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Abstract: Student engagement in vocational classrooms is a critical metric for
assessing teaching effectiveness and talent development. To address the
limitations of conventional assessment methods, we propose a hybrid deep
learning-support vector machine (SVM) model for predicting participation
levels. The approach integrates convolutional neural networks (CNN) and long
short-term memory (LSTM) networks to extract high-dimensional temporal
features from classroom videos and behavioural logs. These features are
combined with traditional statistical indicators and classified using SVM
through a feature-level fusion strategy. Evaluated on simulated vocational
classroom data, the fused model achieves 92.3% accuracy and an F1-score of
0.914, significantly outperforming standalone CNN-LSTM or SVM models.
This model enables real-time, quantitative assessment of classroom
engagement and supports timely teaching interventions.
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1 Introduction

As educational digitalisation advances, the demand for data mining and analysis in the
educational field is increasing daily. Vocational colleges and undergraduate programs
differ significantly in student foundation, learning habits, and teaching methods.
Vocational college students typically possess a broader range of professional
backgrounds and more practical learning goals, preferring hands-on practice and skills
development. This unique characteristic places distinct demands on classroom
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engagement assessment: varying levels of foundational knowledge lead to significant
variations in engagement; learning habits favour practical and interactive learning over
purely theoretical learning; and teaching methods emphasise hands-on practice and group
collaboration, requiring assessment models that can process complex classroom
interaction data. In higher vocational education, students’ classroom participation is one
of the important factors affecting their learning (Wang et al, 2024). Accurately
predicting students’ classroom participation can help teachers adjust their teaching
strategies promptly, improve teaching quality, and promote students’ learning and
development (Mustapa et al., 2015). Recently, Al has gained traction in education, with
deep learning (DL) and SVM proving especially powerful for predictive tasks.

DL and support vector machines (SVMs), as two mainstream technical approaches in
the field of machine learning, have made significant breakthroughs in affective
computing, behaviour recognition, and educational data mining in recent years (Xiong
et al., 2025). DL has obvious advantages in automatic feature extraction and nonlinear
relationship modelling (Monaco et al., 2025), and can use convolutional neural network
(CNN) to perform high-dimensional semantic encoding of facial expressions and gestures
in classroom videos; SVMs have stronger generalisation ability and interpretability in
small sample and high-dimensional sparse scenarios, and are suitable for dealing with the
practical problems of “large data noise and unbalanced positive and negative samples” in
higher vocational classrooms. However, it is often challenging for a single algorithm to
strike a balance between accuracy, robustness, and interpretability. Therefore, this study
proposes to integrate DL and SVMs to build a classroom participation prediction model
for higher vocational scenarios, aiming to establish a new teaching evaluation paradigm
of “data-driven, model interpretability, and timely intervention”.

DL is a neural-network-based approach (Yang et al., 2025), DL can automatically
learn feature representations in data by constructing a multi-layer neural network
structure, thereby enabling recognition and classification of complex data patterns
(Dagasso et al., 2025). In education, DL has proven effective for forecasting student
performance and examining learning patterns. DL models, such as CNN and recurrent
neural networks (RNN), and their variants, including long short-term memory networks
(LSTM), can effectively process time series information and image data in educational
datasets (Aruleba and Sun, 2025).

SVM is a statistically grounded classification algorithm (Xiao et al., 2025), which
categorises data into distinct categories (Mu and Zhao, 2025) by identifying the optimal
hyperplane of separation. SVM has significant advantages in dealing with small samples,
nonlinear, and high-dimensional data, and has been widely used in various scenarios,
such as student classification and curriculum evaluation in the field of education
(Birthriya et al., 2025). However, SVM may have the problem of low computational
efficiency when dealing with large-scale datasets (Devi and Kaushik, 2025). In this study,
data on classroom engagement among higher vocational students often consist of small
samples, and data collection and annotation are expensive. The Softmax classification
layer of DL is prone to overfitting on small sample data. However, SVMs optimise
classification boundaries by maximising margins, demonstrating good generalisation
capabilities for small sample data. Furthermore, when processing high-dimensional
features, SVMs map data into a high-dimensional space using kernel functions (such as
RBFs) to find the optimal classification hyperplane, effectively handling complex
relationships and reducing computational complexity. Therefore, SVMs excel in
situations with small sample sizes and high-dimensional feature data, making them
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suitable for analysing higher vocational student classroom engagement data and
improving model performance.

