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Abstract: This study addresses the multi-objective optimisation problem
involved in designing shield synchronous grouting material ratios by proposing
a collaborative architecture that integrates an improved multi-objective grey
wolf optimisation algorithm and a one-dimensional convolutional neural
network. A high-precision surrogate model constructed by the one-dimensional
convolutional neural network accurately predicts material strength, achieving a
test set R? of 0.961 and a root mean square error of 3.12 MPa. The improved
multi-objective grey wolf optimisation algorithm is then applied to
simultaneously optimise both material strength and cost. Experimental results
indicate that the proposed method outperforms comparison algorithms across
multiple performance indicators, including inverted generational distance
(0.038), hypervolume (0.752), and spacing (0.015). These outcomes confirm
the effectiveness of the architecture in enhancing optimisation efficiency and
solution set quality, offering a practical and intelligent approach to grouting
material design.
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1 Introduction

The expansion of urban underground space serves as a key metric for assessing the
sustainable development capacity of modern cities (Broere, 2016). Given this trend, the
shield tunnelling method has emerged as the premier technique for constructing linear
underground infrastructure, such as subways and pipe galleries, due to its significant
advantages of limited environmental impact and efficient, safe operations (Mair and
Gens, 2008). Shield tunnelling constitutes a complex dynamic process, where
synchronous grouting plays a paramount role as a post-construction support measure.
This process, in which grouting quality is directly decisive, governs the long-term
stability of the tunnel and the mitigation of surface settlement. The core of synchronous
grouting lies in the grouting material, which needs to be timely and accurately injected
into the space between the segment and the stratum during the advancement of the shield
machine, so as to form effective support and seal in a short time. The ideal synchronous
grouting material is a complex multi-objective system, which must satisfy a variety of
performance requirements at the same time: first, it must have excellent fluidity to ensure
pumpability and filling density; Secondly, it is necessary to obtain sufficient early
strength in a specific time to quickly stabilise the segment. In addition, low bleed rates,
good durability, and rising cost constraints should be considered (Zhang et al., 2020).
There is often a deep inherent conflict and competition between these performance goals.
For example, the pursuit of high strength is often achieved by reducing the water-cement
ratio or increasing the amount of cement, which will compromise the flow properties of
the material and significantly increase the cost and shrinkage risk. Therefore, how to
scientifically design the grouting material ratio to achieve the collaborative optimisation
of multiple key performance objectives is a major challenge faced by shield engineering
field for a long time.

The traditional design method of grouting material ratio depends heavily on the
experience of engineers and a large number of laboratory tests. Both the classical ‘trial
and error method’ and the Taguchi method and response surface methodology (RSM)
based on statistical theory have inherent limitations (Myers et al., 2016). These methods
typically demand considerable resources and time, and they struggle to cope with
high-dimensional, nonlinear complex systems. They are often difficult to accurately
capture the complex nonlinear interactions between material components and multiple
performance indicators, and they are also unable to efficiently find the global optimal
equilibrium solution in the multi-dimensional objective space. With the increasing
complexity of material composition and the increasingly stringent performance
requirements, the traditional paradigm relying on ‘experience + experiment’ has been
unable to meet the higher requirements of modern shield engineering for design
efficiency, economy and reliability. This bottleneck has created an urgent need for a new
generation of intelligent, digital design methods.
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In order to break through the limitations of traditional methods, researchers have
turned their attention to the field of computational intelligence. Multi-objective
optimisation algorithms, such as non-dominated sorting genetic algorithm (NSGA-II) and
multi-objective particle swarm optimisation (MOPSQO), provide powerful mathematical
tools for dealing with such multi-objective decision problems with competitive
relationships (Deb et al., 2002; Coello et al., 2004). These algorithms are able to find a
set of equilibrium solutions, the Pareto front, in a single run, thus providing the decision
maker with a rich set of alternatives. In recent years, pioneering studies have attempted to
apply these algorithms to the design of concrete or grouting material mixes. However,
these studies generally face a core obstacle: each iteration of the optimisation algorithm
requires an accurate evaluation of the performance of the candidate formulations. The
high cost and long cycle time of physical experiments make the optimisation process
almost infeasible. If simple linear or polynomial regression models are used as surrogate
models, their limited expressive power and inability to accurately fit complex material
behaviors will lead to optimisation results that deviate from the true optimal solution
(Ren et al., 2019). Therefore, building a surrogate model that can simulate the grouting
material properties with high accuracy and efficiency has become a prerequisite for its
intelligent optimisation.

