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Abstract: Lifelong education faces challenges in resource allocation due to 
heterogeneity, dynamism, and scalability. This study proposes a distributed 
allocation model using multi-agent reinforcement learning (MARL), where 
learners and providers act as autonomous agents. Employing a centralised 
training with decentralised execution (CTDE) paradigm, the model applies the 
multi-agent deep deterministic policy gradient algorithm for collaborative 
learning. A composite reward function integrates user quality of experience 
(QoE), system cost, and fairness. A tripartite stochastic game model 
theoretically confirms the existence of a Nash equilibrium. Simulations show 
the model outperforms baseline algorithms, achieving superior overall system 
utility (37.1% higher), average quality of experience (41.8% higher), resource 
utilisation (76.3%), and fairness (Jain’s index = 0.89), with strong convergence 
and adaptability. This provides an efficient, scalable solution for heterogeneous 
resource management in lifelong education. 
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1 Introduction 

Lifelong education, as a core paradigm driving continuous individual development, has 
seen its significance increasingly highlighted through widespread applications in online 
education platforms and personalised learning. However, lifelong education 
environments exhibit pronounced resource heterogeneity, manifested in diverse resource 
types, complex computational resource architectures, and varied user demands. 
Traditional centralised resource allocation models suffer from inherent limitations in 
scalability, privacy protection, and dynamic adaptability, making them ill-suited to meet 
the demands for efficient resource distribution and personalised services in lifelong 
education scenarios. Consequently, the adoption of distributed solutions is essential 
(Wenjuan and Xin, 2024). 

In recent years, with the rise of edge computing, researchers have begun exploring 
how to leverage the proximity computing capabilities of edge servers to reduce latency in 
educational services. To overcome the shortcomings of centralised approaches, 
distributed intelligent decision-making has emerged as a significant research direction. 
Multi-agent systems (MAS) and game theory provide a natural theoretical framework for 
addressing distributed resource allocation. This paper proposes integrating multi-source 
data with large language models in MAS, achieving efficient information retrieval  
and question-answering through dynamic retrieval strategies and multi-source  
question-answering systems (Antony et al., 2024). This paper employs an asymptotic 
compression cooperative adjustment method in MAS to address the control problem of 
nonlinear time-varying systems in multidimensional space (Wang and Liu, 2024). This 
paper proposes a self-organising approach that integrates Monte Carlo Tree Search with 
self-organising MAS to address residential floor plan layout problems through adaptive 
methods (Su et al., 2024). This paper proposes a multi-agent system model detection 
method based on a fuzzy explanation system to achieve knowledge attribute verification 
(Ma et al., 2024). This paper proposes a resource allocation and application deployment 
scheme based on collaborative overselling to optimise resource utilisation and 
deployment costs for drone edge computing in forestry IoT (Li et al., 2024). Fatemeh 
employs the Cheetah algorithm to optimise resource allocation in fog computing, 
reducing latency and enhancing system efficiency (Arvaneh et al., 2024). 

Heterogeneous networks and stochastic games are also widely used in models for 
allocating heterogeneous resources in lifelong education. Zhao’s GAN-based 
heterogeneous network achieves high-precision automatic restoration of ancient mural 
textures and colours (Zhao et al., 2024). This paper proposes a drug repurposing approach 
for predicting drug-disease associations based on a dual-view fusion mechanism and 
graph augmentation technique for heterogeneous networks (Niu et al., 2024). The article 
employs graph embedding and negative sample filtering based on heterogeneous 
networks to construct a random forest model for predicting disease-protein associations 
(Wang et al., 2025). This study employs a high-order heterogeneous network to enhance 
features and aggregate neighbourhood information through multivariate feature learning 
and a hyperbolic graph attention network, thereby achieving more precise drug-disease 
prediction (Li et al., 2025). This paper presents a formal security modelling and rigorous 
analysis of the RabbitMQ broker based on concurrent stochastic games (Baouya et al., 
2024). 
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To address the aforementioned challenges, this paper proposes a distributed 
heterogeneous resource allocation model based on multi-agent reinforcement learning 
(MARL). Its main contributions can be summarised in four points: 

1 This paper introduces a novel distributed multi-agent resource allocation  
framework. This framework models learners and resource providers as autonomous 
decision-making agents. Through local perception and mutual communication, these 
agents engage in collaborative decision-making, completely avoiding the bottlenecks 
inherent in centralised control. This approach inherently possesses excellent 
scalability, robustness, and privacy protection characteristics. 

