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Abstract: Current music composition teaching systems face challenges such as 
limited resource quality and insufficient real-time interactivity. To address 
these issues, this paper proposes a generative music composition teaching 
system based on mobile interaction technology. The system first designs a 
music teaching resource generation module utilising multi-scale feature 
filtering, combined with a multi-discriminator structure to enhance the 
discriminative capability of generated samples. Building upon the generation of 
rich music teaching resources, this paper introduces an expandable network 
communication module and an interactive collaboration module supporting 
bidirectional collaborative control and user state management. Experimental 
results demonstrate that the designed system achieves a CPU utilisation rate of 
43% and a single interaction response time of only 11.8ms. It not only 
generates high-quality music creation resources but also exhibits outstanding 
real-time interactive performance, holding significant value for advancing the 
widespread application of interactive mobile teaching. 

Keywords: music composition teaching; music generation; mobile interaction; 
feature selection; collaborative learning. 
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1 Introduction 

As the digital music industry rapidly growing, generative music creation has emerged as 
a new frontier in music education due to its innovative and efficient nature. However, 
current generative music instruction heavily relies on specialised equipment and fixed 
settings, presenting challenges such as high operational barriers, limited interactivity, and 
restricted teaching scenarios. These limitations hinder learners’ ability to engage in 
creative practice anytime and anywhere, thereby constraining the widespread adoption of 
generative music creation in public education (Zhang, 2023). The rapid advancement of 
mobile interaction technologies offers new possibilities for addressing these challenges. 
The widespread adoption of mobile devices such as smartphones and tablets, coupled 
with the maturation of interaction technologies like touchscreens, gesture recognition, 
and sensors, can overcome the temporal and spatial constraints of traditional teaching. 
This enables the creation of more immersive and convenient creative environments for 
learners (Sun and Zang, 2025; Hernandez-Olivan and Beltran, 2022). Integrating mobile 
interactive technology with generative music composition instruction not only lowers the 
barrier to entry for creators but also enhances teaching efficiency and learner engagement 
through real-time feedback and personalised guidance. This approach aligns with current 
trends toward digitalisation and personalisation in education (Cheng, 2025; Larsson and 
Georgii-Hemming, 2019). 

The core of mobile interactive learning lies in empowering education with technology 
and reconstructing the teaching-learning-assessment relationship through personalised, 
interactive and data-driven design. Its advantages are not only reflected in the 
improvement of efficiency, but also in cultivating learners’ autonomous learning ability 
and digital literacy, laying the foundation for a lifelong learning society. In the future, 
with the development of technologies such as 5G, AI, and the metaverse, mobile 
interactive learning will further integrate virtual and real scenarios, promoting the 
evolution of education towards a smarter and more inclusive direction. Mobile interactive 
learning emphasises students’ self-directed learning, which is a dynamic communicative 
and collaborative learning approach formed between teachers, students, and peers 
through the use of mobile devices and technology to promote music composition teaching 
effectiveness (Dai et al., 2025). Tong (2016) points out that in a mobile interactive 
teaching environment, teachers can adopt multiple teaching methods to facilitate 
interactions among peer students, teacher-student interactions, and with music 
composition teaching resources. Zhao et al. (2024), through feasibility analysis of a 
mobile learning support system for smartphones, proposed a multi-level music 
composition teaching model based on mobile internet. Gong and Wang (2023) point out 
that building a synchronous interactive music composition teaching system that meets 
students’ growth and individual needs can promote learners’ acquisition of musical 
knowledge and deepen their understanding. Duarte-García et al. (2020), under the support 
of mobile environments, used relevant software to build a music composition teaching 
model based on mobile whiteboards, thus enhancing classroom interactivity. Ye and 
Zhang (2023) point out that in interactive learning supported by mobile devices, the 
quality of music composition resources provided through mobile devices is relatively 
low, and the format of resources is too monotonous, making it difficult to attract 
continuous engagement from learners during interactions. Uludag and Satir (2025) found 
in music composition teaching case studies that when teachers use mobile technology for 



   

 

   

   
 

   

   

 

   

    Generative music composition teaching system based on mobile interaction 91    
 

    
 
 

   

   
 

   

   

 

   

       
 

interactive learning in class, they often remain at the operational interaction level, which 
makes it difficult to achieve deep learning outcomes. 

Although some achievements have been made in the research on music composition 
teaching systems based on mobile interactive technology, and there are more and more 
mobile learning products on the market, the quality of musical teaching resources varies 
greatly. Most students choose to learn in a casual manner without clear goals or 
systematic plans, which significantly affects their learning effectiveness (Shi, 2023; 
Zheng, 2024). To address these issues, researchers have studied music composition 
resource generation models based on artificial intelligence (AI) algorithms, with main 
foundational model architectures including long short-term memory (LSTM), 
transformer, and generative adversarial network (GAN) (Meng et al., 2025). In the 
generation of AI music creation teaching resources, the Transformer achieves the best 
overall performance, particularly excelling in multi-part, complex structures, and  
long-sequence compositions. LSTM is suitable for lightweight, rapid validation and 
small-scale data scenarios. GAN demonstrates advantages in timbre and stylistic 
diversity, but suffers from weaker training stability and structural controllability. Model 
performance improvements stem from the synergistic effects of architectural 
mechanisms, training strategies, data optimisation, and engineering refinements. Hewahi 
et al. (2019) trained an LSTM network with a large number of high-level musical 
vocabulary items to generate a series of music composition resources. Lei (2023) 
proposed a music composition resource generation model in light of deep convolutional 
neural networks (CNN). This model can learn composers’ musical styles and dynamic 
features from training sets, achieving good generation results. Ferreira et al. (2023) 
applied the Transformer to music generation, leveraging its attention mechanism to 
achieve excellent results in generating long musical sequences with coherence. Min et al. 
(2022) proposed a model applying GAN to the field of music generation, where both the 
generator and discriminator use LSTM networks. The generator is trained to transform 
random noise into a melody. Cheng and Qu (2025) optimised the traditional GAN, first 
generating the main melody and chords of music, then extracting features from the 
generated parts, and finally generating multi-track music composition resources based on 
the extracted features. Although GANs have many advantages in music composition 
resource generation tasks, they still face issues such as unstable training, difficult model 
convergence, excessively random generation results, and poor auditory experiences 
(Jiang and Mou, 2024). 

