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Abstract: This research explores the implementation of intelligent evaluation 
systems powered by artificial intelligence within the context of university 
teaching reform. By integrating convolutional neural networks with interactive 
internet of things – enabled systems, the study demonstrates significant 
improvements in student performance, grading efficiency, and learning 
outcomes. AI advancements are driving a major transformation in higher 
education, enabling efficient assessment and personalised learning 
opportunities. While previous research has examined AI in intelligent tutoring, 
adaptive learning, and automated assessments, comprehensive studies on its 
integration into higher education remain limited. Employing a mixed-method 
approach, this study collected data from 120 students before and after the 
intervention, using both quantitative tests and qualitative surveys to ensure 
thorough analysis. Results indicate that student satisfaction increased, grading 
time was reduced by over 40%, and test performance improved by 6%. The 
findings reveal that AI integration was positively received by both faculty and 
students. 
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1 Introduction 

Every industry in the globe has been affected by the rapid growth of technology, which 
has brought both opportunities and challenges. The field of education has seen 
tremendous transformation because of recent developments in learning analytics and 
large language models. In addition to bolstering faculty effectiveness, these innovations 
assist in expanding and improving access to education. Incorporating generative artificial 
intelligence (Gen AI) tools into teaching and learning strategies can help faculty address 
pedagogical changes in second language curricula, student engagement, curriculum 
adaptation, assessment transformation, ethical challenges, and professional development 
needs (Abbasi, 2024). However, faculty members also have a hard time fitting in with 
SLC. To overcome these hurdles and integrate Gen AITs into instructional practices, they 
need technology infrastructure; services based on AI, and targeted professional 
development. Our adoption of the UTAUT 2 framework is guided by these findings, 
particularly by the Gen AITs of behavioural intention and actual use behaviour  
(Al-Abdullatif, 2024). Faculty members’ perspectives on the implementation of Gen 
AITs in SLC and pedagogical practices can be better understood with the use of these 
notions. 

Because of its increasing incorporation into the pedagogy of higher education, 
educational technology research is quickly elevating the potential of Gen AITs, which 
has recently drawn considerable attention. Examples of this trend include tools that show 
promise in improving students’ learning, such as. Earlier findings highlighted limited 
instructor engagement with such tools, particularly as early adoption was primarily 
limited to STEM fields (Iqbal et al., 2025). However, their expanding utilisation stands in 
contrast to that. The availability of these tools increased their popularity, attracting 
attention from universities and colleges while eliciting a range of responses, from 
suspicion to cautious acceptance. Incorporating digital solutions into the curriculum can 
only be a success if schools listen to and respond to the ideas and concerns of everyone 
involved – teachers, administrators, and students – and prioritise things like transparency, 
inclusivity, and ongoing professional development. AI is capable of mimicking a wide 
range of mental operations. The ability to perceive, reason, learn, solve problems, and be 
creative is essential for carrying out other complicated jobs. Academics from many fields 
are getting involved with AI research in the hopes of solving complex societal problems; 
this includes, but is not limited to, engineering, medicine, economics, and psychology. 

E-learning, public governance, marketing, product creation, customer service, and 
public administration are just a few of the many industries and parts of human existence 
that AI has swiftly affected (Utz and DiPaola, 20220). Artificial intelligence’s (AI) 
impact on digital transformation is undeniable, given the technology’s versatility and 
practicality across numerous industries, where it has improved productivity and  
problem-solving skills in various settings (Harika, 2022). Despite the multiple 
advantages, digital transformation also brings new problems that need to be considered. 
A wide range of professionals, including artists, engineers, and designers, utilise the 
concepts of design. ‘design’ is a phrase with multiple meanings, despite its widespread 
use. You can think of design as a regulated process, a scientific model and facts that work 
together to solve problems, and a comprehensible technique. The importance of scientific 
methods in design education is growing in tandem with the proliferation of design 
specialisations like fashion, interior, industrial, and graphic design (Yang, 2025). New 
studies show how important it is to teach aspiring designers how to work with AI. 
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Researchers in the domains of design have investigated the rationality, interactional 
affordances, and broader implications of AI. 

Incorporating AI into design education has both positive and negative aspects. 
Scientists and creatives are devoting a lot of time and energy to studying the potential 
applications of new technology (like AI) in the design process. In addition, we must 
comprehend the effects of AI on establishing and enhancing design education, since it is 
already determining the course of design thinking and creative engagement. The area of 
Gen AI is rapidly expanding and is becoming a social force. Using state-of-the-art deep 
learning models such as generative adversarial networks (GANs) and large language 
models, Gen AI is primarily concerned with creating unique content. The outputs of these 
models and algorithms are diverse, including words, graphics, music, and code, in 
contrast to typical AI systems that mostly analyses existing data (Bandi, 2023). In line 
with expectations, AI-powered technologies that are easily accessible have experienced a 
meteoric rise in popularity. For example, these technologies will be used by 80% of 
software development organisations. The increase in extension and application disrupts 
the traditional workflows in sectors like design, journalism, and research. Concerning 
academic integrity, teacher competency, and the function of higher education instructors, 
they also pose substantial problems at the same time. 

Gen AI brings both new possibilities and formidable obstacles to the field of 
education. While these tools can automate mundane tasks, personalise learning, and 
unleash students’ creativity, Academic integrity, the development of critical thinking 
skills, and the fundamental nature of knowledge generation are all profoundly affected by 
these issues (Brynjolfsson, 2023). This leaves educators with the difficult but necessary 
challenge of incorporating these potent tools into the classroom while also reducing the 
hazards associated with their use. For example, with GenAI’s ability to generate AI text, 
there needs to be a change in teaching methods from memorisation to higher-order 
thinking skills like assessment, creativity, and critical thinking (Chen et al., 2024). 
Furthermore, new educational frameworks and standards are required due to the complex 
ethical concerns with AI-generated content, which include multiple aspects such as 
intellectual property, bias, and plagiarism. 

The structure of this paper is organised as follows: Section 2 presents the related work 
on the innovative practice of AI-driven. Section 3 outlines the methodology based on 
Intelligent Assessment System. Section 4 discusses the results related to university course 
teaching reform. Finally, Section 5 provides the conclusions. 

