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Abstract: Current agricultural talent flow prediction mainly uses single
models (e.g., linear regression, ARIMA, LSTM), which fail to capture
non-Euclidean spatial-temporal relationships and automatically extract complex
spatio-temporal interactions, limiting accuracy and interpretability. This paper
proposes a hybrid framework integrating a spatio-temporal graph neural
network (STGNN) and LightGBM. Using 2010-2020 data from 17 cities in
Henan Province, a spatio-temporal graph is built with city nodes and
geographic-threshold edges. STGNN combines graph convolution and temporal
convolution (TCN) to automatically learn spatio-temporal features, while
LightGBM regresses lag and socio-economic indicators for interpretability.
Benchmark comparisons with ARIMA, LSTM, and LightGBM, plus ablation
and sensitivity tests, confirm the hybrid model’s superiority. It reduces error by
10%-14% versus standalone STGNN/LightGBM, achieving under 12.3%
overall error, with significantly improved accuracy and stability.
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1 Introduction

With the comprehensive advancement of China’s rural revitalisation strategy, agricultural
talents, as a key factor in promoting agricultural modernisation and the sustainable
development of the rural economies, have attracted considerable attention to their flow
trends and distribution patterns. Especially under the background of regional coordinated
development and optimisation of rural talent structure, accurately predicting the inflow
and outflow of agricultural talents will not only help to speed up the allocation efficiency
of agricultural production factors, but also provide a scientific basis for policy-making
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departments, thus helping to balance and rationally allocate talent resources among
regions.

The flow of agricultural talents has an obvious temporal and spatial correlation (Geng
and Yang, 2017; Qu et al., 2022). On the one hand, there is often a gradient transfer of
talents between geographically adjacent or economically and culturally similar regions.
On the other hand, factors such as the adjustment of annual planting structures,
fluctuations in agricultural prices, and changes in the macroeconomic environment make
the talent flow exhibit significant temporal dynamic characteristics. Therefore, how to
effectively capture the spatial dependence and historical sequence evolution among
regions is the core challenge to realise high-precision agricultural talent flow prediction
(Yang et al., 2024).

Traditional talent flow prediction methods are mostly based on time series models
and regression analysis. Models such as ARIMA exponential smoothing can describe
linear trends and seasonal fluctuations (Rabbani et al., 2021), but it is difficult to take into
account the non-Euclidean spatial structure between regions; Regression trees and
support vector machines based on machine learning have made breakthroughs in
multi-factor fusion (Zhang et al., 2025), but rely on manual feature engineering, and it is
difficult to extract complex spatial-temporal interaction information automatically. In
recent years, with the rapid development of deep learning technology, long- and
short-term memory networks (LSTMs) (Greff et al.,, 2016) and gated recurrent units
(GRUs) (Mim et al., 2023) have performed well in mining time dependencies, but have
limited modelling capabilities for spatial topologies.

Graph neural networks (GNNs) (Li et al.,, 2022) enable efficient information
propagation and aggregation in complex networks by embedding entities and their
adjacency relationships into graph structures. Spatio-temporal graph neural networks
(STGNNSs) (Chen et al., 2025b; Wang et al., 2022) combine graph convolution with time
series modelling to capture spatial dependencies and temporal dynamics. In this
framework, cities are treated as nodes and geographic distances as edges, enabling the
analysis of complex migration flows. STGNNs have shown strong performance in areas
like traffic and air quality prediction, and are well-suited for modelling agricultural talent
migration. By reflecting real-world spatial structures and evolving patterns, they offer
valuable insights for regional planning and resource optimisation. However, at present,
there are still few studies on the systematic application of the STGNN method in the
agricultural field, especially in the prediction of regional agricultural talent flow. Its
generalisation ability and practical value in different-scale regions and time granularities
need to be further explored.

At the same time, LightGBM, as an efficient gradient boosting decision tree
framework, is widely used in various prediction tasks due to its advantages of fast
training speed, support for large-scale data, and the ability to process multiple types of
features (Chen et al., 2025a). However, its essence remains a decision tree model based
on feature splitting, and it is challenging to directly model the deep dependence of
geographical neighbourhood structure and historical sequence information. The goal of
this study is to organically combine the advantages of LightGBM and STGNN to
construct a hybrid prediction framework that incorporates both spatial sensitivity and
feature interpretation.