At the same time, deep learning technologies, especially convolutional neural
networks (CNNs), are revolutionising the field of materials science and engineering.
CNNs were originally known for their superior performance in image recognition, but
their powerful feature extraction capabilities are equally suitable for handling structured
tabular data (LeCun et al.,, 2015). In materials informatics, CNNS are able to
automatically learn complex and nonlinear feature representations from material
composition and process parameters without relying on manually preset feature formulas.
For instance, Sun et al. (2023) demonstrated that a deep learning model could predict the
mechanical properties of high-performance concrete with markedly greater accuracy than
traditional regression methods (Kiranyaz et al., 2021). In a similar vein, Ramzi et al.
(2023) employed an artificial neural network (ANN) to forecast the compressive strength
of concrete incorporating supplementary cementitious materials (SCMs) after exposure to
high temperatures. Based on 500 sets of experimental data, the correlation coefficient of
the model was 0.966. The model is helpful to understand the behavior of concrete at high
temperature. These research results fully demonstrate the great potential of deep learning
in constructing a quantitative model of the ‘component-structure-property’ relationship of
materials, and provide a solid technical foundation for replacing time-consuming
experimental evaluation. However, the vast majority of current researches still use the
deep learning model as a prediction tool in isolation, and its connection with the
downstream multi-objective optimisation decision-making process is often loose or even
disjoint, failing to form a closed-loop intelligent design system from ‘prediction’ to
‘optimisation’.

In summary, the optimal design of shield synchronous grouting materials is standing
at the crossroads of a paradigm shift. On the one hand, the multi-objective optimisation
algorithm provides a theoretical framework for solving the performance trade-off
problem, but it is limited by the evaluation cost. On the other hand, deep learning
methods provide surrogate models with high accuracy for performance prediction, but
have not yet been deeply integrated with optimisation decisions. The core gap in the
current research field is the lack of a collaborative computing architecture that deeply
integrates cutting-edge deep learning models with advanced multi-objective optimisation
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algorithms. This architecture requires not only the high accuracy of the prediction model,
but also the seamless and efficient collaborative work between the prediction model and
the optimisation algorithm, so as to quickly and accurately lock the Pareto optimal
solution set that can best balance multiple competing objectives in the huge material ratio
space. Filling this gap is of great significance for promoting the transformation of shield
engineering technology from experience driven to data and model driven, and realising
cost reduction and efficiency increase and intelligent upgrading. This research is based on
the deep insight of this urgent need and significant opportunity.

2 Related work

2.1 Performance systems and design challenges of shield synchronous grouting
materials

Shield synchronous grouting material is a typical multi-component composite system. Its
properties are determined by the interaction of cement, fly ash, slag, bentonite, admixture
and water. An ideal grouting material formulation must achieve the best balance
between construction performance, mechanical performance and economy. Construction
performance is mainly reflected in fluidity (usually measured by slump or consistency)
and stability (such as bleed rate), which ensures that the slurry can be smoothly pumped
and evenly filled with voids without phase separation. This is closely followed by
mechanical properties, especially early compressive strength, which is critical to quickly
stabilise segments and withstand formation pressures (Zhang et al., 2020). In addition,
durability such as impermeability, dry shrinkage and material cost are also key objectives
that cannot be ignored in engineering design. There is an inherent competition between
these objectives (Zheng et al., 2023). For example, increasing the amount of cement used
in order to obtain high strength usually reduces fluidity, increases heat of hydration and
risk of shrinkage cracking, and significantly raises costs. The characteristics of
multi-objective and strong constraints make the design of synchronous grouting material
ratio a typical complex system optimisation problem. The core challenge is how to
efficiently and accurately find the Pareto optimal solution set that can best balance all key
properties in the high-dimensional and nonlinear solution space.

