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Abstract: Lifelong education faces challenges in resource allocation due to
heterogeneity, dynamism, and scalability. This study proposes a distributed
allocation model using multi-agent reinforcement learning (MARL), where
learners and providers act as autonomous agents. Employing a centralised
training with decentralised execution (CTDE) paradigm, the model applies the
multi-agent deep deterministic policy gradient algorithm for collaborative
learning. A composite reward function integrates user quality of experience
(QoE), system cost, and fairness. A tripartite stochastic game model
theoretically confirms the existence of a Nash equilibrium. Simulations show
the model outperforms baseline algorithms, achieving superior overall system
utility (37.1% higher), average quality of experience (41.8% higher), resource
utilisation (76.3%), and fairness (Jain’s index = 0.89), with strong convergence
and adaptability. This provides an efficient, scalable solution for heterogeneous
resource management in lifelong education.
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1 Introduction

Lifelong education, as a core paradigm driving continuous individual development, has
seen its significance increasingly highlighted through widespread applications in online
education platforms and personalised learning. However, lifelong education
environments exhibit pronounced resource heterogeneity, manifested in diverse resource
types, complex computational resource architectures, and varied user demands.
Traditional centralised resource allocation models suffer from inherent limitations in
scalability, privacy protection, and dynamic adaptability, making them ill-suited to meet
the demands for efficient resource distribution and personalised services in lifelong
education scenarios. Consequently, the adoption of distributed solutions is essential
(Wenjuan and Xin, 2024).

In recent years, with the rise of edge computing, researchers have begun exploring
how to leverage the proximity computing capabilities of edge servers to reduce latency in
educational services. To overcome the shortcomings of centralised approaches,
distributed intelligent decision-making has emerged as a significant research direction.
Multi-agent systems (MAS) and game theory provide a natural theoretical framework for
addressing distributed resource allocation. This paper proposes integrating multi-source
data with large language models in MAS, achieving efficient information retrieval
and question-answering through dynamic retrieval strategies and multi-source
question-answering systems (Antony et al., 2024). This paper employs an asymptotic
compression cooperative adjustment method in MAS to address the control problem of
nonlinear time-varying systems in multidimensional space (Wang and Liu, 2024). This
paper proposes a self-organising approach that integrates Monte Carlo Tree Search with
self-organising MAS to address residential floor plan layout problems through adaptive
methods (Su et al., 2024). This paper proposes a multi-agent system model detection
method based on a fuzzy explanation system to achieve knowledge attribute verification
(Ma et al., 2024). This paper proposes a resource allocation and application deployment
scheme based on collaborative overselling to optimise resource utilisation and
deployment costs for drone edge computing in forestry IoT (Li et al., 2024). Fatemeh
employs the Cheetah algorithm to optimise resource allocation in fog computing,
reducing latency and enhancing system efficiency (Arvaneh et al., 2024).

Heterogeneous networks and stochastic games are also widely used in models for
allocating heterogeneous resources in lifelong education. Zhao’s GAN-based
heterogeneous network achieves high-precision automatic restoration of ancient mural
textures and colours (Zhao et al., 2024). This paper proposes a drug repurposing approach
for predicting drug-disease associations based on a dual-view fusion mechanism and
graph augmentation technique for heterogeneous networks (Niu et al., 2024). The article
employs graph embedding and negative sample filtering based on heterogeneous
networks to construct a random forest model for predicting disease-protein associations
(Wang et al., 2025). This study employs a high-order heterogeneous network to enhance
features and aggregate neighbourhood information through multivariate feature learning
and a hyperbolic graph attention network, thereby achieving more precise drug-disease
prediction (Li et al., 2025). This paper presents a formal security modelling and rigorous
analysis of the RabbitMQ broker based on concurrent stochastic games (Baouya et al.,
2024).
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To address the aforementioned challenges, this paper proposes a distributed
heterogeneous resource allocation model based on multi-agent reinforcement learning
(MARL). Its main contributions can be summarised in four points:

1 This paper introduces a novel distributed multi-agent resource allocation
framework. This framework models learners and resource providers as autonomous
decision-making agents. Through local perception and mutual communication, these
agents engage in collaborative decision-making, completely avoiding the bottlenecks
inherent in centralised control. This approach inherently possesses excellent
scalability, robustness, and privacy protection characteristics.

