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Abstract: Music preferences serve as crucial behavioural clues for decoding
mental health states. Music provides a continuous and emotionally rich
behavioural signal that is less influenced by social desirability biases compared
to self-reported data, making it a robust indicator for mental health assessment.
However, traditional analysis methods struggle to simultaneously account for
the temporal dynamics of music listening and its rich semantic information,
resulting in limited decoding efficacy. Previous studies attempted hybrid
models but often faced overfitting or computational inefficiency, which
motivated our design of a more integrated framework. To address this, we
propose an innovative framework that integrates temporal convolutional
networks with pre-trained language models to capture both the sequential
patterns of music consumption and the emotional semantics of lyrics content.
Our validation on a public dataset containing over 100,000 records
demonstrates that this model achieves approximately 8.5% higher accuracy
than single-modal benchmark methods in mental health state assessment tasks.
It also effectively identifies specific musical features associated with depressive
and anxious tendencies. This work provides a novel technical pathway for
achieving non-invasive, dynamic mental health screening.
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1 Introduction

As a language, which has no boundaries of cultures and countries, music has always been
considered to be a means of personal feelings (Oz, 2023). The availability of increased
user listening behaviour data due to the spread of digital music platforms over recent
years presents the computational perspective of problems of user musical tastes with
mental health with unprecedented opportunities to decipher this complex relationship.
Studies have shown that the music preference of anyone is not by chance but instead
indirect yet real representation of the way an individual feels, his personal character and
even the level of his psychological stability. As an example, depressive individuals might
be more attracted to slower and darker sounding music, and anxiety might be associated
with the need to listen to particular genres, say the highly stimulating or, on the contrary,
very smooth types of compositions (Amgoth and Jana, 2014). Such a correlation makes
music preference analysis a promising, emerging research area of where non-invasive
dynamic mental health assessment can be conducted, which has great practical
importance in resolving the mushrooming mental health issues in the world (Pompeo
et al., 2024).

At present, studies in the area are mostly driven towards two technical directions (Asa
and Daniel, 2015). The former deals with audio signal processing-based methods that are
used to extract low-level acoustic music features, including pitch, rhythm, and spectral
characteristics. They are further used to build predictive models based on standard
machine learning methods (e.g., support vector machines, random forests) or simpler
deep learning models (e.g., convolutional neural networks). Such studies have proven to
statistically correlate content of music with mental health indicators. The other method
uses natural language processing to interpret information of music nature, including lyrics
(Han, 2024). Neural snapshots such as bidirectional encoder representations of
transformer (BERT) and enhanced BERT pretraining strategy could appear to capture
detailed emotional semantics and narrative themes in a song and provide a new layer of
understanding of the psychological effect that music has on listeners. Nonetheless, both
mainstream approaches are limited in some way. The temporal dynamic of the
circumstance of music as an art is usually lost by pure audio analysis tools. It is not the
influence of a piece of music that is defined at one moment, but a synergistic
development in the melody, harmony and rhythm in the time dimension (Wilbourne,
2025). On the other hand, semantic content can be fully abstracted in pure lyric analysis
approaches, and cannot analyse instrumental pieces that do not contain lyrics, and lapse
away from the musical sound-temporal context of music (Fernandez, 2024).

Importantly, listening to music in actual situation is the paradigmatic and multimodal
and temporal activity (Mudau and Sikhosana, 2024). Streaming listening patterns are
enormous longitudinal information, including profound psychological hints like
tendencies toward mood changes, the degree of musical discoveries and consistency of
preferences (Yoshizawa et al., 2023). As an example, listening to many sad songs with
very similar emotional sounds one right after another, rather than alternating between the
cheerful songs and the sad ones, is probably a sign of drastically different mental
conditions. This is because the current studies have serious limitations when it comes to
effectively combining this heterogeneous information, that is, the temporal listening
patterns of music and the audio/semantic content of music (Lilley, 2024). The classic
version of recurrent neural networks (RNNs) and its derivatives, long short-term memory
(LSTM), and gated recurrent (GR) units, have the drawbacks of a gradient vanishing (or
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gradient explosion) issues with long sequences and can not be easily parallelised to train,
leading to poor efficiency. In spite of the fact that, compared to RNNs, TCNs show better
performance in the modelling of long sequences, i.e., using such structures as causal
convolutions and residual connections, the success in doing various tasks related to the
temporal domain, TCNs find little application in the interdisciplinary field of
music-based mental health decoding. Particularly, synergistic integration with deep
language models warrants further exploration (Mallada et al., 2014).