Talent migration has become an important topic in regional development studies.
However, existing models often fail to capture the complexity of agricultural labour
flows. In the context of rural revitalisation and agricultural modernisation, accurately
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forecasting the migration patterns of agricultural talent is essential for optimising
resource allocation, improving productivity, and supporting policy-making. Traditional
forecasting methods struggle to model the non-Euclidean spatial structures and dynamic
temporal dependencies inherent in talent mobility. Traditional forecasting methods, like
regression and basic time-series models, often assume linear relationships and overlook
the complex spatial dependencies in agricultural talent migration. These models rely on
Euclidean assumptions, failing to reflect irregular geographic and economic interactions
between rural regions. Talent flows are shaped by diverse factors such as regional
policies, infrastructure gaps, and seasonal labour needs, requiring models that can learn
dynamic, non-linear, and graph-based patterns. As a result, conventional approaches are
inadequate for capturing the spatio-temporal complexities of migration, highlighting the
need for more advanced and adaptive modelling frameworks.

Based on the above background, this study is supported by data on agricultural talent
flow in Henan Province from 2010 to 2020, and proposes a method to predict the trend of
agricultural talent flow that integrates a STGNN and LightGBM. Firstly, the transfer
records and socio-economic indicators of 17 prefectures and cities in Henan Province are
used to construct a spatio-temporal map, where nodes represent prefectures and cities and
edges are determined by geographical distance thresholds; Subsequently, the
spatio-temporal features are encoded in parallel by graph convolution and time series
convolution (TCN) to extract complex dependencies between cities and cities
automatically. At the same time, gradient lifting training is carried out on pre-constructed
lag features and economic indicators using LightGBM to supplement the shortcomings of
STGNN in terms of characteristic interpretability. Finally, by comparing ARIMA,
LSTM, and single LightGBM models, and conducting ablation experiments and
parameter sensitivity analysis, the model performance and module contributions are
systematically evaluated. The main contributions of this paper are as follows:

1 Propose a prediction scheme that organically fuses a STGNN and a LightGBM
gradient lifting tree. The STGNN module extracts spatial dependencies and temporal
dynamics between regions in parallel through graph convolution and TCN, while the
LightGBM module performs efficient regression on pre-constructed lag features and
socio-economic indicators. We reconstruct the phrase so that readers can clearly
understand its intention. Here are the specific modifications: The complementary
advantages of the two ensure the interpretability of the model while achieving high
prediction accuracy.

2 Complete the construction of the spatio-temporal map. Based on the agricultural
talent mobilisation records of 17 cities in Henan Province from 2010 to 2020, we use
the geographical distance threshold to construct a regional adjacency network and
integrate multidimensional socio-economic characteristics, such as annual planting
structure, agricultural material prices, and labour costs, to provide high-quality
spatio-temporal input for STGNN. The spatio-temporal map construction process is
replicable and can be extended to other regions and industries.

3 Multi-benchmark comparison experiments with ARIMA, LSTM and single
LightGBM models were designed, and ablation research and parameter sensitivity
analysis were carried out. The experimental results show that the mean square error,
mean absolute error and goodness of fit of the mixed model are improved by more
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than 10% on average, and the stability and generalisation ability of the model are
also significantly enhanced.

2 Related work

2.1 Agricultural talent flow and prediction method

In recent years, with the deepening of China’s rural revitalisation strategy, the
cross-regional flow of agricultural talents has become the core issue of rural
modernisation development. Early studies mostly focused on qualitative interviews, focus
groups and questionnaires. Through in-depth analysis of factors such as farmers’ family
background, education level, income level and social capital, the subjective drive of
individual mobility willingness was revealed (Wdjcik et al., 2019; Valentini et al., 2021).
This kind of research provides a valuable perspective on the institutional environment
and subjective motivation, but is limited by sample size and investigation depth, making
it difficult to quantify the interaction effects between different factors and their temporal
and spatial evolution in large-scale and high-dimensional data.

