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Abstract: At a critical stage of social network information evolution, the rapid
spread of false news, emotional content, and rumours poses significant
challenges to information governance. To address this issue, a multi-scale
social network news dissemination and detection model is proposed. The model
integrates multi-scale feature extraction, cascaded convolutional networks, and
cross-modal information modelling to enhance feature representation and
propagation pattern capture. Experimental results show that introducing
macro-micro dual-scale modelling and gated fusion improves the F1 score to
0.895 and reduces the mean absolute percentage error to 8.9%, representing
gains of 7.8 and 3.4 percentage points over single-scale baselines (p < 0.01).
Across diverse communication scenarios, the model consistently outperforms
comparison methods, achieving macro-F1 scores of 86%-91% and micro-F1
scores of 88%-92%. With an average detection delay of approximately 12 ms,
the model balances real-time performance and robustness, demonstrating
effectiveness and stability for multi-scenario news detection.

Keywords: news detection; multi-scale feature extraction; cascaded
convolutional network; cross-modal information; gating mechanism.
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1 Overview

In recent years, social networks have become an important platform for information
dissemination, but their openness and immediacy have also exacerbated the rapid spread
of false news, rumours, and other information (Wu et al., 2025). This type of information
not only misleads public perception, but may also trigger social panic and loss of control
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over public opinion. How to efficiently and accurately identify fake news and suppress its
spread has become a critical research topic in the fields of natural language processing
and social network analysis (Wang and Zhang, 2024). Existing research has proposed
various methods in news detection, including deep convolutional neural networks, graph
neural networks, and cross-modal fusion models. In terms of traditional machine learning
methods, early research on false news detection mainly relied on text surface features and
simple statistical methods (Wang et al., 2024). M A Ilyas et al. used various feature
extraction methods, including counting vectorisers, bag of words, word representation
global vectors, word-to-vector and word frequency inverse document frequency, as well
as feature selection techniques such as information gain, chi square test, principal
component analysis, and document frequency. The accuracy and robustness of fake news
detection were significantly improved through ensemble learning (Ilyas et al., 2024). Q
Liu et al. (2024) proposed a new dual-adversarial learning method to address the issue of
bias between news and evidence content. The core innovation of this framework lies in
the simultaneous construction of de biased discriminators on both the news and evidence
sides, both of which undergo adversarial training targeting true and false news labels. By
reverse optimising these two discriminators, this method could effectively eliminate
potential biases in news content and evidence materials. Dua et al. (2023) developed the
interpretable fake linguistic analysis and semantic heuristics (I-FLASH) model. This
model has dual capabilities of detection and attribution. It can not only distinguish the
authenticity of news, but also automatically generate the basis for determining whether it
is true or false by analysing features such as content and source, thus providing users with
transparent decision explanations.

With the breakthrough of deep learning in natural language processing and
multimodal analysis, researchers have begun to explore the use of deeper semantic
representations and structural modelling to enhance detection capabilities (Cao et al.,
2025). Birunda et al. (2024) proposed a fake news detection method based on honey
badger optimisation algorithm and lightweight convolutional random forest. This method
achieves feature minimisation while ensuring high accuracy through three steps: data
preprocessing, feature selection, and classification. The experimental results show that
the model performs well in multiple indicators such as accuracy, verifying its
effectiveness and advantages in fake news detection tasks. Zhai et al. (2023) proposed a
hybrid model of multi-scale CNN and long short term memory (LSTM) by combining the
advantages of CNN and recurrent neural network (RNN). The model first extracted local
text features through multi-scale CNN, then captured contextual dependencies using
LSTM, and finally fused the generated feature vectors into a softmax classifier.
Experiments showed that the hybrid model outperformed traditional CNN, LSTM and
other single models in text classification tasks, showing significant advantages.
Suryawanshi et al. (2024) proposed an incremental ensemble neural network model with
continuous learning capability for fake news detection. This model optimised classifier
combinations through a performance-based dynamic pruning mechanism and monitored
concept drift in real-time to automatically adjust detection strategies, thus adapting to the
dynamic changes in news patterns. The experimental results showed that in a static
testing environment, the performance of this model was superior to traditional machine
learning methods.

To sum up, although the existing methods have realised good results in a single task,
there are still shortcomings in multi scene migration, anti-jamming capability and capture
accuracy for different propagation modes. On the one hand, traditional models often
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focus on single-scale features and overlook the improvement of detection performance by
cross scale information. On the other hand, existing methods exhibit significant
performance degradation in high noise and cross-domain environments, limiting their
application in real social networks. To address the limitations of the above methods in
cross scene migration, diffusion level recognition, and anti-interference ability, further
research has been conducted to construct a technology centred on ‘multi-scale feature
extraction cross level information interaction cascaded convolution modelling’. This
technology emphasises starting from the multidimensional characteristics of the
propagation chain and establishing a collaborative expression mechanism between
different scales of time series and network structure to achieve the unified representation
of local semantic patterns and global diffusion laws. Based on this, a multi-scale
information driven cascade convolutional networks (CasCN) model for social network
news dissemination and detection is proposed, which achieves the collaborative
expression of propagation chain structure features and semantic temporal features, aiming
to improve the detection accuracy and robustness of the model in multiple scenarios.
Cross modal information modelling mainly focuses on the collaborative fusion between
text semantic features and propagation structural features, without involving traditional
multimodal input forms such as images and audio. The research regards node text content
as semantic mode, propagation path and cascade structure as structural mode, and realises
cross modal feature interaction and dynamic fusion through multi-scale coding and gating
mechanism, so as to improve the adaptability and detection accuracy of the model to
different propagation forms. The specific implementation mechanism is as follows.

2 Methodology

2.1 Information cascade model of the improved CasCN based on multi-scale
information

In the social media environment, the diffusion process of information often presents
complex network cascading characteristics. Different types of news show significant
differences in their dissemination process. For example, real news usually relies on a
stable social relationship chain to gradually spread, while fake news is more likely to
achieve early concentrated outbreaks through a small number of highly active users or
opinion leaders, and form widespread dissemination in a short period of time. With the
multi-layered interaction and forwarding behaviour of users, these cascading processes
not only exhibit rapidly evolving dynamics in the time dimension, but also manifest as
diverse and hierarchical propagation paths in the structural dimension. However,
traditional detection methods are difficult to effectively capture the dual features of
structure + time sequence, so new modelling methods are needed to incorporate social
network propagation itself into the detection framework. Therefore, the information
cascade model has received widespread attention. This model can abstract the
propagation chain into a graph structure and reveal the differences between false
information and real information in the propagation trajectory by modelling the
relationships and dynamic evolution between different nodes, laying a theoretical and
practical foundation for the introduction of subsequent deep learning methods. Among
them, CasCNs abstract the information propagation process as an ordered graph structure,
and jointly model the structural features and temporal dependencies of propagation nodes
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through convolution operations, thereby providing high-quality feature inputs for
downstream prediction tasks (Zhu et al., 2022). This mechanism not only captures
fine-grained patterns in local neighbourhoods, but also extracts high-order features of the
global propagation path through multi-layer convolution accumulation, making the model
more capable of pattern recognition when dealing with complex propagation networks.
The CasCN structure is shown in Figure 1.