Therefore, the core motivation of this research lies in addressing the aforementioned
research gap and tackling the challenge of how to deeply integrate music’s temporal
behavioural patterns with its deep semantic content to decode mental health more
accurately. We recognise that a computational framework capable of fully understanding
‘when, in what sequence, and what content (including its sound and meaning) a user
listens to’ is crucial for advancing this field. Based on this, this research aims to explore
and implement a novel fusion mechanism between TCNs and advanced language models.
The goal is to construct an intelligent system capable of end-to-end, collaborative
learning of effective representations from complex multimodal music data, ultimately
enabling refined and interpretable decoding of an individual’s mental health state
(Aditya, 2025).

2 Related research work

2.1 Music preferences as behavioural markers of mental health

Music listening, as a daily and highly personalised activity, has been shown through
multiple studies to exhibit systematic correlations between preference patterns and an
individual’s mental health status (Kochar et al., 2024). From a psychological perspective,
the theory of music-based emotion regulation posits that individuals often consciously
select music to manage their emotions — for instance, using uplifting music to boost mood
or sorrowful music to seek resonance and catharsis (Edler and Valentino, 2024). These
selection preferences indirectly reflect their current psychological state and needs. In
computational psychiatry, researchers are leveraging this connection to develop mental
health assessment models through quantitative analysis of music consumption data.
Initial research mainly used features designed by hand, including audio properties such as
Mel-frequency cepstral coefficients, beat strength, and tonality, with a classifier, such as
support vector machine or random forest to estimate signs of depression or anxiety.
Nevertheless, such methods tended to consider a single song or listening process a static,
isolated sample, forgetting that the music listening is a dynamic process, time changing
endeavour. The sequence of songs that the users will listen to at various times of time are
automatically rich information. As an illustration, the reduction in the variety of listening
or an extended low emotional tone can be a better indicator of mental health problems
than the aspect of a particular song. Hence, the enhancement of the decoding accuracy is
optimal with the treatment of music preferences as a time-based behavioural
characteristic and the creation of models that can effectively describe their long-term
relationships.
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2.2 The principles and advantages of TCN

To model long-term dependencies in music listening sequences, we introduce TCNs.
TCNs are a class of convolutional architectures specifically designed for sequence
modelling (Ding et al., 2024). Their core lies in ensuring efficient processing of temporal
data through causal convolutions and dilated convolutions. Unlike traditional
convolutional neural networks, the output at time step ¢ in a TCN depends only on the
data from time step ¢ and earlier in the input sequence. This strictly adheres to temporal
causality, preventing leakage of future information. This property is achieved through
causal convolutions, whose mathematical form can be expressed as:

K
A=Y At = (K = k)]- wik]+b Q)
k=1
where, x is the input sequence, y[f] is the output at time #, w is the convolutional kernel
weight of length K, and b is the bias term.

To expand the receptive field without significantly increasing parameters and
computational complexity, TCN employs dilated convolutions. For a convolutional layer
with dilation factor d, the operation is defined as:

K

=D e —d - (K—k)]-wik]+b @)

k=1

By stacking multiple layers of dilated convolutions and allowing the dilation factor d to
grow exponentially with network depth (e.g., d = 2! where [ is the layer index), TCNs can
efficiently capture dependencies over extremely long ranges in sequences.

Additionally, TCNs typically draw inspiration from residual network by incorporating
residual connections to mitigate the vanishing gradient problem in deep networks,
ensuring stable training. A basic residual block can be represented as:

0 = Activation(x + F(x)) 3)

where, x is the block input, F is the transformation function composed of a series of
causal dilated convolutions and nonlinear activation functions, and o is the block output.
Compared to RNNs and their variants (such as LSTMs), TCNs possess inherent
advantages including clear structure, stable training (avoiding gradient
explosion/vanishing), high parallel computing efficiency, and flexible handling of
variable-length inputs. These characteristics make them an ideal choice for processing
long-sequence music listening histories. Compared to recurrent architectures like LSTMs,
TCNs exhibit superior computational efficiency due to their parallelisable convolutional
operations and fixed-depth receptive field. This design significantly reduces training time
and memory footprint when processing extensive music listening histories, without
compromising the model’s ability to capture long-range dependencies. Therefore, TCNs
offer a more scalable solution for real-world applications involving lengthy sequential
data.
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2.3 Applications of language models in music semantic understanding