To explain the influence path, scholars have employed classical statistical methods,
including multiple linear regression (Hensher and Greene, 2003), the Logit model
(Mardani et al., 2017), and structural equation modelling (SEM) (Parzen, 2003), to
quantitatively analyse the key driving factors of agricultural talent flow. For example, the
Logit model is often expressed as formula (1):

1
B 1+exp(—x,-T,B)

where y; denotes the flow decision for i observations, x; is the feature vector, and fis the
parameter to be estimated.

By constructing a regression framework including economic income, land scale,
social security, public services and other variables, the researchers quantified the
marginal contribution of each index to the probability and scale of mobility. Although
this kind of method has strong readability in feature interpretation, it relies on linear
assumptions and prior variable selection, which cannot fully capture the nonlinear linkage
between high-dimensional features, and it is difficult to automatically adapt to the
changing macro environment.

With the improvement of big data technology and computing power, time series
models such as ARIMA, exponential smoothing and seasonal decomposition models are
gradually applied to the short-term prediction of regional agricultural talents (Han et al.,
2019; Bashir and Wei, 2018). The general form of the ARIMA(p, d, q) model is
equation (2):

A(L)1=L)" y; =0(L)z, @

where L is the lag operator and ¢(L) and O(L) are autoregressive and moving average
polynomials, respectively. The expressions are shown in equations (3)—(4):

HL)=1=-L—--= 17 3)

Py =1lx) 0]
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O(L)=1+6L+---+0,L1 4)

Such models can achieve high forecast accuracy on monthly or quarterly scales by
stabilising, trending, and seasonally adjusting the historical flow number series. However,
the time series method lacks the endogenous characterisation of spatial adjacency effect,
and cannot reflect the talent gradient transfer mechanism brought about by geographical
proximity, industrial linkage or regional collaboration.

To overcome the above limitations, some studies employ multivariate spatio-temporal
analysis methods, such as vector autoregression (VAR) (Millo and Piras, 2012) and panel
data models (Yin et al, n.d.), to integrate cross-regional talent flows, economic
indicators, and policy variables into a unified framework. The VAR model can be shown
by equation (5):

yt =Alyt*1 +'“+Apyt*p +8t (5)

where y, is the multivariate series, A; is the coefficient matrix, and ¢, is the error term. The
VAR model can handle the interaction between multivariate sequences, while the panel
model enhances the estimation efficiency with the help of cross-regional information.
However, this method is highly dependent on the prior setting of the spatial weight
matrix and lag order, and is prone to dimensional disaster and overfitting risk in
large-scale, high-dimensional, and multi-period data scenarios.

2.2 Application of STGNN in the field of prediction

The STGNN maps regional nodes and their geographical or functional associations into
graph structures, and on this basis, introduces graph convolution and time series
modelling modules to realise spatial dependence and temporal dynamic collaborative
coding (Mao et al., 2024; Zhao et al.,, 2019). The propagation rule of the standard
graph convolutional network (GCN) (Al-Selwi et al., 2024) at the layer is shown in
equation (6):

1 1
Ho = o\ 53452 oW ) ©)

where A= A+1 is the adjacency matrix of the plus self-loop, D is the degree matrix,
W' is the weight matrix, o is the activation function. On this basis, STGNN often
combines one-dimensional TCN or cyclic unit (RNN/GRU/LSTM) to perform sliding
window encoding on node feature sequences.

Compared with the hybrid architecture of traditional GNNs combined with recurrent
neural networks (RNN) (Limouni et al., 2023) or time series convolutional networks
(TCN) (Assis et al., 2021), STGNN can integrally capture neighbourhood information
propagation and node feature evolution, providing a new idea for large-scale
spatio-temporal data prediction.

In the field of talent flow prediction, representative models such as STGCN
alternately stack graph convolution and TCN, and their core calculation can be expressed
as formula (7):

H =TCN(GCN(X)) (7
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DCRNN is based on the graph convolution of the diffusion process, combining the
network diffusion mechanism of talent flow with the gated cyclic unit (GRU) (Li et al.,
2018), and defining k" third diffusion convolution as equation (8):

K-1
H, ZZ(D_IA)k X,_,ﬁk (8)

k=0

Oy is the learnable weight of the k™ order diffusion kernel. The above methods have
achieved excellent results in the fields of integrating multi-source heterogeneous features
of talent flow and enhancing the interpretability of results.