Currently, music composition teaching systems based on mobile interaction 
technology face several core challenges. First, teaching resources are unevenly 
distributed. High-quality music composition instructors and hardware equipment are 
often concentrated in specialised institutions or developed regions, making it difficult to 
provide widespread access to the general public. Second, delayed feedback and 
incentives. Learners struggle to receive immediate, effective positive feedback during the 
creative process. The solitary practice environment lacks interactivity, making it difficult 
to sustain motivation. Although numerous music creation apps (such as GarageBand and 
FL Studio Mobile) are available on the market, their core remains rooted in traditional 
digital audio workstation models, lacking creative interaction. Therefore, how to integrate 
generative AI’s music generation capabilities with mobile interaction technology to form 
a closed-loop creation-learning-feedback system has become a key issue worthy of in-
depth research. 
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To cope with these challenges, this article suggests a generative music composition 
teaching system based on mobile interactive technology. First, regarding the issue of 
excessive randomness and poor quality of generated music in resource generation, this 
study designs a music generation model based on a multi-scale screening module and 
multiple discriminators. The generator features a multi-scale feature screening module, 
with the objective of identifying and extracting the most critical features of authentic 
music. At the same time, this model introduces a multi-discriminator structure to enhance 
the discriminator’s ability to identify music samples, thereby optimising the training 
process of the generator. Secondly, in terms of interaction model construction, an 
interactive model supporting mobile learning is built based on students, teachers, and 
music composition resources. Based on this, a music composition teaching system is 
designed. The system adopts the concept of separating control from transmission, 
decoupling network communication and interaction mechanisms in mobile interactions. It 
designs a scalable network communication module and an interactive collaboration 
mechanism supporting bidirectional collaborative control and user state management, 
reducing network pressure and improving interactivity among users. 

2 Generation of music composition teaching resources based on  
multi-scale feature selection 

2.1 Overall framework of music composition teaching resource generation 

Music composition teaching resource generation and generative music composition 
teaching systems are closely dynamically related, with the former providing core 
materials and sources of inspiration for the latter, while the latter enhances the application 
efficiency of the former through technical integration and optimisation of the teaching 
framework. Both jointly promote the transition of music education from knowledge 
transmission to creativity cultivation. In current tasks of generating music composition 
teaching resources, the initial goal is to generate music that better aligns with 
contemporary auditory aesthetics, thereby assisting musicians in their music composition 
teaching (Schmidt-Jones, 2018). However, due to traditional GAN’s relatively random 
generation results, the generated music often has poor quality and lacks good listening 
experience. 

To enable the model to find a reasonable balance during the generation process, 
ensuring that the generated music has sufficient richness without becoming chaotic. This 
chapter proposes a music generation model based on a multi-scale characteristic 
screening module and multiple discriminators (MSFC-MD). The structure of the  
MSFC-MD model is shown in Figure 1. The multi-scale characteristic screening module 
filters characteristics from real music samples at different scales, thereby selecting part of 
significant guiding melodic features to guide the generator in music generation. The 
structure of multiple discriminators structure introduces three distinct discriminators to 
extract symbolic music data features at different scales for discrimination, thus improving 
the discriminators’ feature extraction capability. The ultimate goal is for the generator to 
output music that is perceptually indistinguishable from genuine human-composed 
pieces. 
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Figure 1 The structure of the music composition teaching resource generation model (see online 
version for colours) 

 

M
ul

ti-
sc

al
e 

F
ea

tu
re

 S
cr

ee
ni

ng
 M

od
ul

e
G

en
er

at
or

M
ul

ti-
D

isc
ri

m
in

at
or

D
im

en
sio

n 
R

ec
on

st
ru

ct
io

n

D
isc

rim
in

at
or

 1

D
isc

rim
in

at
or

 2

D
isc

rim
in

at
or

 3

R
ev

er
se

 E
nc

od
in

g
En

co
di

ng

G
en

er
at

ed
 M

us
ic

 S
eg

m
en

t
R

ea
l M

us
ic

 S
eg

m
en

t

C
on

vo
lu

tio
n 

+ 
Fe

at
ur

e 
Sc

re
en

in
g

Tr
an

sp
os

ed
 C

on
vo

lu
tio

n

C
on

vo
lu

tio
n 

+ 
Fe

at
ur

e 
Sc

re
en

in
g

R
ea

l/F
ak

e?