2 Innovatively integrates user quality of experience (QoE), system cost, and collective 
fairness into a unified reward function. This guides agents to spontaneously advance 
overall system objectives while pursuing individual benefits. 

3 This model formally describes the interactions among learners, resource providers, 
and the network environment, proving the existence of a Nash equilibrium. This 
provides theoretical assurance for the convergence of the distributed algorithm, 
enhancing the theoretical depth of the proposed solution. 

4 Comprehensive and in-depth simulation experiments were conducted for validation. 
Experimental results demonstrate that the proposed model exhibits superior 
effectiveness and advanced performance compared to multiple mainstream baseline 
algorithms. 

2 Multi-agent modelling framework 

2.1 System architecture and agent interaction 

The system architecture represents a typical three-tier ‘cloud-edge-end’ converged 
architecture designed to deliver on-demand, low-latency, high-quality educational 
services to a massive population of lifelong learners. Edge servers are assumed to be 
geographically distributed, such as at base stations, roadside units, or local school data 
centres, positioning them close to end users to deliver low-latency services. 

The cloud centre possesses robust computing and storage capabilities, hosting  
large-scale non-real-time, computationally intensive educational services such as training 
massive deep learning models, analysing vast educational datasets, and maintaining  
ultra-high-definition video repositories. The edge network comprises geographically 
distributed edge servers, including base stations, roadside units, and school local servers. 
Proximal to users, these nodes handle latency-sensitive real-time or near-real-time tasks 
such as VR/AR interactive instruction, real-time video transcoding, and online Q&A 
sessions. User terminals encompass devices used by diverse learners – smartphones, 
tablets, laptops, etc. – which generate learning task requests and receive processing 
results. 

Within this architecture, the core resource allocation decision lies in dynamically 
offloading each task to the most suitable node based on user task requirements, current 
network conditions, and resource availability across cloud and edge nodes. This process 
allocates appropriate computational, bandwidth, and storage resources to each task. 
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To achieve distributed intelligent decision-making, a multi-agent paradigm is 
introduced. Core participants in the system are abstracted into two types of agents: user 
agents (UA) are proxy agents assigned to each learner, residing on their terminal devices. 
Their objective is to secure optimal resources for user-initiated tasks to maximise QoE. 
Resource agents (RA) are assigned to each edge server and cloud data centre. Their 
objective is to maximise their own utilisation and revenue while avoiding overload by 
managing local resources and selling surplus capacity. Agents exchange only limited and 
essential information via communication networks, rather than reporting all data to a 
central controller. This design ensures the system’s scalability, robustness, and privacy 
protection capabilities. 

2.2 Heterogeneous resource model 

Resources within lifelong learning environments exhibit multidimensional heterogeneous 
characteristics. To enable unified quantitative management and allocation, formal 
definitions of various resource types are required. First, a unified approach is needed to 
describe the resource capabilities possessed by resource nodes. 

( )up down, , , , {1, 2, ..., }j j j j jC S B B jR M= ∀ ∈  (1.1) 

where Cj denotes the set of available computational resources for node j. Sj denotes the 
available storage space for node j. up

jB  denotes the upstream network bandwidth for node 

j. down
jB  denotes the downstream network bandwidth for node j. 
This equation constructs a universal resource description framework, unifying 

heterogeneous computing, storage, and communication resources into a single 
mathematical expression. This formal representation enables algorithms to 
simultaneously handle different types of resource constraints, establishing a quantitative 
foundation for subsequent resource allocation optimisation problems. It ensures the 
consistency and computability of resource management. 

In distributed computing or resource scheduling systems, when tasks are assigned to 
resource nodes for execution, they inevitably consume computational power, storage 
capacity, network bandwidth, and other resources provided by the nodes. To quantify a 
task’s resource consumption requirements, its resource demands must be formally 
defined to support subsequent scheduling strategy design and performance analysis: 

( )in out, , ,i i i i ic s b bD =  (1.2) 

where ci represents the computational requirements of task i. si represents the storage 
requirements occupied by task i. in

ib  represents the input bandwidth requirements of task 
i. out

ib  represents the output bandwidth requirements of task i. 
This equation transforms the abstract concept of ‘task resource requirements’ into a 

quantifiable four-dimensional vector. This enables the system to precisely describe task 
resource consumption using mathematical tools such as linear programming and 
constraint satisfaction problems, thereby providing a formal foundation for subsequent 
scheduling strategy design. 



