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Abstract: With the rapid development of global Chinese language education,
the demand for efficient and accurate automated teaching assistance tools is
growing. Traditional manual grading methods are often time-consuming and
yield inconsistent results, highlighting the necessity for intelligent
technological solutions. This paper explores the application of natural language
processing techniques in automatic error detection for Chinese as a second
language. It proposes a method based on pre-trained language models and
evaluates it using a publicly available corpus of Chinese learner compositions.
Experimental results demonstrate the strong performance of the proposed
method in identifying grammatical and lexical errors, achieving detection
accuracy exceeding 80% for major error categories. This represents a
significant improvement over baseline systems (over 25% increase). This
technology shows great potential as an efficient teaching support tool, enabling
more effective and consistent feedback mechanisms within intelligent
educational environments.
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1 Introduction

Against the backdrop of the global ‘Chinese language fever’ continuing to intensify and
increasingly frequent cultural exchanges, Teaching Chinese as a Second Language
(TCSL) faces unprecedented opportunities and challenges. This trend is further propelled
by China’s sustained socioeconomic growth and expanding global cultural influence,
which have enhanced the practical utility of Chinese proficiency in international trade,
diplomacy, and cultural sectors. When confronted with a massive number of learners, the
core component of traditional teaching models — the identification and correction of
language errors — is under immense pressure. Manual homework grading by teachers is
not only inefficient but also struggles to maintain consistent standards, failing to provide
learners with the immediate, frequent feedback that is crucial for language acquisition.
Consequently, developing efficient and precise automated error detection technology has
become an urgent necessity to alleviate teaching burdens, enhance instructional quality,
and advance the intelligent development of international Chinese education. This
requirement transcends mere technical execution, carrying substantial practical
significance for advancing theories of language acquisition and transforming pedagogical
approaches. The integration of intelligent tutoring systems (ITS) into language education
has been shown to potentially alleviate teacher workload and provide personalised
learning pathways (Nye, 2015). Unlike conventional automated tools that often follow
static rules, ITS utilise adaptive learning algorithms to dynamically tailor instruction and
provide personalised feedback based on individual learner performance.

Language error analysis stands as a core research topic in second language acquisition
studies. Since Selinker proposed the ‘interlanguage’ theory (Selinker, 2015), researchers
have systematically categorised and traced the origins of learners’ systematic errors
across phonology, vocabulary, grammar, and pragmatics. In the field of Chinese language
teaching, scholars have conducted in-depth descriptions and analyses of common error
types. Within the domain of teaching Chinese as a foreign language, scholars have deeply
depicted and analysed the common types of bias, such as the confusion between ‘le’ after
the verb and ‘le’ at the end of the sentence, the absence of specific complements (e.g.,
resultant and tendency complements), the avoidance and misuse of the word ‘put’, the
improper collocation of quantifiers and nouns, and word order errors caused by negative
transfer from the learner’s native language. Among these, the ‘ba’ and ‘bei’ constructions
are particularly challenging as they involve unique syntactic role permutations and
specific semantic-pragmatic constraints that are often subject to negative transfer from
learners’ first languages. The avoidance and misuse of the word ‘, the improper
collocation of quantifiers and nouns, and the disordered word (Tsai and Chu, 2017).
These findings provide valuable theoretical insights into learners’ language development
processes and lay a solid linguistic foundation for constructing automated detection tools.
However, traditional error analysis heavily relies on expert subjective judgment, making
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it difficult to apply at scale in practical teaching scenarios. The lag in analysis results also
limits its ability to provide immediate instructional guidance during the teaching process.