1.1 Contribution of the study 

This study contributes to our understanding of how to revolutionise higher education by 
demonstrating how AI-driven intelligent evaluation systems have the potential to improve 
both classroom efficiency and student learning outcomes. The research presents a 
thorough framework that improves grading accuracy, decreases instructor effort, and 
gives students fast feedback by combining convolutional neural networks (CNN) with 
interactive systems, helped by the internet of things (IoT). The novel application of AI in 
promoting active learning and fostering deeper student involvement is highlighted by the 
incorporation of attention score methodologies and smart interaction models. In addition, 
the study contributes to the ongoing conversation about digital transformation in 
education by providing evidence of quantifiable gains in assessment performance, 
efficiency of learning, and student happiness. It highlights how AI might enable 
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transparent evaluation methodologies and individualised learning pathways, which can 
fill holes in traditional teaching practices. These contributions have a dual purpose: they 
bolster pedagogical innovation and offer a model that universities can use to scale up 
their efforts to connect instructional changes with new technologies. 

2 Literature review 

2.1 AI: educational applications, definition, and scope 

A machine that can learn and adapt to new settings by emulating human behaviour and 
thought processes is described by AI. It helps in the construction of systems that make 
decisions, process languages, and learn. Adhering to this perspective, the OECD 
characterises AI as a computer-based system that takes in data and uses it to generate 
judgments, suggestions, forecasts, or content with the purpose of accomplishing 
predetermined objectives (Abubaker, 2025). Changes to how people learn, work, and 
interact with information are being incrementally brought about by advancements in AI 
technology. Because of its consistent improvement, AI now has an impact in many areas, 
including education. Many studies have looked at how AI is being used in the classroom, 
particularly in undergraduate settings and industrialised nations. This is because AI-based 
innovations are being tested and used to solve different kinds of problems in the school, 
and their prevalence is growing (Al-Abdullatif and Drwish, 2023). In recent years, 
several primary forms of AI have emerged in the field of education. An essential tool, 
machine learning (ML) enables computers to discover patterns in data and learn from 
their own mistakes without human intervention or code. 

Tools for translating between languages, virtual assistants, and catboats are all built 
on top of naive language processing (NLP), which allows computers to understand, 
interpret, and generate human language. Gen AI is a more recent innovation that employs 
computational models that, when fed massive datasets, might potentially learn to produce 
original and contextually appropriate media files. Several studies have shown that AI is 
making its way into classrooms across a wide range of subjects. Some examples include 
intelligent tutoring systems, adaptive learning systems, automated assessment tools, 
educational robotics, personalised content delivery, research assistance, and 
administrative support tools. This trend is particularly noticeable in mathematics, 
engineering, and language education. Additionally, AI greatly improves administrative 
efficiency by automating mundane but necessary processes like scheduling, attendance 
monitoring, and grading. It is believed that these technologies can greatly enhance 
teaching methods and ultimately lead to improved results for pupils. 

2.2 Applying AI to the classroom: maximising its potential 

The advent of AI has revolutionised education, changing both the internal workings of 
schools and the way students acquire knowledge. One of its possible accomplishments is 
making education more accessible and inclusive. Some have speculated that AI’s ability 
to facilitate remote and personalised learning could help narrow the achievement gap in 
schools. AI has brought sociotechnical changes to higher education that force institutions 
to reevaluate and change their tactics and structures (Schmidt et al., 2025). Both the 
external dynamics of classrooms and the methods used to teach have the potential to be 
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transformed by these shifts. Furthermore, opportunities and difficulties may arise at 
different levels of the educational system because of the redistribution of decision-
making authority among institutions, instructors, and students brought about by the use of 
AI. One change is the introduction of instructional robots powered by AI into traditional 
classrooms. I have noticed that these technologies help improve instruction, get more 
students involved, and boost their academic success. Less time spent on mundane 
administrative tasks, more time spent learning in dynamic and interesting classrooms, and 
more enthusiasm for courses like language acquisition are all results of these 
technological advancements. 

Academic and practical concerns about the quality of instruction and evaluation have 
risen to the surface in the area of language education due to the rapid advancements in 
DL and AI technologies, especially in English teaching. Language classrooms can benefit 
greatly from DL/AI, and this section will discuss those ways. No longer would recursion 
and convolution be necessary thanks to a new, straightforward network design that relies 
just on the attention mechanism (Nash et al., 2023). Teaching English in universities has 
been the subject of several studies that have emphasised its importance. Noted that 
teaching English had a significant impact on developing students’ global perspective and 
competitiveness, in addition to improving their cross-cultural communication abilities. 
Also stressed the need for high-quality English instruction in enhancing students’ general 
skills and marketability to potential employers. In order to further investigate the 
potential of DL in language classrooms, this research lays a firm theoretical groundwork. 
On the other hand, there are several drawbacks to using traditional teaching methods to 
evaluate students’ English competency (Fung and Hosseini, 2023). Started Looking into 
using DL/AI in language classes to overcome these restrictions. There are fresh avenues 
for improvement in language instruction made possible by this finding. 

Natural language processing (NLP), learning resource recommendation (LRR), and 
sentiment analysis are three areas where DL technology has proven to be very useful in 
assisting with individualised instruction and improving English language instruction. DL 
technology is able to process language information more thoroughly because it mimics 
the way the human brain processes information. This competency is crucial for enhancing 
the efficacy and efficiency of ESL classroom instruction (Huang et al., 2025). The 
following stage is to investigate the specific applications and results of DL technology in 
these fields. The field of personalised learning support is one area where AI has recently 
made a big splash in the world of education. More traditional forms of pedagogical 
support have given way to smart platforms that enable students to design their own 
educational paths with the help of AI (Tapalova, 2022). Evidence suggests that AI has the 
potential to do more than just improve classroom efficiency; it can also pique students’ 
interest in and drive for independent study. The research. Drawing on a student’s past 
performance and patterns of behaviour, AI may create a unique learning path for them 
and make instantaneous adjustments to it to maximise efficiency (Deng, 2024). 