   

 

   

   
 

   

   

 

   

    A MARL approach to heterogeneous resource allocation 25    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.3 User demand model 

In agent-driven task execution scenarios, the core objective of user demands has shifted 
from single-resource allocation to dual expectations quality of service (QoS) and QoE. 
The primary task of UA is to maximise user satisfaction with task execution outcomes – 
i.e., maximise QoE – by optimising decision strategies. User-initiated learning tasks can 
be formally characterised as tuples: 

( ), , ,k k k k kType D QoS BueTask get=  (1.3) 

where Taskk represents the learning task initiated by user k. Typek denotes the task type. 
Dk is resource requirement. QoSk is the set of QoS metrics expected by the user. Buegetk 
is the maximum virtual cost or points the user is willing to pay for this task. 

To translate abstract QoS metrics into quantifiable user satisfaction, this paper 
introduces the QoE function. This function maps QoS metrics to standardised satisfaction 
scores, typically real numbers between 0 and 1. Its core purpose is to comprehensively 
evaluate the actual benefits users derive from task execution. To accurately reflect user 
utility, it is necessary to define the mapping relationship between key QoS parameters 
and user utility. Considering the law of diminishing marginal utility, the QoE function is 
typically designed in a nonlinear form: 

max
log k

k k
k

Latency
QoE

Latency
Costα β 

= ⋅ − ⋅ 
 

 (1.4) 

where QoEk is the experience quality of task k. α is the delay weighting coefficient. 
max
kLatency  is the maximum tolerable delay for task k by user. Latencyk is the actual 

execution delay of task k. β is the cost weighting coefficient. Costk is the actual execution 
cost of task k. Weighting coefficients latency weight α and cost weight β are preset based 
on task type and user preferences. 

This equation transforms the abstract concept of user experience into a computable 
mathematical function. It provides the core objective function component for 
subsequently converting resource allocation problems into optimisation problems. The 
agent’s goal is to maximise this QoE value through its decision-making actions. 

2.4 Multi-agent game model 

Within this system, UA and RA function as autonomous and self-interested  
decision-making entities, with their behavioural logic adhering to a game theory 
framework. The core objective of UAs is to minimise costs while maximising QoE, 
whereas RAs strive to maximise resource utilisation and economic returns. Given the 
time-varying nature of environmental states and the long-term impact of agent decisions 
on the system, a stochastic game serves as the theoretical modelling framework. This 
framework is fundamentally a Markov Game, characterised by state transition 
probabilities that depend solely on the current state and the collective actions of agents – 
aligning with the modelling requirements of complex dynamic systems (Maksymov et al., 
2024). To rigorously characterise the resource allocation process in multi-agent 
interactions, the multi-agent stochastic game is defined as a six-tuple structure: 
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{ } { }, , , , ,i ii iA P R γ∈ ∈=      (1.5) 

where  is a multi-agent stochastic game model.  is the set of agents.  is the global 
environmental state space. {Ai}i∈ is the action space for agent i. P is the state transition 
probability function. {Ri}i∈ is the immediate reward function for agent i. γ is the 
discount factor. 

The stochastic game model possesses a Nash equilibrium, The theoretical 
prerequisites for equilibrium existence include: the agents’ policy space is continuous, the 
reward function is bounded, and the state transition process satisfies Markovian 
properties. The equation-based random game framework provides a rigorous 
mathematical foundation for multi-agent interactions. Its six-element structure clearly 
defines the core elements of system modelling: agents, states, actions, transition 
probabilities, rewards, and discount factors. This establishes a formal foundation for 
subsequent reinforcement learning algorithms to solve multi-agent decision problems. 
The framework’s universality enables adaptation to diverse scenarios, such as wireless 
network resource allocation and cloud computing task scheduling. Its Markovian 
property ensures predictability in state transitions, providing theoretical support for 
algorithm convergence analysis. 

Within multi-agent cooperative systems, constructing a quantifiable decision 
framework requires formal definitions of each agent’s state, action, and reward to support 
subsequent reinforcement learning model training and optimisation (Meng et al., 2024). 