C
ho

rd
 V

ec
to

r
N

oi
se

 Z

h1h2h3h4
h1

'

h2
'

h3
'

h4
'

C
on

ca
te

na
te

C
on

ca
te

na
te

C
on

ca
te

na
te

C
on

ca
te

na
te

C
on

vo
lu

tio
n 

+ 
Fe

at
ur

e 
Sc

re
en

in
g

C
on

vo
lu

tio
n 

+ 
Fe

at
ur

e 
Sc

re
en

in
g

Tr
an

sp
os

ed
 C

on
vo

lu
tio

n

Tr
an

sp
os

ed
 C

on
vo

lu
tio

n

Tr
an

sp
os

ed
 C

on
vo

lu
tio

n

En
co

di
ng

 M
at

rix
 o

f G
en

er
at

ed
 

M
us

ic
En

co
di

ng
 M

at
rix

 o
f R

ea
l M

us
ic

D
im

en
sio

n 
R

ec
on

st
ru

ct
io

n



   

 

   

   
 

   

   

 

   

   94 Y. Xie et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.2 Music feature screening network 

Since the music feature matrix contains its inherent musical logic, to enable the model to 
extract certain effective information from real music samples to guide the generator in 
producing higher-quality music samples, this chapter introduces a multi-scale feature 
screening module. In this module, each scale’s feature matrix uses a feature screening 
network to extract effective musical information. The extraction process is as follows: 
First, the feature matrix X passes through the feature screening module to obtain the 
feature matrix X’, which is then combined with the original feature matrix X using 
weighted fusion, ultimately obtaining the screened feature matrix Y. In the feature 
screening module, this paper primarily draws on the feature recalibration strategy from 
squeeze-and-excitation network (SENet) (Pereira et al., 2019). Taking the feature matrix 
in C × H × W as an example, for a feature matrix X obtained through a convolutional 
layer, it is first compressed via an average pooling operation. Each two-dimensional 
feature channel is converted into a real number. The output dimension equals the input 
feature channel count, resulting in an output vector z that represents the global receptive 
field. Its equation is as follows. 

1 1

1 ( , )
H W

c ci j
z X i j

H W = =
=

×    (1) 

where c stands for the amount of channels, and H and W stand for the feature dimensions 
for each channel. 

The output vector z is input into a two-level fully connected layer to produce weights 
for each feature channel sc, ultimately obtaining the weight distribution vector s, as 
shown below, where δ is the ReLU function, σ is the sigmoid function, W1 is the first 
fully connected layer that compresses c-dimensional features to capture relationships 
between channels, and W2 is the second fully linked level used for dimensionality 
restoration, resulting in the weight distribution vector s. 

( )( )2 1s σ W δ W z=  (2) 

Finally, s is applied channel-wise to the feature matrix X to obtain the weighted feature 
matrix X′, as shown below, where c represents the feature dimensions. 

c c cX s X′ = ⋅  (3) 

2.3 Multiple discriminator and loss function 

Since musical information in the music feature matrix is concentrated near the time axis 
and distant parts from it are mostly blank, while complex intrinsic musical logic exists 
between densely packed features on the time axis, a single discriminator cannot extract 
sufficient effective information during feature extraction. This may lead to certain 
musically logical but monotonous samples being identified by the discriminator, which 
will affect the training of the generator and reduce the diversity of generated melodies. 
Therefore, this chapter introduces multiple discriminators into the music generation 
model to enhance its feature extraction capability. In this part, three discriminators are 
designed for feature extraction at different scales, and their discrimination results are 
weighted and fused. The network structure of each discriminator is similar, consisting of 
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two convolutional layers and two fully connected layers. However, to achieve feature 
extraction at different scales, this chapter uses different parameter settings for the size of 
the convolution kernels and the amount of feature channels in the convolutional layers 
across different discriminators. In addition, to determine whether the melody of a musical 
sample is harmonious with the given chord, this chapter also concatenates the given 
chord vector with the feature matrix obtained from the discriminator multiple times along 
the channel dimension, which is denoted as concat. 

For the loss function of the generator, its goal is to generate musical segments that 
can be identified by the discriminators as real music samples. Therefore, its loss function 
and optimisation objective are given in the following formula, in which θG stands for the 
network parameters of the generator, z is a random noise vector input into the generator, 
pz(z) is defined as the distribution of data that arises from the latent vector, G(z) is the 
encoded matrix for music composition resources generated by the generator, and D(G(z)) 
is the output result of the discriminator based on the generator’s created musical resource. 

( )( )~ ( )min log 1 ( )
G zθ G z p zL E D G z= −    (4) 

For the discriminators, their goal is to correctly distinguish real musical samples from 
music compositions generated by the generator. Therefore, during training, both real 
music composition resources and those produced by the generator are used 
simultaneously for training. Its loss function and optimisation objective are as follows: θD 
stands for the network parameters of the discriminator, x denotes the encoded matrix 
derived from a real musical sample, pdata(x) refers to the distribution of the actual data, 
and D(x) is the output result of the discriminator based on a real musical sample. 

( )( )~ ( ) ~ ( )max [log( ( ))] log 1 ( )
D data zθ D x p x z p zL E D x E D G z= + −    (5) 

Finally, through the integration of the generator and discriminator losses, we can obtain 
the overall model’s loss function. Its total loss function and optimisation objective are as 
bellow. 

( ) ( )( )~ ( ) ~ ( )min max ( , ) log ( ) log 1 ( )
G D dan zθ θ x p x z p zL D G E D x E D G z  = +  −   (6) 

3 Construction of a mobile interactive model integrating music 
composition teaching resources 

3.1 Elements and relationships of the mobile interaction model 

In the current mobile collaborative learning environment, learners have more interaction 
opportunities, richer and more flexible interaction methods, and broader interaction 
spaces compared to traditional teaching environments. This new teaching model should 
support more complex agent interaction relationships, meeting learners’ needs for 
effective interactions. In connectivist (Alam, 2023) learning, learners’ learning goals are 
the establishment of connections and the creation, continuous development, and 
optimisation of (cognitive, social, conceptual) networks. Therefore, combining with the 
music composition teaching resources generated in the previous section, we present a 
mobile learning interaction element model in Figure 2. 
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Figure 2 Mobile learning interaction elements model diagram (see online version for colours) 
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A complete interaction consists of three elements: the interactive resource topic, 
interactive participants, and the interactive space. Among these, the interactive 
participants are at the core, engaging in three types of connective interactions, including 
connectivity with teaching resources, connectivity with people, and connectivity with 
mobile devices. 