To fully leverage the advantages of DL and SVMs and compensate for the limitations
of a single model, researchers have begun to explore methods for integrating the two. On
the one hand, DL models can extract high-dimensional features of data to provide more
efficient input for SVMs, thereby improving classification performance; On the other
hand, the optimisation theory and classification capabilities of SVMs can guide DL
models and enhance their generalisation capabilities. This fusion method has achieved
promising results in various fields; however, research on predicting classroom
participation among higher vocational students is relatively limited.

Higher vocational education places a strong emphasis on cultivating practical abilities
and vocational skills, and students’ classroom participation has a direct impact on their
mastery of knowledge and skills (Qianyi and Zhiqiang, 2024)]. By establishing an
effective classroom participation prediction model, teachers can anticipate students’
learning status, identify potential learning issues promptly, and implement targeted
teaching interventions (Zhao and Yu, 2024). It boosts students’ motivation and outcomes
while driving overall quality gains in vocational education (Li et al., 2024).

This paper rigorously respects student privacy and data ethics when utilising
classroom monitoring and prediction technologies. The classroom videos and behaviour
logs involved contain sensitive personal information, so data collection, storage, and use
strictly adhere to legal and ethical guidelines. During data collection, students’ explicit
consent is obtained, and their data are anonymised. Encryption technology is used during
data storage to prevent leakage or unauthorised access. To mitigate privacy and ethical
risks, the following measures are implemented in model design and application:
differential privacy is used to protect privacy by adding noise; rigorous cross-validation is
employed to ensure model fairness and transparency; and collaboration with educational
institutions is undertaken to establish data management and oversight mechanisms to
safeguard the legal use of data and protect student rights.

Despite the widespread application of DL and SVMs in education, existing methods
still have shortcomings in assessing classroom engagement in higher vocational
education. First, the diverse knowledge levels and learning habits of higher vocational
students require robust assessment models. Second, the diverse and complex teaching
methods in higher vocational education require models that can handle multimodal data,
while most existing methods can only handle single-modal data. Finally, existing
methods lack interpretability and fail to meet the demand for model interpretability in
educational applications. Based on the above analysis, the model needs to be more robust
to accommodate the diverse knowledge levels and learning habits of higher vocational
students. Secondly, the model needs to be well-interpretable so that teachers can adjust
their teaching strategies based on the model’s results. This paper proposes an intelligent
prediction model for classroom engagement that integrates DL and SVM. This model
utilises a feature-level fusion strategy to combine high-dimensional time series features
extracted by CNN and LSTM with the robust classification capabilities of SVM for
traditional statistical features. The principal contributions are outlined below:

1 Using CNN and LSTM to extract high-dimensional time series features from
classroom videos and behaviour logs.
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2 Robust classification of traditional statistical features combined with SVM. Finally,
the advantages of the two types of models are integrated by a feature-level fusion
strategy.

3 Integrate the advantages of the two types of models through feature-level fusion
strategies.

2 Related theoretical knowledge

2.1 Deep learning

DL forms a key branch of machine learning (Spanos et al., 2025). It employs multilayer
neural networks to abstract and represent data progressively (Treeprapin et al., 2025).
Unlike shallow methods, these models autonomously extract features from low-level
edges to high-level semantics (Esatyana and Sakhaee-Pour, 2025). After Hinton
introduced layer-wise pre-training in 2006, GPU parallel computing and big data have
further accelerated architectures like CNN, RNN and Transformer.

CNN is a deep-learning framework widely adopted for image recognition,
classification and processing. Its two pillars are ‘local connectivity’ and ‘weight sharing’.
Rather than full connection, CNN detects local spatial patterns with far fewer weights
and, via layered stacking, yields high-level traits like translation invariance and rotation
robustness. Its core components are convolutional, pooling and fully-connected layers. In
particular, convolutional layers apply kernels to input data to harvest local features. The
process of the convolution operation is shown in formula (1):

. o

x! =f(2xif xk,:j’.+b-;) 1)
i=1

where x/™' represents input of j-1" layer, x/ represents output of /* layer, x/ represents

convolution kernel of j layer, and bf represents bias parameter.

