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Abstract: Current agricultural talent flow prediction mainly uses single  
models (e.g., linear regression, ARIMA, LSTM), which fail to capture  
non-Euclidean spatial-temporal relationships and automatically extract complex 
spatio-temporal interactions, limiting accuracy and interpretability. This paper 
proposes a hybrid framework integrating a spatio-temporal graph neural 
network (STGNN) and LightGBM. Using 2010–2020 data from 17 cities in 
Henan Province, a spatio-temporal graph is built with city nodes and 
geographic-threshold edges. STGNN combines graph convolution and temporal 
convolution (TCN) to automatically learn spatio-temporal features, while 
LightGBM regresses lag and socio-economic indicators for interpretability. 
Benchmark comparisons with ARIMA, LSTM, and LightGBM, plus ablation 
and sensitivity tests, confirm the hybrid model’s superiority. It reduces error by 
10%–14% versus standalone STGNN/LightGBM, achieving under 12.3% 
overall error, with significantly improved accuracy and stability. 

Keywords: agricultural talent flow; spatio-temporal graph neural network; 
STGNN; LightGBM; hybrid prediction. 
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1 Introduction 

With the comprehensive advancement of China’s rural revitalisation strategy, agricultural 
talents, as a key factor in promoting agricultural modernisation and the sustainable 
development of the rural economies, have attracted considerable attention to their flow 
trends and distribution patterns. Especially under the background of regional coordinated 
development and optimisation of rural talent structure, accurately predicting the inflow 
and outflow of agricultural talents will not only help to speed up the allocation efficiency 
of agricultural production factors, but also provide a scientific basis for policy-making 
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departments, thus helping to balance and rationally allocate talent resources among 
regions. 

The flow of agricultural talents has an obvious temporal and spatial correlation (Geng 
and Yang, 2017; Qu et al., 2022). On the one hand, there is often a gradient transfer of 
talents between geographically adjacent or economically and culturally similar regions. 
On the other hand, factors such as the adjustment of annual planting structures, 
fluctuations in agricultural prices, and changes in the macroeconomic environment make 
the talent flow exhibit significant temporal dynamic characteristics. Therefore, how to 
effectively capture the spatial dependence and historical sequence evolution among 
regions is the core challenge to realise high-precision agricultural talent flow prediction 
(Yang et al., 2024). 

Traditional talent flow prediction methods are mostly based on time series models 
and regression analysis. Models such as ARIMA exponential smoothing can describe 
linear trends and seasonal fluctuations (Rabbani et al., 2021), but it is difficult to take into 
account the non-Euclidean spatial structure between regions; Regression trees and 
support vector machines based on machine learning have made breakthroughs in  
multi-factor fusion (Zhang et al., 2025), but rely on manual feature engineering, and it is 
difficult to extract complex spatial-temporal interaction information automatically. In 
recent years, with the rapid development of deep learning technology, long- and  
short-term memory networks (LSTMs) (Greff et al., 2016) and gated recurrent units 
(GRUs) (Mim et al., 2023) have performed well in mining time dependencies, but have 
limited modelling capabilities for spatial topologies. 

Graph neural networks (GNNs) (Li et al., 2022) enable efficient information 
propagation and aggregation in complex networks by embedding entities and their 
adjacency relationships into graph structures. Spatio-temporal graph neural networks 
(STGNNs) (Chen et al., 2025b;  Wang et al., 2022) combine graph convolution with time 
series modelling to capture spatial dependencies and temporal dynamics. In this 
framework, cities are treated as nodes and geographic distances as edges, enabling the 
analysis of complex migration flows. STGNNs have shown strong performance in areas 
like traffic and air quality prediction, and are well-suited for modelling agricultural talent 
migration. By reflecting real-world spatial structures and evolving patterns, they offer 
valuable insights for regional planning and resource optimisation. However, at present, 
there are still few studies on the systematic application of the STGNN method in the 
agricultural field, especially in the prediction of regional agricultural talent flow. Its 
generalisation ability and practical value in different-scale regions and time granularities 
need to be further explored. 

At the same time, LightGBM, as an efficient gradient boosting decision tree 
framework, is widely used in various prediction tasks due to its advantages of fast 
training speed, support for large-scale data, and the ability to process multiple types of 
features (Chen et al., 2025a). However, its essence remains a decision tree model based 
on feature splitting, and it is challenging to directly model the deep dependence of 
geographical neighbourhood structure and historical sequence information. The goal of 
this study is to organically combine the advantages of LightGBM and STGNN to 
construct a hybrid prediction framework that incorporates both spatial sensitivity and 
feature interpretation. 