To overcome these limitations, natural language processing (NLP) techniques have
naturally been introduced into this field. Automated grammatical error detection and
correction techniques first achieved notable progress within English language education,
advancing from initial rule-based and statistical methods to the contemporary deep
learning framework exemplified by pre-trained models like bidirectional encoder
representations from transformers (BERT), generative pre-trained transformer (GPT), and
T5. Their detection performance on English texts has reached near-practical levels.
However, directly applying these techniques to Chinese error detection presents unique
challenges. As an analytic language, Chinese lacks morphological inflection, relying
primarily on word order and function words to express syntactic relationships. This
renders many morphological features effective in Indo-European languages ineffective.
Simultaneously, the accuracy of Chinese word segmentation directly impacts downstream
task performance, while errors in learner texts further disrupt segmentation, creating a
vicious cycle (Rao et al., 2020). Moreover, many Chinese errors — particularly those
involving semantic and discourse coherence — heavily depend on contextual cues,
demanding advanced linguistic comprehension capabilities from models. Although some
studies have attempted to apply sequence labelling and sequence-to-sequence generation
models to the Chinese grammar error detection and correction (GEC) task with some
success, current research primarily focuses on improving overall model performance
metrics without sufficiently examining the applicability of the techniques themselves.

The concept of applicability refers to investigating the extent to which current
advanced NLP technologies can reliably serve Chinese language teaching practices.
Existing research has yet to systematically address a series of critical questions: Do these
technologies exhibit significant differences in detecting various types of linguistic errors?
How do they perform when handling high-frequency, rule-based errors (e.g., misuse of
‘le’) versus low-frequency errors requiring common sense and contextual understanding
(e.g., collocation of culturally specific terms)? Where exactly lie the boundaries of their
technical strengths and limitations? Current research indicates that most work remains
technology-driven, often prioritising higher F1 scores on specific test sets over
meticulous evaluation and attribution of effectiveness from a pedagogical perspective
(Fleckenstein et al., 2023). This disconnect between technology and real-world
applications hinders frontline educators’ understanding and trust in model outputs,
thereby obstructing the effective translation of technology into practice. Therefore, filling
this research gap by systematically analysing the applicability of NLP technologies in
Chinese bias detection tasks — clarifying their capabilities and current limitations — is
crucial for driving genuine technological implementation and achieving deep integration
with teaching processes. This study, grounded in this premise, aims to construct a
systematic analytical framework for a comprehensive and in-depth examination of NLP
technology applicability.
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2 Related work

2.1 Theoretical research on error analysis in Chinese as a second language

Research on error analysis within the domain of Chinese as a Second Language (CSL)
acquisition is well-established and theoretically grounded, with its core objective being
the systematic description, classification, and explanation of systematic errors in learners’
language production to reveal the developmental patterns of the interlanguage. Early
studies, heavily influenced by contrastive analysis and interlanguage theory, centred on
predicting and elucidating errors by examining contrasts between the learner’s first
language and the target language. As research progressed, scholars increasingly
recognised that error generation results from the combined influence of multiple factors,
including interlingual transfer (negative transfer from the native language), intralingual
transfer (overgeneralisation of target language rules), learning strategies, and
communicative strategies. Regarding specific error typologies, researchers have
conducted extensive and detailed descriptive work. Research on learner language has led
to systematic categorisation of lexical, grammatical, and cultural errors, as well as in-
depth analysis of acquisition challenges related to specific Chinese sentence patterns such
as the ‘ba’ and ‘bei’ constructions. In recent years, research perspectives have become
increasingly diverse, expanding from traditional morphological and syntactic analysis to
encompass discourse coherence, pragmatic functions, and even sociocultural dimensions.
These linguistic theoretical achievements provide an indispensable theoretical framework
for constructing a hierarchical and operationally feasible error classification system
suitable for automated detection. They also constitute the ontological knowledge that any
technological application must adhere to. Computational linguistics approaches greatly
benefit from such rigorous linguistic theoretical frameworks (Bender, 2013).