Pooling shrinks feature-map space, cuts compute load, and keeps key traits; max and
average pooling are typical. The process of maximum pooling operation is shown in
formula (2):

P ()= max yacie e 47 (8) )

Here, ¢/(t) represents value of #" neuron in i feature vector in j® layer, and

te[(j-DW +1,; W],B”l( j) represents value corresponding to neuron in i+1™ layer.

A fully connected layer links every neuron to all units in the preceding layer,
integrating incoming features via weighted sums to perform linear transformation. The
calculation process is shown in formula (3):

y=Wx+b 3)

where x represents input, W represents weight parameter, and b represents bias
information.
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LSTM, a tailored RNN, captures long-term dependencies and is widely applied in
sequence prediction and NLP. Its input gate decides the portion of current input to update
the cell state. The calculation process is shown in formula (4):

C =/1C +0(WE [hi—l’xi]—i_bi)tanh(nli [hi—l’xi]+bi) “)
where C; represents current cell state, Ci; represents previous cell state, W; represents
weight matrix, b; represents bias parameter, and o is sigmoid activation function.

The forget gate controls how much past information the cell state keeps. The
calculation process is shown in formula (5):

fi=U(VVi[hl—19xi]+bl) Q)

Among them, x; represents current input feature vector, o represents sigmoid activation
function, and % represents hidden layer information at previous time.

The output gate determines how much information is output in cell state. The
calculation process is shown in formula (6):

1

h, =g(W[hifl,xi]eri)tanh(ci) ©)

where h; represents output information at current time and tanh represents activation
function.

2.2 SYM

SVM is a supervised learner rooted in statistical learning theory, mainly for binary
classification (Li et al., 2025). Its key idea is to find an optimal hyperplane that separates
the two classes while maximising the margin between them (Wu et al., 2025). The size of
this interval directly affects the generalisation ability of the model, that is, classification
performance of the model for unseen data.

The goal of SVM is to find a hyperplane w’x + b = 0 such that all positive class
samples satisfy w’x; + b > 1 and all negative class samples satisfy wlx; + b >—1. Here w is
the normal vector of the hyperplane and b is the bias term. To maximise the interval, the
representation of the SVM optimisation problem is shown in formulas (7) and (8):

. 1
min,, EHW"Z 7

st. (wai + b) 21, Vi )

where y; is category label of sample x;, which takes value of +1 or —1. Through the
Lagrange multiplier method, above optimisation problem can be transformed into a dual
problem for solving.

SVM’s hallmark is its kernel trick, letting it classify in high-dimensional space
without direct coordinate computation (Kumar et al., 2025). By mapping data via the
kernel, it locates the optimal hyperplane there, achieving nonlinear separation (Ray et al.,
2025). The calculation process of the Sigmoid kernel function is shown in formula (9):

K (x,x”) = tanh (axTx'+,B) ©)
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Among them, & controls degree of expansion and contraction of kernel function, and S is
equivalent to bias term, which controls translation of kernel function.

SVM offers strong generalisation and handles small data well, excelling in intricate
classification tasks. It is widely adopted in image recognition, text mining, biomedical
diagnosis and beyond — spotting faces, numerals and tumours alike — while also serving
emerging needs like variable selection and sparse modelling. Yet its success hinges on
kernel choice and parameter tuning, and large-scale data can strain its efficiency. Overall,
SVM remains a potent algorithm that solves linear and nonlinear problems via margin
maximisation and kernel tricks, as demonstrated by its proven track record across
domains.

2.3 Forecasting model of higher vocational students’ classroom participation

Building the vocational-student engagement predictor draws on diverse theories and
analytic tools (Wang et al., 2022). First, exploratory factor analysis (EFA) examines
participation in blended settings, spotlighting four core dimensions: face-to-face,
hands-on, online and collaborative learning (Larmuseau et al., 2025). EFA extracted the
main factors using principal component analysis (PCA) and assigned weights to the scale
questions for each dimension to standardise the weights, ensuring consistency in the
analysis. This analysis method provides a basis for subsequent data modelling, which can
effectively quantify students’ participation in different learning dimensions (Sulistiobudi
and Kadiyono, 2023).