Talent migration has become an important topic in regional development studies. 
However, existing models often fail to capture the complexity of agricultural labour 
flows. In the context of rural revitalisation and agricultural modernisation, accurately 
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forecasting the migration patterns of agricultural talent is essential for optimising 
resource allocation, improving productivity, and supporting policy-making. Traditional 
forecasting methods struggle to model the non-Euclidean spatial structures and dynamic 
temporal dependencies inherent in talent mobility. Traditional forecasting methods, like 
regression and basic time-series models, often assume linear relationships and overlook 
the complex spatial dependencies in agricultural talent migration. These models rely on 
Euclidean assumptions, failing to reflect irregular geographic and economic interactions 
between rural regions. Talent flows are shaped by diverse factors such as regional 
policies, infrastructure gaps, and seasonal labour needs, requiring models that can learn 
dynamic, non-linear, and graph-based patterns. As a result, conventional approaches are 
inadequate for capturing the spatio-temporal complexities of migration, highlighting the 
need for more advanced and adaptive modelling frameworks. 

Based on the above background, this study is supported by data on agricultural talent 
flow in Henan Province from 2010 to 2020, and proposes a method to predict the trend of 
agricultural talent flow that integrates a STGNN and LightGBM. Firstly, the transfer 
records and socio-economic indicators of 17 prefectures and cities in Henan Province are 
used to construct a spatio-temporal map, where nodes represent prefectures and cities and 
edges are determined by geographical distance thresholds; Subsequently, the  
spatio-temporal features are encoded in parallel by graph convolution and time series 
convolution (TCN) to extract complex dependencies between cities and cities 
automatically. At the same time, gradient lifting training is carried out on pre-constructed 
lag features and economic indicators using LightGBM to supplement the shortcomings of 
STGNN in terms of characteristic interpretability. Finally, by comparing ARIMA, 
LSTM, and single LightGBM models, and conducting ablation experiments and 
parameter sensitivity analysis, the model performance and module contributions are 
systematically evaluated. The main contributions of this paper are as follows: 

1 Propose a prediction scheme that organically fuses a STGNN and a LightGBM 
gradient lifting tree. The STGNN module extracts spatial dependencies and temporal 
dynamics between regions in parallel through graph convolution and TCN, while the 
LightGBM module performs efficient regression on pre-constructed lag features and 
socio-economic indicators. We reconstruct the phrase so that readers can clearly 
understand its intention. Here are the specific modifications: The complementary 
advantages of the two ensure the interpretability of the model while achieving high 
prediction accuracy. 

2 Complete the construction of the spatio-temporal map. Based on the agricultural 
talent mobilisation records of 17 cities in Henan Province from 2010 to 2020, we use 
the geographical distance threshold to construct a regional adjacency network and 
integrate multidimensional socio-economic characteristics, such as annual planting 
structure, agricultural material prices, and labour costs, to provide high-quality  
spatio-temporal input for STGNN. The spatio-temporal map construction process is 
replicable and can be extended to other regions and industries. 

3 Multi-benchmark comparison experiments with ARIMA, LSTM and single 
LightGBM models were designed, and ablation research and parameter sensitivity 
analysis were carried out. The experimental results show that the mean square error, 
mean absolute error and goodness of fit of the mixed model are improved by more 
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than 10% on average, and the stability and generalisation ability of the model are 
also significantly enhanced. 

2 Related work 

2.1 Agricultural talent flow and prediction method 

In recent years, with the deepening of China’s rural revitalisation strategy, the  
cross-regional flow of agricultural talents has become the core issue of rural 
modernisation development. Early studies mostly focused on qualitative interviews, focus 
groups and questionnaires. Through in-depth analysis of factors such as farmers’ family 
background, education level, income level and social capital, the subjective drive of 
individual mobility willingness was revealed (Wójcik et al., 2019; Valentini et al., 2021). 
This kind of research provides a valuable perspective on the institutional environment 
and subjective motivation, but is limited by sample size and investigation depth, making 
it difficult to quantify the interaction effects between different factors and their temporal 
and spatial evolution in large-scale and high-dimensional data. 