2.2 The technological evolution of automatic GEC

Automatic GEC stands as a crucial application domain within NLP. Its technological
evolution distinctly mirrors the broader paradigm shifts in NLP. Early research primarily
relied on expert-handcrafted rules, which could precisely capture specific, highly regular
errors. However, their weaknesses were evident: high labour costs, extremely low
coverage, and difficulty in maintenance (Heidorn, 2000). With the advancement of
machine learning, the research focus shifted toward statistical approaches. These methods
transformed the GEC task into classification or translation problems, leveraging
statistical patterns learned from large corpora to detect and correct errors. Examples
include confusion-set-based spell checking, error correction using noise channel models
that treat incorrect sentences as noisy versions of correct ones, and statistical machine
translation (SMT) frameworks that ‘translate’ erroneous sentences into correct ones.
These data-driven approaches significantly enhance system coverage and adaptability, yet
their performance heavily relies on feature engineering quality and training data scale. In
recent years, deep learning has revolutionised this field. Sequence-to-Sequence
(Seq2Seq) models based on recurrent neural networks (RNNs) and attention mechanisms
have become mainstream, enabling end-to-end learning of complex mappings from errors
to correct forms. Notably, the emergence of pre-trained language models (e.g., BERT,
GPT and T5) has enabled models to acquire deep linguistic representations through
pre-training on massive unlabeled text corpora. Subsequent fine-tuning on relatively
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small amounts of GEC annotated data achieves state-of-the-art performance. This
evolution from rule-based to neural and pre-trained models signifies a paradigm shift
towards data-driven, generalisable approaches in NLP-based educational applications
(Bryant et al., 2023). This represents a paradigm shift from earlier task-specific models,
which required extensive feature engineering for each new application, to models that
leverage generalised linguistic knowledge acquired through pre-training on massive
corpora. This paradigm not only substantially improves performance but also enhances
the ability to handle complex errors and context-dependent relationships.

Table 1 A comparison of studies related to automatic Chinese grammar error detection
Methodology Error coverage Performance Core limitations/focus
Rule-based & Limited specific High precision, low Poor generalisation
Statistical ML error types recall
Neural Seq2Seq Diverse but noisy Moderate F1-score Unstable on complex
models labels syntax
Pre-trained model Lexical & High overall Lacks granular error
fine-tuning grammatical errors F1-score analysis
Multi-model Comprehensive Fine-grained F1 by = Systematic applicability
comparative analysis taxonomic errors type evaluation

2.3 Research on automatic grammatical error detection for Chinese

Although the application of GEC technology to Chinese began relatively late, it has
attracted increasing attention from scholars. This growing interest is paralleled by a
global surge in research on NLP for under-resourced languages and specific linguistic
phenomena (Leacock et al., 2014). Owing to the distinct linguistic features of Chinese,
related research faces a series of distinct challenges, foremost among which is the
problem of word segmentation. The Chinese writing system lacks spaces between words,
making word segmentation an essential preprocessing step for nearly all Chinese NLP
tasks. However, grammatical errors in learner texts can directly interfere with
segmenters, causing error propagation that subsequently impacts bias detection
performance (Rao et al., 2020). Early Chinese GEC research similarly followed a path
from rule-based to statistical approaches (Shu et al., 2017). For instance, some
studies attempted to construct rule libraries targeting common errors or employed
classifier-based methods (e.g., support vector machine) to detect specific error types.
With the rise of deep learning, researchers began adopting RNN and Transformer-based
Seq2Seq models trained on crowdsourced learning platform data such as Lang-8. In
recent years, pre-trained models have become the mainstream approach, with multiple
studies confirming the effectiveness of fine-tuned models like BERT on Chinese GEC
tasks (Chen and Zhang, 2022). The Chinese grammatical error diagnosis (CGED) shared
task organised by the Natural Language Processing Techniques for Educational
Applications (NLPTEA) workshop has provided a unified evaluation platform and
dataset for this field, significantly advancing technical progress. However, a review of
existing research reveals that the vast majority of work still focuses on improving single
technical metrics like overall accuracy and F1 scores, with models typically operating as
‘black boxes.” There is a lack of detailed analysis on how models perform differently
across various types of errors. Furthermore, these studies fail to evaluate the reliability of
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these technologies in real-world teaching scenarios or identify their fundamental
limitations from the perspective of practical Chinese language instruction. This
disconnect between technology and application makes it difficult for frontline educators
to understand and trust the outputs of automated tools, hindering their effective
integration and deployment in actual teaching environments.