2.3 LightGBM and hybrid prediction strategy

Gradient boosting decision tree (GBDT) is widely used in financial risk control,
e-commerce demand forecasting, and traditional traffic forecasting due to its
powerful regression and classification capabilities (Ju et al., 2019). LightGBM is a
high-performance implementation of GBDT. It utilises a histogram-based node splitting
algorithm and a leaf-wise growth strategy to achieve fast training and memory
optimisation for large-scale datasets. Its prediction model can be expressed as shown in
equation (9):

M

= fulx) ©)

m=1

where each tree f,,, from the function space F, has an objective function of equation (10):

L= (e )+ 2 2(n) (10)

where /£ is the loss function and Q is the regularisation term.

LightGBM has natural limitations in modelling endogenous spatial dependence and
temporal dynamics (Simaiya et al., 2024; Beg, Pateriya and Tomar, 2024), and thus relies
on hand-constructed time series lag features, spatial neighbourhood indicators, or
network centrality measures to indirectly reflect spatio-temporal connections. To
compensate for this deficiency, this study employs a range of hybrid and integration
strategies that combine neural networks and GBDT. Model-level fusion first uses a deep
neural network to extract high-dimensional features, and then submits them to GBDT for
final prediction; Feature-level fusion takes the key split features generated by GBDT as
neural network input to enhance interpretability and stability; Decision-level fusion fuses
the prediction results of multiple models through weighted averaging, stacking or
meta-learning to balance the bias and variance of different models.
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3 Models and methods

3.1 Design of STGNN model

In this study, a STGNN is designed based on the parallel coding of graph convolution and
temporal convolution. As shown in Figure 1, it is divided into four stages from left to
right: input, expansion, extraction and mapping.

Figure 1 Architecture diagram of STGNN model (see online version for colours)
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The input layer receives graph data at different times. The graph is composed of nodes
and connected edges. The nodes carry dynamic features and spatial distance information,
as well as attribute vectors and location features of location nodes. After stacking
multiple time graphs, a timing diagram tensor is formed to provide raw samples for
subsequent processing. The attribute expansion layer includes two parallel fusion units,
which process the source-end and position-end map signals, respectively. Each unit
extracts features, expands dimensions and aggregates information at the previous query
time and the current time, and outputs the extended feature representation at the
corresponding time. The spatio-temporal feature extraction layer integrates
time-sequential gated convolution and spatial attention convolution submodules. The
time-series gating module captures the multi-scale temporal evolution characteristics of
the graph structure, and the spatial attention module measures the spatial dependency
between nodes and focuses on key regions. The outputs of the two sub-modules are fused
in the channel dimension to generate a unified spatio-temporal representation vector. The
prediction mapping layer calculates the query code, observation vector, and duration
vector based on the spatio-temporal representation vector and inputs them into a
multi-layer fully connected network, together with the spatio-temporal representation.
After linear transformation and nonlinear activation, the final prediction result is output.

3.2 LightGBM module and fusion training strategy

To enhance the interpretability of the model and address the shortcomings of STGNN in
feature importance analysis, we developed a LightGBM regression model in parallel. The
model takes standardised lag flow characteristics, socio-economic indicators, and
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quarterly proportions as inputs, and adjusts hyperparameters such as tree depth, leaf
number, and learning rate through a histogram-based leaf growth strategy and five-fold
cross-validation. It then realises the single-step regression prediction of talent flow for the
next year. LightGBM supports the natural processing of category variables and provides
an output feature importance ranking, offering an intuitive driver reference for policy
formulation.

Figure 2 LightGBM model training and fusion structure diagram (see online version for colours)
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Figure 2 shows the overall training and prediction process of the proposed method. In this
process, the ‘input’ module first receives the raw data, and then assigns learnable weights
to different data channels in the ‘weight’ module to enhance the model’s responsiveness
to important information. The weighted data is sent to the ‘gradient lifting tree module’
for preliminary training, which continuously improves the prediction performance
through iterative fitting of residuals. The training results enter the ‘cross-validation’
stage, where the model’s generalisation ability is evaluated through multi-fold
partitioning. The optimal model configuration is then determined through a systematic
search in the ‘hyperparameter tuning’ link.