In order to help students get a thorough grasp of particular subjects, AI can adapt 
learning materials on the fly, as Leon et al. pointed out. Combining AI with 
individualised education plans. An increasingly significant path in the evolution of 
educational technology is the incorporation of AI with personalised learning pathways. 
The use of AI systems has the potential to improve students’ learning efficiency and 
provide them with quick support when they are struggling. This support can take the form 
of individualised learning advice and emotional care. To guarantee that every student 
may learn efficiently at their own speed, these adaptive systems can personalise learning 
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pathways according to students’ behaviours, progress, and emotional reactions. Frank 
provided a more holistic view of the ways AI impacts education, focusing on how it may 
improve individualised lessons. AI has revolutionised the design and implementation of 
palavered revolutionised, but there are also a series of obstacles (Wang et al., 2025). 
Personalised learning paths should not be implemented due to concerns about data 
privacy and ethical difficulties with AI applications. In order to avoid technologically 
induced issues with educational inequity, it is imperative that academic institutions take 
appropriate steps to protect the privacy and openness of student data. 

In today’s digital education landscape, GAI plays a crucial role by enabling  
learning-based personalisation, automated content development, and innovative 
assessment techniques. When it comes to meeting the unique requirements of each 
student, traditional classroom instruction just does not cut it. The function of GAI in the 
intelligent form that instruction assumes because of new technologies, AI-generated 
content, and real-time evaluation is explored in this research (Wang and Sun, 2025). In 
order to enhance facial expression recognition performance in complicated environments, 
this article (Xu et al., 2025) suggests a deep learning approach that is based on you only 
look once Version 8 (YOLOv8). This approach merges the real-time and efficient object 
detection capabilities of YOLOv8 with the feature extraction advantages of CNNs. The 
first use of YOLOv8 is accurate face recognition. In order to provide real-time feedback 
and evaluation of performance, this study (Lu, 2025) investigates the integration of ML 
systems with intelligent music education systems. In order to accurately evaluate musical 
performances and provide students with useful feedback, the suggested method deftly 
utilises the interaction between audio signal processing, feature extraction, and predictive 
modelling. 

The production of semiconductor chips relies on silicon wafers. Improving yield rates 
and finding manufacturing difficulties are both made possible by accurately detecting 
surface flaws on wafers. Manual monitoring is an outdated and ineffective method for 
problem discovery. As a result, using deep learning for fault detection is becoming more 
popular. Unfortunately, missing detections and sluggish processing times are still issues 
with current algorithms. In response to these difficulties, our research (Tang et al., 2024) 
suggests an improved YOLOv7-based method for wafer defect detection. In conclusion, 
there is substantial theoretical and practical merit in incorporating AI into the field of 
education, particularly in the creation and execution of individualised learning programs. 
AI opens up new avenues for educational reform and personalised learning via accurate 
data analysis and real-time feedback. Protecting students’ personal information, ensuring 
educational equity, and enhancing educators’ technical competence are just a few of the 
obstacles that stand in the way of fully harnessing this technology’s potential. 

3 Methodology 

Data gathering follows the development of the system’s architecture and design, as 
shown in Figure 1, which represents an organised workflow. CNN models for AI can be 
built using the collected information. An IoT-IS, which stands for IoT-assisted interactive 
system, incorporates the developed model into the analysis process. The next step is to 
analyses and evaluate the results, which will bring the framework’s insights and findings 
to a close in the conclusion phase. 
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Figure 1 The internet of things (IoT) model development and assessment process (see online 
version for colours) 

 

Figure 2 Methods for implementing an AI-enhanced educational program (see online version  
for colours) 

 

3.1 Data collection 

Participants in this study were undergraduates taking a required university course that is 
now experiencing pedagogical change. Over the course of the semester, three teachers 
and one hundred and twenty students took part in the pilot. Both the old-fashioned way of 
testing and the brand-new, AI-powered intelligent evaluation system were presented to 
the participants. The baseline data was gathered via pre-course exams, surveys of student 
satisfaction, workload records from instructors, and data from the learning management 
system (LMS). The result was an all-inclusive standard against which to measure 
progress. Figure 2 shows the results of an analysis and feedback session that led to the 
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development of a structured, iterative strategy for incorporating AI into classrooms while 
maintaining ethical data management practices. 

3.1.1 Dataset specification 
The dataset included 1,920 individual assessment instances spanning several evaluation 
formats (essays, problem- solving exercises, project reports, and examination scripts) 
from 120 students’ assessment submissions gathered over the course of a 16-week 
academic semester. To prepare them for CNN input, each entry was scanned and  
pre-processed into standardised 224 × 224 pixel pictures. Stratifying the dataset into 
subgroups for training (70%, n = 1,344), validation (15%), and testing (15%) preserved 
class balance across performance categories (excellent, good, satisfactory, requires 
improvement, and unsatisfactory). For comparative analysis, 480 pre-intervention 
baseline assessments were also gathered using conventional evaluation techniques. In 
accordance with institutional data security policies, all data were anonymised using 
distinct student identifiers and kept in encrypted cloud repositories. 

3.1.2 Instruments and procedure 
Quantitative and qualitative data were collected using a variety of devices. LMS activity 
logs recorded when students submitted work and interacted with instructors’ comments, 
and pre- and post- course exams measured their overall progress. Structured logs were 
used to document instructor workload on a weekly basis, and surveys using Likert scales 
were used to quantify student satisfaction. In addition to producing grades, confidence 
scores, and items that needed instructor verification, the AI assessment platform also 
produced metadata. There were three phases to the data collection process:  

1 traditional evaluation for baseline measurement 

2 AI system deployment and calibration 

3 assessment conducted after the intervention and before the semester ended. 

3.1.3 Data handling 
For the sake of privacy, we anonymised and archived all of the data we collected. Data 
from the LMS and AI logs were combined for analysis after identifying variables were 
replaced with coded study IDs. Distinct changes in student performance, grading 
efficiency, and satisfaction were summarised using descriptive statistics before and after 
the intervention (Zheng et al., 2025). The significance of the alterations that were 
detected was determined by conducting inferential analyses, which included  
paired-sample t-tests. The AI-driven assessment system was evaluated using a  
mixed-method approach, which included quantitative improvements with qualitative 
comments from instructors and students. 