To explain the influence path, scholars have employed classical statistical methods, 
including multiple linear regression (Hensher and Greene, 2003), the Logit model 
(Mardani et al., 2017), and structural equation modelling (SEM) (Parzen, 2003), to 
quantitatively analyse the key driving factors of agricultural talent flow. For example, the 
Logit model is often expressed as formula (1): 

( ) ( )
11

1 expi i
i

P y x
x β

= =
+ − 

 (1) 

where yi denotes the flow decision for i observations, xi is the feature vector, and β is the 
parameter to be estimated. 

By constructing a regression framework including economic income, land scale, 
social security, public services and other variables, the researchers quantified the 
marginal contribution of each index to the probability and scale of mobility. Although 
this kind of method has strong readability in feature interpretation, it relies on linear 
assumptions and prior variable selection, which cannot fully capture the nonlinear linkage 
between high-dimensional features, and it is difficult to automatically adapt to the 
changing macro environment. 

With the improvement of big data technology and computing power, time series 
models such as ARIMA, exponential smoothing and seasonal decomposition models are 
gradually applied to the short-term prediction of regional agricultural talents (Han et al., 
2019; Bashir and Wei, 2018). The general form of the ARIMA(p, d, q) model is  
equation (2): 

( )(1 ) ( )d
t tL L y θ L εφ − =  (2) 

where L is the lag operator and φ(L) and θ(L) are autoregressive and moving average 
polynomials, respectively. The expressions are shown in equations (3)–(4): 

 1  ( ) 1 p
pL L Lφ φ φ= − − −  (3) 
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1( ) 1 q
qθ L θ L θ L= + + +  (4) 

Such models can achieve high forecast accuracy on monthly or quarterly scales by 
stabilising, trending, and seasonally adjusting the historical flow number series. However, 
the time series method lacks the endogenous characterisation of spatial adjacency effect, 
and cannot reflect the talent gradient transfer mechanism brought about by geographical 
proximity, industrial linkage or regional collaboration. 

To overcome the above limitations, some studies employ multivariate spatio-temporal 
analysis methods, such as vector autoregression (VAR) (Millo and Piras, 2012) and panel 
data models (Yin et al., n.d.), to integrate cross-regional talent flows, economic 
indicators, and policy variables into a unified framework. The VAR model can be shown 
by equation (5): 

1 1t t p t p ty A y A y ε− −= + + +  (5) 

where yt is the multivariate series, Ak is the coefficient matrix, and εt is the error term. The 
VAR model can handle the interaction between multivariate sequences, while the panel 
model enhances the estimation efficiency with the help of cross-regional information. 
However, this method is highly dependent on the prior setting of the spatial weight 
matrix and lag order, and is prone to dimensional disaster and overfitting risk in  
large-scale, high-dimensional, and multi-period data scenarios. 

2.2 Application of STGNN in the field of prediction 

The STGNN maps regional nodes and their geographical or functional associations into 
graph structures, and on this basis, introduces graph convolution and time series 
modelling modules to realise spatial dependence and temporal dynamic collaborative 
coding (Mao et al., 2024; Zhao et al., 2019). The propagation rule of the standard  
graph convolutional network (GCN) (Al-Selwi et al., 2024) at the layer is shown in 
equation (6): 

( )1 1
( 1) ( ) ( )2 2l l lH σ D AD H W

− −+ =    (6) 

where A A I= +  is the adjacency matrix of the plus self-loop, D  is the degree matrix, 
Wl is the weight matrix, σ is the activation function. On this basis, STGNN often 
combines one-dimensional TCN or cyclic unit (RNN/GRU/LSTM) to perform sliding 
window encoding on node feature sequences. 

Compared with the hybrid architecture of traditional GNNs combined with recurrent 
neural networks (RNN) (Limouni et al., 2023) or time series convolutional networks 
(TCN) (Assis et al., 2021), STGNN can integrally capture neighbourhood information 
propagation and node feature evolution, providing a new idea for large-scale  
spatio-temporal data prediction. 

In the field of talent flow prediction, representative models such as STGCN 
alternately stack graph convolution and TCN, and their core calculation can be expressed 
as formula (7): 

( )( )H TCN GCN X=  (7) 
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DCRNN is based on the graph convolution of the diffusion process, combining the 
network diffusion mechanism of talent flow with the gated cyclic unit (GRU) (Li et al., 
2018), and defining kth third diffusion convolution as equation (8): 

( )
1

1

0

K
k

t t k k
k

H D A X θ
−

−
−

=

=  (8) 

θk is the learnable weight of the kth order diffusion kernel. The above methods have 
achieved excellent results in the fields of integrating multi-source heterogeneous features 
of talent flow and enhancing the interpretability of results. 