2 Innovatively integrates user quality of experience (QoE), system cost, and collective
fairness into a unified reward function. This guides agents to spontaneously advance
overall system objectives while pursuing individual benefits.

3 This model formally describes the interactions among learners, resource providers,
and the network environment, proving the existence of a Nash equilibrium. This
provides theoretical assurance for the convergence of the distributed algorithm,
enhancing the theoretical depth of the proposed solution.

4 Comprehensive and in-depth simulation experiments were conducted for validation.
Experimental results demonstrate that the proposed model exhibits superior
effectiveness and advanced performance compared to multiple mainstream baseline
algorithms.

2 Multi-agent modelling framework

2.1 System architecture and agent interaction

The system architecture represents a typical three-tier ‘cloud-edge-end’ converged
architecture designed to deliver on-demand, low-latency, high-quality educational
services to a massive population of lifelong learners. Edge servers are assumed to be
geographically distributed, such as at base stations, roadside units, or local school data
centres, positioning them close to end users to deliver low-latency services.

The cloud centre possesses robust computing and storage capabilities, hosting
large-scale non-real-time, computationally intensive educational services such as training
massive deep learning models, analysing vast educational datasets, and maintaining
ultra-high-definition video repositories. The edge network comprises geographically
distributed edge servers, including base stations, roadside units, and school local servers.
Proximal to users, these nodes handle latency-sensitive real-time or near-real-time tasks
such as VR/AR interactive instruction, real-time video transcoding, and online Q&A
sessions. User terminals encompass devices used by diverse learners — smartphones,
tablets, laptops, etc. — which generate learning task requests and receive processing
results.

Within this architecture, the core resource allocation decision lies in dynamically
offloading each task to the most suitable node based on user task requirements, current
network conditions, and resource availability across cloud and edge nodes. This process
allocates appropriate computational, bandwidth, and storage resources to each task.
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To achieve distributed intelligent decision-making, a multi-agent paradigm is
introduced. Core participants in the system are abstracted into two types of agents: user
agents (UA) are proxy agents assigned to each learner, residing on their terminal devices.
Their objective is to secure optimal resources for user-initiated tasks to maximise QoE.
Resource agents (RA) are assigned to each edge server and cloud data centre. Their
objective is to maximise their own utilisation and revenue while avoiding overload by
managing local resources and selling surplus capacity. Agents exchange only limited and
essential information via communication networks, rather than reporting all data to a
central controller. This design ensures the system’s scalability, robustness, and privacy
protection capabilities.

2.2 Heterogeneous resource model

Resources within lifelong learning environments exhibit multidimensional heterogeneous
characteristics. To enable unified quantitative management and allocation, formal
definitions of various resource types are required. First, a unified approach is needed to
describe the resource capabilities possessed by resource nodes.

R;=(C;,8;, B, BP™), Vje{l,2,.., M} (1.1)

where C; denotes the set of available computational resources for node j. S; denotes the
available storage space for node j. B}” denotes the upstream network bandwidth for node

J. B> denotes the downstream network bandwidth for node ;.

This equation constructs a universal resource description framework, unifying
heterogeneous computing, storage, and communication resources into a single
mathematical expression. This formal representation enables algorithms to
simultaneously handle different types of resource constraints, establishing a quantitative
foundation for subsequent resource allocation optimisation problems. It ensures the
consistency and computability of resource management.

In distributed computing or resource scheduling systems, when tasks are assigned to
resource nodes for execution, they inevitably consume computational power, storage
capacity, network bandwidth, and other resources provided by the nodes. To quantify a
task’s resource consumption requirements, its resource demands must be formally
defined to support subsequent scheduling strategy design and performance analysis:

D; = (Ct, Sis biin: biom) (1.2)

where ¢; represents the computational requirements of task i. s; represents the storage
requirements occupied by task i. b™ represents the input bandwidth requirements of task

i. b represents the output bandwidth requirements of task i.