3 Methodology

3.1 Problem formulation and task definition

This research frames the automatic detection of grammatical errors in Chinese as a task
of sequence labelling. Given an input sequence X = (xi, X2,...,x,) composed of n
characters or lexical units, where x; represents the i unit in the sequence, the model aims
to output a corresponding label sequence Y = (y1, 2,..., ¥»). The labels y; are drawn from
a predefined label set £, which adopts the classical ‘BIO’ annotation scheme (Ramshaw

and Marcus, 1999) and is extended to accommodate Chinese error types. The BIO
scheme was selected for its widespread adoption in sequence labelling tasks and its
efficiency in precisely demarcating the boundaries and types of errors within a sequence.

Specifically, £ includes start (B—) and internal (I-) tags denoting ‘correct’ and various

errors, such as B-WO (lexical error start), I-GR (grammatical error internal), C (correct),
etc. This formal approach enables the model not only to detect the presence of errors but
also to precisely pinpoint their scope and type.

From a probabilistic standpoint, we model this task by learning a conditional
distribution P(Y | X; ©), with ® denoting the model parameters. The most probable label

sequence Y foran input X is derived by maximising this conditional probability:

A

Y = arg max P(Y | X;0) @)

Ye)'

where )" denotes the set of all possible n-length label sequences.

3.2 Sorting target types and spatial parameters

This study utilises the Hanyu Shuiping Kaoshi (HSK) dynamic writing corpus (Zhang,
2023) as its experimental data source. This corpus is recognised as an authoritative, a
large-scale, publicly accessible dataset within the research domain of CSL acquisition.
This corpus was selected for its large scale, diversity of learners across different native
languages and proficiency levels, and its meticulously annotated errors, making it an
authoritative benchmark in CSL research. Its materials are derived from writing tasks in
the HSK (Chinese Proficiency Test), encompassing texts from learners with diverse
native language backgrounds and varying levels of Chinese proficiency. The corpus
features meticulous manual error annotation, ensuring high reliability and validity.
Preprocessing is a critical step in ensuring data quality. First, we clean the raw text by
removing irrelevant tags and formatting information. Subsequently, we employ the
Natural Language Processing & Information Retrieval (NLPIR) Chinese Word
Segmentation System, developed by the Institute of Computing Technology, Chinese
Academy of Sciences, for text processing. Chinese Academy of Sciences to segment
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correct sentences (Zhang et al., 2023). The NLPIR system was chosen for its strong
academic reputation, proven high performance in benchmark evaluations, and
demonstrated suitability for segmenting educational and learner-generated text. For
sentences containing errors, we employ an iterative alignment strategy: first segmenting
the corrected sentences, then mapping the segmented results back to the original
erroneous sentences using sequence alignment algorithms (e.g., minimum edit distance).
This approach minimises the interference of errors during the segmentation phase.

The evaluation of a word segmentation system relies on the metrics of precision,
recall, and F1-score. Let Sg.is denote the manually annotated ground truth segmentation
results, and S.s denote the segmenter’s output results:

Accuracy rate P measures the proportion of correctly predicted words out of all
predicted words:

_ |Seota NS

pred
s (@)

pred

Recall rate R measures the proportion of correctly predicted words out of all ground truth
words:

R= |Sgold N Spred (3)
|S gold
The F1-score represents the harmonic mean of precision and recall, calculated as:
Fi=22R )
P+R

where | - | denotes the number of elements in a set. In this study, we ensured that the F1
score for the word segmentation stage exceeded 98%, thereby establishing a reliable
foundation for subsequent tasks (Aromataris and Pearson, 2014). High-quality
tokenisation is universally recognised as a critical preprocessing step that directly
influences the performance of downstream NLP models.

Finally, we convert the processed text and labels into an input format acceptable to
the model, transforming characters or words into corresponding embedding vectors. Let
the vocabulary size be |V] and the embedding dimension be d.z. By looking up the

embedding matrix Ee R""ma  the input sequence X is transformed into a sequence of
embedding vectors H® = (e, e,...,e,).