2.3 LightGBM and hybrid prediction strategy 

Gradient boosting decision tree (GBDT) is widely used in financial risk control,  
e-commerce demand forecasting, and traditional traffic forecasting due to its  
powerful regression and classification capabilities (Ju et al., 2019). LightGBM is a  
high-performance implementation of GBDT. It utilises a histogram-based node splitting 
algorithm and a leaf-wise growth strategy to achieve fast training and memory 
optimisation for large-scale datasets. Its prediction model can be expressed as shown in 
equation (9): 

( )
1

ˆ
M

i m i
m

y f x
=

=  (9) 

where each tree fm, from the function space F, has an objective function of equation (10): 

( ) ( ), Ωi i m
i i

L y y f= +   (10) 

where  is the loss function and Ω is the regularisation term. 
LightGBM has natural limitations in modelling endogenous spatial dependence and 

temporal dynamics (Simaiya et al., 2024; Beg, Pateriya and Tomar, 2024), and thus relies 
on hand-constructed time series lag features, spatial neighbourhood indicators, or 
network centrality measures to indirectly reflect spatio-temporal connections. To 
compensate for this deficiency, this study employs a range of hybrid and integration 
strategies that combine neural networks and GBDT. Model-level fusion first uses a deep 
neural network to extract high-dimensional features, and then submits them to GBDT for 
final prediction; Feature-level fusion takes the key split features generated by GBDT as 
neural network input to enhance interpretability and stability; Decision-level fusion fuses 
the prediction results of multiple models through weighted averaging, stacking or  
meta-learning to balance the bias and variance of different models. 
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3 Models and methods 

3.1 Design of STGNN model 

In this study, a STGNN is designed based on the parallel coding of graph convolution and 
temporal convolution. As shown in Figure 1, it is divided into four stages from left to 
right: input, expansion, extraction and mapping. 

Figure 1 Architecture diagram of STGNN model (see online version for colours) 

 

The input layer receives graph data at different times. The graph is composed of nodes 
and connected edges. The nodes carry dynamic features and spatial distance information, 
as well as attribute vectors and location features of location nodes. After stacking 
multiple time graphs, a timing diagram tensor is formed to provide raw samples for 
subsequent processing. The attribute expansion layer includes two parallel fusion units, 
which process the source-end and position-end map signals, respectively. Each unit 
extracts features, expands dimensions and aggregates information at the previous query 
time and the current time, and outputs the extended feature representation at the 
corresponding time. The spatio-temporal feature extraction layer integrates  
time-sequential gated convolution and spatial attention convolution submodules. The 
time-series gating module captures the multi-scale temporal evolution characteristics of 
the graph structure, and the spatial attention module measures the spatial dependency 
between nodes and focuses on key regions. The outputs of the two sub-modules are fused 
in the channel dimension to generate a unified spatio-temporal representation vector. The 
prediction mapping layer calculates the query code, observation vector, and duration 
vector based on the spatio-temporal representation vector and inputs them into a  
multi-layer fully connected network, together with the spatio-temporal representation. 
After linear transformation and nonlinear activation, the final prediction result is output. 

3.2 LightGBM module and fusion training strategy 

To enhance the interpretability of the model and address the shortcomings of STGNN in 
feature importance analysis, we developed a LightGBM regression model in parallel. The 
model takes standardised lag flow characteristics, socio-economic indicators, and 
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quarterly proportions as inputs, and adjusts hyperparameters such as tree depth, leaf 
number, and learning rate through a histogram-based leaf growth strategy and five-fold 
cross-validation. It then realises the single-step regression prediction of talent flow for the 
next year. LightGBM supports the natural processing of category variables and provides 
an output feature importance ranking, offering an intuitive driver reference for policy 
formulation. 