Agent state represents the local observed state of agent i at time slot t. For UA, the 
state includes their own task information, observed network status, and received resource 
offers; for RA, the state includes their current available resources and received task 
request information. For the RA, its state includes its current available resources and 
received task request information. 

Agent action is the action performed by agent i in time slot t. The RA’s action is to 
set a price vector for its resources and decide which task requests to accept or reject: 

( )compute storage bw, , , Accept/Rejectt t t t
ra Price Price Pricea =  (1.6) 

where t
raa  denotes the action taken by resource agent ra in time slot t. compute ,tPrice  

storage ,tPrice  and bw
tPrice  represent ra’s pricing for computational, storage, and 

bandwidth resources in time slot t, respectively. Accept/Reject indicates ra’s decision to 
accept or reject the task request. 

This equation translates the complex decision-making of the RA into a computable 
numerical vector, enabling reinforcement learning algorithms to learn optimal strategies 
through the ‘state-action-reward’ feedback loop. It also facilitates the equation of 
differentiated strategies based on the supply-demand dynamics of various resources, 
thereby enhancing resource allocation efficiency. 

QoEt t
ua kr =  (1.7) 

(1 )t t t
ra j jr λ Utilisation λ Revenue= ⋅ + − ⋅  (1.8) 
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where QoEt
k  represents the QoS experience for ua in time slot t. λ is the weighting 

coefficient balancing resource utilisation and revenue. t
jUtilisation  denotes the 

comprehensive resource utilisation rate of resource node j in time slot t. t
jRevenue  

represents the total revenue earned by resource node j in time slot t. 
The reward function serves as the bridge connecting the game model with 

reinforcement learning. These two equations quantify the agent’s higher-level objectives 
into computable scalar signals at each step, enabling the agent to learn how to achieve its 
long-term goals by maximising cumulative rewards. This constitutes the core incentive 
mechanism driving the entire multi-agent learning process. 

2.5 Problem equation 

The ultimate goal of this study is to identify an optimal distributed strategy enabling all 
agents to achieve an efficient and stable state of the system when adhering to these 
strategies. Each strategy constitutes a probability mapping from state to action for agent i. 
From the individual agent’s perspective, the optimisation objective for agent i is to 
maximise its long-term expected cumulative discounted reward, formally defined as: 

( ) ( ),
0

, ,i i
t t t t t

i i π π i i i
t

J π γ r s a a−

∞

−
=

=
 
 
  
  (1.9) 

where πi denotes the policy of agent i. π–i denotes the combined policies of all other 
agents except agent i. γ denotes the discount factor. ( , , )t t t t

i i ir s a a−  denotes the 
instantaneous reward when agent i takes action t

ia  at time t in state st, and all other 
agents take action .t

ia−  
The equation explicitly captures the long-term nature of individual decisions 

(considering all future rewards) and balances present and future gains through a discount 
factor. This serves as the standard objective function for applying reinforcement learning 
to such sequential decision problems. 

However, agents optimising this equation independently may lead to suboptimal 
overall system performance. Therefore, from a global system perspective, it is more 
crucial to find a combination of policies that maximises system welfare. System welfare 
is the weighted sum of all agents’ long-term rewards, while also incorporating 
considerations of fairness: 

( ) ( )1 , , total
0

max , , , ,  N

A R

t t t t t t t t t
π π i ji i i j j j

t i j

U γ ω r s a a ω r s a a
∞

… − −
= ∈ ∈

 
 = +     

  
 

  (1.10) 

where Utotal denotes the overall system utility. A denotes the set of UA. R denotes the 
set of RA. ωi and ωj denote weighting coefficients 

To maximise the overall utility of the system, the following two types of constraints 
must be satisfied: resource capacity constraints and QoS constraints: 

:

, ,
t
i

i j
i a j

D R j t
=

≤ ∀  (1.11) 
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max  ,k kLateLatenc ky ncy≤ ∀  (1.12) 

where Di denotes the resource demand of agent i. Rj denotes the available resource 
capacity of resource node j. Latencyk denotes the user’s end-to-end latency. max

kLatency  
denotes the user’s maximum tolerable latency. k denotes the user index. 

These three equations collectively formalise the real-world problem into a constrained 
multi-objective sequential decision optimisation problem. This formalised problem 
provides a clear, quantifiable benchmark for evaluating the performance of any resource 
allocation algorithm, enabling the learned strategy to approximate this global optimum 
solution. 