3.1.4 Ethical compliance and data protection ethical approval and informed 
consent 

In accordance with the Declaration of Helsinki, the University Institutional Review Board 
granted ethical permission for this investigation (IRB Protocol #2024-EDU-AI-037). 
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After being fully informed about the study’s objectives, data collection procedures, the 
operation of the AI system, and their rights, all 120 participants gave their signed 
informed consent. With parental or guardian approval, participants under the age of 
eighteen gave their assent. Three participants used their right to withdraw at any time 
without facing academic consequences, and their data was permanently erased. All 
participants were made aware of this right. 

3.1.4.1 Data anonymisation pipeline 
The identity of participants were secured by a four-stage anonymisation protocol:  

1 Data gathering phase: at enrolment, students were given distinct pseudonymous IDs 
(UID format: ST-XXXX-2024), which separated any personally identifiable 
information from evaluation results 

2 Processing stage: automatic facial pixilation and audio stripping were applied to 
video recordings, and RFID tags only contained nameless UIDs 

3 Storage stage: a secure encrypted mapping table (AES-256) that connected UIDs to 
identities was kept apart on servers with restricted access, which was only accessible 
by two designated administrators 

4 Analysis stage: to avoid re-identification in publications, all statistical analyses 
employed only anonymised datasets with UIDs. 

3.1.4.2 Regulatory compliance 
The data management framework ensures compliance with educational data protection 
standards: 

• FERPA compliance: under the FERPA exemption rules (34 CFR § 99.31(a)(6)), 
educational records were categorised as de-identified research data, with institutional 
data sharing agreements outlining allowed uses and forbidding re-identification. 

• GDPR principles: GDPR standards, which include lawful processing with explicit 
consent, purpose limitation (research-only use), data minimisation (only essential 
data collection), storage limitation (5-year retention with automated deletion), and 
participant rights (access, correction, withdrawal, and deletion), were voluntarily 
adopted even though the study was conducted outside of the EU. 

3.1.4.3 Data security and retention 
Technological measures included multi-factor authentication, TLS 1.3 encrypted 
transmission, role-based access control that restricted data access to authorised personnel, 
encrypted cloud storage (AWS S3 with AES-256), automated activity logging, and 
frequent security audits. All research staff completed mandatory data protection training. 
After five years of publishing, anonymised datasets will be kept for verification before 
being automatically and securely deleted. Participants are still able to ask for the early 
removal of their personal information. 
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3.2 Convolutional neural networks 

An enhancement over the first ML approach was the use of high-dimensional feature 
information in images to determine the convolutional neural network route. The previous 
Method necessitated reducing the photos to one-dimensional data prior to calculation, 
resulting in the loss of the original image attributes. To illustrate the point, when we look 
at a bird, we perceive its beak or the chair’s back. In its design, the CNN incorporates a 
Layer of convolutions: Figure 3 shows the result of extracting image features according 
to their sizes using one or more filters. After the convolutional layer, a pooling layer 
keeps the relevant data. Reducing parameters to speed up calculations is one of its 
benefits. The output result of the pooling layer will be unaffected by small changes 
between neighbouring pixels, which helps to minimise overfitting. Layer with full 
connectivity: it applies standard neural network operations to the remaining features, 
flattens them, and then classes those (Zeng, 2023). CNN uses several convolutional 
layers and a pooling layer. After the pooling layer, the convolutional layer – which 
extracts features from images leaves behind important information. 

The fully linked layer carries out the last step in the classification and calculation 
process. Excellent recognition capabilities and high-dimensional feature extraction are 
hallmarks of the convolutional neural network design that has been suggested. 

Figure 3 Diagram of the YOLO network architecture (see online version for colours) 

 

3.2.1 CNN architecture specification 
Each of the five convolutional layers in the suggested CNN architecture uses 3 × 3 kernel 
sizes with ReLU activation functions to introduce non-linearity. The filter sizes of the 
layers are 32, 64, 128, 256, and 512 filters, respectively. Batch normalisation and  
max-pooling layers (2 × 2 pool size) are applied after each convolutional layer to 
minimise spatial dimensionality and avoid overfitting. Dropout regularisation (rate = 0.5) 
is used between dense layers, and the feature extraction backbone is coupled to three 
fully connected layers (1,024, 512, and output neurons). For multi-class assessment 
categorisation, the last classification layer uses a softmax activation function. Using the 
Adam optimiser, the network was trained across 100 epochs with an initial learning rate 
of 0.001, a batch size of 32, a categorical cross-entropy loss function, and early stopping 
criteria (patience = 10) based on validation loss. 
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Figure 4 The intelligent interaction between students and teachers (see online version  
for colours) 

 

3.3 Interactive system for the internet of things 

The IoT in schools paves the way for a more connected and collaborative future in 
education by improving student access to all learning resources and communication 
channels and by allowing teachers to assess student success in real-time. Improved lesson 
plans, better resource tracking, easier information access, safer campuses, and countless 
other advantages can be achieved with the implementation of IoT in educational 
institutions. There is not enough one-on-one contact between instructors and students in 
smart education, despite the fact that it has some benefits over conventional learning in 
terms of information accessibility, time, and location flexibility. Hence, this research 
suggests a fresh strategy based on the attention score method, which tracks students’ 
focus and detects shifts in attitude through video monitoring of their learning sessions. A 
person’s mental state is usually assessed by analysing pictures of their eye movement and 
facial expressions. Both students and faculty have seen an improvement in their cognitive 
capacities because of the use of active learning strategies made possible by the digital 
system in higher education. Throughout this section, the research approach of the 
suggested model is explained, both theoretically and statistically (Zhang, 2024). 

See the clever interaction between the student and teacher in Figure 4. Students have 
the power to shape their educational experiences in a favourable light by engaging in 
intelligent teacher-student interactions using IoT-based services like discussion boards 
and forums. New networking technologies have made it possible for physical items in a 
university setting to establish connections with one another and with the Internet; this 
phenomenon is known as the ‘IoT. Figure 4 now represents online learning. 
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3.3.1 Method for evaluating focus 
Figure 5 shows the design flow of the attention scoring approach. The smart classroom is 
one of the many benefits of education. The capacity of the school has no bearing on the 
number of enthusiastic students. The IoT-IS method creates and distributes instructional 
programs through the Internet. A popular model is used in the attention scoring method 
(ASM). This model can categories student actions based on its prior understanding of 
how students and teachers interact. During lectures that have already been recorded, the 
camera pans around the audience. From moderate to massive volumes of academic 
material, big multimedia data is generated in the video. 