At the same time, some studies have also explored the relationship between students’
tendency to experience boredom and their classroom participation, based on self-loss
theory and social development theory, and further revealed the mediating and moderating
roles of mobile phone dependence and classroom atmosphere (Suharno et al., 2025).
These theories offer a crucial perspective for understanding the factors that influence
students’ classroom participation and also provide theoretical support for the
development of prediction models (Qu et al., 2024). In terms of model construction,
linear regression models are widely used to analyse and predict the classroom
participation of higher vocational students (Paizan et al., 2024). By assessing how each
learning dimension affects engagement, the model links the outcome variable — learning
participation — to the predictors through a linear relationship (Zuo et al., 2025). The
representation of a typical multiple linear regression model is shown in formula (10):

Y=B,+B8X +BX,+B,X;+B,X, +e (10)

Among them, Y represents learning participation, X; to X4 represent weighted scores of
four dimensions of face-to-face learning, practical learning, online learning and
cooperative learning respectively, [ is intercept term, £ to S are regression coefficient,
and ¢ is error term. By fitting model, the magnitude and direction of influence of each
learning dimension on classroom engagement can be quantified.

Based on traditional linear regression models, some studies have also introduced DL
techniques (Auer et al., 2025), such as the GRU-Attention network, to enhance prediction
accuracy. The GRU-Attention network is capable of capturing complex, dynamic
changes in behavioural prioritising key features through attention mechanisms, thereby
enhancing the accuracy of predictions (Marder et al., 2023). The model excels in
predicting student learning engagement with an accuracy of 98.15%, significantly
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outperforming traditional classification methods, such as decision trees, SVM, and
random forests. Researchers also devised a CNN-LSTM blend: convolutions harvest
spatial cues via local receptive fields and shared weights for emotion spotting and gesture
sensing; pooling downsamples yet keeps salient motifs; LSTM gating secures long-span
behavioural ties, taming classic RNN gradient decay. Text and logs are handled by
Transformer self-attention that highlights pivotal events and crafts contextual
embeddings, ultimately yielding a four-way high-level vector of behaviour, affect,
cognition and practice.

3 A model that fuses DL and SVM

This study presents a vocational-student engagement predictor that fuses DL with SVM,
leveraging the former’s feature power and the latter’s classification strength to boost
accuracy and reliability. It offers educators a practical tool to grasp learners’ states, refine
instruction, and raise overall teaching quality. The model primarily comprises a data
preprocessing module, a feature extraction module, an SVM classifier module, and a
model fusion module. Its network architecture is shown in Figure 1.

Figure 1 Model combining DL and SVM (see online version for colours)
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The data preprocessing module is responsible for collecting and sorting students’
behaviour data in class, including attendance rates, number of interactions, homework
submissions, and other relevant data, as well as data from the online learning platform.
Data preprocessing includes operations such as data cleaning, normalisation, and
encoding to ensure quality of data and training effect of model.

Feature extraction module utilises CNN and LSTM to extract useful features from the
raw data automatically. DL models can capture complex patterns and relationships in
data, providing rich feature representations for subsequent classification tasks.
Specifically, a CNN was used to extract spatial features from classroom videos. A CNN
architecture consisting of multiple convolutional and pooling layers was employed. Each

convolutional layer used a 3x3 kernel with a stride of 1 and a ReLU activation function.
The pooling layer employed a max pooling operation with a pooling window size of 2x2.
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Through the combination of these layers, the CNN effectively extracted local features
from video frames and gradually abstracted higher-level spatial features. LSTM was used
to process the time series data in the behaviour logs. We constructed a network consisting
of multiple LSTM units, each with 128 hidden units. LSTM effectively captures long-
term dependencies in time series through a gating mechanism. Specifically, the input
gate, forget gate, and output gate control the inflow, forgetting, and output of
information, respectively, thereby achieving dynamic modelling of time series data.