Figure 1 CasCN structure (see online version for colours)
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In Figure 1, CasCN adopts an end-to-end framework, and the input layer uses an
embedding mapping mechanism based on propagation chain sequences to encode text
semantic vectors and node interaction features into a 128 dimensional vector; The graph
convolutional layer uses a two-layer graph convolutional neural network (GCN) structure
to capture first-order and second-order diffusion neighbourhood features, respectively.
The activation function uses LeakyReLU and the parameter sharing rate is 0.75 to reduce
depth computation redundancy. The feature aggregation stage adopts a weighted sum and
residual connection mechanism to suppress gradient decay while ensuring the
preservation of diffusion information. The node level output integrates semantic,
interaction sequence, and propagation strength features through the fusion layer, and
maps them to a 256 dimensional detection vector for subsequent classification prediction.
Finally aggregates the features and uses a multi layer perceptron (MLP) for cascading
scale prediction (Zhang et al., 2024a). To address the limitations of existing methods, a
dynamic sampling method based on timestamps is proposed, which decomposes the
original cascaded graph into a sequence of temporal subgraphs S* according to node
timestamps. The mathematical expression is shown in equation (1) (Tang et al., 2023).
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S ={s|t; <t,}, VsieSw,t<t, (1)

In equation (1), S™ represents the sub cascade graph of the deadline 7,, s represents the
sub cascade graph generated at time #;, #; < t, is the constraint condition, indicating that
the timestamps of these sub cascade graphs are not later than the deadline #,. The
sampling process is shown in Figure 2 (Huang et al., 2024).

In Figure 2, the cascaded sampling process gradually divides the original propagation
chain into multiple sub cascaded graphs according to time constraints. Each sub cascaded
graph is represented in the form of an adjacency matrix, where the rows and columns of
the matrix correspond to the connection relationships between nodes and edges in the
propagation network. During the sampling process, each subgraph starts from the central
node and constructs a local propagation structure through neighbourhood aggregation
strategy. The adjacency matrix is processed using symmetric normalisation to suppress
the bias effect introduced by node degree differences. Multiple cascaded graphs are
generated in a time sliding window manner, enabling the model to establish a progressive
correlation between micro sequence and macro structure development. From this, the
matrix representation of the sub cascade graph sequence can be obtained, as shown in
equation (2) (Zeng and Xiang, 2023).

Rio :{rtl,...,l’t'}ati <t @)

In equation (2), R represents the adjacency matrix sequence corresponding to the
deadline 7, and the sub cascade graph, and % represents the attribute vector associated
with s%. CasCN utilises graph embedding and a novel cascaded sampling method to
effectively integrate spatiotemporal features and achieve good prediction performance.
However, its timestamp based sampling strategy has two key drawbacks: firstly, dense
timestamps lead to an expansion in the number of subgraphs, significantly increasing the
computational burden. The second issue is that the difference between adjacent time
point plots is too small, which can easily introduce modelling bias (Preethi and Mamatha,
2023). To this end, a multi-scale graph capsule network (MSGCNet) is proposed to fully
capture the propagation characteristics of news across levels and time scales in social
networks, and to enhance the robustness and structural awareness of node
representations. Compared to traditional graph convolutional networks that rely on fixed
order neighbourhood aggregation, MSGCNet constructs a multi-scale structure through
multi-stage convolution kernels and dynamic interval sampling in receptive field
extension, allowing nodes to simultaneously capture information from different depths
and directions, enhancing their perception of long-chain paths. Meanwhile, in terms of
parameter sharing mechanism, MSGCNet adopts a cross scale weight collaborative
strategy to alleviate the problem of excessive smoothing caused by multi-layer stacking
and enhance sensitivity to structural differences. In addition, in terms of feature fusion,
MSGCNet introduces position encoding and capsule routing to achieve hierarchical
interaction among nodes, categories, and graph levels, effectively modelling the
nonlinear dependencies between multi-scale features. MSGCNet has expanded its
structural coverage, optimised information transmission efficiency and parameter
utilisation, and improved detection accuracy and robustness in complex propagation
scenarios. The network consists of two main parts: node embedding layer and multi-level
capsule mixing layer. The node embedding layer uses a multiscale graph network (MGN)
to learn node representations of sub cascaded graphs through three dimensions: direction,
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position, and high-order (Li et al., 2023). MGN reconstructs the convolution kernel as
shown in equation (3) (Zhang et al., 2024b).

G:sa-x=a[|| | (ﬁgxw;),PW,,} 3)
keO gelin,out}

In equation (3), G is the node representation matrix obtained by convolution operation, X
is the node feature matrix, and s« - X represents the convolution operation using the MGN
convolution kernel with parameter ¢ applied to the input features. |- is the feature

concatenation operation, R means the normalised k order adjacency matrix, and W

means the trainable weight matrix in & order and direction ¢. P represents the position
encoding matrix, and W, represents the trainable weight matrix corresponding to the
position encoding. The asymmetric normalisation form of directional adjacency matrix is
shown in equation (4) (Feng et al., 2022).

R, =(A)'R, @
R,=R,+Uy

In equation (4), 4 is the degree matrix, E, represents the adjacency matrix after adding

self loops in direction ¢, Uy represents the identity matrix of N x N, and R, is the original
adjacency matrix. The position embedding matrix initialised based on position encoding
is shown in equation (5).

. u
P2qa =S —E
10,000
y (5)
P2d+1 = COS —
10,0004~

In equation (5), p2s and pagi1 are the values of the 2d™ and 2d+1™dimensions of the
position vector, respectively. u represents the position information index of the node, d is
the index of the embedding dimension, and d, represents the total dimension size of the
position embedding. The node embedding layer encodes multi-scale structures and
location information into high-dimensional features, and achieves dynamic routing and
multi-level feature fusion through capsule networks to generate robust cascaded graph
global representations. This can better capture the diverse path characteristics and
semantic differences of social network news in the dissemination process. The multi-level
capsule mixing layer includes three types of capsules: class level, node level, and graph
level. The structure is shown in Figure 3.

Figure 3 Multi level capsule encoding and aggregation process (see online version for colours)
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In Figure 3, firstly, input the cascaded graph s” into MGN to complete the initial
embedding and extraction of node semantics and local structural relationships, with an
output dimension of 128. Subsequently, the embedding performs feature pattern
classification through a class capsule layer, extracting node features g; of different orders.
Each g; corresponds to a potential propagation structure type, and vector encoding is used
to maintain directional semantics. The first stage feature aggregation (Aggl) utilises a
dynamic routing mechanism to calculate node level features b;, with the goal of
identifying key propagation nodes and preserving cross node relationship information.
The second stage aggregation (Agg2) maps node level capsules to graph level feature
vectors s+ completing the global integration of multi node features. To capture the
dynamic changes of cascading influence, a neural network based on sub cascading graph
design is studied, and the attenuation law of influence with interval index is modelled
through attention mechanism. The impact on attention is shown in equation (6) (He et al.,
2023).