To address the complex challenges of agricultural talent migration forecasting, this
study integrates STGNN and LightGBM based on their complementary strengths.
STGNN effectively captures spatial-temporal dependencies by modelling cities or
regions as graph nodes and using adjacency relationships to represent geographic and
economic links. Through graph convolutions and temporal attention mechanisms, it
learns dynamic migration patterns. However, STGNN lacks interpretability and requires
high computational resources. LightGBM compensates with efficient training on
structured data, low memory usage, and strong performance on small to medium datasets,
while providing feature importance scores for transparency. In the fusion training
module, features from the original data are combined with STGNN outputs, and both
validation and test sets are introduced to ensure robustness and generalisation across
diverse data distributions.
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4 Data and experimental component

4.1 Experimental preparation

This study examines the flow of agricultural talent in Henan Province from 2010 to 2020.
The core data originate from the transfer filing system of the Henan Provincial
Department of Human Resources and Social Security, including prefecture-level
administrative division codes, locations where talents are transferred in/out, the year of
transfer, and the number of people. The auxiliary socio-economic indicators are sourced
from the Statistical Yearbook of Henan Province, which covers annual GDP, total
population, crop planting area, and per capita disposable income for various cities. To
prevent bias toward data-rich cities, we applied a data balancing strategy before training.
Underrepresented regions were upsampled using temporal interpolation, while
overrepresented areas were downsampled to ensure uniform learning. This approach
helped the STGNN-LightGBM model maintain low error rates across both urban hubs
and remote regions, enhancing its generalisation and fairness.

Table 1 Core characteristics of agricultural talent flow in Henan Province from 2010 to 2020
Trait Data type Description
Year int Year of transfer
City_code string Administrative division code of prefecture and city
inflow float Number of inflows in the year (Z-score)
outflow float Number of outflows for the year (Z-score)
GDP float Gross regional product of the year (Z-score)

Table 1 summarises the key fields of agricultural talent flow in 17 cities in Henan
Province from 2010 to 2020, including the mobilisation year (year), city code (city code),
inflow and outflow (both standardised by Z-score), and regional gross domestic product
(GDP, as standardised). The data undergoes preprocessing processes, including missing
value interpolation, outlier elimination, and single-hot coding, to form a unified
numerical feature input. This approach not only retains the time series characteristics but
also takes into account regional economic attributes, meeting the requirements of
STGNN and LightGBM models for structured data.

Table 2 Configuration table of experimental environment
Link Specific configuration
Computing hardware CPU: IntelXeonE5-2630v4
GPU: NVIDIA RTX2080Ti (11 GB), RAM: 32GB
Operating system Windows10
Programming language Python3.8. 10
Deep Learning Framework PyTorch1.10. 0
Scientific computing library NumPy1.20. 1, pandas1.2. 3
CUDA Environment CUDAIL.1

Development tools Jupyter Notebook6.4. 3
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Table 2 lists the software and hardware environments used for model training and
evaluation, which ensure experimental reproducibility and stability.

During the experiment, agricultural talent flow data from Henan Province
(2010-2020) were divided into three stages: 2010-2017 for training, 2018 for validation,
and 2019-2020 for testing. This division ensures temporal independence and supports
hyperparameter tuning while enabling rolling window prediction. The three-stage setup
reflects real-world forecasting conditions, allowing the model to learn long-term
migration patterns and evaluate its adaptability to recent shifts. It also captures seasonal
cycles and policy-driven changes, enhancing the model’s spatio-temporal generalisation
and practical relevance. A three-year rolling window was adopted for temporal
modelling, balancing the need to capture meaningful historical patterns with maintaining
forecasting relevance. This window length effectively reflects seasonal labour cycles,
policy changes, and economic fluctuations, while avoiding outdated or irrelevant
information.