1 Connectivity with music composition teaching resources. In connecting with 
teaching resources, learners organise and aggregate fragmented knowledge concepts, 
based on which they consolidate the content into conceptual knowledge maps. The 
ultimate goal of this process is to allow key nodes in the knowledge concept map to 
be aggregated as interactive topics, thereby connecting more content and learners. At 
the same time, learners find interaction topics through searching, looking up, or 
adding, and features such as labelling, recommendation, and association can also 
help learners quickly locate relevant interactive themes. 

2 Connectivity with people. Interaction as a social learning process includes 
information sharing and discussion among interacting participants. In the interaction 
process, if learners have stronger group presence, both students and teachers show a 
greater willingness to participate actively and take initiative in collaborative group 
work. 

3 Connectivity with mobile devices. In mobile learning, learners are no longer 
confined to computer screens but interact freely through mobile terminals within 
real-world spatial environments. Moreover, as the context-aware technologies and 
mobile techniques rapidly growing, learners take geographic information system 
services as a basis for location data and can independently construct or choose more 
personalised environmental resources via context-aware devices to form interactive 
spaces. In this interactive space, interaction participants are able to spark ideas 
through face-to-face communication and control the process of interaction in  
real-time, accurately, and dynamically. At the same time, mobile devices 
continuously receive and push expressions of physical environment information, 
automatically searching for interaction participants that meet specific conditions 
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through various information sources, ultimately making the form of interaction richer 
and more flexible. 

3.2 Heterogeneous interaction model supporting mobile learning 

Based on the interactive structural characteristics of mobile learning networks, a 
heterogeneous undirected graph is used to establish an interaction model. The interactive 
elements included in the model are learners/teachers, groups, interaction topics, mobile 
devices, and knowledge concepts as graph nodes. Node connections are established 
according to the relationships between these interactive elements. Figure 3 displays the 
schematic diagram of the model. Let a heterogeneous graph be represented by G = {V, E, 
R}, where V is the node set of graph G, containing all objects involved in the interaction 
activities and expressed as: the learner/teacher node set being Y = {y1, y2,…,y|Y|}, the 
musical composition resource topic node set for interactions being Z = {z1, z2,…,z|Z|}, the 
group node set being U = {u1, u2,…,u|U|}, the environment node set being S = {s1, 
s2,…,s|S|}, and the knowledge concept node set being C = {c1, c2,…,c|C|}. E is the edge set 
of graph G, containing all interaction relationships between these objects. Then R 
represents a relation type set among the objects. There are six interaction relationship 
types in total according to the interactive activity’s objects, represented as R = {(Y, U), 
(Y, Z), (U, Z), (Y, S), (U, S), (Z, C)}. The process for constructing interaction nodes and 
edges in this heterogeneous graph is as follows. 

1 Construction of interaction nodes. Learner/teacher objects Y, group objects U, and 
knowledge concept graph C are directly added to G. For the interaction environment 
S in mobile learning, both the positional distance expressing the physical proximity 
between environment nodes and attribute features expressing environmental resource 
similarity need to be considered. Therefore, all locations in the interaction model 
should undergo clustering processing; during this clustering process, road network 
distances of locations and resource tags are used separately as spatial and non-spatial 
distances for weighted calculation to obtain a weighted environment node distance. 
Then, combined with k-means method for clustering, the results of this clustering 
will be added as spatial node set S into G. In addition, although online interaction 
does not have an actual physical interaction environment, it is also included in the 
interaction model as a form of interaction; therefore, the online environment type 
marked as s* is added to S. 

2 Interaction edge construction. Learner/teacher and group (Y, U), representing the 
affiliation relationship between learners/teachers and groups. Set edge weight  
ω(yi, uj) to measure the affiliation degrees of these two types of interaction nodes. 
For m users and n groups, their user set Y and U can form a matrix AY_U, where any 
element a(Y_U)ij indicates that learner/teacher yi is affiliated with group uj. If yi has not 
joined uj, then a(Y_U)ij = 0. Generally, the more times learners/teachers interact with 
other members within group activities, the higher their membership degree to that 
interaction group node. Therefore, the edge weight between these two types of nodes 
is represented by the ratio of the amount of interactions from the learner/teacher node 
to the total member interactions, as shown in equation (7), where Mes(yi, uj) 
represents the total number of interactions made by member yi within group uj during 
all interaction activities. A single teaching resource publication, participation in a 
discussion, or question reply can be regarded as one interaction. 
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≠

=


 (7) 

Figure 3 The proposed heterogeneous interaction model supporting mobile learning (see online 
version for colours) 
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Learner/teacher and interaction topic (Y, Z), representing the interest relationship between 
learners/teachers and interaction topics. If yi participated in an interaction activity with an 
interaction topic of zj, for m users and n topics, their user set Y and topic set Z can form 
an interest-topic matrix AY_Z. Any element a(Y_Z)ij within this matrix indicates the number 
of times yi participated in interactions with a topic of zj. If yi did not participate, then 
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a(Y_Z)ij = 0. Set edge weight ω(yi, zj) to measure the interest degrees between these two 
types of interaction nodes. The more times learners/teachers participate in an interaction 
on a certain topic, the higher their interest degree towards that topic node. For each user 
yi, its corresponding interest-topic vector is as follows. 