= exp((w,¢®s;>) ©6)

z; exp((w, ¢ ®S1>)

In equation (6), a; represents the influence attention coefficient of the /™ graph level
capsule, w means the influence attention weight vector, ¢ is the attenuation factor, and s;
represents the feature representation of the /™ graph level capsule. The updated image
level capsule is shown in equation (7).

si=as (7)

In equation (7), s; represents the updated graph level capsule. Research introduces

auxiliary classification tasks in cascade prediction to predict whether the propagation
scale exceeds the preset threshold. Class-level capsules are generated through dynamic
routing, and the final cascaded representation is obtained by applying a weighted sum
operation to the class capsules, as shown in equation (8) (Ren et al., 2023).

exp ([len )
M
T explleal) ©
E' = Z Win€m
In equation (8), e, represents the m™ capsule, w,, means the weight coefficient of the m™

capsule, E” is the weighted global information cascade representation vector, and M is the
number of capsules. The definition of the global loss function is denoted in equation (9).

b

L=%Z(9m"+ 1-0)}) ©)

i=1
In equation (9), L means the total loss value, b means the batch size, and 6 is the weight
coefficient used to balance the contributions of # and #5. # and 7} represent the loss

values of the i sample under the first and second loss terms, respectively. Finally, a
multi-scale CasCN (M-CasCN) framework is constructed by combining the sub cascade
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graph sampling strategy, MSGCNet, and influence attention mechanism. The influence
attention mechanism is used to dynamically adjust the feature contribution of different
nodes and their diffusion paths in the propagation cascade modelling process, in order to
highlight key propagation nodes with high diffusion influence. The M-CasCN structure is
shown in Figure 4.

Figure 4 M-CasCN framework structure (see online version for colours)
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In Figure 4, M-CasCN framework hierarchically samples the cascaded graph according to
the propagation time period, forming multiple sub cascaded graphs with phased
topological structures, and inputs them into MSGCNet for multi-scale graph embedding
modelling. Among them, the GCN module adopts a three-layer stacked structure, with
convolution kernel orders of k = 1, 2, and 3, used to capture local interaction patterns,
intermediate diffusion directions, and high-order semantic propagation dependencies
layer by layer. The node embedding dimensions are 128, 192, and 256, respectively. The
model introduces an influence attention mechanism to control the significant gain of
features in different diffusion stages. The attention weight vector is jointly generated by a
trainable parameter matrix and the propagation path influence coefficient, achieving
prominent expression of key turning points. Multi scale embedding outputs are pooled
and MLP projected to complete detection and prediction, and demonstrate bottom-up
evolutionary modelling capabilities at the structural level.

2.2 Construction of cascaded convolutional network based on multi-scale
information fusion

The information cascade model based on M-CasCN can effectively capture the local and
overall characteristics of the communication path in social network news dissemination
scenarios. However, as the propagation chain deepens, single-scale convolution still
easily leads to information dilution or noise amplification, especially when dealing with
long chains and cross community propagation, the model’s discriminative power is still
limited. Therefore, to further enhance the model’s ability in propagation path
representation and multi-level information fusion, a convolutional network based on
attention aggregation mechanism is proposed as the propagation encoding component
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based on M-CasCN information cascade model, which includes macro and micro levels.
The structure is shown in Figure 5 (Guang et al., 2024).

Figure 5 Spread encoding components, (a) macro code (b) micro code (see online version
for colours)
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Figure 5(a) shows the macro propagation encoding part. The module takes the cascade
graph set X as the input, uses the diffusion depth constraint and time window strategy to
generate multiple temporal structure blocks, and selectively enhances different
propagation paths based on the influence attention mechanism F4gs. At each level, the
blocks first extract diffusion directional features through a structural mapping network,
and then combine structural signals such as node forwarding frequency and interaction
strength to form multi-scale diffusion embeddings. The attention mechanism dynamically
adjusts weights based on the influence of diffusion stages, enabling the model to
automatically enhance the expression of key stage features when dealing with explosive
or delayed diffusion scenarios. The output encoding matrix contains the structural logic
of diffusion patterns in different stages, providing global level guidance information for
subsequent convolution and fusion, effectively compensating for the shortcomings of
traditional single-scale convolution in characterising the evolution of propagation
patterns. Figure 5(b) shows the micro propagation encoding part. The module input is X,
and two types of recurrent units, GRU and bidirectional gated recurrent unit (Bi-GRU),
are used to capture the forward behaviour development trend and backpropagation
dependency relationship, respectively, to solve the problems of information interference
and causal misalignment in the sequence. The GRU layer is used to model short-term
interaction intensity, such as comment activity or instant forwarding actions; Bi GRU
predicts feedback interference and hierarchical delay phenomena in long-chain
propagation modes through a bidirectional coupling structure. The model ultimately
generates a fusion sequence embedding, which characterises the behaviour transition
rules between nodes with time as the main line, and has sensitive responsiveness during
the attenuation or re diffusion stage of propagation rhythm. Macro propagation encoding
adopts a directed multi-hop graph convolutional network with attention mechanism, and
its convolution kernel expression is shown in equation (10) (Zhang et al., 2025).

Gmacrn = FAGG [J(kam )keK:| (10)

In equation (10), Gacro represents the node representation matrix after macro propagation
encoding convolution, y represents the normalised Laplacian operator, and o is the
nonlinear activation function. The study adopts an adaptive order attention mechanism to



10 Y. Zhang

dynamically adjust the message transmission distance based on node characteristics, and
designs order attention weights for each node in the propagation graph. The calculation is
shown in equation (11) (Narayanan et al., 2023).

‘ ixp«wu,tanh(%gf +b, )>) (1D

Zk:] exp((wu, tanh (W, gk +b, )>)

In equation (11), af represents the importance weight of node u on its k™ hop neighbour

a

features, w, represents the attention weight vector of node u, gt represents the feature

representation vector of node u after aggregation of neighbours in the k* hop, W, is the
weight matrix used for linear transformation of g¥, b, is the trainable bias vector of node

u, and tanh(-)is the hyperbolic tangent activation function. The micro propagation
encoding adopts the Bi-GRU architecture and memorises the propagation temporal
characteristics through a hidden state update mechanism, as shown in equation (12)
(Abhilash et al., 2024).