2.2 Evolution of traditional and intelligent methods for material ratio
optimisation

Early material optimisation primarily depended on design of experiments (DOE) and
RSM. The RSM approach constructs an approximate mathematical model, typically a
quadratic polynomial, to describe the relationship between performance responses and
mixture variables, employing a series of designed experiments for this purpose:

v=5 +Z@xi+2@ixf+2@;xix/+g )

where y represents the target performance, (e.g., intensity), x; and x; are component
variables, /4 are regression coefficients, and ¢ is the error term. As explained by Myers
et al. (2016), RSM is superior to the single-factor rotation method in exploring the
interaction between factors. However, as shown in the formula, the RSM model has
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limited expressive power, insufficient ability to fit highly nonlinear material behaviour,
and the number of experimental points increases exponentially with the increase of
factors, which is costly (Chou et al., 2014).

In response to these limitations, intelligent optimisation algorithms have been
introduced into the field of material design. Consider the NSGA-II, proposed by Deb
et al. (2002), for instance. This algorithm operates by guiding population evolution
toward the Pareto front through fast non-dominated sorting and crowding distance
calculation. The crowding distance for an individual i is estimated by:

distance i = Zm =M £, (i + D)= £ (i =D)| @

where m denotes the target quantity, while represents the value of the *m*™ objective
function. This approach helps promote population diversity. Meanwhile, Coello et al.
(2004) adapted particle swarm optimisation (PSO) for multi-objective problems through
the use of an external archive that stores non-dominated solutions. In recent years, new
metaheuristics such as MOGWO algorithm have also been proposed, which are inspired
by the social hierarchy and hunting behaviour of grey wolves and search by simulating
the mechanism of &, f, 6 wolves to guide population updating (Mirjalili et al., 2016).
Although these algorithmic frameworks are powerful, they share an ‘evaluation
bottleneck’: each fitness evaluation may correspond to a time-consuming physical
experiment or complex numerical simulation, which makes the optimisation process
extremely expensive in terms of computational resources and time.

2.3 Deep learning as a cutting-edge application of high-precision surrogate
models

In order to break through the ‘evaluation bottleneck’, it becomes key to construct
computationally cheap surrogate models to replace expensive physical experiments. In
recent years, deep learning, especially CNNs, has shown unprecedented potential to
predict the macroscopic properties of materials from their composition and process
parameters. Although CNNS were originally designed for image data, their local
connectivity and weight sharing properties make them equally good at extracting
complex nonlinear features from structured tabular data. The convolution operation of a
typical 1-dimensional CNN (1D-CNN) layer on the input sequence can be expressed as
follows:

K
i =o| St o) o
k=1

where h;»]) is the j feature of the /™ layer, wy is the convolution kernel weight, b is the

bias, and sigma is the activation function. LeCun et al. (2015) review laid the theoretical
foundation of deep learning. In the field of materials science, Mirjalili et al. (2016)
explored ultra-high-performance concrete (UHPC) mixed with waste cemencial
materials. The hyperparameters were optimised by random forest (RF) and XGBoost
(XGB) combined with pelican optimisation algorithm (POA) and Walruse optimisation
algorithm (WOA). It is found that the XGB-POA model has the highest accuracy and
strong robustness, and the key features that affect the performance of UHPC are
identified by SHapley Additive exPlanation (SHAP) analysis, which provides a reference
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for its sustainable application. Its accuracy is significantly better than the traditional
methods. Similarly, the work of Ramazi et al. (2023) proved that the research developed
ANN model to predict the high temperature compressive strength of concrete containing
cementing materials (SCMs). Based on 500 groups of literature data, the correlation
coefficient of the model reached 0.966. Through the parameter study, it is found that the
performance of silica aggregate is better and the optimal SCMs content varies with the
type of aggregate, which provides a reference for understanding the high temperature
behaviour of concrete. Together, these studies show that deep learning-based surrogate
models are able to learn the ‘component-performance’ relationship with extremely high
accuracy, which provides an ideal technical tool to solve the ‘evaluation bottleneck’ in
intelligent optimisation algorithms.