Music encompasses more than just audio signals; its accompanying textual information —
such as lyrics, song titles, and user tags — carries rich semantic content that is crucial for
understanding the emotions and themes within music (Kraus and Chandrasekaran, 2010).
In recent years, pre-trained language models based on the Transformer architecture, such
as BERT, We selected BERT over alternatives like RoBERTa primarily for its
well-established bidirectional context encoding and extensive pre-training on diverse
corpora, which aligns with the nuanced and often figurative nature of song lyrics.
BERT’s ability to model deep contextual relationships allows it to effectively interpret
subtle emotional cues and thematic shifts within lyrical text. Furthermore, its robust
open-source implementation and proven performance on various semantic tasks provided
a reliable foundation for our multimodal framework. have achieved revolutionary
progress in natural language understanding tasks. By pre-training on large-scale corpora,
these models can generate deep context-aware word embeddings. In the field of music
analysis, researchers utilise such models to encode lyrics, capturing the emotional
semantics and narrative themes of songs. Given a sequence of lyrics S = sy, 52, ..., sy the
BERT model transforms it into a sequence of context-rich embedding vectors E = ey, e,
.., eN. Typically, the model uses the embedding corresponding to the special
classification (CLS) token, ejcis, as the aggregated representation of the entire sequence:

ecLs; = BERT(S) “

This indicates that ercLs) can be regarded as a semantic summary of the entire lyrics,
which can then be utilised for downstream CLS or regression tasks. In this manner,
language models provide music with a content-based semantic perspective that
transcends acoustic features, enabling the model to comprehend concepts closely related
to mental health —such as ‘heartbreak,” ‘joy,” or ‘loneliness’ — as expressed within the
lyrics.

2.4  Existing strategies and challenges in multimodal fusion

Given the multimodal nature of music data (temporal listening behaviour and textual
semantics), effectively integrating these heterogeneous information streams presents a
core challenge. Existing multimodal fusion methods can be broadly categorised into early
fusion and late fusion approaches (Drougkas et al., 2024). Early fusion integrates at the
feature level, such as concatenating temporal features extracted by TCN with semantic
features extracted by language models before feeding them into a classifier: z = [WTCN;
hLM]. While simple, this approach may overlook interactions between different modal
features. Late fusion, conversely, allows each modality to make independent predictions,
subsequently merging results through weighted averaging or voting. However, this
approach fails to leverage complementary information between modalities during the
model training process (Kwak et al., 2025).

More advanced fusion strategies rely on attention mechanisms, which dynamically
evaluate the importance of different modal features across varying contexts (Kalamkar
and Amalanathan, 2025). At the core of attention mechanisms lies the computation of a
weighted context vector through the interaction between a query vector (Query) vector
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and a set of key-value pairs (Chen et al., 2024). This computational process can be
summarised as follows:

exp score(q.k;))

%= Zexp(score(q,ki))
J

(&)

c=Y av, (6)

where, ¢; represents the attention weight, and ¢ denotes the output context vector. In
cross-modal fusion, features from one modality can serve as a query to retrieve relevant
information from another modality (functioning as key and value), thereby achieving
selective, focused integration. In designing the cross-modal attention module, we
prioritised parameter efficiency to ensure the model’s practicality for potential
deployment. The attention mechanism operates on projected feature vectors without
introducing large intermediate layers, keeping the additional parameter count minimal.
This lightweight design ensures that the fusion module enhances performance without
imposing a substantial computational burden, maintaining the overall model’s suitability
for integration into resource-conscious applications. However, in the specific task of
music preference decoding, designing an efficient attention interaction mechanism that
enables deep, bidirectional information complementarity between temporal behavioural
patterns and lyrical semantics — and jointly serves the precise inference of mental health
states — remains an area not yet fully explored in current research.