3.3 Bias classification system

Based on theories of CSL acquisition and drawing upon the existing annotation system of
the HSK corpus, we have constructed a hierarchical error classification framework
designed to establish a mapping between technical labels and linguistic theories. This
system comprises four major categories and 11 subcategories:

1 Morphological errors (ME): Includes misuse of nouns, verbs, adjectives, adverbs,
measure words, and particles.
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2 Syntactic errors (SE): Includes missing constituents, redundant constituents,
incorrect word order, and mixed sentence structures.

3 Semantic errors (SemE): Primarily refers to inappropriate word combinations and
illogical semantic relationships.

4  Discursive errors (DE): Primarily refers to coherence issues caused by the misuse of
conjunctions.

This classification system provides the theoretical foundation for subsequent fine-grained
performance analysis (Goo, 2010).

3.4 Model selection and architecture

To comprehensively evaluate the applicability of different technical approaches, we
selected two representative models for comparative analysis.

First is the baseline model conditional random fields (CRFs), a discriminative
probabilistic graphical model well-suited for sequence labelling tasks. CRF was selected
as a baseline for its established effectiveness in sequence labelling tasks and its capability
to model dependencies between adjacent labels, providing a robust and interpretable
benchmark. They capture dependencies between input sequences and output labels by
defining feature functions. Given an input sequence X and a label sequence Y, their
conditional probability is defined as:

1 K n )

P(Y | X)=

K n

where Z(X)= Zexp(z lkz e (Yl X,i)j is the normalisation factor (Partition
Y’ k=1 i=1

Function). f; is the k™ feature function, measuring the association between the adjacent

labels (yi_1, y;) and the entire input sequence X at position i. A is the weight parameter for

the corresponding feature function, learned through training (Sutton and McCallum,

2012).

We combine unigram features (e.g., current character, part-of-speech), bigram
features (e.g., adjacent character combinations), and lexicon features (presence in the
negative word dictionary) to construct the feature template for the CRF.

The second model represents a state-of-the-art approach, implemented as a BERT-
based sequence labelling system. This model uses a pre-trained BERT encoder as its
foundation, augmented with a linear classification layer for predicting labels. BERT itself
utilises the Transformer architecture (Vaswani et al., 2017) to capture deep contextual
semantic information.

Input representation in BERT is formed by summing token embeddings, segment
embeddings, and position embeddings:

K

Z(X):ZGXP[Z/L(Z”:fk(y;l,y,-',X,l')J (©)
=

k=1 i=l
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Transformer encoder: BERT is composed of L layers of identical Transformer blocks
stacked together. The computation for each layer / comprises two sub-layers:
multi-head self-attention (MHA) and feed-forward network (FFN).

Multi-head self-attention mechanism: First, the output H/~ " from the previous layer
is projected onto the query, key, and value spaces via a linear transformation:

H(O) =E +E position (7)

— token

+E

segment

where W2, W/, W/ e Rém«% are the learnable parameter matrices for the /"
attention head, where d = dnouer / H and H denotes the number of attention heads.

Then compute the scaled pointwise attention:
Q, =H""Wp ®)

Concatenate the outputs of all heads and perform linear projection again to obtain the
final output of the MHA layer:

_ 1-1) K
K,=H""W, ©)
h WO e Rdmndelemodel
whnere .

Feedforward neural network with residual connections: The output of the MHA layer
undergoes residual connections and layer normalisation (LayerNorm, LN) before
being fed into the FFN:

v, =H""W/ (10)
KT

head, = Softmax Q.K, v, (11)
Ja,

MHA (H™") = Concat (head, ..., head , ) W (12)

where Wle R™/r Wo e RO 7™ dy denotes the dimension of the FFN

intermediate layer, and GeLU represents the Gaussian Error Linear Unit activation
function (Lin et al., 2022).