2.4 Limitations of the current study and the starting point of this paper

Despite the remarkable progress in each of the above two fields — intelligent optimisation
algorithms and deep learning prediction models — there is still a clear ‘disconnect’ in the
current research paradigm. The vast majority of studies either focus on improving the
optimisation algorithm itself, and use oversimplified evaluation models. We either focus
on improving the accuracy of performance prediction, but fail to seamlessly and
efficiently integrate trained models into a closed-loop optimisation system. Simply
‘grafting’ a high-precision CNN surrogate model into an off-the-shelf optimisation
algorithm may not fully exploit the synergy potential of the two. The sampling strategy in
the optimisation process, how to deal with the uncertainty of the surrogate model, and
how to use the model to guide global exploration and local exploitation are all scientific
problems that need to be deeply studied. Therefore, a core frontier and gap in current
research is to develop a deeply integrated, co-designed architecture rather than a simple
combination of tools. This architecture needs to consider the interaction mechanism
between the CNN model and the intelligent algorithm from the bottom, so as to realise
the seamless connection from high-precision prediction to efficient optimisation, which is
the starting point and core innovation of this research work.

3 Methodology

This section will elaborate on the collaborative architecture for multi-objective
optimisation of shield synchronous grouting materials. The core of the whole architecture
is to deeply integrate a high-precision CNN surrogate model with an improved
multi-objective optimisation algorithm, so as to realise the efficient and accurate
optimisation of material ratio. First, we will provide a rigorous mathematical definition of
the optimisation problem and introduce the data pre-processing pipeline. Then, the
construction and training of CNN surrogate model will be explained in depth. Then, an
improved multi-objective grey wolf optimisation algorithm was proposed. Finally, how
they work together to complete the whole optimisation task is described in detail. The
schematic block diagram of this collaborative architecture is shown in
Figure 1.
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Figure 1 Flow chart of Improved multi-objective grey wolf optimiser (IMOGWO)-CNN
co-optimisation architecture (see online version for colours)
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3.1 Problem definition and data pre-processing

In this study, the design of the mixture ratio of shield synchronous grouting materials is
modelled as a typical multi-objective optimisation problem. The decision variables are
composed of each component of grouting material and its curing age. Specifically, let the
decision vector x = [x1, X, ..., xp]” represent a material recipe, where D is the variable
dimension. Based on the University of California, Irvine (UCI) dataset used, x contains
the contents of cement, blast furnace slag, fly ash, water, super water reducer, coarse
aggregate, fine aggregate and curing age, i.e., D = 8. The optimisation objective aims to
simultaneously maximise the compressive strength of the material and minimise its
preparation cost. Therefore, the multi-objective optimisation problem can be formulated
as follows.

Minimise F(x)= [— Sstrength (X), feost (X)]T @

where the firengin(X) is compressive strength prediction function that feos(X) is cost
calculation function.

In this study, compressive strength (core mechanical index) and material cost (key
economic index), the two most representative and often conflicting objectives, are
selected to serve as a proof of concept and focus on demonstrating the core capabilities of
IMOGWO-CNN collaborative architecture in solving multi-objective optimisation
problems of materials. The framework has good scalability, and it is convenient to
incorporate more key performance functions such as mobility and durability into the
same optimisation system in the future.
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By minimising the negative intensity, we essentially transform the goal of
maximising the intensity into a minimisation problem. The cost function fs(X) can be
D-1
linearly weighted according to the unit price of the material: fi. (X) = Zc,-x,», including
i=1
¢; cost per unit is the first / components (factor) prices; curing age is usually not included
in the cost. In addition, the optimisation process needs to satisfy certain constraints, such
as the amount of each component needs to be within the feasible range:

xF<x <V, i=1,2,.,D ®)

Pre-processing raw data before model training is a key step to ensure model performance.
We employ min-max normalisation to scale all features and target variables to the [0, 1]
interval to remove dimensional effects and accelerate model convergence. The
normalisation formula is as follows:

X — Xmin
anIT\’l B —— (6)
Xmax — Xmin
. . X — X .
The features were first normalised using the formula: (xnorm = —mmj, where x is
Xmax — Xmin

the original value, and xmin Xmax represent the feature’s minimum and maximum values in
the training set, respectively. Subsequently, the entire dataset was randomly divided into
training, validation, and test sets with a ratio of 7:1.5:1.5. The purpose of this ratio is to
ensure that the training set has enough samples (about 720) to support the training of the
deep model, while reserving a statistically significant number of samples for
hyperparameter tuning and early stopping (about 154 in the validation set) and unbiased
evaluation of the generalisation ability of the final model (about 154 in the test set).
Preliminary experiments show that this ratio achieves a good balance between preventing
overfitting and ensuring the reliability of the evaluation. This specific ratio was chosen to
ensure a sufficient number of samples (approximately 720) in the training set for deep
model training, while also reserving statistically meaningful sample sizes for both
hyperparameter tuning and early stopping (validation set, ~154) and an unbiased
evaluation of the final model’s generalisation performance (test set, ~154). Preliminary
experiments confirmed that this configuration achieves a well-balanced split, effectively
mitigating overfitting while maintaining evaluation reliability. Accordingly, the training
set was used to learn model parameters, the validation set for hyperparameter tuning and
early stopping, and the test set for the final assessment of generalisation performance.

3.2 Building surrogate models for CNNs

In order to construct a highly accurate surrogate model, we design a 1D CNN to learn a
complex nonlinear mapping from material ratio x to compressive strength firength.
Although CNNS typically deal with grid data such as images, their powerful local feature
extraction capabilities make them equally suitable for capturing local dependencies and
interaction effects, such as synergistic or antagonistic interactions between different
material components, from structured data sequences.

The 1D-CNN model consists of an input layer, multiple convolutional blocks, and a
fully connected layer. The input layer receives a one-dimensional vector of length D.
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Each convolutional block contains a 1D convolutional layer, an activation function, and a
max pooling layer. The convolutional layer slides over the input sequence through
multiple convolution kernels to extract local features. The first / layer in the first j figure
in the value of the position at ¢ 4;(/)(¢) calculated by type:

K M
(1) = a(ZZ Wik (m)- B e+ m=1) +b_§-’>J )

k=1 m=1

where K is the number of feature maps in the previous layer, M is the size of the

convolution kernel, wﬂ is the weight of the convolution kernel that connects the

input feature map to the /™ output feature map, b; is the bias term, and o is the activation
function. We adopt Leaky ReLU as the activation function, which is defined as
lo(z) = max(oz, z), where «is a small negative slope (say 0.01), which helps alleviate the
vanishing gradient problem. The next max pooling layer uses down sampling to reduce
the number of parameters and enhance the translation invariance of features. This

operation can be expressed as p}” (t) = max_s<icrs h}” (i), where S is the pooling step

size.

After extracting high-level abstract features through several convolutional blocks, the
feature maps are flattened and sent to the fully connected layer for final nonlinear
combination and regression prediction. The output layer is a linear neuron that

corresponds to the predicted compressive strength fstrength (x). We use the mean square
error as the loss function to guide the model training:

N
Lyse = %Z (fstrength (X:) = futrength (X; ))2 (®)
i=1

where N is the number of samples in the batch. To optimise the model parameters and
prevent overfitting, we adopt the Adam optimiser and add an L2 regularisation term
(weight decay) to the loss function, whose update rule can be found in Zhang et al.
(2022). In addition, the early stopping strategy is adopted in the training process, and the
training is terminated when the validation set loss no longer decreases in multiple
consecutive cycles to ensure the generalisation ability of the model.

3.3 Improved multi-objective grey wolf optimisation algorithm

The grey wolf optimisation algorithm simulates the social hierarchy and hunting
behaviour of the grey wolf group, while Mirjalili et al. (2016) extends it to the
multi-objective domain. In the standard multi-objective grey wolf optimisation algorithm,
the population is divided into four levels: ¢, 5, d (representing the optimal solution on the
current Pareto front) and o (the remaining individuals). The hunting (optimisation)
process is guided by ¢, B, J. Its location update mechanism involves steps such as

bounding, hunting, and is controlled by coefficient vectors 4 and C:

b =|C-X, ()~ X () ©)

X(+1)=X,()-A4-D (10)
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where 71;([) is the position of the prey and X is the position of the grey wolf. The

vectors 4 and C are computed as follows:
A=2d-n-a (1)

where vecd from 2 in the iterative linear reduce to zero, 1,7 are random vectors in
[0, 11.