3 Technical approach and model architecture

3.1 Problem definition

This study aims to decode users’ mental health states through their music listening
sequences and corresponding semantic information (Fischer and Mcadams, 2025). We
formalise this task as a multimodal sequence classification problem. Specifically, an
input instance to the model is defined as:

U :(Si’Li) O]
where, S; = s1, 52, ..., sy listening sequence of length T for user i, where each element s, in
the sequence is a song identifier(ID). For each song s, in the sequence, we have its
corresponding lyric text data /. Thus, the set of lyrics corresponding to the entire
sequence is L; = I, b, ..., Ir. The model outputs a mental health state classification label
yviel, 2, ..., C, where C denotes the total number of categories (e.g., C = 3 may
correspond to ‘healthy,” ‘mild symptoms,” and ‘severe symptoms’).

Our objective is to learn a mapping function f: (S;, L;) — that collaboratively learns an
effective joint representation from sequential listening patterns and lyric semantics,
thereby enabling accurate prediction of mental health states y;.
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3.2 Overall model architecture

To address these challenges, we propose a multimodal fusion framework based on TCNs
and language models (Pham et al., 2023), whose core architecture is illustrated in
Figure 1. The model primarily consists of three core modules:

1 the TCN temporal feature extraction module, responsible for extracting temporal
features with long-term dependencies from music listening sequences S;

2 The language model semantic encoding module, which extracts deep semantic
features from the lyric set L;

3 The cross-modal attention fusion module, which dynamically integrates temporal
and semantic features to generate the final classification results.

The entire model is trained in an end-to-end manner.

Figure 1 Temporal convolutional network-language model (TCN-LM) fusion model architecture
diagram (see online version for colours)
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Fenlure

Extraction Se
: Time .
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3.3 TCN temporal feature extraction module

Given an input sequence S;, we first map each song ID s, to a dense vector representation
through an embedding layer:

x, € R% ®)
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where d, is the embedding dimension. This transforms the discrete ID sequence into a
continuous vector sequence:

X =X,,X,,...,X, € R"% ©)

Subsequently, the sequence is fed into a multi-layer TCN architecture for processing. As
described in relevant studies, TCNs ensure temporal dependencies through causal dilated

convolutions. For layer /, the dilation factor is d = 2"-!. The output feature h; at time step
t is computed using the following formula:

he' =ReLU (Y k=1"W, -ht—d -(K - k)" +1b') (10)

where, h*! denotes the input sequence from the previous layer (for the first layer,
h? = X), K represents the convolution kernel size, and W,i and b’ are the weight matrix

and bias vector at position & in layer /, respectively. Rectified linear unit (ReLU) is used
as the activation function.

To stabilise training for deep networks, we introduce a residual connection after every
two TCN layers. The computation process for a residual block is as follows:

o = Activation(hl‘1 +F (n" )) (1D

where, F represents the transformation function composed of two layers of causal
inflation convolutions and their activation functions, with o being the output of this
residual block. After stacking L layers of TCN, we obtain a high-level temporal feature
representation that captures the long-term dependencies across the entire sequence:

o' = Activation (h' + Hyey =h% k... hE e R™% (h')) (12)

where dj, denotes the dimension of the TCN output features. To obtain a sequence-level
global temporal representation, we perform average pooling on the features across all
time steps. We evaluated several aggregation strategies, including max pooling and
attention-based pooling, during preliminary experiments. Average pooling was ultimately
selected because it consistently produced the most stable and generalisable
representations by incorporating information from all time steps or song features. This
approach mitigates the risk of overfitting to single, potentially noisy elements, which is
crucial for modelling behavioural sequences where the overall pattern is more
informative than outliers.

- 1
hTCN:?Zt:IThtL (13)

The vector hTCN € R will serve as the representative of the temporal modality and be
fed into the subsequent fusion module.

3.4 Semantic encoding module for language models

For each song lyric /; in the lyric collection L;, we employ a pre-trained BERT model to
extract its semantic representation. First, the lyric text /; is tokenised and augmented with
special tokens before being fed into the BERT model:
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€/cLs)-€--»ey = BERT(]) (14)

Among these, e[CLS] R® is the embedding of the CLS token at the beginning of the

sequence, which is widely used as the aggregated representation of the entire input
sequence, where dj, denotes the output dimension of the BERT model. Thus, for a song
sequence of length 7, we obtain 7 song-level semantic vectors:

E =¢[CLS]',e[CLS],....e[CLS]" € R (15)

To capture the global semantics of the entire lyric sequence, we similarly employ an
average pooling operation to aggregate E into a global semantic vector:

T 1 T t
hIM=— > t=1'¢ 16
TE [CLS] (16)

The vector hLM € R will serve as the semantic modality representative and participate
in fusion.