To ensure consistency across features and improve model convergence, all input
variables — including migration counts, economic indicators, and regional attributes —
were standardised using Z-score normalisation. This approach transforms each feature to
have a mean of zero and a standard deviation of one, effectively eliminating scale
disparities and preventing dominant features from biasing the learning process. Z-score
normalisation was applied prior to graph construction and model training, ensuring that
both the STGNN and LightGBM components received uniformly scaled inputs. This
preprocessing step is particularly important for models sensitive to feature magnitude,
such as gradient-based learners and GCNss.

4.2 Comparative test

In order to evaluate the advantages of the proposed STGNN in the task of forecasting
agricultural talent flow, we selected three representative baseline models for comparison:
the traditional linear time series model ARIMA, the univariate RNN LSTM, and the
gradient lifting tree LightGBM based on feature engineering. All models were trained
using data from 2010 to 2017 in Henan Province, tested with data from 2019 to 2020, and
hyperparameter-tuned using 2018 data on the training set. A five-fold cross-validation
strategy was employed during LightGBM training to enhance model stability, reduce
overfitting, and ensure that the model generalises well across different subsets of the data
by repeatedly validating performance on unseen samples.

As shown in Figure 3, this figure evaluates the performance of the prediction model
from different angles with four subgraphs. Figure 3(a) compares the changing trends of
real and predicted sequences with time. The solid polyline and hollow point represent the
predicted value and the real value, respectively, which can intuitively reflect the timing
dynamics and phase error. Figure 3(b) superimposes the kernel density estimation curve
and the cumulative distribution curve of errors in the same coordinate system. The former
illustrates the degree of concentration and fluctuation range of errors, while the latter
reveals the cumulative probability distribution of prediction bias. Figure 3(c) displays the
density visualisation and sample dispersion of the real and predicted numerical
distributions, respectively, which helps distinguish the distribution patterns and median
trends of the two sets of data. Figure 3(d) presents the corresponding relationship
between the real value and the predicted value with a scatter plot colored with error, and
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draws a y = x reference line to reflect the systematic deviation and outlier of the model
intuitively.

Figure 3 Multi-faceted evaluation of time series prediction performance (see online version

for colours)
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Figure 4 Performance comparison of four models in agricultural talent flow prediction
(see online version for colours)
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Figure 4 presents the performance of four models in forecasting agricultural talent flow,
evaluated using MSE, RMSE, and MAPE. These metrics were chosen for their
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complementary strengths: MSE emphasises large errors, RMSE provides interpretable
error magnitude, and MAPE expresses errors as percentages, allowing fair comparison
across regions with varying migration scales. Together, they offer a balanced assessment
of both absolute and relative prediction accuracy, making them well-suited for evaluating
spatio-temporal models in heterogeneous agricultural contexts. The three subgraphs in
the figure show the performance of each model in the task. Figure 4(a) shows the error
change trend of the four models in different experiments. It can be seen that the STGNN
model exhibits the most stable performance in all tests, with minimal error variation,
while the ARIMA model displays significant error fluctuation, indicating its poor
stability when dealing with complex spatio-temporal data. LSTM and LightGBM
performed relatively moderately but remained below ARIMA. Figure 4(b) shows the
error distribution of each model over multiple trials. The error distributions of STGNN
and LightGBM are more concentrated, showing their high stability and consistency. In
contrast, ARIMA and LSTM exhibit a wide range of errors. Figure 4(c) provides more
detailed error distribution information. STGNN and LightGBM are more concentrated in
areas with lower errors, while ARIMA and LSTM present a larger error range, indicating
that these two models may have large deviations when predicting.

Figure 5 Comparison of data dimensionality reduction and clustering effects: PCA, t-SNE and
OPTICS (see online version for colours)
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Figure 5 illustrates three commonly used dimensionality reduction and clustering
methods: principal component analysis (PCA), t-distribution random neighbourhood
embedding (t-SNE), and ordered point identification clustering structure (OPTICS). It
performs a visual comparison through three subgraphs. Figure 5(a) displays the PCA
dimensionality reduction results, where the projection of the data into a two-dimensional
space is used to represent different clusters. The points of each cluster are coloured
according to their original labels, and the structural association of data points is illustrated
by the connecting lines between every 5 points. Figure 5(b) shows the distribution of data
points after dimensionality reduction by t-SNE. Compared to PCA, t-SNE can better
preserve the local structure of the data, and the distance between each cluster is visible,
further strengthening the dense connections between points. The polyline element
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enhances the readability of the data and helps illustrate the hierarchical relationships
between clusters. Finally, Figure 5(c) displays the data distribution after clustering using
OPTICS, with the clustering results represented by colour coding. This method can
dynamically identify the structure of clusters and show the changing trend of data points
in feature space through the line connecting every 5 points.