Finally, we pass the output state H® from the last layer of BERT through a fully
connected layer to compute scores for all labels at each position i:

70 =IN(H'"" + MHA (H'™)) (13)

where W, € R« and b, € R/, Finally, the Softmax function is applied to obtain

the probability distribution:

FFN(Z?) = GeLU(Z'W, +b, )W, +b, (14)
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Figure 1 Schematic diagram of the pre-trained model-based automatic error detection for
Chinese (see online version for colours)
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3.5 Experimental setup and evaluation metrics

Experimental configuration: The dataset was randomly partitioned into training,
development, and test sets with a ratio of 8:1:1. The development set served for
hyperparameter optimisation and early stopping. Regarding the BERT model, we adopted
the Chinese pre-trained model BERT-wwm-ext (Cui et al., 2021) released by the
HIT-iFlytek Joint Laboratory as the base model and fine-tuned it using the AdamW
optimiser (Xie et al., 2020). The parameter update rules are as follows:

H® =LN(Z" +FEN(Z")) (15)
S; = hEL)WclS +bcls (16)
exp(s;,, )

P(y,-|X)=Softmax(s,-)=— 17
Zexp(si,c)
cel

1 N n
c z—NZZIOgP(yfj)|X('/);®) (18)

j=1 i=1

where g, is the gradient at step #, m, and v, are the first-order and second-order
momentum estimates, £ and f are momentum hyperparameters, # is the learning rate,
and ¢ is a small constant added for numerical stability. The learning rate employs a linear

warmup strategy, with the warmup steps constituting 10% of the total training steps.

e Loss function: Model training is optimised by minimising the cross-entropy loss
function:

~

m
0,=0,, —nﬁ (19)
t
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where N is the total number of training samples, and '/ is the true label at position

1

i for the j sample.

Evaluation metrics: We employ precision (P), recall (R), and F1-score (1) as core
evaluation metrics, whose definitions are provided in Section 3.2. All evaluations are
conducted at the **token level** (character or word).

Experiments and results analysis

4.1 Overall performance comparison

Evaluating NLP systems for pedagogical purposes requires careful consideration of
metrics that align with educational outcomes (Leacock et al., 2014). To comprehensively
evaluate the applicability of NLP techniques for the task of automatic detection of
Chinese language bias, we evaluated the comprehensive performance of the models
outlined in chapter 3 using the test set. The models included in the comparison are:

1

CRF baseline model: Utilises a CRF with feature templates comprising unigram,
bigram, and lexical features.

BERT: Employs the BERT-base architecture, where the output of the CLS token
undergoes sequence labelling via a classification layer.

RoBERTa-wwm-ext serves as our optimal model, which builds upon the Chinese
RoBERTa architecture with Whole Word Masking and has been further enhanced
through extended pre-training on expanded corpora. During pre-training, it
incorporates improvements such as dynamic masking and removal of the
next-sentence prediction task to achieve stronger language representation
capabilities. ROBERTa-wwm-ext was identified as optimal due to its Whole Word
Masking pre-training strategy and extended training on large corpora, which enhance
its ability to capture deep contextualised representations of Chinese words and
syntax.

All models underwent training and hyperparameter tuning using identical training and
development sets, with final evaluation conducted on a common test set. Token-level
precision (P), recall (R), and Fl-score (F1) were employed as the primary evaluation
metrics. To better align with educational applications, we report Strict F1, which counts a
prediction as correct only when both the predicted error span and error type perfectly
match the human annotation.

Table 2 Overall performance comparison of different models on the test set
Mould Precision Recall F1 score
CRF 0.712 0.602 0.653
BERT 0.783 0.801 0.792
RoBERTa-wwm-ext 0.804 0.839 0.821

Results and analysis: The overall performance comparison is presented in Table 1.
As shown, deep learning approaches utilising pre-trained language models (e.g.,
BERT and RoBERTa) substantially exceed traditional machine learning techniques
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like CRF in every metric. Specifically, the ROBERTa-wwm-ext model attained the
highest performance, achieving an F1 score of 0.821. This represents an absolute
improvement of nearly 17 percentage points compared to the CRF baseline model
(F1=0.653). This demonstrates that the deep contextual lexical and syntactic
knowledge captured by pre-trained models provides an overwhelming advantage for
understanding and detecting linguistic biases in Chinese.