3 A MARL-based resource allocation algorithm 

Based on a stochastic game model, this chapter proposes a distributed resource allocation 
algorithm grounded in MARL. This algorithm enables agents to autonomously learn 
optimal strategies through interaction with the environment, thereby effectively 
addressing heterogeneous resource allocation challenges in lifelong education scenarios. 

3.1 CTDE paradigm and MADDPG framework 

To address this issue, this paper adopts the paradigm of centralised training with 
decentralised execution (CTDE). The core idea of this paradigm is as follows: during the 
training phase, a central critic network capable of acquiring global information is used to 
guide the training of individual actor networks; while in the execution phase, each agent 
can make decentralised decisions relying solely on its own local observations (Wang et 
al., 2024). 

The CTDE paradigm skilfully balances the contradiction between training  
stability and execution efficiency. It not only mitigates the impact of environmental  
non-stationarity on training through global information but also retains the advantages of 
low latency and high scalability of decentralised execution. The CTDE paradigm 
leverages global information during training to enhance strategy stability. During 
execution, each agent makes independent decisions based solely on local information. 
This approach balances learning effectiveness with system scalability, low latency, and 
privacy protection. 

Specifically, the multi-agent deep deterministic policy gradient (MADDPG) 
algorithm is employed as the basic framework. MADDPG is an extension of the DDPG 
algorithm in multi-agent scenarios, and its core advantage lies in the fact that the central 
critic can know the actions of all agents during training. This converts the uncertainty of 
the environment into determinism, providing each actor with more stable and accurate 
gradient signals, which greatly promotes the convergence of the policy. 

3.2 Agent design 

Under the MADDPG framework, each agent (UA or RA) is equipped with a pair of 
actor-critic networks. Both the actor and critic networks employ a fully connected neural 
network structure with three hidden layers. Each layer contains 256 neurons using ReLU 
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as the activation function, while the output layer utilises either Tanh or linear activation. 
The design of these agents requires clear definitions and modelling logic for three core 
elements: state, action, and reward. The detailed design is elaborated below from three 
dimensions: state space, action space, and reward mechanism. 

The state of an agent is an observation of the local environment, which needs to fully 
depict its task attributes and the network environment it is in. For the UA, its state vector 
must include its own task information and the perceived network environment, and is 
formally defined as: 

[ ]UA max, , , ,i i ii i i
receiveds D Type Budget Latency Q=  (1.13) 

where UA
is  is the state vector of the user agent. Di is the task data volume of user i. Typei 

is the task type of user i. Budgeti is the budget constraint of user i. max
iLatency  is the 

maximum allowable latency for the task of user i. rece
i

ivedQ  is the resource quotation 
vector received. 

For the resource agent (RA), its state vector must include its own resource status and 
the received task request information, which is formally defined as: 

RA , reques
j j

t
j

ss QR =    (1.14) 

where RA
js  is the state vector of the RA. Rj is the resource status vector of resource node. 

requ
j

estsQ  represents all task requests currently received by resource node j and their 
bidding vectors. 

Action is the core output of an agent’s decision-making and must meet the joint needs 
of discrete and continuous decision-making. For the UA, it is formally expressed as: 

[ ]UA , , {1, 2, ..., }, [0, ]i i iia j p j M p Bueget= ∈ ∈  (1.15) 

RA , ,C S B
j j j jPrice Prica e Price=     (1.16) 

where j is the index of the resource node selected by user i. pi represents the fee that the 
user is willing to pay for the resources. C

jPrice  represents the price per unit of computing 

power. C
jPrice  represents the price per unit of storage capacity. S

jPrice  represents the 
price per unit of bandwidth. 

The above equations formally define and continuously process the decision space of 
the agent. Combining discrete selection and continuous bidding or pricing as action 
outputs enables the policy network to perform end-to-end optimisation through gradient 
descent, which is a prerequisite for the application of algorithms like DDPG that handle 
continuous action spaces. 