This equation transforms the abstract concept of ‘task resource requirements’ into a
quantifiable four-dimensional vector. This enables the system to precisely describe task
resource consumption using mathematical tools such as linear programming and
constraint satisfaction problems, thereby providing a formal foundation for subsequent
scheduling strategy design.
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2.3 User demand model

In agent-driven task execution scenarios, the core objective of user demands has shifted
from single-resource allocation to dual expectations quality of service (QoS) and QoE.
The primary task of UA is to maximise user satisfaction with task execution outcomes —
i.e., maximise QoE — by optimising decision strategies. User-initiated learning tasks can
be formally characterised as tuples:

Tasky = (Typex, Dy, QoSk, Buegety. ) (1.3)

where Task; represents the learning task initiated by user . Typer denotes the task type.
Dy is resource requirement. QoSy is the set of QoS metrics expected by the user. Buegety
is the maximum virtual cost or points the user is willing to pay for this task.

To translate abstract QoS metrics into quantifiable user satisfaction, this paper
introduces the QoE function. This function maps QoS metrics to standardised satisfaction
scores, typically real numbers between 0 and 1. Its core purpose is to comprehensively
evaluate the actual benefits users derive from task execution. To accurately reflect user
utility, it is necessary to define the mapping relationship between key QoS parameters
and user utility. Considering the law of diminishing marginal utility, the QoE function is
typically designed in a nonlinear form:

max

Latency]]

QoE; =0(-log( j—ﬁ-Costk (1.4)

Latencyy,

where QoEy is the experience quality of task k. « is the delay weighting coefficient.
Latency is the maximum tolerable delay for task k by user. Latency; is the actual

execution delay of task k. Bis the cost weighting coefficient. Cost is the actual execution
cost of task k. Weighting coefficients latency weight a and cost weight /3 are preset based
on task type and user preferences.

This equation transforms the abstract concept of user experience into a computable
mathematical function. It provides the core objective function component for
subsequently converting resource allocation problems into optimisation problems. The
agent’s goal is to maximise this QoE value through its decision-making actions.

2.4  Multi-agent game model

Within this system, UA and RA function as autonomous and self-interested
decision-making entities, with their behavioural logic adhering to a game theory
framework. The core objective of UAs is to minimise costs while maximising QoE,
whereas RAs strive to maximise resource utilisation and economic returns. Given the
time-varying nature of environmental states and the long-term impact of agent decisions
on the system, a stochastic game serves as the theoretical modelling framework. This
framework is fundamentally a Markov Game, characterised by state transition
probabilities that depend solely on the current state and the collective actions of agents —
aligning with the modelling requirements of complex dynamic systems (Maksymov et al.,
2024). To rigorously characterise the resource allocation process in multi-agent
interactions, the multi-agent stochastic game is defined as a six-tuple structure:
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G=(N. S A4} p . PARY i1 7) (1.5)

where G is a multi-agent stochastic game model. A is the set of agents. S is the global
environmental state space. {4;}« , is the action space for agent i. P is the state transition

probability function. {R;}i , is the immediate reward function for agent i. y is the

discount factor.

The stochastic game model possesses a Nash equilibrium, The theoretical
prerequisites for equilibrium existence include: the agents’ policy space is continuous, the
reward function is bounded, and the state transition process satisfies Markovian
properties. The equation-based random game framework provides a rigorous
mathematical foundation for multi-agent interactions. Its six-element structure clearly
defines the core elements of system modelling: agents, states, actions, transition
probabilities, rewards, and discount factors. This establishes a formal foundation for
subsequent reinforcement learning algorithms to solve multi-agent decision problems.
The framework’s universality enables adaptation to diverse scenarios, such as wireless
network resource allocation and cloud computing task scheduling. Its Markovian
property ensures predictability in state transitions, providing theoretical support for
algorithm convergence analysis.

Within multi-agent cooperative systems, constructing a quantifiable decision
framework requires formal definitions of each agent’s state, action, and reward to support
subsequent reinforcement learning model training and optimisation (Meng et al., 2024).