Notably, the RoBERTa model demonstrates exceptional performance in recall (0.839),
indicating its ability to detect more genuine errors overlooked by the CRF model.
However, its precision (0.804) is slightly lower than its recall, suggesting a tendency
toward over-correction — where the model may misclassify some correct expressions as
errors. This phenomenon warrants particular attention in practical applications, as
frequent false positives can erode trust in the system among both teachers and learners.
The precision-recall trade-off is a well-known challenge in automated error detection
systems designed for language learning. The CRF model exhibits the opposite
characteristics, with its precision (0.712) exceeding its recall (0.602), indicating a
relatively conservative approach that results in more missed errors. Therefore,
interpreting model performance requires a balanced view that considers both overall
metrics and their breakdown across different error categories (Loewen et al., 2009). The
observed performance gap between error types underscores the necessity of moving
beyond aggregate metrics towards more nuanced, error-specific evaluations (Wang
et al., 2021).

Figure 2 Performance of the ROBERTa model on different error types (see online version

for colours)
[ Precision

Recall
1.0 F1
0.8 ]
0.6
=
S
w2
0.4
0.2
0.0 T T T T T T T T T T T
WO MC MWM PM IC MConj

Error Type

Notes: WO: word order, MC: missing constituent, MWM: measure word misuse,
PM: particle misuse, IC: inappropriate collocation, MConj: misused conjunction
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4.2 Performance analysis by type

The overall performance masks the model’s divergent behaviour across different types of
bias. To explore the applicability boundaries of NLP technology, we further analysed the
fine-grained performance of the best model (RoBERTa-wwm-ext) across our defined bias
classification system.

e Results and analysis: The results are shown in Figure 2 (grouped bar chart). It is
clearly observable that the model exhibits significant imbalance in its ability to
detect different types of bias.

1 SE showed the best performance: the model achieved near-excellent results on
‘incorrect word order’ (F1 = 0.89) and ‘missing constituents’ (F1 = 0.86). These
errors typically possess relatively clear contextual syntactic clues, such as
misplaced subject-verb-object structures or missing core verbs, which
pre-trained models can effectively leverage using their learned syntactic
constraints.

2 ME showed robust performance: The model also achieved high accuracy for
‘measure word misuse’ (F1 = 0.84) and ‘particle misuse’ (e.g., ‘le’, ‘zhe’, ‘guo’)
(F1 =10.82). This stems from the strong habitual collocation relationships
between measure words and nouns, or verbs and particles in Chinese, which
models readily capture from large-scale corpora.

3 SemE and DE errors pose the primary challenge: Model performance notably
declines on ‘inappropriate word combinations’ (F1 =0.71) and ‘misused
conjunctions’ (F1 = 0.68). These errors heavily depend on deeper semantic
comprehension and discourse logical reasoning, rather than merely local
syntactic patterns. For instance, determining whether ‘spreading knowledge’ or
‘spreading news’ is more natural, or whether the contrastive logic of
‘although...but...” is appropriately applied, requires models to possess
near-human common sense and reasoning capabilities — a major bottleneck in
current technology (Davis and Marcus, 2015). Semantic and discourse-level
understanding remains a formidable challenge for even the most advanced NLP
models (Lake and Murphy, 2023).

This analysis holds significant pedagogical implications. It demonstrates that current
technology is best suited as an ‘auxiliary screening tool’ for grammatical and formal
errors, greatly reducing teachers’ workload in such repetitive tasks. However, for
assessing higher-order language competencies involving semantics and discourse,
teachers’ professional judgment remains indispensable. Outputs from technological tools
in such scenarios should serve only as supplementary references.

4.3 Case studies of errors

To qualitatively assess the model’s behaviour, we conducted an in-depth error case study.
Figure 3 visualises the model’s attention distribution in a typical case.

In a successful case, the second ‘le’ in the original sentence ‘wo zuo tian mai le yi ben
shu le” was manually annotated as redundant and requiring deletion. The model correctly
identified it as a ‘B-RD’ (beginning of redundant error). This sentence exemplifies a
typical misuse of ‘le’, and the model likely mastered the grammatical rule that a final ‘le’
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is generally unnecessary after ‘verb + ‘le’ + object.” The heatmap in Figure 3 shows that
when judging the second ‘le’, the model assigned higher attention weights to the verb
‘mai’ and the first ‘le’, indicating its decision was based on understanding the sentence’s
overall grammatical structure.