The reward function is the core mechanism that drives each agent’s learning 
behaviour. A reasonable reward function design can map global system goals into local 
immediate signals for each agent, thereby achieving collaborative optimisation of 
individual behaviours and overall utility. The UA reward and RA reward are expressed 
as: 

UA
i ii QoE ηr Cost= − ⋅  (1.17) 
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where UA
ir  represents the immediate reward of the ith UA. QoEi represents the QoE of the 

ith UA. η represents the QoE and cost balance coefficient. Costi represents the actual 
payment cost of the ith UA. RA

jr  represents the immediate reward of the jth RA. μ 
represents the weighting coefficient of resource utilisation and revenue. Utilisationj 
represents the resource utilisation rate of the jth RA. Revenuej represents the revenue of 
the jth RA. v represents the overload penalty coefficient. overload  represents the overload 
indicator function. 

The overload penalty coefficient (η) introduces negative feedback into the reward 
function of resource agents. When a node’s resource utilisation exceeds a safety 
threshold, penalties are applied to prevent node overload and encourage load balancing. 

The reward function serves as a bridge that decomposes global optimisation 
objectives and allocates them to individual agents. These two equations transform 
abstract global goals into concrete, computable immediate signals for each agent at every 
step. Through the careful design of the reward function, when agents pursue the 
maximisation of their own cumulative rewards, their behaviours will naturally and 
collaboratively optimise the total utility of the system – skilfully aligning individual 
interests with collective interests. 

3.3 Algorithm flow and network structure 

Under the MADDPG framework, each agent is equipped with two sets of independent 
neural networks: an actor network and a critic network. This design adheres to the CTDE 
paradigm, enabling global collaborative learning while ensuring reliance on local 
information during the execution phase. 

Figure 1 Network structure diagram of the MADDPG algorithm (see online version for colours) 
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As shown in Figure 1, during the training phase, the actor of each agent receives its own 
local state and outputs actions; the central critic collects the states and actions of all 
agents, calculates Q-values, and feeds back gradients to each actor. Only local actors are 
required during the execution phase. 

In MARL scenarios, the core of collaborative learning lies in how to use a centralised 
value function to effectively evaluate and guide the policies of each agent. Based on the 
MADDPG framework, this paper systematically elaborates on its key training processes 
and objective functions: each agent maintains an experience replay buffer for storing 
transition tuples. The agent’s critic network is updated by minimising the following loss 
function: 

( ) ( )  ( , , , )~
2( , )ii s a r s Q s a yφφ ′ = −    (1.18) 

( ) ( )
,j

θ j
i a μ s

y r γQ s aφ ′ ′=
′ ′= +  (1.19) 

( )  , ~ ( )( ) ( , )i i i i i i θ ii
θ i s a θ θ i a a μ sJ θ μ s Q s aφ =

∇ ≈ ∇ ∇
  (1.20) 

where s denotes the environmental state at the time step. a denotes the action executed by 
the agent at the time step. r denotes the immediate reward obtained at the time step. φi 
denotes the critic network parameters of agent i. θi denotes the actor network parameters 
of agent i. θj denotes the target critic parameters of agent j. θj denotes the target actor 
parameters of agent j. y denotes the target value of the critic. ri denotes the immediate 
reward of agent i at the current time step. γ denotes the discount factor. s′ denotes the next 
state. a′ denotes the next action. 

The above equations constitute the mathematical core of the MADDPG algorithm. 
Equation (1.19) minimises the standard temporal difference error, training the critic to 
accurately evaluate the value of state-action pairs. Equation (1.20) calculates the target  
Q-value using a target network, effectively breaking the correlation between estimated 
values – a key technique for stabilising deep Q-learning. Equation (1.21) applies the 
deterministic policy gradient theorem to the multi-agent setting, enabling the actor 
network to adjust its policy in a direction that increases the Q-value. 

3.4 Convergence and complexity analysis 

Strictly speaking, in general multi-agent environments, the non-stationarity caused by the 
mutual influence of agents’ policies makes it difficult to guarantee the convergence of 
MARL algorithms. However, during training, MADDPG can converge to a local Nash 
equilibrium because each agent’s critic network provides a stable estimate of its  
Q-values given the policies of the other agents. This means that near the equilibrium 
point, no agent can unilaterally improve its reward through small policy changes. 
Although convergence to the global optimum cannot be guaranteed, extensive empirical 
studies show that MADDPG typically finds highly cooperative and high-performance 
strategies. 

The algorithm’s complexity mainly includes computational complexity and 
communication complexity: computational complexity primarily comes from the forward 
and backward propagation of neural networks. Communication complexity: only during 
the training phase do agents need to transmit their state and action information to the 
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central critic. During execution, agents operate completely distributed without 
communication, relying solely on their local actor networks to make decisions, resulting 
in zero communication overhead. 