3.5 Cross-modal attention fusion and classification

Simple feature concatenation or late-stage fusion struggles to capture complex
interactions between modalities. Therefore, we designed a cross-modal attention fusion

module (Yan et al., 2025). This module uses the temporal global feature h;.y as the

query. Our design decision to use the global temporal feature as the query is grounded in
the behavioural causality inherent in the task: a user’s listening sequence forms the
contextual backdrop against which the semantic content of individual songs is
interpreted. This setup allows the model to ask, ‘Given this pattern of listening behaviour,
which lyrical themes are most salient?’ Preliminary experiments using the semantic
feature as the query yielded marginally inferior results, supporting our hypothesis that the
temporal context should guide the semantic selection. with all lyric semantic vectors E
serving as both key and value. It dynamically calculates the importance of each song’s
lyric semantics within the broader listening sequence context.

first, we project query, key, and value onto the same dimension via a linear
transformation:

q=WghTCN +b, (17)
K=W,E' +b, (18)
V=WE' +b, (19)

where, quRd“Xd", W,,W, e R%“ are weight matrices, b,, bi, b, are the

corresponding bias vectors K,V € R

Subsequently, the similarity between the query and all keys is computed, and the
attention weights o are obtained by normalising the result through the Softmax function:

.
& = Softmax [ q KJ (20)

/i
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where, ae R” represents the importance of the lyrics of the #" song to the current
listening sequence context, where each element ¢ corresponds to this importance. ./d,

is a scaling factor used to prevent gradient vanishing caused by excessively large inner
products.

Weight the values using attention weights and perform a weighted summation to
obtain an enhanced semantic representation ¢ filtered based on temporal context:

c=Va' (21)

Finally, we concatenate the raw global temporal features h;., with the attention-

weighted semantic context vector ¢. This concatenated input is then fed through a fully
connected layer for fusion and dimensionality reduction, yielding the final joint
representation z:

z=ReLU(W/[hTCN;c]+b ) (22)

where, [;] denotes vector concatenation, and Wy and by are the parameters of the fusion
layer.

3.6 Model training and loss function

Inputting the joint representation z into a simple Softmax classifier yields a probability
distribution over C mental health categories:

y = Softmax (W.z +b, ) (23)

where, )Afe R®, W, and b, are the parameters of the classifier.

We employ cross-entropy loss as the objective function for model training to measure
the discrepancy between the predicted distribution § and the true labels y (one-hot
encoded):

LCE=-)c=1%,log(}.) (24)

To prevent overfitting, we incorporate an L2 regularisation term (weight decay) into the
loss function, constraining all trainable parameters © of the model (excluding pre-trained
BERT parameters):

L=Lo+2]0f (25)

Among these, A is the hyperparameter controlling the regularisation strength. The model
undergoes end-to-end training using the adaptive moment estimation (Adam) optimiser
by minimising the total loss £ . During training, the parameters of the BERT model are
frozen, with only the parameters of the remaining modules updated to stabilise training
and conserve computational resources.
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Algorithm TCN-LM model training algorithm

N

Input: Training dataset D = {(Sl. L,y )} ,» TCN hidden layer dimension dj, attention

mechanism dimension d,, learning rate 7, batch size B, maximum training epoch E, L2
regularisation coefficient A

Output: Trained model parameters ©

1 Initialise TCN module parameters &rcn
2 Initialise fusion module parameters Gusion
3 Load the pre-trained BERT model and freeze its parameters.
4
5 for epoch =1 to £ do
6 for each small batch {(Ss, L», y»)} in D do
7
8 // Forward propagation
9 for k=1 to B do
10 /' TCN temporal feature extraction
11 Xi = Embedding (Ss[k]) — Sequence embedding
12 H, =TCN(X,) —Time-series feature extraction
13 H{I"CN = AveragePooling(H’{CN) — Global sequential representation
14
15 // Semantic encoding in language models
16 Ex = BERT(Ls[k]) — Semantic feature extraction
17 Hfm = AveragePooling(E, ) — Global semantic representation
18
19 // Cross-modal fusion
20 —
¢, = CrossModalAttention (h,';‘CN E, )
21 ) _
z, = Fusanayer([hl;CN W ])
22 A .
¥, =Softmax (Classifier(z, ))
23
24 L, = CrossEntropyLoss()Af oV [k])
25 end for
26
27 // Calculate batch loss
28