( )( _ ) ( _ ) 1 ( _ ) 1 ( _ )in, ,...,T
Y Z i Y Z i Y Z i Y Za a a a=  (8) 

Therefore, define the interest correlation degree as the ratio between the number of 
interactions for a specific topic by the learner/teacher node and the total number of 
interactions they participated in. This is used to represent the edge weight between these 
two types of nodes, as shown below. 

( ) ( _ )

( _ 1 )

, Y Z ij
i j T

Y Z i

a
ω y z

aa
=  (9) 

Group and interaction topic (U, Z), representing the interest relationship between groups 
and interaction topics. If group ui initiated or participated in an interaction activity with 
an interaction topic of zj, for group ui and topic set Z, the group’s interest-topic vector is 
as follows. 

( )( _ ) ( _ ) 1 ( _ ) 1 ( _ ), ,...,T
U Z i U Z i U Z i U Z ina a a a=  (10) 

The elements a(U_Z)ij in this vector indicate the number of members within ui who 
participated in interactions with a topic of zj. If ui did not initiate or participate in an 
interaction activity with a topic of zj, then the interest-topic vector is a zero vector. The 
more members in a group participate in interactions on a certain topic, the higher their 
interest degree towards that topic node. Therefore, these two types of nodes’ edge 
weights are defined as follows, where SME(ui) represents the total number of members 
within ui. 

( ) ( )
( _ ), U Z ij

i j
i

a
ω u z

SME u
=  (11) 

Learner/teacher and interaction space (Y, S), representing the positional relationship 
between learners/teachers and interaction spaces. For offline interactions, if yi’s check-in 
location on a mobile device is within sj, then edge weight ω(yi, sj) = 1. Otherwise,  
ω(yi, sj) = 0. For online interactions, use ω(yi, s*) to represent the preference of yi for 
online interaction. It is defined as the ratio among the amount of times yi participates in 
online interactions and their total number of interactions. If this user has never 
participated in any online interaction, then ω(yi, s*) = 0. 

Group and interaction space (U, S), representing the positional relationship between 
groups and interaction spaces. The edge weight is defined by calculating the ratio of the 
group’s total check-ins at location to its total membership size, as shown in equation (12). 
For online interactions, the calculation method for weights ω(ui, s*) remains the same 
and will not be repeated here. 

( )
( )

( )
   

,
, i

k jyk u
i j

i

ω y s
ω u s

SME u
∀ ∈=


 (12) 
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Interaction topics and knowledge concept graphs (Z, C), representing the inclusion 
relationship between interaction topics and knowledge concept graphs. This paper adopts 
the Novak concept map model, where learners and groups assist in maintaining the 
completeness attribute of knowledge within the concept map. If an interaction topic za 
includes a branch node cb from the concept knowledge graph, then the edge weight is 
w(za, cb) = 1. Otherwise, it is w(za, cb) = 0. 

4 Design of the music composition teaching system based on the mobile 
interaction model 

4.1 System function description 

Based on constructing a mobile interaction model integrating music composition teaching 
resources, this paper designs a music composition teaching system. The system adopts 
the idea of separating control and transmission, decoupling network communication from 
the interaction mechanism during interactions, and designing a network communication 
module supporting extensible eXtensible Markup Language (XML) messages as well as 
an interaction mechanism for two-way control and user state management. The system 
mainly solves the problem of bidirectional multiplexed synchronisation in interactive data 
within music composition teaching. The mobile end of the music composition teaching 
system studied in this paper adopts an operation-based interaction mechanism, avoiding 
the use of video recordings for instruction, thus reducing network pressure and improving 
interactivity among users. 

Figure 4 Primary application scenarios of the system (see online version for colours) 
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The primary role of the interactive online teaching system is to simulate a real-world 
classroom, creating a virtual learning environment for teachers and students. The focus of 
this study is to investigate an interactive online teaching system mobile end that supports 
interaction, enabling students to access classes anytime and anywhere. The primary 
application scenarios of the system are shown in Figure 4, which includes a music 
composition teaching resources centre, teachers, and various teaching terminals. 
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Integrated within this framework, the mobile component of the interactive teaching 
system enables students to access virtual classrooms via Android devices, thus meeting 
the needs of learning anytime and anywhere. To effectively access virtual classrooms, the 
mobile system must offer students two core capabilities: a wealth of learning materials 
and robust tools for interaction, collaboration, and communication with their peers  
(Li et al., 2019). 

1 Generation of music composition teaching resources. In the music generation 
module, this chapter divides the module into two functions, where the first function 
is weight selection. Through training, this paper will provide the MSFC-MD model 
with more than two trained models and weights that generate better results. Users 
can select the corresponding weights according to their preferences for music 
generation. The second function is music generation. In terms of music generation, 
the system provides a model channel representing the music generation model 
MSFC-MD. After selecting the model weights, users only need to click the generate 
musical instrument digital interface (MIDI) button; the system will pop up a window 
and let users choose the save path for the music file. Once the save path is 
confirmed, the system can generate the corresponding MIDI music. However, if 
users forget to select the weight path, the system will display a window requesting 
that the user select the weights first. 

2 Playback of music composition teaching resources. The system needs to provide 
participants with instructional tools for accessing music composition teaching 
resources; playback tools are used to meet this need. The playback tool can 
synchronise the playing of teaching resources between teachers and students and 
supports bidirectional control by both sides, enhancing the interactivity of course 
materials. 