4 Experimental design and results analysis 

4.1 Experimental setup 

To validate the proposed algorithm’s effectiveness, a large-scale simulation environment 
closely mimicking real-world lifelong education scenarios was constructed. This 
environment emulates a heterogeneous network architecture comprising 1 cloud data 
centre, 5 edge servers, and 50–500 dynamic user terminals. 

The simulation platform was custom-developed using Python 3.8 + PyTorch 1.9.0 + 
OpenAI Gym. Each user terminal and resource node deployed corresponding agents 
employing the aforementioned MADDPG algorithm. Cloud data centre specifications:  
1,000 TFLOPS computational power, 1 PB storage, 10 Gbps bandwidth. Edge server 
specifications: 50–200 TFLOPS computational power, 10–50 TB storage, 1–5 Gbps 
bandwidth. User terminal specifications: 0.5–5 TFLOPS computational power, 128–512 
GB storage, 100–500 Mbps bandwidth. Learning parameters: Actor network learning rate 
0.0001, Critic network learning rate 0.001; discount factor γ = 0.95, soft update parameter 
τ = 0.01; experience replay buffer size 100,000, batch size 256. 

4.2 Results and analysis 

This experiment aims to validate the convergence performance and stability of the 
proposed MADDPG algorithm in the lifelong education resource allocation problem. 
Training was conducted with a fixed user scale (200 users), observing the trends of key 
metrics during training. The training rounds were set to 5,000, with algorithm 
performance evaluated every 100 rounds. The system’s total utility, average QoE, and 
resource utilisation were recorded as they changed with training rounds. Metrics 
fluctuated during early training due to immature policies. The adoption of target networks 
and experience replay buffering mechanisms effectively stabilised the training process, 
with the algorithm converging after approximately 3,000 iterations. 

As shown in Figure 2, the proposed algorithm exhibits excellent convergence 
properties. During the initial training phase (first 1,000 iterations), metrics fluctuate 
significantly as the agent’s strategy matures. As training progresses, the agent gradually 
learns effective resource allocation strategies through interaction with the environment. 
The system’s total utility and average QoE steadily improve, stabilising after 
approximately 3,000 iterations. Resource utilisation follows a similar convergence trend, 
ultimately maintaining within the reasonable range of 75%–80%. 

Lifelong education platforms must serve massive user bases, making algorithm 
scalability critical. This experiment evaluates algorithm performance under varying loads 
by incrementally increasing user scale (from 50 to 500). User counts were incremented in 
50-unit intervals, with 1,000 rounds run at each scale to record steady-state performance 
metrics. 
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Figure 2 MADDPG algorithm convergence performance analysis (see online version for colours) 

 

Figure 3 Algorithm scalability test results analysis (see online version for colours) 

 

As shown in Figure 3, the proposed algorithm demonstrates excellent scalability as the 
user base expands. When the number of users is below 300, the system’s total utility and 
average QoE exhibit nearly linear growth, indicating the algorithm effectively utilises 
additional resources to meet user demands. Beyond 300 users, performance metrics grow 
at a slower rate due to intensified resource competition, yet maintain a stable upward 
trend. 

Compared to the baseline algorithms, the proposed algorithm significantly 
outperforms both the random (Borst et al., 2024) and greedy algorithms (Liu et al., 2024) 
at all scales. Particularly in large-scale scenarios (400–500 users), the performance 
advantage of the proposed algorithm becomes more pronounced, demonstrating its 
effectiveness in handling complex resource contention problems. Although centralised 
optimisation algorithms theoretically provide performance upper bounds, their 
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computational complexity grows exponentially with user scale, making them impractical 
for real-world large-scale deployments. 

Lifelong education environments exhibit high dynamism, where user request patterns, 
network conditions, and resource availability may change at any time. This experiment 
simulates three typical dynamic scenarios to evaluate the algorithm’s adaptability. At 
round 100, a sudden surge of user requests is introduced to simulate the access peak at 
the start of a course. At round 200, one edge server is randomly disabled to test the 
system’s fault tolerance. At round 300, periodic bandwidth fluctuations are introduced to 
simulate network congestion. 