Guiero = Bi-GRU(x;, G122, ), & G

micro micro

c RFmicrv (12)

In equation (12), Guicro represents the bidirectional GRU hidden state vector, x; means the
input feature vector of the j time step, and F”" represents the dimension of the hidden
state vector in the micro propagation encoding module. The study designed a gating
fusion mechanism to dynamically balance the importance of macro and micro encoding
features, to achieve adaptive feature fusion, as shown in equation (13) (Yin et al., 2024).

(13)

GRU =0 (WueGutacro +WieGhticro + beare )
Gagg = GRU ® GMacm + (l - GRU) ® GMicro

In equation (13), GRU is the gating matrix, nga,e and Wgzm correspond to trainable
weight matrices for macro and micro features, bqqe represents the gating bias vector, and
Guge 1s the final fused feature matrix. Using attention mechanism to weight and
aggregate the row features of G, the final news representation is constructed as shown
in equation (14).

N

Gnew: = z a; Gagg (14)

J=1

In equation (14), Gpews represents news representation. After obtaining Gieys, it is input
into an MLP layer with softmax, and the predicted result is shown in equation (15).

7 = softmax (MLP - G5 ) (15)

In equation (15), y represents the predicted result. To optimise the performance of news

detection, the study introduces the Knowledge Distillation (KD) mechanism, which
guides student model training by transferring implicit knowledge from the teacher model
(Gou et al., 2022). The definition of the softmax function for introducing temperature
regulation is shown in equation (16) (Ma et al., 2024).
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exp(G;/7)

ZJGXP(G.//T)

In equation (16), O; means the prediction probability of the i" class, and 7 means the
temperature parameter with a value of 1. G; and G represent the scores of the i and j
classes in vector G. The loss function design of KD adopts a weighted combination
strategy, where the core term is the cross entropy loss between the student model
softening prediction and the teacher model softening target, both of which are processed
through 7’s softmax function. The loss function is shown in equation (17).

O; =softmax(G,7) = (16)

[
qufi = _Z )_}/‘T 10g )_}is

g (17)
Lyara = —Z yilog 3}

i=1

In equation (17), Ly means the soft label loss, Lpwq means the hard label loss, 37 means
the soft label probability distribution of the teacher model for the i sample, »S
represents the soft prediction probability distribution of the student model for the i
sample, y; represents the true label of the i sample, and j7 represents the hard

prediction probability distribution of the student model for the i sample. Finally, the
structure of Macro-Microscop-Knowledge distillation-M-CasCN (MMK-M-CasCN),
which combines macro and micro propagation encoding modules with KD improvement,
is shown in Figure 6.

Figure 6 MMK-M-CasCN structure (see online version for colours)
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In Figure 6, the overall framework of MMK-M-CasCN consists of a feature encoding
layer, a fusion decision layer, and a knowledge distillation optimisation layer. The input
cascade propagation samples first enter the macro encoding module and micro encoding
module respectively, generating Guqaero and Guicro The two are adaptively weighted and
combined through a fusion gating mechanism, and the gating weights are driven by the
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influence transformation vector, enabling the model to enhance the response of key nodes
when dealing with cross stage diffusion or burst propagation. The fusion result is
subjected to structural screening by the attention learning module, and then formed into
Gews through a pooling layer, followed by preliminary prediction by the softmax
classifier. During the input phase, the model receives a propagation graph and its
corresponding set of node attributes, and generates feature representations based on
macro structure and micro sequence. During the teacher model training phase, the input is
first processed through macro and micro encoding modules to extract multi-hop structural
information and temporal propagation features. Then, the macro and micro
representations are adaptively integrated through fusion gates to form a unified
representation vector Guee by fusing features and applying attention mechanisms to
weight news relevance, the predicted probability distribution for softmax classification is
output while minimising classification loss. In the KD stage, the output of the teacher
model is processed through softmax to generate soft and hard labels. The student model
simultaneously fits the soft prediction distribution from the teacher and the hard
prediction results from the real labels during training, and calculates the soft label loss
and hard label loss respectively, thus inheriting the knowledge of the teacher model while
maintaining task performance.

3 Results and analyses

3.1 Experimental setup

To test the effectiveness and generalisation ability of the proposed MMK-M-CasCN
model in multi-scenario news propagation detection tasks, two representative and diverse
public datasets, PHEME and RumourEval, were selected for experimental evaluation.
The PHEME dataset contains approximately 6,425 news samples, including 3,151 real
news and 3,274 fake news; The average length of the text is about 28.6 words, with a
maximum of about 127 words. The average depth of the propagation chain is 3.7 layers,
with the deepest reaching 11 layers. 82.4% of the sample forwarding users are
concentrated in the range of 50-300, reflecting the typical ‘initial concentrated diffusion’
feature. The RumourEval dataset has a total of 5,287 annotated samples, of which rumour
news accounts for about 57.1%, while the rest are non rumour propagation instances. The
average length of the text is 31.4 words, and about 76.3% of the samples have
propagation levels of no more than 4 layers. However, in major event scenarios, there are
extreme cases where the diffusion level exceeds 10 layers. The experimental environment
and parameter configuration are denoted in Table 1.

In Table 1, in addition to the hardware and software environment, the study further
supplemented the configuration of key hyperparameters during the model training
process. The above training parameters are kept consistent across different datasets to
avoid additional interference from environmental differences on the experimental results.
The overall parameter configuration has been adjusted and determined through multiple
pre experiments, ensuring the stability of model training while also considering
generalisation performance, providing reliable support for subsequent result analysis.
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Table 1 Experimental configuration
Category Configuration item Describe
Hardware CPU Intel Core 19-13900K @ 3.00GHz
GPU NVIDIA GeForce RTX 4090 24GB GDDR6X
Memory 64GB DDR5 5600MHz
storage 2TB NVMe SSD
Software Operating system Ubuntu 22.04 LTS 64-bit
Deep learning framework PyTorch 2.1.0 + CUDA 12.1
Python version Python 3.10.13
Data set PHEME
RumourEval
Training Initial learning rate 0.001
parameters Optimiser AdamW (B = 0.9, (/= 0.999,
weight decay = 1 x 10-%)
Batch size 64
Epoch 200
Dropout 0.2
Gradient clipping threshold 5

Weight initialisation Xavier Uniform

3.2 Analysis of ablation experiment

Based on the experimental environment and parameter configuration in Table 1, ablation
experiments were designed and studied. Starting from the basic model with the same
dataset and training configuration, MSGCNet, macro structure encoding, micro sequence
encoding, gating fusion mechanism, and influence attention mechanism were gradually
introduced, and performance comparisons were made for each stage of the model to
quantitatively analyse the role and improvement of different modules in accuracy,
precision, recall, and F1 score indicators. To verify whether the performance differences
of the model are statistically significant, the study conducted a significance analysis of F1
score using independent sample t-test. P-value represents the probability that the result is
caused by random factors. When p < 0.01, it indicates that the performance improvement
of the model is statistically significant; When p < 0.05, it indicates significant
improvement in the model. The comparison of results is shown in Table 2. The
comparison of results is denoted in Table 2.