Figure 2 LightGBM model training and fusion structure diagram (see online version for colours) 

 

Figure 2 shows the overall training and prediction process of the proposed method. In this 
process, the ‘input’ module first receives the raw data, and then assigns learnable weights 
to different data channels in the ‘weight’ module to enhance the model’s responsiveness 
to important information. The weighted data is sent to the ‘gradient lifting tree module’ 
for preliminary training, which continuously improves the prediction performance 
through iterative fitting of residuals. The training results enter the ‘cross-validation’ 
stage, where the model’s generalisation ability is evaluated through multi-fold 
partitioning. The optimal model configuration is then determined through a systematic 
search in the ‘hyperparameter tuning’ link. 

To address the complex challenges of agricultural talent migration forecasting, this 
study integrates STGNN and LightGBM based on their complementary strengths. 
STGNN effectively captures spatial-temporal dependencies by modelling cities or 
regions as graph nodes and using adjacency relationships to represent geographic and 
economic links. Through graph convolutions and temporal attention mechanisms, it 
learns dynamic migration patterns. However, STGNN lacks interpretability and requires 
high computational resources. LightGBM compensates with efficient training on 
structured data, low memory usage, and strong performance on small to medium datasets, 
while providing feature importance scores for transparency. In the fusion training 
module, features from the original data are combined with STGNN outputs, and both 
validation and test sets are introduced to ensure robustness and generalisation across 
diverse data distributions. 
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4 Data and experimental component 

4.1 Experimental preparation 

This study examines the flow of agricultural talent in Henan Province from 2010 to 2020. 
The core data originate from the transfer filing system of the Henan Provincial 
Department of Human Resources and Social Security, including prefecture-level 
administrative division codes, locations where talents are transferred in/out, the year of 
transfer, and the number of people. The auxiliary socio-economic indicators are sourced 
from the Statistical Yearbook of Henan Province, which covers annual GDP, total 
population, crop planting area, and per capita disposable income for various cities. To 
prevent bias toward data-rich cities, we applied a data balancing strategy before training. 
Underrepresented regions were upsampled using temporal interpolation, while 
overrepresented areas were downsampled to ensure uniform learning. This approach 
helped the STGNN-LightGBM model maintain low error rates across both urban hubs 
and remote regions, enhancing its generalisation and fairness. 
Table 1 Core characteristics of agricultural talent flow in Henan Province from 2010 to 2020 

Trait Data type Description 
Year int Year of transfer 
City_code string Administrative division code of prefecture and city 
inflow float Number of inflows in the year (Z-score) 
outflow float Number of outflows for the year (Z-score) 
GDP float Gross regional product of the year (Z-score) 

Table 1 summarises the key fields of agricultural talent flow in 17 cities in Henan 
Province from 2010 to 2020, including the mobilisation year (year), city code (city code), 
inflow and outflow (both standardised by Z-score), and regional gross domestic product 
(GDP, as standardised). The data undergoes preprocessing processes, including missing 
value interpolation, outlier elimination, and single-hot coding, to form a unified 
numerical feature input. This approach not only retains the time series characteristics but 
also takes into account regional economic attributes, meeting the requirements of 
STGNN and LightGBM models for structured data. 
Table 2 Configuration table of experimental environment 

Link Specific configuration 
Computing hardware CPU: IntelXeonE5-2630v4 

GPU: NVIDIA RTX2080Ti (11 GB), RAM: 32GB 
Operating system Windows10 
Programming language Python3.8. 10 
Deep Learning Framework PyTorch1.10. 0 
Scientific computing library NumPy1.20. 1, pandas1.2. 3 
CUDA Environment CUDA11.1 
Development tools Jupyter Notebook6.4. 3 
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Table 2 lists the software and hardware environments used for model training and 
evaluation, which ensure experimental reproducibility and stability. 

During the experiment, agricultural talent flow data from Henan Province  
(2010–2020) were divided into three stages: 2010–2017 for training, 2018 for validation, 
and 2019–2020 for testing. This division ensures temporal independence and supports 
hyperparameter tuning while enabling rolling window prediction. The three-stage setup 
reflects real-world forecasting conditions, allowing the model to learn long-term 
migration patterns and evaluate its adaptability to recent shifts. It also captures seasonal 
cycles and policy-driven changes, enhancing the model’s spatio-temporal generalisation 
and practical relevance. A three-year rolling window was adopted for temporal 
modelling, balancing the need to capture meaningful historical patterns with maintaining 
forecasting relevance. This window length effectively reflects seasonal labour cycles, 
policy changes, and economic fluctuations, while avoiding outdated or irrelevant 
information. 