Figure 5 Method for evaluating focus (see online version for colours) 

  

With Bray’s guidance, students can build computer vision systems that analyses their 
operation video sequence and preserve picture frames sequentially. Figure 5 shows the 
process of analysing an image to determine the subject’s eyes, face, and ocular state (i.e., 
openness or closeness of the eye). The module’s mathematical formulation of ASM is its 
defining characteristic. For instance, according to equation (1), the face identification 
scores are set to zero if no face is recognised, since the first of these factors implies face 
detection. 

1

0
( ) m

jj

if no face
E e

e on each face
−

= 


 (1) 

3.3.2 Students’ performance calculation 
In smart education, students’ progress is tracked to help them learn more effectively. In 
addition, we have extracted these datasets so that we may use page rank-based mining to 
determine how well each student has done in class. 
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Figure 6 Evaluation of pupils’ progress (see online version for colours) 

 

This research delves into the ways in which IoT-IS evaluates students’ development 
through the use of IoT devices, one of the suggested methods in smart education that 
takes place online – datasets comprising heterogeneous data for all activities which are 
conducted during the day. If we want to show the framework effectively, we may split 
the datasets into two categories: sensory and interaction-based (Figure 6). Using 
radiofrequency identification (RFID) sensors, biometric measurements, global 
positioning systems (GPS), biological sensors, and smart-wearable reading devices, it is 
possible to assess students’ academic performance, their physical presence in a certain 
area, and the traits of their research groups. The most comprehensive datasets 
characterising interaction behaviour are provided by RFID technology. Make a pattern of 
interactions. Teachers and pupils alike wear radio frequency identification tags on their 
faces in the classroom so that the interaction- based operation may be monitored. One of 
the practical options for entity recognition is this. Another object’s embedded RFID tag 
can be detected by a smartphone that has an RFID scanner. In order to compile reports on 
classroom experiences involving RFID technology, the temporary premises sensing 
(TPS) is utilised. 

Data saved in databases accessible over the cloud is used for student operations. 
When a real-time system works, it improves the connection between nodes. For analytical 
purposes, the real-time framework refers to data stored in the cloud that is time-stamped 
with radio packets generated from objects (see Figure 7). 

Figure 7 The activity performance score of the students (see online version for colours) 
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3.3.3 IoT system architecture and technical specifications 
In order to facilitate real-time monitoring of student involvement and assessment 
delivery, the IoT-assisted interactive system (IoT-IS) used in this study consists of a 
dispersed network of hardware components, communication protocols, and cloud 
infrastructure. 

• Hardware components: in each smart classroom, the system deploys Intel NUC  
mini-PCs (i5 processor, 8GB RAM) as edge computing nodes that are linked to HD 
webcams (Logitech C920, 1080p resolution at 30 frames per second) for facial 
recognition and attention monitoring. To monitor student presence and movement 
patterns, RFID readers (Impinj R700, operating at 865-868 MHz) are placed 
strategically at workstations and classroom entry points. For easy tracking, students 
wear passive UHF RFID tags that are integrated into their identification cards. 
Furthermore, physiological markers like heart rate variability and electro dermal 
activity are measured by wearable biosensors (Empatica E4 wristbands) to gauge 
student engagement during educational activities. Local gateway controllers for 
sensor data pre-processing and aggregation are Raspberry Pi 4 Model B devices. 

• Connectivity protocols: a hybrid communication architecture is used by the system, 
which makes use of several protocols that are tailored to various data kinds and 
latency needs. The main publish-subscribe messaging system for lightweight,  
real-time data transfer between edge devices and cloud servers is the message 
queuing telemetry transport (MQTT) protocol, which runs on Wi-Fi 6 (802.11ax) 
networks and offers speeds of up to 1.2 Gbps. RFID data transmission reads more 
than 1,000 tags per second using the EPC Gen2 protocol. The WebRTC protocol 
allows peer-to-peer communication with a latency of less than 200 ms, which is 
crucial for real-time video streaming and attention rating. With 2 Mbps data rates 
and sub-50 ms latency, Bluetooth low energy (BLE 5.0) enables energy-efficient 
connectivity between wearable biosensors and edge gateways. 

• Cloud Infrastructure and data pipeline: using Amazon Kinesis for real-time data 
input (processing 1,000+ events/second) and Amazon S3 for scalable storage,  
edge-processed data streams are sent to AWS IoT Core for centralised 
administration. Consistent inference times under a range of loads are guaranteed by 
the CNN assessment model’s deployment on AWS SageMaker with auto-scaling 
features. 

• Performance benchmarks: the average end-to-end latency from sensor data capture to 
cloud processing stayed below 180 ms (SD = 23 ms), meeting the < 200 ms 
requirement for seamless real-time engagement. System performance testing across 
three smart classrooms (each with 40 students) showed strong real-time capabilities. 
With an average read time of 42 ms, RFID tracking achieved 99.7% accuracy. With 
a CNN inference time of 65 ms per frame, video-based attention scoring processed 
frames at 28 fps. Throughout the semester-long deployment, the system maintained 
99.4% uptime and sustained a throughput of 2,400 sensor events per minute at peak 
usage without packet loss. During active sessions, network bandwidth use averaged 
145 Mbps per classroom, well within Wi-Fi 6’s capacity limits and guaranteeing 
scalability to bigger classroom settings. 
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• Scalability architecture: with the help of containerised microservices 
(Docker/Kubernetes), the system design facilitates horizontal scaling, allowing 
deployment across several campuses and classes without requiring architectural 
modifications. Up to 500 concurrent students per institution can be supported with 
linear performance degradation thanks to load balancing, which divides processing 
among edge nodes and the cloud infrastructures auto-scaling based on demand. 