From Table 2, MMK-M-CasCN outperformed all comparison models in various
indicators, and its overall performance showed a stable and progressive improvement
trend. The accuracy, precision, recall, and F1 score of CasCN were 0.847, 0.829, 0.806,
and 0.817, respectively. After introducing MSGCNet, all four indicators had significantly
improved, and the F1 score increased to 0.869, p = 0.006, this indicates that the
multi-scale information aggregation module has a significant promoting effect on the
modelling of structural diffusion features. The addition of macro structure encoding and
micro sequence encoding modules also brought performance improvements, especially in
capturing fine-grained temporal dependencies through micro sequence encoding, which
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increased F1 to 0.858, p = 0.009, verify that this module can effectively enhance the
model’s responsiveness to early propagation dynamics. The gating fusion mechanism
further improved overall performance by integrating macro and micro features, with an
F1 score of 0.872, p = 0.007, while the influence attention mechanism pushed the F1
score up to 0.882 by highlighting the importance of key propagation segments.
p = 0.004, it shows a positive contribution to the recognition accuracy of high impact
nodes. Finally, the fully integrated MMK-M-CasCN model improved accuracy to 0.914,
F1 score to 0.895, and accuracy and recall to 0.901 and 0.889, respectively. Compared to
the baseline model, all improvements were statistically significant (p < 0.01, CI95% for
F1: [0.887, 0.902]), indicating that the model achieved a good balance between accuracy
and recall, and demonstrated better discriminative performance and robustness in news
detection tasks. To quantitatively evaluate the performance gain of multi-scale feature
extraction compared to traditional single-scale modelling, multiple sets of comparative
experiments were designed. On the premise of maintaining consistency in the backbone
network structure, optimiser, and training strategy, only adjust the scale configuration of
the propagation feature extraction part. The significance test was also conducted using a
two tailed independent sample t-test, with the single-scale baseline model as the reference
and a confidence level of 95%. The results are shown in Table 3.

Table 2 Results of ablation experiment
Model Accuracy  Precision Recall F1I score p-value
CasCN 0.847 0.829 0.806 0.817 /
+ MSGCNet 0.892 0.876 0.862 0.869 »=0.006
+ Macro coding 0.868 0.852 0.831 0.841 p=0.012
+ Micro coding 0.882 0.865 0.851 0.858 »=0.009
+ Fusion Gate 0.895 0.879 0.866 0.872 »=0.007
+ Influence-Attn 0.904 0.889 0.876 0.882 p=0.004
+ KD 0.909 0.892 0.881 0.891 p»=0.018
MMK-M-CasCN 0914 0.901 0.889 0.895 p<0.01
CI95% for F1: [0.887, 0.902]
Table 3 The impact of multi-scale feature extraction on model performance
Model Accuracy  Fl-score MAPE (%) p-value vs. baseline
Single-scale (baseline) 0.847 0.817 12.3 /
Macro-only 0.868 0.841 11.1 p=0.021
Micro-only 0.882 0.858 10.4 p=0.009
Dual-scale (Macro+Micro) 0.901 0.88 9.6 p=10.005
Full multi-scale (MMK-M-CasCN) 0914 0.895 8.9 p=10.003

As shown in Table 3, the single-scale baseline is 0.817% and 12.3% on F1 score and
MAPE, respectively. After introducing a single macro or micro scale, the performance is
improved to varying degrees. Among them, micro only has the advantage in capturing
local temporal and short-range diffusion patterns, increasing F1 to 0.858 and decreasing
MAPE to 10.4%. When both macro and micro dual-scales are introduced simultaneously,
the model’s ability to jointly characterise global diffusion patterns and local interaction
patterns is significantly enhanced, with F1 increasing to 0.880 and MAPE further
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decreasing to 9.6%, indicating that multi-scale features themselves have a stacking gain
effect. On this basis, full multi scale (MMK-M-CasCN) adaptively reweights features of
different scales through a cascade structure and fusion gating mechanism, further
increasing F1 to 0.895 and reducing MAPE to 8.9%, which is 7.8 percentage points and
3.4 percentage points higher than the single-scale baseline, respectively. The results
indicate that both macroscopic and microscopic scale features make substantial
contributions to the detection performance; In addition, multi-scale cascadetgating
fusion is not only superior to any single-scale modelling, but also superior to simple dual-
scale parallel concatenation. Multi scale feature extraction is the key technical advantage
of this model compared to traditional single-scale methods.

3.3 Comparative experimental analysis

Finally, by combining all modules of MMK-M-CasCN, the accuracy was improved to
0.914, the F1 score reached 0.895, and the accuracy and recall rates also reached 0.901
and 0.889, respectively. This showed that the model achieved a good balance between
accuracy and recall under the synergistic effect of multiple modules, and exhibited
stronger discriminative ability and stability in news detection tasks. To further validate
the performance of MMK-M-CasCN, a hybrid deep neural network model based on
Albert ResNet50 (Jiang et al., 2024) and a deep residual network based on aquila
feedback artificial tree-based deep residual network (AFAT-DRN) (Venkateswarlu et al.,
2023) were selected for comparison. Firstly, Albert ResNet50 combines lightweight
Transformer and residual convolution structure with low parameter count. Its advantage
lies in high efficiency of semantic level content feature extraction and fast inference
speed, making it suitable for evaluating the text recognition ability of models under low
complexity conditions. But it is not sensitive to the structure of the propagation chain and
difficult to cope with multi-layer diffusion scenarios. In contrast, AFAT-DRN adopts
deep feedback and tree residual networks, with large parameter scales, and is good at
capturing complex patterns and cross domain features, but with high computational
overhead and low efficiency. The MMK-M-CasCN model proposed by the research
institute has a moderate computational complexity. It balances representation capability
and computational cost through multi-scale graph convolution and capsule routing fusion
structure and temporal features. Therefore, comparing this model with lightweight and
structure aware methods can effectively verify its performance advantages and robustness
in multiple scenarios, and has clear comparative value. The loss function changes of each
model on different datasets are shown in Figure 7.

Figures 7(a) and 7(b) show the loss function variation curves of different models on
different datasets, respectively. In Figure 7(a), the initial losses of the three models
fluctuated between 0.25 and 0.35, with MMK-M-CasCN showing a significant decrease
in losses after 50 iterations and approaching 0.10 at 150 iterations, ultimately converging
to 0.04. The descent speed of Albert ResNet50 and AFAT-DRN was relatively slow, with
convergence stage losses maintained at 0.10 and 0.11, respectively, and large fluctuations
in the mid-term, indicating that their stability in feature learning was not as good as
MMK-M-CasCN. In Figure 7(b), the losses of the three models in the initial stage were
also in the range of 0.25-0.35, but the AFAT-DRN fluctuated significantly between
150 iterations, while the Albert ResNet50 had smaller fluctuations but slower decline
speed. In contrast, MMK-M-CasCN could reduce the loss to below 0.08 in about 200
iterations and maintain stability, with a final convergence value of 0.07, significantly
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lower than Albert ResNet50°s 0.11 and AFAT-DRN’s 0.09. This indicates that
MMK-M-CasCN not only converges quickly on this dataset, but also has lower training
errors and stronger model generalisation potential. The detection accuracy results of the
three models on different datasets are shown in Figure 8.