1 B
Ebatch 272‘61( +/‘LH®H§
B k=1

29
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30 // Backpropagation
3 7.~
00
32
33 // Parameter update
34 © = ©-7 AdamUpdate (Vo)
35
36 end for
37
38 // Validation set evaluation
39 if epoch%10 == 0 then
40 accuracy = EvaluateOnValidationSet()
41 Print(‘Epoch’, epoch, ‘Validation Accuracy:’, accuracy)
42 end if
43
44 end for
45
46 return ©

4 Experiments and analysis

4.1 Experimental setup

4.1.1 Dataset and pre-processing

This study employs two publicly available datasets for experimental validation. Music
listening data is sourced from the Last.fm-1K dataset, which contains complete music
listening histories of approximately 1,000 anonymous users. This includes song IDs,
artists, listening timestamps, and user-generated social tags such as ‘chill,” ‘depressing,’
and ‘energetic.” Mental health label data was sourced from a public subset of the
myPersonality dataset, which contains psychology scale scores completed by users via a
Facebook application. We selected the centre for epidemiologic studies depression scale
(CES-D) scores as a proxy indicator for mental health status. After the thresholds of
common clinical practices, we transformed scores on CES-D to a three-category
nomenclature; we considered the scores near 15 and 23-33 (16-23) were the most
common terms used in clinical practice; we regarded healthy (0 points), severe depressive
(24 points and above), and mild depressive symptoms (16-23), to be present.

Through completion of association matching using user IDs (in accordance with
ethical and anonymisation requirements of each dataset), we finally assembled an
effective multimodal dataset of 3,852 users. We picked out the sequences of listening of
each user over the past 6 months, and uniformly truncated or padded each sequence to a
common length of T = 100. The choice of T = 100 as the uniform sequence length was
informed by a balance between data representativeness and model practicality. Analysis
of the user listening histories showed that this length covers a significant portion of recent
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listening activity for most users while remaining computationally manageable. We also
conducted sensitivity analyses on a subset of data, confirming that lengths near 100
provided a stable trade-off between capturing sufficient temporal context and avoiding
excessive padding or truncation artefacts. Textual information for each song was
constructed by concatenating corresponding Last.fm social tags, serving as a supplement
and alternative to lyrics (due to copyright restrictions on complete lyrics). The dataset
was randomly split into training, validation, and test sets at a ratio of 7:1.5:1.5. Detailed
statistical information of the dataset is shown in Table 1.

Table 1 Dataset statistics

Statistical item Numerical value
Total number of users 3,852
Number of users in the training set 2,696
Number of users in the validation set 578

Test set user count 578
Average sequence length (first song) 87.4
Health (category 0) user proportion 58.3%
Proportion of users with mild symptoms (category 1) 28.1%
Proportion of users with severe symptoms (category 2) 13.6%

4.1.2 Comparison algorithms and evaluation metrics

To comprehensively evaluate the performance of the proposed model (denoted as
TCN-LM), we compared it against several representative baseline methods, all of which
were reproduced according to their original papers:

e LSTM-audio: a model based on LSTM networks that utilises Mel-frequency cepstral
coefficients features extracted from audio signals as input. It is a classic temporal
model in the field of music emotion recognition.

e BERT-text: utilises only song tag text to obtain document-level embeddings via a
pre-trained BERT model, which are then fed into a fully connected layer for
classification. This represents a purely semantic approach.

e Early fusion: an early fusion strategy that concatenates the features from the final
hidden layer of the LSTM-Audio model with the document embeddings from
BERT-text, followed by classification.

e Late fusion: a late fusion strategy that performs a weighted average of the prediction
probabilities from the LSTM-Audio and BERT-Text models, with the weights
determined through optimisation on the validation set.