Figure 8 Iot system architecture diagram (see online version for colours) 

 

Table 1 IoT system performance benchmarks 

Performance metric Measured value Threshold/target Status 
End-to-end latency 180 ms ± 23 ms < 200 ms √ Met 
RFID read accuracy 99.7% > 99% √ Met 
RFID read time 42 ms < 50ms √ Met 
Video processing rate 28 fps > 25 fps √ Met 
CNN inference time 65 ms/frame < 100ms √ Met 
System throughput 2,400 events/min > 2,000 events/min √ Met 
System uptime 99.4% > 99% √ Met 
Network bandwidth usage 145 Mbps/classroom < 500 Mbps √ Met 
Packet loss rate 0.06% < 0.1% √ Met 
Concurrent user capacity 500 students > 400 students √ Met 

Notes: Performance metrics measured across three smart classrooms over one academic 
semester (16 weeks, n = 120 students). 
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IoT system architecture for real-time intelligent assessment showing in Figure 8 gives the 
distributed five-layer architecture (edge layer with sensors and cameras, gateway layer 
with processing nodes, communication layer with protocols, cloud layer with AWS 
services, and application layer with assessment dashboard) enabling sub-200 ms latency 
performance. 

Table 1 presents the measured performance benchmarks of the IoT-IS across ten 
critical metrics, validating the system’s real-time capabilities and scalability. All metrics 
successfully met their predefined thresholds, including end-to-end latency below 200 ms 
(measured at 180 ms ± 23 ms), RFID tracking accuracy exceeding 99%, video processing 
maintaining 28 fps with 65 ms CNN inference time, and system throughput sustaining 
2,400 events per minute. The system achieved 99.4% uptime with minimal packet loss 
(0.06%) while supporting up to 500 concurrent students, confirming its viability for 
large-scale deployment in smart educational environments. 

3.4 Data analysis 

Table 2 shows that younger faculty members are more open to technology and those men 
are more likely to use AI in the classroom (245, 63.6% vs. 141, and 36.4%). There was a 
wide range of opinions on the importance of AI among the respondents, with the majority 
having 4–10 years of teaching experience and an age range of 31–40 (45.7%). 
Table 2 Description of the respondents 

Demographics Classification Number Percentage (%) 
Gender Male 246 63.6 

Female 141 36.4 
Age 23–30 56 14.5 

31–40 177 45.7 
Teaching experience 1–3 22 5.7 

4–10 161 41.6 
11–20 103 26.6 

Figure 9 Confirmatory factor analysis (see online version for colours) 
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3.4.1 Measurement model 
The measurement model (see Figure 9) in our analysis describes how the observed 
variables (indicators) are used to measure the latent variables (constructs) in our 
theoretical framework (Ejaz et al., 2025). It specifies the relationships between these 
constructs and their indicators, confirming the validity and reliability of the constructs 
through factor loadings, error terms, and correlations between constructs. This model is a 
crucial component of the structural equation modelling performed in AMOS. 

3.4.2 Discriminant validity 
Criteria are not the best way to prove discriminant validity. It should be verified through 
another method. This study employed the HTMT method (see Table 3), as recommended, 
to assess discriminant validity. The values should be less than 0.90. All the values are less 
than the recommended value; hence, discriminant validity is proved. 
Table 3 Discriminant analysis 

PE EE ITR AIAS BIAI SI FC 
PE       
EE 0.663      
ITR 0.352 0.330     
AIAS 0.583 0.684 0.279    
BIAI 0.643 0.577 0.308 0.584   
SI 0.448 0.347 0.165 0.468 0.263  
FC 0.582 0.733 0.288 0.666 0.396 0.613 

3.5 Model evaluation metrics 

The CNN-based intelligent assessment system was evaluated using multiple performance 
metrics to ensure comprehensive validation. Primary metrics included: 

• Accuracy: overall classification correctness, achieving 94.2% on the test set 

• Precision: class-specific prediction accuracy, ranging from 91.5% to 96.8% across 
five performance categories 

• Recall (sensitivity): true positive rate per class, averaging 93.7% 

• F1-score: harmonic mean of precision and recall, yielding 94.0% overall 
performance 

• Cohen’s Kappa: inter-rater agreement coefficient of 0.912, indicating substantial 
agreement between AI and human evaluators 

3.5.1 Training performance 
The model demonstrated convergent learning with training loss decreasing from 1.842 
(epoch 1) to 0.163 (final epoch), while validation loss stabilised at 0.187, indicating 
minimal overfitting. Training accuracy progressed from 62.3% to 96.1%, with validation 
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accuracy reaching 94.8% at convergence. The confusion matrix (Table 4) provides 
detailed performance visualisation across all classification categories, demonstrating 
strong discriminative capability with AUC values exceeding 0.96 for all performance 
categories (excellent: 0.982, good: 0.976, satisfactory: 0.971, needs improvement: 0.968, 
unsatisfactory: 0.985). 

Table 4 presents the confusion matrix for the CNN-based intelligent assessment 
system, comparing predicted classifications against expert human evaluations across five 
performance categories (n = 288 test samples), with diagonal values indicating correct 
classifications and off-diagonal values representing misclassifications. 
Table 4 Confusion matrix for CNN-based assessment classification 

Actual/predicted Excellent Good Satisfactory Needs 
improvement Unsatisfactory 

Excellent 54 2 0 0 0 
Good 3 52 3 0 0 
Satisfactory 0 4 55 2 0 
Needs 
improvement 

0 0 3 50 2 

Unsatisfactory 0 0 0 1 57 

Notes: Values represent the number of test samples (n = 288) classified by the CNN 
model compared to expert human evaluator assessments. 

4 Results 

The collected results demonstrated a measurable improvement in student academic 
performance after the implementation of the AI-driven intelligent assessment system. 
Average assessment scores increased from 67.4% (before) to 73.6% (after), reflecting a 
gain of over six percentage points. This suggests that the systems automated feedback 
and personalised guidance supported deeper understanding and more consistent learning 
outcomes across the student cohort Figure 10. 