Agent state represents the local observed state of agent i at time slot . For UA, the
state includes their own task information, observed network status, and received resource
offers; for RA, the state includes their current available resources and received task
request information. For the RA, its state includes its current available resources and
received task request information.

Agent action is the action performed by agent 7 in time slot z. The RA’s action is to
set a price vector for its resources and decide which task requests to accept or reject:

al, = (Priceéompme, Pricelyge , Pricef,, Accept/Reject) (1.6)

where af, denotes the action taken by resource agent ra in time slot . Price,mpye>
Price}ng., and Pricej, tepresent ra’s pricing for computational, storage, and

bandwidth resources in time slot ¢, respectively. Accept/Reject indicates ra’s decision to
accept or reject the task request.

This equation translates the complex decision-making of the RA into a computable
numerical vector, enabling reinforcement learning algorithms to learn optimal strategies
through the ‘state-action-reward’ feedback loop. It also facilitates the equation of
differentiated strategies based on the supply-demand dynamics of various resources,
thereby enhancing resource allocation efficiency.

tia = QOE} (1.7)

1y = A-Utilisation’; + (1- 1) - Revenue’; (1.8)
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where QoE; represents the QoS experience for ua in time slot 7. 4 is the weighting
coefficient balancing resource utilisation and revenue. Utilisation); denotes the
comprehensive resource utilisation rate of resource node j in time slot 7. Revenue!

represents the total revenue earned by resource node j in time slot .

The reward function serves as the bridge connecting the game model with
reinforcement learning. These two equations quantify the agent’s higher-level objectives
into computable scalar signals at each step, enabling the agent to learn how to achieve its
long-term goals by maximising cumulative rewards. This constitutes the core incentive
mechanism driving the entire multi-agent learning process.

2.5 Problem equation

The ultimate goal of this study is to identify an optimal distributed strategy enabling all
agents to achieve an efficient and stable state of the system when adhering to these
strategies. Each strategy constitutes a probability mapping from state to action for agent i.
From the individual agent’s perspective, the optimisation objective for agent i is to
maximise its long-term expected cumulative discounted reward, formally defined as:

Ji() =B, {ZWK (s, af, a;-)} (1.9)
t=0

where 7; denotes the policy of agent i. z_; denotes the combined policies of all other
agents except agent i. y denotes the discount factor. r/(s’,al,a’;) denotes the

instantaneous reward when agent i takes action a/ at time ¢ in state s/, and all other
agents take action a’;.

The equation explicitly captures the long-term nature of individual decisions
(considering all future rewards) and balances present and future gains through a discount
factor. This serves as the standard objective function for applying reinforcement learning
to such sequential decision problems.

However, agents optimising this equation independently may lead to suboptimal
overall system performance. Therefore, from a global system perspective, it is more
crucial to find a combination of policies that maximises system welfare. System welfare
is the weighted sum of all agents’ long-term rewards, while also incorporating
considerations of fairness:

maxy, zy Vo =B Zyt ( Z w;r! (s’, at, ai,-)+ z w;r} (st, aj, aﬁ»,)] (1.10)

=0 ieNy JjeNg

where Usoi denotes the overall system utility. NV denotes the set of UA. Ak denotes the

set of RA. w; and w; denote weighting coefficients
To maximise the overall utility of the system, the following two types of constraints
must be satisfied: resource capacity constraints and QoS constraints:

ZD,»SR‘,-, Vit (1.11)

Ruram
irai=j
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Latencyy < Latency™, Vk (1.12)

where D; denotes the resource demand of agent i. R; denotes the available resource
capacity of resource node j. Latency; denotes the user’s end-to-end latency. Latency™

denotes the user’s maximum tolerable latency. k& denotes the user index.

These three equations collectively formalise the real-world problem into a constrained
multi-objective sequential decision optimisation problem. This formalised problem
provides a clear, quantifiable benchmark for evaluating the performance of any resource
allocation algorithm, enabling the learned strategy to approximate this global optimum
solution.