Table 3 Performance comparison of CNN, LightGBM and fusion models in classification
tasks
Model Accuracy  Precision Recall Fl-score AUC
CNN Only 0.88 0.87 0.89 0.88 0.93
LightGBM Only 0.85 0.84 0.86 0.85 0.90
CNN + LightGBM Fusion 0.91 0.90 0.92 0.91 0.95

Table 3 compares the key performance indicators of the three models on the test set,
including five commonly used measures: accuracy, precision, recall, F1-score and area
under the curve (AUC). With its deep convolutional network architecture, the CNN
model exhibits outstanding performance in image feature extraction, achieving an
accuracy rate of 0.88 and an AUC of 0.93. The LightGBM model, based on the gradient
boosting decision tree algorithm, achieves an accuracy of 0.85 and an AUC of 0.90. To
fully leverage the advantages of both, this paper incorporates the high-dimensional depth
features extracted by CNN into LightGBM and employs a weighted fusion strategy to
optimise the output of each model comprehensively. After verification, the fusion model
has been significantly improved in all indicators-the accuracy rate reaches 0.91, the AUC
reaches 0.95, and the Fl-score and recall rate increase to 0.91 and 0.92, respectively,
which fully proves that the fusion strategy can effectively improve the overall
performance of the model.

Figure 6 Multi-dimensional performance assessment of regional talent flow prediction model
(see online version for colours)
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Figure 6 shows the performance comparison of the STGNN-LightGBM hybrid model
and three baseline models (ARIMA, LSTM, LightGBM) in the agricultural talent flow
prediction task in Henan Province from 2010 to 2020. Figure 6(a) presents the time series
change of the real Z-score and the predicted value of each model, and the mixed model
curve has the highest coincidence with the observed value; Figure 6(b) uses error kernel
density estimation and cumulative distribution function, which shows that the error
distribution of the mixed model is the most concentrated and the deviation is the smallest;
Figure 6(c) visualises the distribution pattern and dispersion degree of the predicted
values of the four models, and the mixed model has the narrowest distribution and the
strongest stability; Figure 6(d) shows the real value and the predicted value
correspondingly in the form of scatter points, and draws the ideal diagonal. The point
cloud of the mixed model is closest to the reference line and has the lightest colour,
which further verifies its superior performance. Taken together, the hybrid framework
that combines the spatial sensitivity of a GNN and the feature interpretation ability of
LightGBM is significantly better than a single model in terms of accuracy, stability and
generalisation ability, and has good application value for regional spatio-temporal
prediction.

Figure 7 Multi-model net flow prediction results and error analysis (see online version
for colours)
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Figure 7 comprises four subgraphs that comprehensively compare the performance and
error distribution of STGNN, LightGBM, and Hybrid models in net flow forecasts from
2010 to 2020. Figure 7(a) shows the measured net flow with a black solid line, and the
blue dotted line, green dotted line and red solid line show the time series prediction
trajectories of STGNN, LightGBM and Hybrid models, respectively, which intuitively
reflect the ability of each model to capture the fluctuation trend and the deviation of
inflection point timing. Figure 7(b) is the spatial distribution map of the average absolute
error (MAE) of the LightGBM model in each region. The colour scale, ranging from light
orange to dark red, is used to indicate the low error to the high error, revealing that the
model’s accuracy is higher in data-dense areas, such as provincial capitals and
transportation hubs, while the error increases significantly in remote or data-scarce areas.
Figure 7(c) draws the scatter plot of the predicted values and observed values of the three
models. The convergence and dispersion of the three-colour point cloud around the
dashed line (1 1 ideal fitting line) reflect the systematic deviation and fitting effect of
each model. The LightGBM model has the most concentrated point cloud, followed by
Hybrid, and STGNN has the widest dispersion. Figure 7(d) shows the probability density
function (solid line) and cumulative distribution function (dashed line) of the three model
errors, among which the error distribution curve of the Hybrid model is the steepest and
left-skewed, indicating that most of its prediction errors are smaller and more stable;
LightGBM performs in the middle, and STGNN error distribution is the most scattered.