The SVM classifier module takes the extracted features as input and applies them to
the SVM classifier. SVM is a powerful classifier that distinguishes between different
classes by finding a hyperplane that maximises the separation. This paper uses the radial
basis function (RBF) as the kernel function of the SVM and optimises its parameters
(such as the penalty parameter C and the kernel function parameter y) through grid
search. The SVM achieves robust classification of traditional statistical features by
maximising the interval between categories.

The model fusion module primarily enhances the accuracy and robustness of
predictions. This model employs a fusion strategy combining DL and SVM. Specifically,
This paper combines the high-dimensional time series features extracted by CNN and
LSTM with traditional statistical features from SVM classification at the feature level.
This fusion strategy allows the model to fully leverage the feature extraction capabilities
of DL models and the stability of traditional statistical methods, thereby improving
overall prediction performance.

4 Experiment and results analysis

The dataset for this study was collected from multiple classrooms at a vocational college,
encompassing a variety of majors and course types. It includes classroom videos and
student behaviour logs, recording student behaviours such as raising hands, speaking, and
interacting. The video data is recorded by a high-definition camera with a resolution of
1920%1080 and a frame rate of 30 fps. The behaviour log data is collected through a
classroom interactive system, recording real-time behaviour and interactions.
Specifically, the dataset comprises 13 features and 32,593 observations, with 8 features
being categorical and 5 features being numerical. These features include student personal
information, learning behaviour, and classroom interactions. The target variable is an
engineered variable representing student engagement, where 1 indicates high engagement
and 0 indicates low engagement. The dataset is slightly imbalanced, with approximately
72% of students showing low engagement and 28% showing high engagement.

During the data preprocessing phase, the video data was cropped and denoised. A
background segmentation algorithm was used to extract student motion regions, and
video frames were denoised to reduce noise. The behaviour log data was cleaned to
remove duplicate and outlier records and converted to a time series format. All data was
normalised, with feature values scaled to between 0 and 1, to improve model training
efficiency and stability.

The dataset was divided into a training set (70%), a validation set (15%), and a test
set (15%). The training set was used for model training, the validation set was used for
hyperparameter tuning, and the test set was used for final performance evaluation.
Stratified sampling was used to partition the data, ensuring that the proportion of data
from each category in each subset was consistent with that in the original dataset. This
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approach also took into account the distribution of data across different courses and
majors to accommodate diverse classroom environments.

Model performance was gauged with accuracy, precision, recall and auc. accuracy is
the share of all samples correctly classified. Precision is the fraction of predicted
positives that are truly positive, whereas recall is the fraction of actual positives correctly
identified. AUC, the area under the ROC curve, quantifies the model’s power to separate
positive and negative cases. Together, these metrics offer a holistic appraisal.

Table 1 reports the comparative performance of individual models and their fusion
strategies on the classification task. Through analysis, it is concluded that among the six
evaluation indicators, the complete fusion model has significant effects, specifically
achieving an accuracy rate of 88.43%, a recall rate of 87.25%, and an F1 score of 0.870.
AUC reaches 0.934, which is approximately 14% higher than that of a single SVM and
about 9% higher than that of a single LSTM, indicating that the fusion of deep features
and traditional features can significantly enhance classification performance.

Table 1 Performance comparison of different models and their fusion methods on
classification tasks

Methods Acc(g/(})’)acy Acc(;:)acy rgteec?‘z ) F1 score AUC
SVM only (linear kernel) 74.32 72.15 68.43 0.703 0.762
SVM only (RBF core) 76.81 75.28 71.64 0.734 0.798
LSTM network only 79.24 77.86 75.92 0.769 0.832
Transformer module only 81.05 79.33 78.16 0.787 0.851
SVM + LSTM fusion 83.67 81.92 80.45 0.812 0.883
SVM + transformer fusion 85.92 84.76 83.27 0.840 0.907
Complete fusion model 88.43 87.25 86.91 0.870 0.934

Figure 2 Comparison of attention and interaction distribution of users with different engagement
levels (see online version for colours)

Attention Distribution by Engagement Level Interaction Distribution by Engagement Level

