Slefvzziq?atllty interaction capacity
ghimg & weight weight
Visual modality 0.25 0.15 0.2 0.1
Audio modality 0.3 0.25 0.2 0.3
Text modality 0.2 0.3 0.25 0.2
Physiological signal modality 0.25 0.3 0.35 0.4

As shown in the figure, MTE represents model training error, MEL denotes model error
learning rate, MBS denotes model batch size, MLN denotes model layer number, and
MOA denotes model optimisation algorithm. As the number of layers gradually increases
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from 10 to 60, the training errors of MTE and MEL exhibit a relatively steady decrease,
with the error of the MTE method remaining between 0.2 and 0.4. In contrast, MBS and
MUN decrease rapidly after 20 layers, and the error drops below 0.3, showing a faster
convergence rate. The training error of the MOA method is initially high, approximately
0.5. Still, with the increase in the number of layers, the error gradually decreases to
approximately 0.2, indicating a relatively stable training effect.

The weight allocation of multimodal features is shown in Table 2. According to the
weight distribution of modal features in the table, the physiological signal modality has
the greatest influence on each feature, especially the weight of coping ability. This
indicates that physiological signals play a significant role in evaluating mental health.
Audio modality has a significant influence on emotional fluctuation and coping ability,
with a weight of 0.3, respectively, suggesting that audio characteristics have a substantial
impact on emotional fluctuation and individual psychological coping ability. The weight
of text and visual modalities is relatively low, but the influence on some features cannot
be ignored.

To illustrate the distribution of modal features across speech, text, and images in
various mental health states, this paper examines the differences in modal feature
distributions across different mental health states, as shown in Figure 6.

Figure 6 Differences in modal characteristics distribution under different mental health states
(see online version for colours)
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As you can see from the figure, TMD stands for text modal distribution, AMD stands for
audio modal distribution, and VMD stands for visual modal distribution. In the range of
audio feature values from 0 to 0.6, the frequency distributions of TMD and AMD are
similar, and both fluctuate significantly in the range of feature values from 0.1 to 0.5,
with a frequency of approximately 20 times. However, the distribution of VMD shows a
more stable trend, with relatively low frequency and small fluctuation amplitude in the
eigenvalue range from 0 to 0.4. Within this range, the frequency of TMD exhibits
obvious peaks, particularly in the eigenvalue range of 0.5 to 0.7, with frequency values
ranging from 80 to 120 times, which is significantly higher than those of AMD and
VMD. In the same eigenvalue interval, the frequency of VMD is low, mainly
concentrated around 20 to 50 times.

To compare the model’s performance before and after multi-modal feature fusion,
this paper evaluates the model’s accuracy before and after fusion using the F1 value, as
shown in Figure 7.
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Figure 7 shows that, with an increase in fusion time, the classification accuracy of all
methods exhibits a clear upward trend. Especially for the AFC method, the classification
accuracy was significantly improved, reaching approximately 70% at a longer fusion
time. In contrast, the classification accuracy of the MAC method reached approximately
50% within a short time, but its growth rate gradually slowed over time. The figure on the
right illustrates the relationship between classification accuracy and F1 value, indicating
that as the fusion time increases, the F1 value also exhibits a similar growth trend. The
MFE and MFC methods performed more stably at longer fusion times, with F1 values

between 0.6 and 0.75. In contrast, the AFC method maintained high classification
accuracy and F1 values close to 0.75 at longer fusion times.

Figure 7 Comparison of model accuracy and F1 value before and after multi-modal feature
fusion (see online version for colours)
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To illustrate the changes in mental health status in response to each modal feature, this
paper examines the relationship between changes in mental health status and multimodal
feature responses, as shown in Figure 8.

Figure 8 Relationship between changes in mental health status and multimodal feature responses
(see online version for colours)
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As you can see from the chart, where THR stands for text health response and AHR
stands for audio health response. When the health score is in the low range, the response
time for THR is higher, approximately between 70 and 80 seconds, while the response
time for AHR is lower, staying around 20 seconds. As the health score increased, the
response time of AHR decreased significantly to nearly 10 seconds, while the response
time of THR gradually decreased but remained above 60 seconds. The figure on the right
shows that when the health score is high, the response time of AHR remains between 30
and 50 seconds, and as the health score increases, the response time continues to
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decrease. In contrast, the response time of THR fluctuated between 30 and 120 seconds
without a clear downward trend.

The model performance evaluation indicators are shown in Table 3. As shown in the
table, the model based on multi-modal fusion performs well across various indicators,
particularly surpassing the single-modal model in terms of accuracy, recall, F1-score, and
AUC value, thereby demonstrating the advantages of multi-modal feature fusion. The
performance of the deep learning-based model has been further improved, with an
accuracy of 92%, a recall of 90%, an Fl-score of 91%, and an AUC value of 94%,
showing the powerful performance of deep learning in mental health analysis.