In the failed example, the original sentence ‘ta de guan dian fei chang jian gu, shuo fu
le suo you ren’ contained the error ‘jian gu’ being flagged as a mismatched collocation
and should be corrected to ‘jian ding’. However, the model failed to identify this error.
‘Guan dian jian gu’ constitutes a semantic collocation error. While ‘jian gu’ and ‘jian
ding” may correspond to the same adjective in English, in Chinese they respectively
modify concrete objects and abstract concepts. This missed detection indicates the model
still lacks sufficient deep semantic knowledge, unable to fully grasp Chinese collocation
restrictions and semantic nuance details.

Figure 3 Heat map of the model’s attention when judging the sentence-final ‘le’ (see online
version for colours)

Attention weight
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0.01

Wo  Zuotian Mai Le Yi ben Shu Le

4.4 Melting experiment

To assess the impact of individual components on model performance, an ablation
analysis was performed using the RoBERTa-wwm-ext framework. We tested the
following variants: a model without Whole-Word Masking (WWM) pretraining, and a
model that removed the top-level CRF layer and performed pointwise prediction using
only Softmax.

The ablation results indicate that different components significantly impact model
performance. After removing the WWM strategy, the model’s overall F1 score decreased
by 1.2 percentage points (from 0.821 to 0.809). This suggests that masking entire words
during Chinese pre-training enables more effective learning of complete lexical
representations, thereby enhancing performance on downstream lexical and syntactic
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error detection tasks. On the other hand, removing the CRF layer caused the F1 score to
drop by 0.8 percentage points (to 0.813). The CRF layer enhances the global consistency
of label sequences by modelling transfer constraints between labels (e.g., ‘I-ERROR’
cannot follow ‘C’), but its gain is relatively limited. This suggests that the pre-trained
model already possesses strong sequence modelling capabilities. Ablation studies are a
standard methodology in machine learning for quantifying the contribution of individual
model components (Dabre et al., 2020). The effectiveness of these efforts depends
critically on adopting a human-centred perspective in artificial intelligence, where
technology is designed to augment and empower educators, not to replace them (Topali
et al., 2025).

5 Conclusions

This study systematically evaluates the applicability of NLP techniques for automatic
error detection in CSL. Experiments conducted on large-scale public corpora demonstrate
that pre-trained language models achieve near-practical performance in detecting formal
and local grammatical errors. However, they exhibit notable limitations in identifying
errors that require deeper semantic understanding or discourse-level reasoning. These
findings clearly indicate that current NLP technologies are best utilised as auxiliary tools
for handling high-frequency normative errors rather than as replacements for human
assessment.

The theoretical contributions of this research encompass the creation of a detailed
evaluation framework that combines principles from computational linguistics
and second language acquisition theory, which enables nuanced analysis of
model performance across error categories. Furthermore, emphasising model
interpretability —  through  visualisation = mechanisms such as  attention
heatmaps — facilitates greater transparency and trust among educators, supporting the
adoption of such technologies in real-world teaching contexts. From a practical
perspective, we recommend a human-machine collaborative approach wherein automated
systems provide initial feedback on routine errors within digital learning platforms,
thereby allowing instructors to focus on cultivating higher-level language skills.
Developers are encouraged to design interpretable models incorporating linguistic
knowledge and to create efficient interfaces for teacher oversight and feedback
integration.

Future research should focus on overcoming limitations in semantic and discourse-
related error detection, potentially through incorporating external knowledge resources or
advanced reasoning models. Investigating few-shot learning and domain adaptation
methods could enhance personalised support for learners from diverse native language
backgrounds. Moreover, long-term empirical studies in authentic classroom settings are
essential to validate the effectiveness and practicality of human-Al collaborative grading
models. Continued interdisciplinary collaboration among linguistics, education, and
computer science remains crucial for developing robust and pedagogically sound NLP
applications for language education.
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