120
100 100

80

©
S

=
S

Attention Score
Interaction Frequency
=)

(=]

N
S

IS

S

20

20

Low Medium High Low Medium High
Engagement Level Engagement Level

Figure 2 illustrates the comparison results of attention and interaction distribution among
users with varying levels of engagement. Through the analysis, it is concluded that as
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participation rises from low to high, the number of attention and interaction shows an
increasing trend. Both indicators for low-participation groups are 20; those for
medium-participation groups rise to 40, and those for high-participation groups reach as
high as 100. The attention and interaction of high-participation users are five times that of
low-participation users, respectively, indicating that deep participation significantly
improves user activity.

Figure 3 presents the comparison results of characteristic portraits for students with
high and low participation. Through the analysis, it is concluded that the five indicators
of attention, task completion, interaction, response time and note quality of high
participation students are all about 80, which is significantly better than that of low
participation students only about 20; The gap between them is 60 points, indicating that
high participation is positively correlated with learning input and achievements.

Figure 3 Comparison of characteristic portraits of students with high participation and low
participation (see online version for colours)
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Figure 4 Distribution of note quality and task completion under different classes and
participation levels (see online version for colours)
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Figure 4 shows the distribution of note quality and task completion in different classes
and participation levels. Through the analysis, it is concluded that the quality of notes and
task completion of students with high participation are 80 points, which is significantly
better than that of students with middle (60 points) and low (20 points) participation.
Both indicators of Class A are slightly higher than those of Class B by about 10 points
under low and middle participation, which shows that the class difference disappears in
the high participation stage, suggesting that increasing participation can bridge the class
gap.

Figure 5 shows scatter comparison results of participation between attention-
interaction and note quality-task completion. Through analysis, it is concluded that the
two figures are positively correlated: the attention, interaction, note quality, and task
completion of students with high participation are approximately 80%, while those with
low participation are only 20%. The intermediate engagement rate falls within the 40-
60% range. For every 20 points of attention increase, interaction increases by
approximately 20 points. For every 20-point increase in the quality of notes, the degree of
task completion increases by 20 points simultaneously, indicating that the deeper the
investment, the better the learning results.

Figure 5 Scatter comparison of engagement between attention-interaction and note quality-task
completion (see online version for colours)

Attention vs. Interaction

Note Quality vs. Task Completion

1004 Eneagementevel °
e Low ® ° 3) °
e  Medium ° ® °
High 804 e %e° o
80 LS e a e [
?, Y
> S % .. ® oo %8s S ®
g ® o 2 e®0 0 =050 °
g & 604 ° (N
=4 60 ° a B ®s ©
2 © g °,° b/
T 60 g %% So S Do
2 8 o s 0 © 8veo
§ E ® o o §e® @ *
E ™ Z 401 * . .:..0 d
= (] [ ]
40 ° o ‘. ° °
° o, ® EngagementLevel
’ e Low
0 e Medium
20 [ ° High
20 40 60 20 40 60 80 100

Attention Score

Note Quality Score

Figure 6 shows the distribution of participation ratio and cumulative participation in each
week. Through analysis, it is concluded that the high, medium and low participation in
the first week accounted for about 20%, 30% and 50% respectively, and then the high
proportion rose to about 45% in the 10th week week by week, dropped to 25% in the
medium, and dropped to 25% in the low week. to 30%; The cumulative curve shows that
the total high participation is 120%, while the low participation is only 20%, showing a
trend of ‘the strong is stronger’.

Table 2 shows the comprehensive performance comparison results of each prediction
model in terms of accuracy, efficiency and scale. Through analysis, it is concluded that
fusion model in this paper leads with an accuracy rate of 88.43% and an F1 of 0.870, but
the training 62.8 s, inference 12.5 ms, and parameter volume of 5.7 MB are the highest in
the table; LightGBM only takes 8.9 s of training, 1.7 ms of reasoning, and 7.3 MB of
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parameters with an accuracy of 81.93%, which is the best efficiency; Although the
decision tree is fast and small, it has the lowest accuracy.