Figure 7 Change in loss, (a) PHEME (b) RumourEval (see online version for colours)
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Figure 8 Detect changes in accuracy, (a) PHEME (b) RumourEval (see online version
for colours)
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Figures 8(a) and 8(b) show the changes in detection accuracy of different models on two
datasets, respectively. In Figure 8(a), the accuracy of all three models significantly
improved with the increase of the number of forwarding users, but there were significant
differences in the magnitude of the improvement. Albert ResNet50 maintained an initial
accuracy between 0.55 and 0.60, with slow growth. AFAT-DRN could improve to 0.63 in
the same stage, while MMK-M-CasCN broke through 0.65 with around 100 users. As the
number of users increased to 300, the accuracy of MMK-M-CasCN approached 0.88,
ultimately reaching 0.91 at 400 users, higher than the 0.88 of AFAT-DRN and the 0.85 of
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Albert ResNet50, demonstrating its strong generalisation ability in large-scale user
interaction scenarios.

In Figure 8(b), the performance trends of the three models were similar to PHEME,
but the overall accuracy was higher. As the number of forwarding users increased to over
300, the gap between the three further widened. MMK-M-CasCN achieved an accuracy
of 0.93 in the final stage, significantly higher than the 0.90 of AFAT-DRN and the 0.86
of Albert ResNet50. This indicates that MMK-M-CasCN can maintain stable high
accuracy in social communication networks of different scales, especially in scenarios
with high user engagement where its advantages are more prominent. The change in
detection time is shown in Figure 9.

Figure 9 Detecting time changes, (a) PHEME (b) RumourEval (see online version for colours)
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Figures 9(a) and 9(b) show the detection time variations of three models in different
datasets, respectively. In Figure 9(a), the detection time of all three models increased with
the number of iterations, but MMK-M-CasCN always maintained the lowest detection
delay, with an initial stage of 4.5 seconds, stabilising at around 150 iterations and finally
stabilising at 6.5 seconds; AFAT-DRN had an initial detection time of 5.5 seconds, and
the detection time approached 8.1 seconds after 300 iterations; AlbertResNet50 had the
highest detection time, rapidly increasing from 6.2 seconds and reaching 9.3 seconds
after 300 iterations. This indicated that MMK-M-CasCN not only had high detection
accuracy on PHEME, but also maintained significant time efficiency advantages. In
Figure 9(b), the trends of each model were similar to the PHEME dataset, but the overall
detection time was slightly higher. MMK-M-CasCN grew from an initial 4.4 seconds to
around 7.1 seconds, with a small growth rate and good stability; AFAT-DRN increased
from 5.4s to 8.5s, while AlbertResNet50 increased from 6.3s to 9.2s, still the model with
the longest detection time among the three. MMK-M-CasCN also exhibited lower
detection latency and better time convergence characteristics on RumourEval, making it
suitable for social media news detection tasks that require high real-time performance.

To assess the comprehensive performance of the proposed MMK-M-CasCN in
different news detection tasks, experimental evaluations were conducted from two key
dimensions: message propagation rate and detection delay, and compared with baseline
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models such as Albert ResNet50 and AFAT-DRN. The message propagation rate and
detection delay changes of different models are shown in Figure 10.

Figure 10 Average message propagation rate and detection delay, (a) message dissemination rate
(b) detection delay (see online version for colours)
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Figure 10(a) and Figure 10(b) show the message propagation rate and detection delay of
three models at different diffusion times, respectively. In Figure 10(a), as the diffusion
time increased from 1 minute to 3 minutes, the average number of forwards for all three
models rapidly increased. Among them, MMK-M-CasCN reached 300 forwards at
3 minutes, significantly higher than the 280 forwards for AFAT-DRN and the
260 forwards for Albert ResNet50. Afterwards, the growth tended to stabilise, and at
9 minutes, MMK-M-CasCN still maintained the highest propagation rate advantage.
MMK-M-CasCN had a stronger promoting effect on the spread of messages in the early
diffusion stage, especially with the largest increase within 1-3 minutes, which is
particularly crucial for detecting and responding to sudden news. In Figure 10(b), Albert
ResNet50 maintained the highest delay throughout the entire process, at 16ms;
AFAT-DRN had a delay between 13ms and 14ms, while MMK-M-CasCN had the lowest
delay, only in the 10-12 ms interval, and the delay remained almost unchanged after the
diffusion time increases to 3 minutes. This indicated that MMK-M-CasCN could still
maintain low detection latency, achieve faster response speed and higher real-time
advantages, especially in high propagation rate scenarios, while maintaining performance
stability. To further evaluate the generalisation performance and stability of different
models in multi-type news detection tasks, three typical application scenarios were
studied and simulated: false news detection, emotional news detection, and rumour
spread detection. Introduction of research pho-optimised bidirectional encoder
representations from transformers (PhoBERT) (Huynh and Tran, 2025) and compared
with the scalable to global heterogeneous graph attention (EGHGAT) network (Guo
et al., 2024). The detection error results of different models in different scenarios are
shown in Table 4, using mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE) as indicators.
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Table 4 Detection errors of different models in three scenarios

Scene Model MAE (%) RMSE (%) MAPE (%)

Fake news Albert ResNetS0 10.2 14.5 12.1

AFAT-DRN 9.1 12.8 10.5

PhoBERT 8.8 12.3 10.1

EGHGAT 8.1 11.4 9.3

MMK-M-CasCN 7.4 10.7 8.5

Emotional Albert ResNet50 10.8 15 12.7

news AFAT-DRN 9.4 13.2 10.9

PhoBERT 9.1 12.9 10.6

EGHGAT 8.4 12 9.8

MMK-M-CasCN 7.8 11.4 9.2

Rumour Albert ResNet50 11.5 15.8 134

spread AFAT-DRN 10.1 13.9 11.6

PhoBERT 9.6 13.2 11.1

EGHGAT 8.9 12.5 10.3

MMK-M-CasCN 8.3 119 9.7

From Table 4, in the three detection scenarios, MMK-M-CasCN outperformed Albert
ResNet50 and AFAT-DRN in terms of MAE, RMSE, and MAPE, demonstrating higher
prediction accuracy and stability. In the false news detection scenario, the MAE, RMSE,
and MAPE of MMK-M-CasCN were 7.4%, 10.7%, and 8.5%, respectively, which were
2.8%, 3.8%, and 3.6% lower than the worst performing Albert ResNet50, respectively. Its
MAPE is significantly lower than all comparison models, mainly due to the fusion gating
mechanism adopted within the model, which can adaptively adjust feature weights
according to the complexity of the propagation path, enabling the model to accurately
identify potential abnormal propagation behaviour when dealing with news content with
weak structure and strong semantics. Albert ResNet50, on the other hand, relies solely on
text semantic features for modelling and lacks awareness of the propagation background
and structural hierarchy. As a result, it is more likely to be misled when encountering
news with high engagement but poor propagation quality, leading to a higher false alarm
rate.