The measures of evaluation that will be used are accuracy, macro-averaged F1-score
(Macro-F1) score, and weighted average area under the curve (AUC). The macro-F1
score provides a fair assessment of model performance on data with class imbalance,
while the weighted average AUC comprehensively evaluates classification performance
across different categories.
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4.1.3 Implementation details

Our TCN-LM model is implemented using the PyTorch framework. The TCN module
comprises four residual blocks, each with a hidden dimension of 128, a convolution
kernel size K = 3, and a dilation factor that increases exponentially with layer number.
The language model module utilises a pre-trained BERT-base-uncased model with an
output dimension d, = 768. The cross-modal attention dimension d, is set to 256. During
training, BERT parameters are frozen. We adopted a strategy of freezing the pre-trained
BERT parameters after comparative experiments showed that fine-tuning offered
negligible performance gains on our specific task, while considerably increasing the risk
of overfitting and training instability. Given that our downstream textual inputs
(social tags) are relatively concise and aligned with general language, the frozen,
general-purpose embeddings from BERT provided a robust and transferable semantic
foundation, allowing the other model components to specialise in learning the multimodal
interactions. The Adam optimiser is employed with an initial learning rate of le-3,
subject to learning rate decay. The batch size is set to 32, and the L2 regularisation
coefficient A is fixed at le-4. All experiments are conducted on NVIDIA Tesla V100
graphics processing units.

4.2 Results and analysis

4.2.1 Primary experimental comparative analysis

The performance comparison results of different models on the test set are shown in
Table 2. It can be seen that our proposed TCN-LM model achieves the best performance
across all three evaluation metrics.

Table 2 Model performance comparison results
Model Accuracy rate Macro F1 score Weighted AUC
LSTM-Audio 0.641 0.598 0.812
BERT-Text 0.668 0.623 0.834
Early Fusion 0.689 0.652 0.851
Late Fusion 0.701 0.665 0.863
TCN-LM (Ours) 0.734 0.704 0.892

The specific analysis is as follows: first, the performance of single-modal baseline
models (LSTM-audio and BERT-text) is relatively limited, confirming the assertion in
the introduction that relying solely on either temporal or semantic perspectives is
insufficient. BERT-Text outperforms LSTM-Audio slightly, indicating that the semantic
information embedded in user-provided social tags holds greater discriminative power
than low-level audio features in this task. Second, the fusion baselines (early fusion and
late fusion) both perform better than single-modal models, which are evidence of the
utility of multimodal fusion. But their merging processes are still quite rough-grained,
and cannot reach profound interaction between modalities. Finally, our TCN-LM model
compares significantly to any of the baselines where long sequence dependencies are
modelled with TCN architecture that is more expressive, and cross-modal attention that is
used to perform dynamic feature selection and fusion. As an example, TCN-LM was



84 J. Bai

more accurate than the best baseline (late fusion) by 3.3% and it had a higher macro F1
score by 3.9% points which is a clear indication that our proposed architecture is the best.
4.2.2 Melting experiment

In order to analyse the role of each part in the model, we a had a systematic ablation
experiment, where the results are presented in Table 3.

Table 3 Melting experiment results
Model variants Accuracy rate Macro F1 score Weighted AUC
TCN-LM (full model) 0.734 0.704 0.892
W/o TCN (replaced with LSTM) 0.705 0.668 0.865
W/o LM (TCN only) 0.652 0.607 0.828
W/o attention (replace with 0.716 0.685 0.878
concatenation)

e W/o TCN: when one substituted the temporal feature extraction module with an
LSTM with the same number of layers, there was a considerable decrease in
performance. This confirms that TCN has a superiority to the conventional RNN
architectures in its ability to capture long-term dependencies in music listening
because its parallelisation and increased effective receptive field give greater
strength in sequence modelling.

e  W/o LM: removing the language model module process and instead only processing
the sequence IDs by TCN caused a significant drop of performance to even below
the BERT-Text baseline. This highlights the primary importance in this task of
semantic/tag information of lyrics. The model has difficulty in semantically advising
the listening behaviours unless some semantic guidance is provided.

e W/o attention: the substitution of the cross-modal attention fusion module with the
straightforward concatenation of features caused a significant drop in the
performance. This means that our programmed attention system is able to
accomplish complementary modal exchange of information dynamically prioritising
those semantic features most important to the temporal context at hand as opposed to
attending to all features in an equal manner.