3 Interactive electronic whiteboard sharing. Provide an interactive shared electronic 
whiteboard for both parties in teaching as a replacement for traditional blackboards. 
The interactive whiteboard tool can synchronise content created on the whiteboard in 
real-time between teachers and students, supports bidirectional synchronisation by 
both sides of instruction, provides control capabilities to students, and enhances 
interactivity during teaching. 

4 Communication connection and login: It has the function of establishing network 
communication, enabling the mobile student terminal to connect with the teacher’s 
terminal and providing communication support for other teaching interaction-related 
modules of the system. 

5 Interactive and collaborative music composition teaching: In order to make music 
composition teaching interactive, it is necessary to provide operational 
synchronisation and data processing capabilities. This function allows participants in 
music composition teaching to synchronise their operations on teaching resources 
with those of other participants according to teaching strategies, and enables the 
processing of signalling data for interaction to ensure real-time teaching interaction. 
During class, teachers are responsible for managing teaching resources and have 
control over them. In addition, students can apply to the teacher for control rights of 
the teaching tools, allowing their operations on these tools to be synchronised with 
those on other participants’ systems so that they can participate in the teaching. 
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The interactive instruction system is architected with a modular design and built upon the 
Android operating system. The system is principally partitioned into three functional 
modules: namely, the teaching application module, the interaction control module, and 
the network communication module. The interaction control and network communication 
modules provide services to the teaching application module, enabling user interaction 
and collaboration during instruction. The teaching application module is presented as 
custom View controls overlaying the MainActivity and engages in direct interaction with 
users. Figure 5 presents the system architecture. 

Figure 5 Overall structure of a generative music composition teaching system based on mobile 
interaction technology (see online version for colours) 
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4.2 Design of music composition teaching application module 

The module’s main objective is to serve as an interactive platform for the delivery of 
instruction, supporting both educators and learners. To this end, the teaching application 
module must be equipped with a suite of diverse tools to facilitate multidimensional user 
interaction. To allow each teaching application to function autonomously and be rendered 
in various activity regions, it is essential to decouple the views of the teaching 
applications from their particular functionalities. 

The Android application framework provides the foundational view controls used to 
design the teaching application tools. Within the Android framework, view controls 
represent the fundamental, native building blocks for user interfaces in Android, they 
define a rectangular screen region responsible for both drawing its content and handling 
user events within its bounds. View controls provide an onDraw () method for redrawing 
regions and an invalidate () method for updating them. The event response process is 
categorised into local events and remote events. Local events primarily refer to user 
operations; for example, a user performing a page-turn operation on a tool used to play 
music composition teaching resources. In this case, after the event listener captures the 
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user’s touch interaction with the View control, it notifies the controller of the teaching 
resource tool, and the controller completes the page turn for the teaching resource 
playback tool, updating the view. At the same time, the event listener can also notify the 
interaction control module about this operation to complete the interactive function. The 
interaction control module may also inform the controller of remote operations and 
request synchronisation locally. 

4.3 Network communication module design 

Access to the online virtual classroom requires users to employ mobile terminals as 
computational nodes. These devices must connect via the system’s designated network 
model to facilitate internet access and user communication, receive guidance from remote 
teachers, and collaborate with students in different locations for learning. 

The network communication module employs transmission control protocol (TCP) 
for connections and utilises XML for message formatting. To optimise messaging 
efficiency, the module employs a single-threaded Selector pattern instead of spawning a 
dedicated thread per connection, managing all socket I/O through a central Select 
mechanism. Android supports non-blocking network communication through its 
ServerSocketChannel and Selector classes. 

The network module begins by registering a channel with a Selector. After initiating 
the listening socket, it enters a loop to continuously call the select () method. Whenever a 
new SelectionKey emerges, it could originate from either an existing connection that now 
has newly readable data or from the establishment of a brand-new connection. In such 
cases, judgments and processing should be based on events of the SelectionKey. The 
Select call blocks indefinitely until either a new SelectionKey is ready or an explicit 
wake-up signal is received. 

After the interactive teaching system is launched, when a student wishes to join a 
teacher’s class, they must request a connection from the teacher server. If the teacher 
server is already running and functioning normally, it will accept the student’s connection 
request and add that student to the current student list. If the initial connection attempt 
fails, the system will retry several times. Should all attempts remain unsuccessful, the 
system will notify the user. 

During the teaching process, either the teacher or the student may terminate the 
communication. For the mobile version of the interactive teaching system, if the teacher 
properly ends the class, the mobile app will disconnect normally upon receiving the 
teacher’s disconnection message. If a teacher disconnects unexpectedly, the interactive 
teaching system will terminate the current communication session upon detecting the 
disconnection and attempt to reconnect. Should multiple reconnection attempts fail, the 
system will generate a report for the user. When the mobile device of the interactive 
teaching system initiates a connection termination, it sends a disconnection notification to 
the teacher server. Upon receiving the teacher server’s acknowledgment, the mobile 
device actively disconnects. The teacher server then removes the student from the current 
student list. 

4.4 Interactive control module design 

Interactivity is the biggest difference between the music composition teaching system and 
traditional asynchronous video teaching, as it enables real-time interaction between 
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teachers and students, thereby improving teaching quality. These interactive functions are 
built upon a reasonable network transmission and synchronisation control strategy of the 
system. Network transmission serves as the carrier for interactive data, responsible for 
transmitting user interactions and states; meanwhile, the synchronisation control strategy 
defines the specifications for interactive data, describing the included user operations in 
the interactive data, as well as establishing rules for users’ interactive behaviour. 