3 A MARL-based resource allocation algorithm

Based on a stochastic game model, this chapter proposes a distributed resource allocation
algorithm grounded in MARL. This algorithm enables agents to autonomously learn
optimal strategies through interaction with the environment, thereby -effectively
addressing heterogeneous resource allocation challenges in lifelong education scenarios.

3.1 CTDE paradigm and MADDPG framework

To address this issue, this paper adopts the paradigm of centralised training with
decentralised execution (CTDE). The core idea of this paradigm is as follows: during the
training phase, a central critic network capable of acquiring global information is used to
guide the training of individual actor networks; while in the execution phase, each agent
can make decentralised decisions relying solely on its own local observations (Wang et
al., 2024).

The CTDE paradigm skilfully balances the contradiction between training
stability and execution efficiency. It not only mitigates the impact of environmental
non-stationarity on training through global information but also retains the advantages of
low latency and high scalability of decentralised execution. The CTDE paradigm
leverages global information during training to enhance strategy stability. During
execution, each agent makes independent decisions based solely on local information.
This approach balances learning effectiveness with system scalability, low latency, and
privacy protection.

Specifically, the multi-agent deep deterministic policy gradient (MADDPG)
algorithm is employed as the basic framework. MADDPG is an extension of the DDPG
algorithm in multi-agent scenarios, and its core advantage lies in the fact that the central
critic can know the actions of all agents during training. This converts the uncertainty of
the environment into determinism, providing each actor with more stable and accurate
gradient signals, which greatly promotes the convergence of the policy.

3.2 Agent design

Under the MADDPG framework, each agent (UA or RA) is equipped with a pair of
actor-critic networks. Both the actor and critic networks employ a fully connected neural
network structure with three hidden layers. Each layer contains 256 neurons using ReLU
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as the activation function, while the output layer utilises either Tanh or linear activation.
The design of these agents requires clear definitions and modelling logic for three core
elements: state, action, and reward. The detailed design is elaborated below from three
dimensions: state space, action space, and reward mechanism.

The state of an agent is an observation of the local environment, which needs to fully
depict its task attributes and the network environment it is in. For the UA, its state vector
must include its own task information and the perceived network environment, and is
formally defined as:

sUA =Dy, Type:, Budget;, Latency™>, Qreceived | (1.13)

1

A

where sY* is the state vector of the user agent. D; is the task data volume of user i. Type;

is the task type of user i. Budget; is the budget constraint of user i. Latency™* is the
maximum allowable latency for the task of user i. Q/*“**? is the resource quotation
vector received.
For the resource agent (RA), its state vector must include its own resource status and
the received task request information, which is formally defined as:
RA _ requests
584 =[ Ry, 0 ] (1.14)

J J

where s} is the state vector of the RA. R; is the resource status vector of resource node.

Q" represents all task requests currently received by resource node j and their

bidding vectors.
Action is the core output of an agent’s decision-making and must meet the joint needs
of discrete and continuous decision-making. For the UA, it is formally expressed as:

a’ =[j, pi], je{l,2,..,M}, pie[0, Bueget;] (1.15)
afh = [Pricejc, Pricey, Pricef] (1.16)

where j is the index of the resource node selected by user i. p; represents the fee that the
user is willing to pay for the resources. Price{ represents the price per unit of computing

power. Price§ represents the price per unit of storage capacity. Pricej represents the

price per unit of bandwidth.

The above equations formally define and continuously process the decision space of
the agent. Combining discrete selection and continuous bidding or pricing as action
outputs enables the policy network to perform end-to-end optimisation through gradient
descent, which is a prerequisite for the application of algorithms like DDPG that handle
continuous action spaces.