To ensure consistency across features and improve model convergence, all input 
variables – including migration counts, economic indicators, and regional attributes – 
were standardised using Z-score normalisation. This approach transforms each feature to 
have a mean of zero and a standard deviation of one, effectively eliminating scale 
disparities and preventing dominant features from biasing the learning process. Z-score 
normalisation was applied prior to graph construction and model training, ensuring that 
both the STGNN and LightGBM components received uniformly scaled inputs. This 
preprocessing step is particularly important for models sensitive to feature magnitude, 
such as gradient-based learners and GCNs. 

4.2 Comparative test 

In order to evaluate the advantages of the proposed STGNN in the task of forecasting 
agricultural talent flow, we selected three representative baseline models for comparison: 
the traditional linear time series model ARIMA, the univariate RNN LSTM, and the 
gradient lifting tree LightGBM based on feature engineering. All models were trained 
using data from 2010 to 2017 in Henan Province, tested with data from 2019 to 2020, and 
hyperparameter-tuned using 2018 data on the training set. A five-fold cross-validation 
strategy was employed during LightGBM training to enhance model stability, reduce 
overfitting, and ensure that the model generalises well across different subsets of the data 
by repeatedly validating performance on unseen samples. 

As shown in Figure 3, this figure evaluates the performance of the prediction model 
from different angles with four subgraphs. Figure 3(a) compares the changing trends of 
real and predicted sequences with time. The solid polyline and hollow point represent the 
predicted value and the real value, respectively, which can intuitively reflect the timing 
dynamics and phase error. Figure 3(b) superimposes the kernel density estimation curve 
and the cumulative distribution curve of errors in the same coordinate system. The former 
illustrates the degree of concentration and fluctuation range of errors, while the latter 
reveals the cumulative probability distribution of prediction bias. Figure 3(c) displays the 
density visualisation and sample dispersion of the real and predicted numerical 
distributions, respectively, which helps distinguish the distribution patterns and median 
trends of the two sets of data. Figure 3(d) presents the corresponding relationship 
between the real value and the predicted value with a scatter plot colored with error, and 
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draws a y = x reference line to reflect the systematic deviation and outlier of the model 
intuitively. 

Figure 3 Multi-faceted evaluation of time series prediction performance (see online version  
for colours) 

 
(a)     (b) 

 
(c)     (d) 

Figure 4 Performance comparison of four models in agricultural talent flow prediction  
(see online version for colours) 

 
(a) (b) (c) 

Figure 4 presents the performance of four models in forecasting agricultural talent flow, 
evaluated using MSE, RMSE, and MAPE. These metrics were chosen for their 
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complementary strengths: MSE emphasises large errors, RMSE provides interpretable 
error magnitude, and MAPE expresses errors as percentages, allowing fair comparison 
across regions with varying migration scales. Together, they offer a balanced assessment 
of both absolute and relative prediction accuracy, making them well-suited for evaluating 
spatio-temporal models in heterogeneous agricultural contexts. The three subgraphs in 
the figure show the performance of each model in the task. Figure 4(a) shows the error 
change trend of the four models in different experiments. It can be seen that the STGNN 
model exhibits the most stable performance in all tests, with minimal error variation, 
while the ARIMA model displays significant error fluctuation, indicating its poor 
stability when dealing with complex spatio-temporal data. LSTM and LightGBM 
performed relatively moderately but remained below ARIMA. Figure 4(b) shows the 
error distribution of each model over multiple trials. The error distributions of STGNN 
and LightGBM are more concentrated, showing their high stability and consistency. In 
contrast, ARIMA and LSTM exhibit a wide range of errors. Figure 4(c) provides more 
detailed error distribution information. STGNN and LightGBM are more concentrated in 
areas with lower errors, while ARIMA and LSTM present a larger error range, indicating 
that these two models may have large deviations when predicting. 