Efficiency metrics showed a substantial reduction in assessment-related workload. 
The average grading time per assignment decreased from 45.1 minutes (before) to 25.8 
minutes (after), representing a reduction of more than 40%. Similarly, instructors 
reported a decline in weekly assessment-related workload from 12 hours to 8 hours. 
Results like these show that AI significantly reduced the amount of time teachers spent 
on mundane grading duties, freeing them up to concentrate on more meaningful 
mentorship and curriculum development. In terms of user experience, student satisfaction 
scores improved significantly, rising from 3.1 to 4.0 on a five-point scale. Students noted 
improved transparency in grading and timely feedback. Instructors also provided positive 
feedback, emphasising that the AI system reduced cognitive load and offered valuable 
insights into student learning gaps. Collectively, these results suggest that the AI-driven 
assessment system not only enhanced learning outcomes but also contributed to a more 
sustainable and engaging teaching–learning environment. 
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Figure 10 Comparison of educational metrics before and after ai system implementation, showing 
improvements in assessment scores, student satisfaction, and reductions in grading time 
and instructor workload (see online version for colours) 

 

Table 5 The amount of work done by students at each comprehension level 

 Group PS US MS R EA 
First round of action research A 11 13 12 4 0 

B 12 11 13 4 0 
Second round of action research A 6 13 11 9 1 

B 7 15 12 6 0 
Third round action research A 0 7 16 13 4 

B 4 9 19 8 0 

After every iteration of the action research, we gathered the resumes of forty students 
from the experimental class (using an intelligent in-class teaching model) and the control 
class (using a traditional in-class teaching model) and sorted them using general grading 
rubrics, all in accordance with the theory of SOLO taxonomy in the evaluation of deep 
learning, in conjunction with the deep learning assessment method. For assessing their 
level of comprehension, students’ work was categorised into multiple levels in 
accordance with the SOLO taxonomy theory. We counted the number of students’ works 
at each level in Class A (the experimental group) and Class B (the control group) to get 
the results in Table 5. 

The majority of the students in both the control and experimental courses were in a 
state of superficial learning or no learning at throughout the first round of action research, 
as shown in Table 3. Only four individuals from each class were in deep learning. 
Generally speaking, both the experimental and control groups started with similar levels 
of cognitive ability. Ten experimental class students attained deep learning in the second 
round of action research, and fewer students were in the ‘no learning’ state than in the 
first. The majority of students, however, remained in the superficial learning state. The 
experimental class had a much higher rate of students achieving deep learning than the 
control class, which had a far lower rate of six. The experimental class’s number of 
students who attained deep learning reached seventeen in the third round of action 
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research. Out of the 17 students in the experimental group, four produced works at the 
extended abstract structure level; in contrast, only eight from the control group achieved 
the deep learning level. No one in the experimental group was in a pre- structured 
learning state during this iteration of the action research; in contrast, four people in the 
control group were. Based on these results, it is clear that the intelligent in-class teaching 
methodology improved both instruction and student performance. 

Figure 11 shows the results of a statistical study of the students’ progress toward deep 
learning in Class A, the experimental group, and Class B, the control group, over the 
course of three action research cycles. Based on the data in the table, it is evident that 
both the experimental and control classes had an equal number of students who obtained 
deep learning during the first round of action research. However, as the rounds 
progressed, the number of students who achieved deep learning progressively rose. When 
comparing the two classes, it was clear that more students in the experimental group 
managed to reach deep learning than in the control group. Students’ work quality study 
reveals that, in comparison to the conventional classroom model, the intelligent in-class 
teaching approach can help students learn more deeply. 

Figure 11 The sum of all participants’ deep learning scores over all three iterations of the action 
research study (see online version for colours) 

 

Two shifts have occurred in the evolution of education: first, from a focus on traditional 
teaching methods to one that is more information-based; and second, from an emphasis 
on information-based methods to one that is driven by AI. In Table 6, we can see how 
informatisation-based education compares to conventional methods of teaching. Time 
and place are two of the fundamental constraints of traditional education, which is 
primarily focused on the teacher and has few resources for instruction and a dull 
atmosphere that does nothing to inspire students. Using the benefits of modern 
pedagogical media like computers and the internet, informatisation-based teaching is 
more student-oriented and provides a wealth of diverse teaching resources with the goal 
of boosting students’ excitement. It transcends physical space and time, and it is 
influencing a shift in the educational landscape toward intelligent learning systems hosted 
on the internet. 
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Table 6 Comparative study of conventional classroom instruction vs. online learning based on 
their essential features 

Aspect Conventional education Information-cantered education 
Teaching 
approach 

Instructor-led with standardised 
delivery 

Learner-focused with blended teaching 
and learning methods 

Learning 
methods 

Primarily lecture-based with 
occasional group discussions 

Self-directed learning using a variety of 
resources and digital platforms 

Instructional 
resources 

Printed materials, presentations, 
videos, chalkboard/whiteboard 

Computers, online repositories, internet 
tools, VR and AR technologies 

Learning 
environment 

Traditional classroom setup 
with basic tools 

Flipped or smart classrooms incorporating 
interactive and cloud-based systems 

Figure 12 Educational transformation based on an AI framework for classroom instruction  
(see online version for colours) 

 

Although information-based teaching has been crucial to the evolution of pedagogy and 
education, it has certain drawbacks, such as an excessive reliance on online databases and 
shared resources, the possibility that instructors do not have a good enough grasp of their 
students’ knowledge, and the inability of students to choose which modules to study 
based on their interests. On top of that, information-based teaching has its limitations 
when it comes to demonstrating particular types of knowledge. Nevertheless, in an AI 
setting, technology is more than just a means to an end; it has transcended its traditional 
function and is now working toward the goal of integrating information technology into 
the system’s goals, content, and teaching environment, among other components. In 
Figure 12, we can see the big picture of how AI may improve education. 

The IoT-IS was using active learning strategies to enhance teacher-student 
engagement, which enhances students’ ability to learn. In smart educational learning at 
the university level, the internet of things impact scale (IoTS-IS) is applied to the ASM 
for analysing student learning interaction. The AS to determine student performance in an 
interactive learning system, specifically their activity performance scores, uses the 
number of school premises, denoted as m. Total performance score (TPS) and total 
development score (TDS) are acronyms for the same thing. The function Q (.) represents 
the execution of the i-performance score. To calculate each student’s TDS (Rj) value. 