The reward function is the core mechanism that drives each agent’s learning
behaviour. A reasonable reward function design can map global system goals into local
immediate signals for each agent, thereby achieving collaborative optimisation of
individual behaviours and overall utility. The UA reward and RA reward are expressed
as:

rUA = QoE; —y-Cost; (1.17)
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where Y7 represents the immediate reward of the i UA. QoE; represents the QoE of the
i™ UA. 5 represents the QoE and cost balance coefficient. Cost; represents the actual
payment cost of the i UA. r?* represents the immediate reward of the j® RA. u

represents the weighting coefficient of resource utilisation and revenue. Utilisation;
represents the resource utilisation rate of the j RA. Revenue; represents the revenue of
the j RA. v represents the overload penalty coefficient. Ioen0aq represents the overload
indicator function.

The overload penalty coefficient (1) introduces negative feedback into the reward
function of resource agents. When a node’s resource utilisation exceeds a safety
threshold, penalties are applied to prevent node overload and encourage load balancing.

The reward function serves as a bridge that decomposes global optimisation
objectives and allocates them to individual agents. These two equations transform
abstract global goals into concrete, computable immediate signals for each agent at every
step. Through the careful design of the reward function, when agents pursue the
maximisation of their own cumulative rewards, their behaviours will naturally and
collaboratively optimise the total utility of the system — skilfully aligning individual
interests with collective interests.

3.3 Algorithm flow and network structure

Under the MADDPG framework, each agent is equipped with two sets of independent
neural networks: an actor network and a critic network. This design adheres to the CTDE
paradigm, enabling global collaborative learning while ensuring reliance on local
information during the execution phase.

Figure 1 Network structure diagram of the MADDPG algorithm (see online version for colours)
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As shown in Figure 1, during the training phase, the actor of each agent receives its own
local state and outputs actions; the central critic collects the states and actions of all
agents, calculates Q-values, and feeds back gradients to each actor. Only local actors are
required during the execution phase.

In MARL scenarios, the core of collaborative learning lies in how to use a centralised
value function to effectively evaluate and guide the policies of each agent. Based on the
MADDPG framework, this paper systematically elaborates on its key training processes
and objective functions: each agent maintains an experience replay buffer for storing
transition tuples. The agent’s critic network is updated by minimising the following loss
function:

‘C(¢i):E(s,a,r,s')~D |:(Q¢, (Sa a)_y)2:| (118)
y=r+y0y (s, d') =ty (1.19)
Vo d0)=Buan | Vass, (5)Vu 0 (5. 0, _,, ) | (1.20)

where s denotes the environmental state at the time step. a denotes the action executed by
the agent at the time step. » denotes the immediate reward obtained at the time step. ¢
denotes the critic network parameters of agent i. §; denotes the actor network parameters
of agent i. §; denotes the target critic parameters of agent j. 6; denotes the target actor
parameters of agent j. y denotes the target value of the critic. 7; denotes the immediate
reward of agent i at the current time step. y denotes the discount factor. s” denotes the next
state. a” denotes the next action.

The above equations constitute the mathematical core of the MADDPG algorithm.
Equation (1.19) minimises the standard temporal difference error, training the critic to
accurately evaluate the value of state-action pairs. Equation (1.20) calculates the target
Q-value using a target network, effectively breaking the correlation between estimated
values — a key technique for stabilising deep Q-learning. Equation (1.21) applies the
deterministic policy gradient theorem to the multi-agent setting, enabling the actor
network to adjust its policy in a direction that increases the Q-value.

3.4 Convergence and complexity analysis

Strictly speaking, in general multi-agent environments, the non-stationarity caused by the
mutual influence of agents’ policies makes it difficult to guarantee the convergence of
MARL algorithms. However, during training, MADDPG can converge to a local Nash
equilibrium because each agent’s critic network provides a stable estimate of its
Q-values given the policies of the other agents. This means that near the equilibrium
point, no agent can unilaterally improve its reward through small policy changes.
Although convergence to the global optimum cannot be guaranteed, extensive empirical
studies show that MADDPG typically finds highly cooperative and high-performance
strategies.

The algorithm’s complexity mainly includes computational complexity and
communication complexity: computational complexity primarily comes from the forward
and backward propagation of neural networks. Communication complexity: only during
the training phase do agents need to transmit their state and action information to the
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central critic. During execution, agents operate completely distributed without
communication, relying solely on their local actor networks to make decisions, resulting
in zero communication overhead.