The proposed hybrid model showed consistent performance across 17 cities in Henan
Province, maintaining low error rates even in regions with sparse data. This indicates
strong generalisation ability, as the model effectively captured migration patterns in both
urban and rural areas. By leveraging spatial relationships through graph structures and
temporal dynamics via rolling window prediction, STGNN learned complex flow
behaviors. LightGBM complemented this by enhancing interpretability and adapting to
structured features. Together, the model demonstrated robustness across heterogeneous
environments, making it suitable for real-world forecasting where data availability varies.

Based on the simulation coordinates of 30 random nodes and four cluster labels,
Figure 8 visually compares the predicted results of OD network traffic in the 4-hour and
8-hour periods with the actual data from the proposed model. The image is divided into
four subgraphs: Figure 8(a) 4h predicted traffic; Figure 8(b) 4h true flow; Figure 8(c) 8h
predicted flow; Figure 8(d) 8h true flow. All nodes are randomly distributed on the plane,
and Gaussian jitter is added to each subgraph to break the regular pattern. The node size
is dynamically mapped according to the total departure traffic, and the nodes in the
cluster use uniform colour blocks, adding black borders to distinguish the spatial
clustering relationship. The connection line retains only the trunk flow above the 90th
percentile, and the line width is linearly scaled according to the flow intensity. The colour
from light orange to dark red corresponds to the flow from low to high. The backbone
trend of subgraphs Figures 8(a) and 8(c) reflects the capture ability of the model in the
core area of clusters and the exudation flow between clusters; Figures 8(b) and 8(d) show
the key channels of real traffic. Comparing the two sets of images can demonstrate the
accuracy of the model’s proposed prediction data.
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Figure 8 Visualisation of OD network traffic simulation in Henan Province: 4h/8h forecast and
real comparison, (a) 4h predicted flow (b) 4h ground truth (c) 8h predicted flow
(b) 8h ground truth (see online version for colours)

Clns
(=] (¥5) .

(©) (d)
Index | D  [ndex
1 25 5 7.5
@ Clancs0 @ Clancs1 ) Clanes?2 — Flow Curve @ Clancs 3

To evaluate the feasibility of model deployment, we recorded the training time and
resource consumption of the STGNN-LightGBM framework. On our workstation, the
STGNN component required approximately 2.5 hours for training, while LightGBM
completed training within 15 minutes. Peak memory usage remained below 20 GB,
indicating that the model is suitable for efficient deployment in real-world regional
planning scenarios.

5 Conclusions

The experimental results of the STGNN-LightGBM hybrid model on the 2019-2020 test
set of Henan Province demonstrate clear performance advantages. Compared with the
standalone STGNN model, the hybrid model reduced the mean absolute error (MAE)
from 0.28 to 0.24, the root mean square error (RMSE) from 0.35 to 0.31, and the mean
absolute percentage error (MAPE) from 11.9% to 10.2%. Relative to the single
LightGBM model, improvements of approximately 12.5%, 11.4%, and 10.8% were
observed in MAE, RMSE, and MAPE, respectively. At the city level, the average
prediction error in Zhengzhou and other transportation hubs was below 8.5%, while
errors in remote areas remained within 12.3%, indicating strong regional generalisation.
This hybrid framework effectively combines the spatial sensitivity of STGNN with
the interpretability and efficiency of LightGBM, achieving enhanced accuracy and
robustness in spatio-temporal forecasting. Beyond Henan Province, the model’s
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architecture is adaptable to other provinces and sectors where migration, mobility, or
resource allocation patterns exhibit spatial-temporal complexity. Its modular design
allows for integration with diverse datasets, making it suitable for applications in urban
planning, healthcare workforce distribution, and industrial labour forecasting. This study
is the first to integrate STGNN and LightGBM for agricultural talent migration
prediction, offering a transferable and scalable solution for broader policy-oriented
forecasting tasks.
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