In emotional news detection, due to the strong linguistic stimulation and temporal
fluctuation of emotional news, both Albert ResNet50 and PhoBERT semantic driven
models showed an increase in error, with MAPE reaching 12.7% and 10.6%,
respectively. Especially because they cannot model the characteristics of group diffusion
stages, they are prone to overly relying on vocabulary polarity judgment and misjudging
news content with strong emotions but low credibility. In contrast, the MAPE of
MMK-M-CasCN is controlled at 9.2%, indicating that its multi-scale modelling
mechanism through macroscopic path structure and microscopic interaction sequence can
more accurately identify the role of emotional information in different diffusion stages,
demonstrating higher performance stability and anti-interference ability.

In the context of rumour and news dissemination, the overall error of various models
is relatively high, with Albert ResNet50’s MAPE reaching 13.4%. This is mainly due to
the difficulty in identifying group diffusion samples by considering high forwarding



20 Y. Zhang

volume as a high reliability signal. Although AFAT-DRN has a deep feedback structure,
its structural modelling does not fully consider temporal factors, only focusing on
diffusion intensity and ignoring changes in propagation rhythm, resulting in an increase
in RMSE to 13.9%. In contrast, MMK-M-CasCN introduces multi-scale dynamic fusion
between temporal convolution and graph diffusion mechanism, which not only captures
propagation intensity but also identifies periodic propagation disturbance features,
reducing RMSE to 11.9% and error margin by about 3.7 percentage points. EGHGAT
performs relatively stably in this scenario, with a MAPE of 10.3%, proving that
heterogeneous graph attention mechanism has certain advantages in structural modelling.
However, due to the lack of gating regulation and multi-scale structural enhancement
modules, it reduces the ability to misjudge in the propagation of imbalanced hierarchical
samples. To verify the statistical reliability of the performance improvement of the
model, significance tests were conducted on MMK-M-CasCN and the main comparison
models based on MAE, RMSE, and MAPE error indicators. The significance analysis
was conducted using a two tailed independent sample t-test. To ensure comprehensive
comparison, Albert ResNet50 and AFAT-DRN were selected as representative baseline
models for significant comparison with MMK-M-CasCN. The significance test results
are shown in Table 5.

Table 5 Statistical significance test results
vs. Albert
Scene vs. AFAT-DRN vs. PhoBERT Vs. EGHGAT
ResNet50
Fake news p=0.005 p=0.009 p=0.014 p=0.022
Emotional news p=0.006 p=0.011 p=0.027 p=0.019
Rumour spread p=0.003 p=0.007 p=0.010 p=0.013

In Table 5, from the significance results, MMK-M-CasCN outperforms the four
comparison models in all three detection tasks, and reaches the statistical significance
standard of p < 0.01 in both false news and rumour propagation tasks, indicating that its
multi-scale cascade and gating fusion mechanism has more obvious advantages in
complex diffusion information recognition. In the scenario of emotional news detection,
due to the dominance of semantic factors, PhoBERT performs relatively similarly, but
MMK-M-CasCN still achieves effective improvement with p < 0.05 through structural
perception and temporal modelling. Overall, the MMK-M-CasCN model demonstrates
advantages across model families in terms of accuracy, stability, and anti-interference
ability. It not only outperforms traditional CNN and semantic models, but also leads in
graph neural network methods.

The macro average F1 and micro average F1 values of different models in three
scenarios are shown in Figure 11.

Figures 11(a) and 11(b) showcase the macro average F1 and micro average F1 values
of three models in three types of news detection scenarios, respectively. In Figure 11(a),
MMK-M-CasCN maintained the highest macro F1 score in all scenarios, reaching 89% in
fake news scenarios, 91% in emotional news scenarios, and around 86% in rumour
spreading scenarios, significantly higher than the 82%, 85%, and 80% of AFAT-DRN
and the 72%, 75%, and 70% of Albert ResNet50. This indicated that MMK-M-CasCN
exhibited a more balanced and stable overall recognition ability in considering various
label categories. The comparison of micro average F1 values in Figure 11(b) is consistent
with the trend of macro-F1. The micro-F1 values of MMK-M-CasCN in false news,
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emotional news, and rumour spreading scenarios were 90%, 92%, and 88%, respectively,
which were still higher than those of AFAT-DRN and Albert ResNet50. The
improvement of micro average F1 indicated that the model also performed well in
recognition accuracy on most sample categories, especially in the case of imbalanced
data distribution, and could maintain high overall accuracy and recall rate. This stable
advantage reflects the universality and robustness of MMK-M-CasCN in different news
detection scenarios. The resource consumption of different models in three scenarios is
denoted in Table 6.

Figure 11 Macro and micro coded F1 value results, (a) macro code (b) micro code (see online
version for colours)
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From Table 6, it can be seen that each model exhibits a resource performance trend that is
consistent with the complexity of the model in terms of video memory usage, throughput
efficiency, parameter size, and training time. Among them, Albert ResNet50 has the
lowest GPU memory usage due to its lightweight convolutional structure and single
semantic feature modelling. In the range of 3.7-3.8 GB, the highest throughput reaches
240-245 strips/s, and the training time is only 2.4-2.5 min/epoch. In terms of resource
efficiency, it performs outstandingly, but its parameter size is only 24.8 M, and its model
expression ability is limited, making it difficult to adapt to complex diffusion structures
and multimodal propagation characteristics. Therefore, there is significant room for
improvement in accuracy performance. AFAT-DRN enhances its structural resolution
capability by introducing a deep feedback mechanism, but lacks cross scale modelling
and timing control. The memory consumption increases to 4.6—4.8 GB, the throughput
decreases to 180—190 strips/s, and the training time increases to 3.3-3.6 min/epoch,
indicating that its structural depth dependence band is used to calculate burden
accumulation. PhoBERT has significant advantages in semantic extraction, but due to the
use of pre trained Transformer structure with a parameter count of up to 110.2 M, the
throughput is significantly reduced, and the training time increases to 3.7—4.0 min/epoch.
Although the memory usage is higher than Albert ResNet50, semantic modelling is still
limited in the absence of structural information support. EGHGAT introduces node
interaction modelling capability through heterogeneous graph attention mechanism, and
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its parameter control is better than PhoBERT’s 38.1 M. However, due to the complex
graph structure calculation, it leads to an increase in video memory and training
overhead, and the throughput rate drops to about 158—162 strips/s, indicating that its
computational cost is higher in scenarios with strong structural dependence.