4 Experimental design and results analysis

4.1 Experimental setup

To validate the proposed algorithm’s effectiveness, a large-scale simulation environment
closely mimicking real-world lifelong education scenarios was constructed. This
environment emulates a heterogeneous network architecture comprising 1 cloud data
centre, 5 edge servers, and 50—500 dynamic user terminals.

The simulation platform was custom-developed using Python 3.8 + PyTorch 1.9.0 +
OpenAl Gym. Each user terminal and resource node deployed corresponding agents
employing the aforementioned MADDPG algorithm. Cloud data centre specifications:
1,000 TFLOPS computational power, 1 PB storage, 10 Gbps bandwidth. Edge server
specifications: 50200 TFLOPS computational power, 10-50 TB storage, 1-5 Gbps
bandwidth. User terminal specifications: 0.5-5 TFLOPS computational power, 128-512
GB storage, 100-500 Mbps bandwidth. Learning parameters: Actor network learning rate
0.0001, Critic network learning rate 0.001; discount factor y = 0.95, soft update parameter
7= 0.01; experience replay buffer size 100,000, batch size 256.

4.2 Results and analysis

This experiment aims to validate the convergence performance and stability of the
proposed MADDPG algorithm in the lifelong education resource allocation problem.
Training was conducted with a fixed user scale (200 users), observing the trends of key
metrics during training. The training rounds were set to 5,000, with algorithm
performance evaluated every 100 rounds. The system’s total utility, average QoE, and
resource utilisation were recorded as they changed with training rounds. Metrics
fluctuated during early training due to immature policies. The adoption of target networks
and experience replay buffering mechanisms effectively stabilised the training process,
with the algorithm converging after approximately 3,000 iterations.

As shown in Figure 2, the proposed algorithm exhibits excellent convergence
properties. During the initial training phase (first 1,000 iterations), metrics fluctuate
significantly as the agent’s strategy matures. As training progresses, the agent gradually
learns effective resource allocation strategies through interaction with the environment.
The system’s total utility and average QOoOE steadily improve, stabilising after
approximately 3,000 iterations. Resource utilisation follows a similar convergence trend,
ultimately maintaining within the reasonable range of 75%—-80%.

Lifelong education platforms must serve massive user bases, making algorithm
scalability critical. This experiment evaluates algorithm performance under varying loads
by incrementally increasing user scale (from 50 to 500). User counts were incremented in
50-unit intervals, with 1,000 rounds run at each scale to record steady-state performance
metrics.
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Figure 2 MADDPG algorithm convergence performance analysis (see online version for colours)
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As shown in Figure 3, the proposed algorithm demonstrates excellent scalability as the
user base expands. When the number of users is below 300, the system’s total utility and
average QoE exhibit nearly linear growth, indicating the algorithm effectively utilises
additional resources to meet user demands. Beyond 300 users, performance metrics grow
at a slower rate due to intensified resource competition, yet maintain a stable upward
trend.

Compared to the baseline algorithms, the proposed algorithm significantly
outperforms both the random (Borst et al., 2024) and greedy algorithms (Liu et al., 2024)
at all scales. Particularly in large-scale scenarios (400-500 users), the performance
advantage of the proposed algorithm becomes more pronounced, demonstrating its
effectiveness in handling complex resource contention problems. Although centralised
optimisation algorithms theoretically provide performance upper bounds, their
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computational complexity grows exponentially with user scale, making them impractical
for real-world large-scale deployments.

Lifelong education environments exhibit high dynamism, where user request patterns,
network conditions, and resource availability may change at any time. This experiment
simulates three typical dynamic scenarios to evaluate the algorithm’s adaptability. At
round 100, a sudden surge of user requests is introduced to simulate the access peak at
the start of a course. At round 200, one edge server is randomly disabled to test the
system’s fault tolerance. At round 300, periodic bandwidth fluctuations are introduced to
simulate network congestion.