Table 3 Model performance evaluation indicators
Accuracy Recall rate FI value AUC value
Model type (%) (%) (%) (%)
Single-modal model 75 72 73 78
Fusion model 85 82 83 88
Deep learning-based models 92 90 91 94

To analyse the influence of different modal feature combinations on model prediction
errors and evaluate which feature combinations can reduce prediction errors more

effectively, this paper examines the correlation between model prediction errors and
modal feature combinations, as shown in Figure 9.

Figure 9 Correlation analysis between model prediction error and modal feature combination
mode (see online version for colours)
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It can be seen from the figure that, under the MFE method, as the number of models
increases from 20 to 100, the prediction error gradually decreases. However, the error
range remains between 40% and 70%, with the error being the smallest at approximately
40 models. In the FCA method, as the number of models increases from 15 to 75, the
prediction error exhibits a relatively steady downward trend, with the error range
concentrated between 50% and 60%. The error is smallest when 30 models are used, at
approximately 50%.

To demonstrate the individual characteristic classification results based on mental
health scores and evaluate the model’s classification ability under various health scores,

this paper analyses the individual characteristic classification results using mental health
scores, as shown in Figure 10.
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It can be seen from the figure that both the HFC method and the FHS method exhibit
a similar fluctuation pattern, indicating that the classification results will fluctuate with
changes in the number of features. With the increase in the number of features, the health
scores of both methods exhibited large fluctuations, especially around 10, 30, and 50
feature points, with a greater fluctuation amplitude, indicating that feature selection had a
significant impact on the classification results. HFC and FHS methods yield similar
classification results; however, the classification accuracy may fluctuate with changes in
the number of features. Additionally, selecting different features can impact the
classification results of mental health scores.

Figure 10 Individual characteristics classification results based on mental health score
(see online version for colours)
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5 Conclusions

The mental health analysis model proposed in this paper, based on multimodal feature
learning and fusion network, combines multiple modal data, including speech, images,
and text, to provide a more accurate and comprehensive mental health assessment. By
utilising deep learning technology to process and integrate multimodal data, this study
not only enhances the recognition accuracy of mental health status but also provides
technical support for personalised diagnosis and early intervention.

1 By fusing text, images, speech and other data, the classification accuracy of this
model on multiple mental health features is significantly improved. For example,
among the four characteristics of mood swings, sleep quality, social interaction and
coping ability, the anxious group scored 85 in mood swings, the depressed group
scored only 25 in social interaction, and the normal individual scored 75 in social
interaction. Compared to the single-modal model, this model achieves a
classification accuracy of 85% across all mental health characteristics, whereas the
traditional single-modal model achieves an accuracy of only 75%.
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2 In the process of model analysis, this paper analyses the weights of multimodal
features. Audio and visual modalities have a greater influence on mood swings and
coping ability, accounting for 30% and 40% of the variance, respectively. Notably,
the physiological signal mode has the greatest influence on various characteristics,
with the weight of coping ability as high as 0.4, highlighting the importance of
physiological signals in mental health assessment. Through this weighted fusion of
multimodal features, the model can more accurately identify the mental health status
of individuals.

3 During the training process, the error of the model shows a steady downward trend
with the increase of the number of iterations, showing strong convergence and
stability. Specifically, as the number of model layers increases from 10 to 60, the
training error gradually decreases to between 0.2 and 0.3. This phenomenon
demonstrates that as the complexity of the model increases, the deep learning
algorithm exhibits good adaptability and generalisation ability when processing
multimodal data.

The multimodal method proposed in this study has shown significant advantages in
psychological health analysis. By integrating text, speech, images, and physiological
signals, it effectively solves the problem of ‘emotional ambiguity’ in single modality,
reducing the false positive rate of fuzzy emotions by 34.2%; We have achieved a
multidimensional comprehensive evaluation of our psychological state, with an F1 score
of 83.0%; It can better capture early subtle features such as pitch variation and HRV
decline in the first 6 months before clinical diagnosis, with an AUC of 0.88 in early risk
prediction, which is 2.3 months earlier than the unimodal model warning. The
experimental verification shows that the model significantly outperforms various
unimodal benchmarks in emotion recognition accuracy (89.3%), psychological state
classification F1 value (83.0%), and early prediction AUC (0.88).

The mental health analysis model in this study successfully enhances the accuracy
and comprehensiveness of mental health assessments through deep learning and
multimodal data fusion. Especially in emotion recognition, psychological state
assessment and early prediction, this model shows its advantages over traditional
single-modal methods. This model also provides effective guarantees in privacy
protection, meeting the current requirements for data security and privacy protection. In
the future, with the further development of technology, mental health analysis methods
based on multimodal feature learning and fusion networks are expected to become
important tools in the field of mental health, providing more intelligent support for
personalised treatment and intervention.
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