Figure 5 Comparison of data dimensionality reduction and clustering effects: PCA, t-SNE and 
OPTICS (see online version for colours) 

 
(a) (b) (c) 

Figure 5 illustrates three commonly used dimensionality reduction and clustering 
methods: principal component analysis (PCA), t-distribution random neighbourhood 
embedding (t-SNE), and ordered point identification clustering structure (OPTICS). It 
performs a visual comparison through three subgraphs. Figure 5(a) displays the PCA 
dimensionality reduction results, where the projection of the data into a two-dimensional 
space is used to represent different clusters. The points of each cluster are coloured 
according to their original labels, and the structural association of data points is illustrated 
by the connecting lines between every 5 points. Figure 5(b) shows the distribution of data 
points after dimensionality reduction by t-SNE. Compared to PCA, t-SNE can better 
preserve the local structure of the data, and the distance between each cluster is visible, 
further strengthening the dense connections between points. The polyline element 
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enhances the readability of the data and helps illustrate the hierarchical relationships 
between clusters. Finally, Figure 5(c) displays the data distribution after clustering using 
OPTICS, with the clustering results represented by colour coding. This method can 
dynamically identify the structure of clusters and show the changing trend of data points 
in feature space through the line connecting every 5 points. 
Table 3 Performance comparison of CNN, LightGBM and fusion models in classification 

tasks 

Model Accuracy Precision Recall F1-score AUC 
CNN Only 0.88 0.87 0.89 0.88 0.93 
LightGBM Only 0.85 0.84 0.86 0.85 0.90 
CNN + LightGBM Fusion 0.91 0.90 0.92 0.91 0.95 

Table 3 compares the key performance indicators of the three models on the test set, 
including five commonly used measures: accuracy, precision, recall, F1-score and area 
under the curve (AUC). With its deep convolutional network architecture, the CNN 
model exhibits outstanding performance in image feature extraction, achieving an 
accuracy rate of 0.88 and an AUC of 0.93. The LightGBM model, based on the gradient 
boosting decision tree algorithm, achieves an accuracy of 0.85 and an AUC of 0.90. To 
fully leverage the advantages of both, this paper incorporates the high-dimensional depth 
features extracted by CNN into LightGBM and employs a weighted fusion strategy to 
optimise the output of each model comprehensively. After verification, the fusion model 
has been significantly improved in all indicators-the accuracy rate reaches 0.91, the AUC 
reaches 0.95, and the F1-score and recall rate increase to 0.91 and 0.92, respectively, 
which fully proves that the fusion strategy can effectively improve the overall 
performance of the model. 

Figure 6 Multi-dimensional performance assessment of regional talent flow prediction model 
(see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 
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Figure 6 shows the performance comparison of the STGNN-LightGBM hybrid model 
and three baseline models (ARIMA, LSTM, LightGBM) in the agricultural talent flow 
prediction task in Henan Province from 2010 to 2020. Figure 6(a) presents the time series 
change of the real Z-score and the predicted value of each model, and the mixed model 
curve has the highest coincidence with the observed value; Figure 6(b) uses error kernel 
density estimation and cumulative distribution function, which shows that the error 
distribution of the mixed model is the most concentrated and the deviation is the smallest; 
Figure 6(c) visualises the distribution pattern and dispersion degree of the predicted 
values of the four models, and the mixed model has the narrowest distribution and the 
strongest stability; Figure 6(d) shows the real value and the predicted value 
correspondingly in the form of scatter points, and draws the ideal diagonal. The point 
cloud of the mixed model is closest to the reference line and has the lightest colour, 
which further verifies its superior performance. Taken together, the hybrid framework 
that combines the spatial sensitivity of a GNN and the feature interpretation ability of 
LightGBM is significantly better than a single model in terms of accuracy, stability and 
generalisation ability, and has good application value for regional spatio-temporal 
prediction. 

Figure 7 Multi-model net flow prediction results and error analysis (see online version  
for colours) 

 
(a)     (b) 

 
(c)     (d) 
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Figure 7 comprises four subgraphs that comprehensively compare the performance and 
error distribution of STGNN, LightGBM, and Hybrid models in net flow forecasts from 
2010 to 2020. Figure 7(a) shows the measured net flow with a black solid line, and the 
blue dotted line, green dotted line and red solid line show the time series prediction 
trajectories of STGNN, LightGBM and Hybrid models, respectively, which intuitively 
reflect the ability of each model to capture the fluctuation trend and the deviation of 
inflection point timing. Figure 7(b) is the spatial distribution map of the average absolute 
error (MAE) of the LightGBM model in each region. The colour scale, ranging from light 
orange to dark red, is used to indicate the low error to the high error, revealing that the 
model’s accuracy is higher in data-dense areas, such as provincial capitals and 
transportation hubs, while the error increases significantly in remote or data-scarce areas. 
Figure 7(c) draws the scatter plot of the predicted values and observed values of the three 
models. The convergence and dispersion of the three-colour point cloud around the 
dashed line (1 1 ideal fitting line) reflect the systematic deviation and fitting effect of 
each model. The LightGBM model has the most concentrated point cloud, followed by 
Hybrid, and STGNN has the widest dispersion. Figure 7(d) shows the probability density 
function (solid line) and cumulative distribution function (dashed line) of the three model 
errors, among which the error distribution curve of the Hybrid model is the steepest and 
left-skewed, indicating that most of its prediction errors are smaller and more stable; 
LightGBM performs in the middle, and STGNN error distribution is the most scattered. 