Figure 6 Data flow direction of the interactive control module (see online version for colours) 
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The interactive control module is responsible on one hand for receiving operation data 
from the teaching application module, processing and encapsulating it, then transmitting 
through the network communication module. On the other hand, it needs to receive and 
parse data from the network communication module, reconstructing remote operations 
locally in the teaching application, as shown in Figure 6. 

5 Experimental results and performance analysis 

5.1 Analysis of music creation resource generation effects 

The system architecture employs the Android OS for mobile client devices, while the 
instructor’s interface operates on the Windows platform. Evaluation was performed using 
a plurality of Android mobile endpoints. The experimental dataset comes from MIDI files 
of 1022 popular songs in TheoryTab (Huo, 2024). Each song provides two MIDI files: 
one file contains the melody of the song, and the other contains the chords in the song, 
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mainly used to assist the model in generating music based on chord characteristics. An 
NVIDIA GeForce GTX 1060 (6GB) graphics card was used for model training. In the 
training process, both the generator and discriminator use Adam optimiser to optimise 
network parameters, with a learning rate set at 0.0002. The weighted coefficient in the 
multi-scale feature screening module is 0.01, and the weighted coefficient of the  
multi-discriminator structure is 0.1. In addition, the batch size was set to 72, with a total 
of 20 training rounds conducted. 

From Figure 7, it can be seen that the music generated by the model proposed in this 
chapter demonstrates good continuity, with smooth transitions between notes and certain 
variations in time values between each note, all within reasonable ranges. From the 
melodic perspective, its generated melody aligns with the chords on the same natural 
scale, resulting in a harmonious combination of chords and melody in terms of auditory 
perception. All are in the C major natural scale, indicating that the model proposed in this 
chapter can learn the scale patterns in the dataset, and its generated samples comply with 
music theory standards. 

Figure 7 Sample generation results for music composition instruction (see online version  
for colours) 
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To demonstrate the superiority of the MSFC-MD model in generating music creation 
teaching resources, this chapter conducts comparative experiments using objective 
evaluation indicators such as note diversity (ND), average note duration (AND), 
centricity (CE), and maximum pitch difference (MPD). The models involved in the 
comparison are GMLSTM (Hewahi et al., 2019), MRDCNN (Lei, 2023), LSGAN (Min 
et al., 2022), and MTGAN (Cheng and Qu, 2025). To ensure fairness, this chapter still 
uses randomly generated 80 bars of music by each model to evaluate the objective 
indicators. The final experimental results are shown in Table 1. To reflect the difference 
among the music samples generated by each model and actual music samples, the table 
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also provides the absolute differences (in blue font) between the generated music samples 
and real music samples for each indicator. 
Table 1 Objective quality metrics for music composition teaching resources 

Real music 
ND  AND  CE  MPD 
11.1  0.990  23.20%  17.4 

MSFC-MD 10.4  1.095  23.22%  17.6 
0.7  0.019  0.02%  0.2 

GMLSTM 9.7  1.009  25.75%  20.2 
1.2  0.105  2.55%  2.8 

MRDCNN 9.3  0.837  27.47%  21.5 
1.5  0.153  4.27%  4.1 

LSGAN 9.0  0.905  26.25%  18.9 
2.1  0.085  3.05%  1.5 

MTGAN 15.4  1.000  21.98%  42.7 
4.3  0.137  1.22%  25.3 

From the experimental results, it can be seen that MSFC-MD achieves the level closest to 
real music samples in all indicators, with absolute differences of 0.7, 0.019, 0.02%, and 
0.2, respectively. This also shows that based on objective evaluation indicators, after 
introducing the multi-scale feature screening module and multi-discriminator structure, 
the model proposed in this chapter has improved its ability to extract music features to 
some extent, generating music samples closer to real music and demonstrating certain 
advantages in music generation quality. 

Figure 8 Music composition teaching sample generation time consumption of each model  
(see online version for colours) 
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To further validate the real-time distribution of music generation resources across 
different models, this paper statistically analysed the music composition teaching sample 
generation time consumption of each model, as shown in Figure 8. The generation time 
consumption for MSFC-MD was 1.8 ms, while the evaluation time consumption for 
GMLSTM, MRDCNN, LSGAN, and MTGAN was 4.5 ms, 3.8 ms, 3.6 ms, and 3.3 ms, 
respectively. Compared to the baseline model, MSFC-MD exhibits smaller median, upper 
quartile, and lower quartile values, fewer outliers, and a more concentrated overall 
distribution. Furthermore, the gap in the MSFC-MD box plot does not overlap with the 
corresponding intervals of the other four models, indicating a significantly smaller 
median, shorter generation time, and markedly superior real-time performance compared 
to the other models. 

5.2 Performance analysis of the music composition teaching system 

The scope of the performance testing is to verify the operational effectiveness of the 
mobile application under the load of real-time interaction with the teacher’s station.  
Low-latency data response is essential for a seamless interactive experience; therefore, it 
demands special consideration. Testing is conducted in two scenarios: before and after 
optimisation, primarily evaluating the round-trip delay of interaction data between 
teacher and student mobile devices. Given the high frequency of interactions, the testing 
focuses primarily on the interactive whiteboard tool. Compared to the synchronisation of 
music composition teaching resources playback, the interactive whiteboard involves a 
larger amount of synchronised data, which better reflects real-world situations. 