4.2.3 Explainability analysis

To explore on the foundation of the decision-making process in the model, we plotted the
cross-modal attention weights of a test user case. The actual label of the user was a severe
depressive symptoms, which the model gained correctly. Figure 2 illustrates some of the
listening order and weights of attention observed by the user.

e Result analysis: It is clear in the figure that weight of attention is not distributed
equally. The model gives more emphasis on a smaller number of songs, whose tags
on Last.fm, when viewed, contain mostly words that are mostly linked to depressive
moods, such as sad, melancholy, dark, and lonely, among others. On the other hand
songs having low weight are those that have mostly been tagged as party, upbeat and
dance. This proves that the model has been able to learn a meaningful,
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understandable pattern: in the process of recognising users with signs of depression,
the machine is automatically inclined to pay attention to emotional music tracks
rated negatively in their listening history and ignore positive ones. This is according
to the rationality of clinical diagnosis in the human brain, enhancing good
transparency in the creative aspect of the model.

Figure 2 Testing the cross-modal attention weight distribution of the user listening sequence
(see online version for colours)
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Figure 3 Loss and accuracy curves during TCN-LM model training (see online version
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4.2.4 Training dynamic analysis

Figure 3 demonstrates the curves of loss and accuracy of TCN-LM model as it is being
trained over training and validation sets.

e Result analysis: the curve shows that the loss of training occurs in a straight line
fashion as more epochs are run and the training accuracy also increases in line with
it. The loss and the accuracy on the validation set are almost similar to that of the
training set and no sharp deviation is noticed during the training process. This is an
indication that we have a stable and convergent model training process. The two L2
regularisation and fixed BERT strategies used manage to address overfitting and
successfully guarantee the generalisation ability of the model.

5 Conclusions

This paper fills available gaps in music preference-based mental health decoding
paradigms in time dynamic modelling and multimodal information deep integration
framework by presenting a new paradigm, integration of TCNs and language models.
You can see that using our proposed TCN-LM model, systematic validation on a
real-world multimodal sample of 3852 users shows significantly higher performance
compared to Alternate baseline algorithms, with an accuracy of 73.4 and macro F1 score
of 0.704. More importantly, core component experiments demonstrate the efficiency of
the core components: TCN module is more effective than traditional LSTMs in capturing
long-term listening dependencies, whereas cross-modal attention dynamically extracts
essential semantic information to obtain better modality synergy as opposed to the simple
fusion approaches. The explainability analysis also demonstrates the rationality of
decision-making process of the model. Its attention weights adjust themselves
automatically to preferences of emotive musical media that are very much correlated with
a psychological emotion like depression and anxiety, which offer a solid argument in
terms of validity of the model.

This paper has theoretical contributions that are two-fold. First, it methodologically
confirms the practicality and excellence of directly integrating TCNss into language model
pre-trained with pre-trained language models, offers a framework such as generalisation
on resolving similar temporal-semantic multimodal problems. Second, the study can be
used to reveal preliminary dynamic and fine-grained correlates between the patterns of
music listening and mental health state by taking advantage of intelligible attention
mechanisms. This enhances our comprehension of the ability of the Digital behavioural
footprints to mirror the state of underlying psychological condition and this provides new
insight into computational behavioural science.

At the less abstract level, this work provides the technical background of the creation
of the brand-new generation of non-invasive, dynamic, and affordable mental health
screening devices. The suggested model could be incorporated into the current music
streaming services or apps connected with health. It can predict upcoming mental health
dangers early and dynamically by examining analysed dynamic aggregated and
anonymised listening patterns. Moreover, the types of music identified by the model that
have significant correlations with particular states of the psyche can be used as the
sources of data-based references when creating personalised intervention programs in the
music therapy.
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Naturally, this research has its shortcomings as well. To begin with, the data are
obtained through publicly available sources, and its mental health identifiers are based on
self-reporting measures. These results have to be confirmed in future work by utilising
more clinical representative samples. Second, the model now mainly operates on text and
sequence id data and is yet to combine the original audio cue. In the future, we will
consider instant models that are more complex and multifaceted, that is, they integrate
audio, lyrics, and listening context, as well as investigate the generalisation ability of the
model to other cultures and demographics. At the same time, user data privacy and
security in usable applications, as well as development of ethically impermissible
deployment processes, is an important issue that still needs to be discussed to promote the
practical implementation of this technology.
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