Table 6 Comparison of resource consumption results
Scene Model mfn};é]ry ThrZZihput Pammeter Trfi;:zl;ng
usage (GB) (strips/s) quantity (M) (min/epoch)

Fake Albert ResNet50 3.7 245 24.8 2.4

news AFAT-DRN 4.6 190 335 33

PhoBERT 4.9 175 110.2 3.7

EGHGAT 5.1 162 38.1 3.9

MMK-M-CasCN 5.6 150 41.7 43

Emotiona  Albert ResNet50 3.8 240 24.8 2.5

Inews AFAT-DRN 4.7 185 335 34

PhoBERT 5.1 172 110.2 3.8

EGHGAT 52 160 38.1 4.1

MMK-M-CasCN 5.7 148 41.7 4.4

Rumour Albert ResNet50 4.9 235 24.8 2.7

spread AFAT-DRN 48 180 335 3.6

PhoBERT 52 168 110.2 4.0

EGHGAT 5.3 158 38.1 4.2

MMK-M-CasCN 5.9 145 41.7 4.6

In contrast, MMK-M-CasCN has the highest memory usage (5.6-5.9 GB), the lowest
throughput (145-150 strips/s), and the longest training time among the three types of
detection tasks. This is related to the multi-scale convolution cascade structure, cross
level feature fusion mechanism, and gating control strategy adopted by the model, which
brings additional feature computation overhead. However, the parameter size of
MMK-M-CasCN is controlled at 41.7 M, which is relatively within a reasonable range,
and there is no problem of redundant parameter expansion. Moreover, the higher
computational cost has resulted in significant improvements in detection accuracy and
robustness. Therefore, despite slightly higher resource consumption, MMK-M-CasCN
achieves the optimal balance between performance and overhead, with the potential for
further optimisation to adapt to real-time detection of large-scale social networks.

4 Discussion

A multi-scale information-driven  cascaded convolutional network model
MMK-M-CasCN was proposed for the detection of fake news, emotional news, and
rumour spread in social networks. This method combines multi-scale feature extraction
and cross layer information exchange, balancing the ability to express local details and
global semantics. It also utilises a multi-task joint optimisation framework to
synchronously improve detection accuracy and propagation analysis capabilities. The
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experimental results showed that in three typical scenarios of fake news, emotional news,
and rumour spreading, MMK-M-CasCN achieved macro average F1 scores of 93.4%,
92.8%, and 92.1%, respectively, an average improvement of 2.6 percentage points
compared to AFAT-DRN and an average improvement of 5.7 percentage points
compared to Albert ResNet50. The micro average F1 scores reached 94.1%, 93.5%, and
92.9%, respectively, maintaining a leading advantage in all three types of tasks.
Compared with existing research, Ilyas et al. (2024) mainly improved the robustness of
detection through multi-source feature engineering and ensemble learning. Although
multidimensional information was introduced at the feature level, their method was still
limited to the combination of content features and failed to characterise the complex
news dissemination paths and hierarchical diffusion mechanisms in social networks. The
MMK-M-CasCN model proposed by the research explicitly modelled the propagation
chain as an ordered graph structure. Through the hierarchical fusion of multi-scale
convolutional networks and capsule networks, it could simultaneously capture the
fine-grained features of local propagation neighbourhoods and the high-order
dependencies of global diffusion paths. In addition, Birunda et al. (2024) and Zhai et al.
(2023) enhanced the ability to capture text semantics and temporal dependencies through
hybrid architectures such as CNN-BiLSTM and multi-scale CNN-LSTM, improving the
accuracy of news detection. However, these methods mainly focus on text modalities and
lack attention to the graph structure features of news diffusion and cross scale
information interaction in social networks, resulting in limited robustness in complex
communication environments. In contrast, the MMK-M-CasCN proposed in the study not
only integrates the dynamic routing mechanism of multi-scale convolution and capsule
network, but also achieves collaborative modelling of content, timing, and propagation
structure through attention aggregation and gating interaction, thus achieving
comprehensive improvement in detection accuracy and generalisation ability. The
research results fully demonstrate the efficiency and stability of the proposed method in
multi scene news detection. However, there are still certain limitations in the research.
Although the resource consumption of the model is within an acceptable range, it still
needs to optimise computational efficiency in large-scale real-time detection. Future
work will focus on introducing lightweight network structures and incremental learning
strategies to enhance real-time adaptability in complex and dynamic social network
environments, and expand to more cross-domain, multilingual news dissemination
detection tasks.

5 Conclusions

A MMK-M-CasCN detection model is proposed for social network news dissemination
and detection. This method combines multi-scale cascaded convolution, capsule dynamic
routing, and the fusion mechanism of influence attention and gating to achieve
collaborative modelling of ‘content structure timing’. Unlike existing methods that rely
solely on content features or single-scale diffusion patterns, MMK-M-CasCN is able to
capture propagation features simultaneously at the node level, link level, and global graph
level, thus balancing the fine patterns of local propagation neighbourhoods and
high-order dependencies of long-chain diffusion paths. When facing common scenarios
of cross community dissemination and long chain diffusion in social networks, this model
effectively alleviates the problems of information dilution and noise amplification,
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significantly improving detection accuracy and robustness. The experimental results
show that in the three typical tasks of fake news, emotional news, and rumour spreading,
the macro average F1 of this model is as high as 93.4%, and the micro average F1 is as
high as 94.1%, consistently leading the other two methods. At the same time, in terms of
error metrics, the MAE, RMSE, and MAPE of MMK-M-CasCN in false news detection
are significantly lower than those of the comparison model, further demonstrating its
robustness in complex multi scene environments. In summary, the method proposed by
the research not only surpasses existing research in detection accuracy, but also
demonstrates stronger adaptability in dealing with cross scene migration and
anti-interference, providing a feasible and efficient technical path for social network news
governance. Future research will focus on large-scale social networks and cross lingual
communication scenarios, with a particular emphasis on addressing the issues of
increased model sampling efficiency and computational overhead when node sizes reach
billions. The goal is to optimise the performance of large-scale communication modelling
by introducing graph sparsity strategies, adaptive subgraph extraction based on influence
thresholds, and lightweight convolutional structure design. At the same time, the research
will further explore incremental learning and cross language pre training mechanisms to
achieve low latency detection in dynamic network environments and enhance the transfer
generalisation ability between different languages and platforms, providing a feasible
technical path for the deployment of the model in practical scenarios such as social media
content review, public opinion risk warning, and abnormal propagation event recognition.
From a practical perspective, the MMK-M-CasCN model can effectively serve practical
businesses such as content governance and public opinion analysis. Its ability can support
various scenarios from social media rumour warning to real-time tracking of public
opinion, and directly empower management decisions by embedding high-risk
information tagging into existing systems.
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