   

 

   

   
 

   

   

 

   

   84 M. Sun and J. Liu    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 13 Ratio of student performance (see online version for colours) 

 

Figure 14 Efficiency ratio (see online version for colours) 

 

Table 7 Comparative analysis of intelligent assessment systems 

System/study Technology Response 
latency Accuracy Scalability Real-time 

feedback 

Multi-
modal 
data 

Traditional 
LMS 

Manual 
grading 

Hours-
days 

85–90% High No No 

Huang et al. 
(2025) 

AI + data 
mining 

Not 
reported 

88.3% ~200 users Limited No 

Zhang (2024) AI 
assessment 

5–8 
minutes 

89.5% ~150 users No No 

Schmidt et al. 
(2025) 

Adaptive 
AI 

2–3 
minutes 

91.2% ~300 users Partial Limited 

Proposed 
system 

CNN + IoT 180ms 94.2% 500+ users Yes Yes 
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Figure 15 Regression results (see online version for colours) 

 

Figure 16 Moderation analysis (see online version for colours) 

 

Ascertained by multiplying the TDS (Rj) score by the size-scale. You should put these 
parameters’ values to greater use in the section that follows. The student’s performance 
ratio is displayed in Figure 13. Smart education based on the IoT and information 
systems outperforms competing approaches in higher education, according to the results 
of the experiments. Using psychometric procedures with standards for efficient teaching 
and intelligent learning instruments, this study examines the IoT as a tool to assess the 
efficacy of smart education learning (SEL) on the part of both instructors and students in 
higher education systems. One can see the efficiency ratio in the Figure 14. The results of 
the trial show that SEL is beneficial in improving learning and education, and it enhances 
skills and training. 

Figure 15 shows that the associations between PE, EE, FC, SI, and BIAI were 
explored in this study. The results showed that PE, EE, and FC had significant effects, 
but SI was found to be insignificant (b = −0.004, p = 0.931). Beta coefficients represent 
the strength and direction of the relationships between variables in the statistical model. 
Both direct and indirect paths were evaluated using 5000 bootstraps with a 95% 
confidence level. By definition, complete mediation happens when the mediator 
eliminates the association between the independent and dependent variables, according to 
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the mediation test. If the mediator only takes into consideration a portion of this 
relationship, but the direct link is still there, we say that the mediation is partial. 
Complete mediation exists if the direct beta becomes non-significant with the mediator’s 
inclusion. This study confirmed partial mediation for EE, FC, and SI, supporting H6, H7, 
and H8; however, no mediation was observed for PE, thereby rejecting H5. Moderation 
analysis, using SPSS and a median split method, investigated the impact of AISE on the 
ITR-BIAI relationship. Results revealed that AISE weakened this relationship (−0.153,  
p = 0.03) (See Figure 16), contradicting H10. All the results are depicted in Table 4 after 
controlling for the effect of demographic variables. 

4.1 Comparative analysis: system advantages and novelty comparative 
performance benchmarking 

Table 7 compares the proposed CNN-IoT system against recent intelligent assessment 
implementations in higher education, highlighting performance differentials across key 
operational dimensions. 
Table 7 Comparative analysis of intelligent assessment systems 

System/study Technology Response 
latency Accuracy Scalability 

Real-
time 

feedback 

Multi-
modal data 

Traditional 
LMS 

Manual 
grading 

Hours-days 85–90% High No No 

Huang et al. 
(2025) 

AI + data 
mining 

Not 
reported 

88.3% ~200 users Limited No 

Zhang (2024) AI 
assessment 

5–8 
minutes 

89.5% ~150 users No No 

Schmidt et al. 
(2025) 

Adaptive 
AI 

2–3 
minutes 

91.2% ~300 users Partial Limited 

Proposed 
system 

CNN + IoT 180ms 94.2% 500+ users Yes Yes 

4.1.1 Relative advantages 
The proposed system demonstrates four key advantages:  

1 Ultra-low latency of 180 ms enables genuine real- time feedback, representing a  
667–1,000× improvement over existing systems requiring 2–8 minutes 

2 Higher accuracy at 94.2% surpasses reported benchmarks (88–91%) through  
five-layer CNN architecture with attention- weighted scoring 

3 Multi-modal integration combining video attention tracking, RFID presence 
monitoring, and biosensor engagement metrics versus single-channel approaches 
analysing only written submissions 

4 Enhanced scalability supporting 500+ concurrent users through distributed  
edge-cloud architecture, exceeding typical capacities of 150–300 users. 
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4.1.2 Novel contributions 
Three fundamental innovations distinguish this system: 

1 The hybrid CNN-IoT fusion represents the first unified framework integrating deep 
learning assessment with real-time behavioural monitoring, where previous systems 
treated these as separate processes. 

2 The ASM mathematically couples performance classifications with attention 
analysis, producing dynamic scores accounting for both outcome quality and 
learning engagement – contrasting with conventional binary evaluation. 

3 Dual optimisation simultaneously achieves 6% student performance improvement 
and 40% instructor workload reduction through intelligent feedback routing, where 
high-confidence assessments (87%) proceed automatically while ambiguous cases 
(13%) receive prioritised human review with AI diagnostics. This addresses a critical 
gap in prior research where systems prioritised either learning outcomes (Huang  
et al., 2025; Zhang, 2024) or operational efficiency (Schmidt et al., 2025) but not 
both simultaneously. 

5 Conclusions 

This study demonstrates how AI-powered intelligent assessment technologies have the 
potential to revolutionise higher education by enhancing teaching quality, administrative 
effectiveness, and student learning. Measurable improvements in grading accuracy, 
student happiness, and general engagement are demonstrated by the suggested solution, 
which combines CNNs with interactive platforms supported by the IoT. The results 
demonstrate that AI not only saves time and effort while taking tests, but also gives 
students quick, tailored feedback that promotes motivation and in-depth learning. These 
findings demonstrate how intelligent assessment systems may both fulfil the needs of the 
digital era and potentially solve long-standing issues with conventional evaluation 
techniques. However, including AI into assessment reform requires thorough 
consideration of pedagogical, infrastructure, and ethical issues. To make the most of the 
system, instructors must receive the required training, ensure evaluation fairness, and 
protect data privacy. As a scalable paradigm for long-term educational reform that 
combines pedagogy and technology and equips students for a fast changing digital world, 
universities must welcome this innovation. In doing so, learner-centred approaches and 
the modernisation of higher education may be greatly aided by AI-powered assessment 
technologies. 
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