As shown in Figure 9, the initial evaluation compares the interaction data round-trip 
time between teacher and student ends with the Nagle algorithm enabled and disabled. 
Wireshark is used to capture and analyse network traffic originating from the mobile end 
of the teaching system. After Student A obtains permission, Student A’s synchronisation 
data is first sent by A to the teacher’s end and then transmitted from the teacher to other 
students. At the same time, when Student C joins the class midway, he or she first 
confirms the current classroom status with the teacher’s end before performing state 
synchronisation, which aligns with the design. By comparing Figure 9(a) and Figure 9(b), 
before transmission optimisation, the average round-trip time interval for students to 
receive acknowledgments after sending interaction messages is 48.6275ms, and the 
round-trip time interval is unstable, with occasional longer intervals of around 200ms. 
After optimisation by disabling the Nagle algorithm, the average round-trip time interval 
is significantly reduced to 14.2195ms, with a more stable interval mostly below 30ms. In 
actual interactive operations, especially during operation processes, users also felt a 
reduction in interaction delay, indicating significant optimisation effects. 

For the use of the music composition teaching system, frequent user access and 
excessively high node hardware resource loads can increase CPU and memory usage. If 
hardware load is too high, it may affect data storage and scheduling performance at 
nodes. Under identical experimental settings, the CPU and RAM utilisation for ILEML 
(Gong and Wang, 2023), IMSME (Duarte-García et al., 2020), SRIMR (Ye and Zhang, 
2023) and OURS systems are observed, as shown in Figures 10 and 11 respectively. The 
CPU and memory usage of OURS are 43% and 37%, respectively, which decreased by 
41% and 38% compared to ILEML, by 13% and 8% compared to IMSME, and by 22% 
and 24% compared to SRIMR. Whether in terms of CPU usage or RAM usage, OURS  
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performs well, can better utilise system performance, and is capable of handling 
computational tasks at some high-load nodes, improving the efficiency of system 
interaction. 

Figure 9 Round-trip time for mobile interaction data transmission with and without Nagle 
algorithm enabled, (a) round-trip time for unoptimised interactive data transmission  
(b) optimised round-trip time for interactive data transmission (see online version  
for colours) 
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Figure 10 CPU usage across different systems (see online version for colours) 

84%

 ILEML

56%

 IMSME

65%

 SRIMR

43%

 OURS  

 



   

 

   

   
 

   

   

 

   

    Generative music composition teaching system based on mobile interaction 109    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 RAM usage across different systems (see online version for colours) 
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This system is not intended for individual users, so it must account for scenarios 
involving multiple concurrent users accessing the system. Stress testing is required to 
evaluate system performance under high concurrency conditions. Since the system has 
not yet been deployed for general use, software was employed to simulate the stress test. 
The system underwent stress testing with approximately 500 users. The results of the 
stress test are shown in Table 2. The system can generally handle concurrent access from 
approximately 500 users. Furthermore, when the number of concurrent users reached 
550, the server response time was around 5 ms. This level of latency is essentially 
imperceptible to students and teachers. 
Table 2 Music composition teaching system stress testing 

Number of concurrent sessions User login response time Interactive creation time 
550 5 ms 5 ms 
500 4 ms 4 ms 
450 3 ms 2.5 ms 
400 1.8 ms 2 ms 
300 1.5 ms 1 ms 
200 1 ms 0.8 ms 
100 0.5 ms 0.5 ms 

Table 3 System interaction performance comparison 

System ST/ms SI/% CS/% 
ILEML 23.2 86.4 89.6 
IMSME 13.5 93.4 97.1 
SRIMR 17.9 88.2 92.0 
OURS 11.8 96.9 99.3 

To further verify the efficiency of the proposed system, this paper selects quantitative 
evaluation metrics such as single interaction time (ST), interaction smoothness (SI), and 
user satisfaction (CS) to evaluate the performance of different music composition 
teaching systems. The results are shown in Table 3. OURS has a single interaction time 
of only 11.8ms, which is reduced by 11.4 ms, 1.7 ms, and 6.1 ms compared to ILEML, 
IMSME, and SRIMR respectively. The SI and CS of OURS are 96.9% and 99.3%, 
representing at least an increase of 3.5% and 2.2% over the other three models, indicating 
that the OURS system not only meets the requirements for real-time interaction but also 
significantly improves the smoothness and satisfaction of interaction, providing technical 
support to enhance the quality of music composition teaching. 
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6 Conclusions 

As the mobile interaction technology and generative AI rapidly growing, music 
composition education is undergoing unprecedented changes. To address common issues 
such as low-quality creative resources and poor interactive real-time performance in 
music composition teaching systems, this paper proposes a generative music composition 
teaching system based on mobile interaction technology. Firstly, to solve the problem of 
low-quality music teaching resource generation, the system designs a multi-scale feature 
screening-based music generation method. A multi-scale characteristic screening module 
is introduced into the generator to guide it in learning key feature information from real 
music, while a multi-discriminator structure is also incorporated to enhance the 
discriminator’s ability to distinguish musical samples, thereby improving generation 
quality. Secondly, this paper combines heterogeneous graph theory with interaction 
element analysis to build a new heterogeneous interaction model for mobile learning 
environments. Based on this, a mobile interaction-supported music teaching system 
architecture was further designed, which separates network communication from 
interactive collaboration mechanisms, achieving an extensible network communication 
module and an interactive cooperation mechanism with bidirectional collaboration 
control and user state management capabilities. 

A large number of simulation experiments were conducted in real environments, and 
the outcome indicates that the proposed system can achieve high interactive real-time 
performance and improve the quality of music composition teaching resource generation. 
This research establishes a novel technical framework for music composition pedagogy 
while simultaneously providing a practical blueprint for the profound integration of 
mobile interactive technologies and generative AI within arts education. 
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