Figure 4 Algorithm robustness and recovery capability, (a) algorithm performance adaptation in
dynamic environments (b) impact analysis of different dynamic events (see online
version for colours)
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As shown in Figure 4, the proposed algorithm demonstrates excellent adaptability and
robustness in response to dynamic environmental changes. During request burst
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scenarios, system performance experiences a brief dip before rapidly recovering, with an
average recovery time of only 15 rounds. In node failure scenarios, the algorithm
mitigates performance impact to within 20% by redistributing tasks to other available
nodes. For resource fluctuations, the algorithm dynamically adjusts resource allocation
strategies to maintain relatively stable service quality.

In-depth analysis reveals that the algorithm’s adaptability stems from its online
learning mechanism and experience replay buffer. When environmental changes occur,
the agent can rapidly adjust its strategy using historical experience without requiring
retraining from scratch. This characteristic makes the proposed algorithm particularly
suitable for dynamic lifelong learning environments in practical deployments.

Three experiments validate the algorithm’s effectiveness from distinct perspectives.
Experiment 1 demonstrates stable convergence to efficient resource allocation strategies;
Experiment 2 showcases the algorithm’s capacity to handle large-scale user requests;
Experiment 3 verifies its robustness in dynamic environments. Collectively, the proposed
MAR-based resource allocation model provides a practical solution for heterogeneous
resource management in lifelong education.

Table 1 Summary table of key performance indicators
Task Evaluation . Proposed Greedy Random Improvement
. . Metric . . .
no.  dimension algorithm algorithm algorithm rate
1 Efficiency Systemtotal ~ 0.85=+0.03 0.62 +0.05 0.45 +0.07 37.10%
utility
2 Quality  Average QoE  0.78 £ 0.04 0.55+0.06 0.38 +£0.08 41.80%

Resource Overall 76.3% +2.1% 68.5% +3.4% 52.7%+4.2% 11.40%
utilisation utilisation rate

4 Fairness Jain’s index 0.89 £0.02 0.72 £0.04 0.61 £0.05 23.60%

Table 1 summarises the performance of the proposed algorithm across key metrics. It is
evident that the proposed algorithm significantly outperforms the baseline algorithm in
all metrics, with the most pronounced improvements observed in QoE and fairness. This
fully demonstrates the algorithm’s advantages in optimising the quality of lifelong
education services.

5 Conclusions

This paper systematically proposes and validates a distributed resource allocation model
based on MARL to address key challenges in allocating heterogeneous resources within
lifelong education environments. Through theoretical modelling, algorithm design, and
experimental validation, this study achieves the following major outcomes:

1 A distributed multi-agent resource allocation framework has been constructed. This
framework models learners and resource providers as UA and RA, respectively,
enabling collaborative decision-making through local perception and limited
communication. It effectively overcomes the limitations of centralised models in
scalability, privacy protection, and dynamic responsiveness.

2 A hybrid reward mechanism integrating multi-objective optimisation was designed.
By unifying user QoE, system resource costs, and collective fairness within the
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reward function, agents are guided to spontaneously optimise overall system
efficiency while pursuing individual gains, achieving a balance between personalised
services and global efficiency.

3 A formalised three-party stochastic game model was established, with a theoretical
proof demonstrating the existence of a Nash equilibrium within this framework. This
analysis provides theoretical support for the convergence of MARL algorithms,
enhancing the rigor and depth of this research.

4  The proposed model’s effectiveness was validated through large-scale simulation
experiments. Results demonstrate significant advantages over baseline methods like
random allocation and greedy algorithms across key metrics including total system
utility, average QoE, resource utilisation, and fairness. Particularly notable is its
adaptability and robustness in dynamic environments and large-scale user scenarios.

In summary, this paper presents a theoretically rigorous, highly practical, and easily
extensible distributed solution for managing heterogeneous resources in lifelong
education scenarios. This model is not only applicable to educational resource sharing
platforms but also provides a reference paradigm for other intelligent scheduling
scenarios involving multiple users and diverse resources.

Limitations of this study include the potential for further refinement of the user
behaviour model and the lack of validation in real production environments. Future
directions include integrating federated learning to enhance privacy protection and
exploring dynamic resource prediction mechanisms.
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