The proposed hybrid model showed consistent performance across 17 cities in Henan 
Province, maintaining low error rates even in regions with sparse data. This indicates 
strong generalisation ability, as the model effectively captured migration patterns in both 
urban and rural areas. By leveraging spatial relationships through graph structures and 
temporal dynamics via rolling window prediction, STGNN learned complex flow 
behaviors. LightGBM complemented this by enhancing interpretability and adapting to 
structured features. Together, the model demonstrated robustness across heterogeneous 
environments, making it suitable for real-world forecasting where data availability varies. 

Based on the simulation coordinates of 30 random nodes and four cluster labels, 
Figure 8 visually compares the predicted results of OD network traffic in the 4-hour and 
8-hour periods with the actual data from the proposed model. The image is divided into 
four subgraphs: Figure 8(a) 4h predicted traffic; Figure 8(b) 4h true flow; Figure 8(c) 8h 
predicted flow; Figure 8(d) 8h true flow. All nodes are randomly distributed on the plane, 
and Gaussian jitter is added to each subgraph to break the regular pattern. The node size 
is dynamically mapped according to the total departure traffic, and the nodes in the 
cluster use uniform colour blocks, adding black borders to distinguish the spatial 
clustering relationship. The connection line retains only the trunk flow above the 90th 
percentile, and the line width is linearly scaled according to the flow intensity. The colour 
from light orange to dark red corresponds to the flow from low to high. The backbone 
trend of subgraphs Figures 8(a) and 8(c) reflects the capture ability of the model in the 
core area of clusters and the exudation flow between clusters; Figures 8(b) and 8(d) show 
the key channels of real traffic. Comparing the two sets of images can demonstrate the 
accuracy of the model’s proposed prediction data. 
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Figure 8 Visualisation of OD network traffic simulation in Henan Province: 4h/8h forecast and 
real comparison, (a) 4h predicted flow (b) 4h ground truth (c) 8h predicted flow  
(b) 8h ground truth (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

 

To evaluate the feasibility of model deployment, we recorded the training time and 
resource consumption of the STGNN-LightGBM framework. On our workstation, the 
STGNN component required approximately 2.5 hours for training, while LightGBM 
completed training within 15 minutes. Peak memory usage remained below 20 GB, 
indicating that the model is suitable for efficient deployment in real-world regional 
planning scenarios. 

5 Conclusions 

The experimental results of the STGNN-LightGBM hybrid model on the 2019–2020 test 
set of Henan Province demonstrate clear performance advantages. Compared with the 
standalone STGNN model, the hybrid model reduced the mean absolute error (MAE) 
from 0.28 to 0.24, the root mean square error (RMSE) from 0.35 to 0.31, and the mean 
absolute percentage error (MAPE) from 11.9% to 10.2%. Relative to the single 
LightGBM model, improvements of approximately 12.5%, 11.4%, and 10.8% were 
observed in MAE, RMSE, and MAPE, respectively. At the city level, the average 
prediction error in Zhengzhou and other transportation hubs was below 8.5%, while 
errors in remote areas remained within 12.3%, indicating strong regional generalisation. 

This hybrid framework effectively combines the spatial sensitivity of STGNN with 
the interpretability and efficiency of LightGBM, achieving enhanced accuracy and 
robustness in spatio-temporal forecasting. Beyond Henan Province, the model’s 
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architecture is adaptable to other provinces and sectors where migration, mobility, or 
resource allocation patterns exhibit spatial-temporal complexity. Its modular design 
allows for integration with diverse datasets, making it suitable for applications in urban 
planning, healthcare workforce distribution, and industrial labour forecasting. This study 
is the first to integrate STGNN and LightGBM for agricultural talent migration 
prediction, offering a transferable and scalable solution for broader policy-oriented 
forecasting tasks. 
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