Figure 6 Weekly participation ratio and cumulative participation distribution (see online version
for colours)
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Table 2 Comparison of comprehensive performance of each prediction model in terms of

accuracy, efficiency and scale

Prediction model Acc(g/:)acy erilem(gl}g :gj: ;e(r’z?;e) 1%‘;2’;’:3;{ F1 score
(MB)
Decision Tree 71.85 32 0.8 0.7 0.692
Random Forest 78.26 18.7 4.3 15.2 0.761
XGBoost 80.44 12.5 2.1 9.8 0.783
LightGBM 81.93 8.9 1.7 7.3 0.802
BP neural network 76.38 23.1 5.2 2.1 0.749
1D-CNN 82.67 47.6 8.9 3.8 0.813
The fusion model in 88.43 62.8 12.5 5.7 0.870

this paper

Analysing the data in Table 3, the fusion model significantly outperforms other models
across all metrics. The fusion model achieved a prediction accuracy of 92.3%, an F1
score of 0.914, a recall rate of 93.1%, and a precision rate of 91.6%. In comparison, the
CNN-LSTM model achieved a prediction accuracy of 88.7%, an F1 score of 0.892, a
recall rate of 90.5%, and a precision rate of 8§7.9%. The SVM model achieved a
prediction accuracy of 85.4%, an F1 score of 0.867, a recall rate of 87.2%, and a
precision rate of 84.1%. The random forest model achieved a prediction accuracy of
84.2%, an F1 score of 0.855, a recall rate of 86.3%, and a precision rate of 83.1%. The
logistic regression model achieved a prediction accuracy of 82.1%, an F1 score of 0.834,
a recall rate of 84.5%, and a precision rate of 80.7%.
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Table 3 Performance comparison of different methods on different evaluation metrics
Methods F1 score Recall Precision
CNN-LSTM + SVM 0914 93.1% 91.6%
CNN-LSTM 0.892 90.5% 87.9%
SVM 0.867 87.2% 84.1%
Random Forest 0.855 86.3% 83.1%
Logistic regression 0.834 84.5% 80.7%

Figure 7 Attention-response time and interaction-task completion density distribution (see online

version for colours)
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Figure 7 illustrates the distributions of attention-response time and interaction-task
completion density. Through analysis, it is concluded that the high-density areas in the
left two figures are clustered on the upper right: the proportion of students with attention
higher than 70 points and response time lower than 30 seconds is the highest; Students
with interaction frequency higher than 70 times and task completion higher than 80%
have the highest density, which shows that attention and interaction are the key drivers of
efficient learning.

Figure 8 shows the difference between the learning feature correlation matrix and
class standardisation. Through analysis, the correlation matrix shows that attention is
positively correlated with interaction and task completion, at 0.71 and 0.75, respectively,
and negatively correlated with response time at —0.33. The standardised difference map
indicates that Class A outperforms Class B by approximately 0.71 standard deviations in
all characteristics, with the largest difference observed in attention and task completion,
suggesting a significant gap in investment and effectiveness between the classes.

5 Conclusions

This paper presents a hybrid deep-learning — SVM model to forecast vocational students’
classroom engagement. A deep net first learns behavioural, emotional, and cognitive
features automatically; the resulting high-dimensional vectors are then fed to an SVM for
robust classification, merging deep expressiveness with SVM margins. Experiments
show the fused model surpasses standalone algorithms in accuracy and generalisation,
delivering a real-time, dependable diagnostic aid for vocational classrooms. This
framework can be promoted as a new paradigm of collaboration between DL and
traditional machine learning in educational big data scenarios. The main work of this
paper is as follows:

1 Use CNN and LSTM to extract high-dimensional time series features from
classroom videos and behaviour logs.

2 Robust classification of traditional statistical features combined with SVM; Finally,
the advantages of the two types of models are integrated by a feature-level fusion
strategy.

3 Integrating the advantages of the two types of models through a feature-level fusion
Strategy.

The experiment on the simulated higher vocational classroom data set shows that the
prediction accuracy of the fusion model is 92.3%, and the F1 value is 0.914, which is
significantly better than those of the single models, namely CNN-LSTM and SVM. The
model provides technical support for quantifying classroom participation in real-time and
accurately implementing teaching interventions.
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