Figure 4 Algorithm robustness and recovery capability, (a) algorithm performance adaptation in 
dynamic environments (b) impact analysis of different dynamic events (see online 
version for colours) 

 
(a) 

 
(b) 

As shown in Figure 4, the proposed algorithm demonstrates excellent adaptability and 
robustness in response to dynamic environmental changes. During request burst 
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scenarios, system performance experiences a brief dip before rapidly recovering, with an 
average recovery time of only 15 rounds. In node failure scenarios, the algorithm 
mitigates performance impact to within 20% by redistributing tasks to other available 
nodes. For resource fluctuations, the algorithm dynamically adjusts resource allocation 
strategies to maintain relatively stable service quality. 

In-depth analysis reveals that the algorithm’s adaptability stems from its online 
learning mechanism and experience replay buffer. When environmental changes occur, 
the agent can rapidly adjust its strategy using historical experience without requiring 
retraining from scratch. This characteristic makes the proposed algorithm particularly 
suitable for dynamic lifelong learning environments in practical deployments. 

Three experiments validate the algorithm’s effectiveness from distinct perspectives. 
Experiment 1 demonstrates stable convergence to efficient resource allocation strategies; 
Experiment 2 showcases the algorithm’s capacity to handle large-scale user requests; 
Experiment 3 verifies its robustness in dynamic environments. Collectively, the proposed 
MAR-based resource allocation model provides a practical solution for heterogeneous 
resource management in lifelong education. 
Table 1 Summary table of key performance indicators 

Task  
no. 

Evaluation  
dimension Metric Proposed  

algorithm 
Greedy  

algorithm 
Random  

algorithm 
Improvement  

rate 
1 Efficiency System total  

utility 
0.85 ± 0.03 0.62 ± 0.05 0.45 ± 0.07 37.10% 

2 Quality Average QoE 0.78 ± 0.04 0.55 ± 0.06 0.38 ± 0.08 41.80% 
3 Resource  

utilisation 
Overall  

utilisation rate 
76.3% ± 2.1% 68.5% ± 3.4% 52.7% ± 4.2% 11.40% 

4 Fairness Jain’s index 0.89 ± 0.02 0.72 ± 0.04 0.61 ± 0.05 23.60% 

Table 1 summarises the performance of the proposed algorithm across key metrics. It is 
evident that the proposed algorithm significantly outperforms the baseline algorithm in 
all metrics, with the most pronounced improvements observed in QoE and fairness. This 
fully demonstrates the algorithm’s advantages in optimising the quality of lifelong 
education services. 

5 Conclusions 

This paper systematically proposes and validates a distributed resource allocation model 
based on MARL to address key challenges in allocating heterogeneous resources within 
lifelong education environments. Through theoretical modelling, algorithm design, and 
experimental validation, this study achieves the following major outcomes: 

1 A distributed multi-agent resource allocation framework has been constructed. This 
framework models learners and resource providers as UA and RA, respectively, 
enabling collaborative decision-making through local perception and limited 
communication. It effectively overcomes the limitations of centralised models in 
scalability, privacy protection, and dynamic responsiveness. 

2 A hybrid reward mechanism integrating multi-objective optimisation was designed. 
By unifying user QoE, system resource costs, and collective fairness within the 
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reward function, agents are guided to spontaneously optimise overall system 
efficiency while pursuing individual gains, achieving a balance between personalised 
services and global efficiency. 

3 A formalised three-party stochastic game model was established, with a theoretical 
proof demonstrating the existence of a Nash equilibrium within this framework. This 
analysis provides theoretical support for the convergence of MARL algorithms, 
enhancing the rigor and depth of this research. 

4 The proposed model’s effectiveness was validated through large-scale simulation 
experiments. Results demonstrate significant advantages over baseline methods like 
random allocation and greedy algorithms across key metrics including total system 
utility, average QoE, resource utilisation, and fairness. Particularly notable is its 
adaptability and robustness in dynamic environments and large-scale user scenarios. 

In summary, this paper presents a theoretically rigorous, highly practical, and easily 
extensible distributed solution for managing heterogeneous resources in lifelong 
education scenarios. This model is not only applicable to educational resource sharing 
platforms but also provides a reference paradigm for other intelligent scheduling 
scenarios involving multiple users and diverse resources.  

Limitations of this study include the potential for further refinement of the user 
behaviour model and the lack of validation in real production environments. Future 
directions include integrating federated learning to enhance privacy protection and 
exploring dynamic resource prediction mechanisms. 
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