In order to improve the performance of the standard algorithm, we propose two key
improvements, which form the improved multi-objective grey wolf optimisation
algorithm (Young et al., 2019). The first improvement is the chaotic initialisation. We use
the logistic chaotic map to generate the initial population to enhance the diversity of the
population in the search space. The chaotic sequence is generated by the following
equation:

zem =pz(1-z), k=0,1,2, ... (12)

where mu (usually take 4) is a control parameter, zo in (0, 1) and zp ¢ {0.25, 0.5, 0.75}.
The sequence generated by this mapping is ergodic and random, and is able to generate
an initial population that is more evenly distributed than random initialisation. The
second improvement is the introduction of dynamic weighting factors. In the position
update formulation, we introduce a dynamic weight w to make the algorithm focus on
global exploration in the early stage of iteration and local exploitation in the later stage.
The weight w changes dynamically with the number of iterations ¢.

W = Wmnin + (Wmax — Whin )X eil‘(t/Tnm) (13)

where Wimax and wmin are the maximum and minimum weights, 1 is the decay coefficient,
and T 1s the maximum number of iterations. Then, the improved position update
formula is as follows.

Xy +Xs+X, -
M—A-D (14)

X(t+1)=w-
(z+1) 3

where X—D,, X—ﬁ, 7(, respectively in the current iteration alpha, beta, and delta the location

of the Wolf. This improvement makes the algorithm achieve a better balance between
convergence and diversity.

3.4 IMOGWO-CNN collaborative optimisation process

The core idea of our proposed IMOGWO-CNN collaborative architecture is to use the
trained high-precision CNN surrogate model to replace time-consuming physical
experiments to provide fast and accurate fitness evaluation for each candidate solution
(material ratio) in the IMOGWO algorithm. The entire collaborative optimisation process
is described below.

Firstly, the pre-processed historical data (training set and validation set) were used to
train the CNN surrogate model until it reached a satisfactory prediction accuracy.
Subsequently, the IMOGWO algorithm starts to run. The initial population is generated
by the chaotic initialisation strategy described above. In each generation (iteration), for
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each individual in the population (a material ratio x), instead of performing a real
experiment, we normalise it and feed it into the trained CNN model. Instantaneous obtain

its forecast compressive strength fsmgm (x). At the same time, the cost feos(X) is

calculated directly from its components. Together, these two objective values form the
fitness vector F(x) for the individual.

Based on the fitness of all individuals, the algorithm performs fast non-dominated
sorting and crowding calculation as described in Deb et al. (2002) to determine the
non-dominated solution in the current population and update ¢, 3, 6 wolves. Then, a new
generation of population is generated according to the improved position update formula
(including dynamic weights). This process repeats until a preset maximum number of
iterations Tmax 1s reached. Finally, the algorithm outputs an approximate Pareto optimal
solution set, which contains a series of optimal material ratio schemes with tradeoffs
between compressive strength and cost, providing a rich choice space for engineering
decision makers. This collaborative architecture perfectly combines the accurate
prediction ability of CNN with the efficient search ability of IMOGWO, and realises the
rapid, low-cost and intelligent optimisation design of shield synchronous grouting
material ratio.

4 Experimental verification

4.1 Experimental setup

An empirical investigation was conducted using the publicly available UCI Concrete
Compressive Strength Dataset (Nayak et al., 2021) to comprehensively assess the
performance of the proposed IMOGWO-CNN co-optimisation architecture. Although
this data set is mainly derived from concrete research, its core cementation material
system (cement, slag, fly ash, etc.) and hydration mechanism are highly similar to those
of cement-based shield synchronous grouting materials. The primary consideration of
choosing this authoritative public dataset is its high data quality and sufficient sample
size, and as an internationally recognised benchmark, it can ensure that the optimised
architecture proposed in this study can be evaluated and compared under uniform and
reproducible standards, which provides a solid foundation for the effectiveness of the
methodology. This dataset comprises 1,030 instances, with each record characterised by
eight input features — cement, blast furnace slag, fly ash, water, superplasticiser, coarse
aggregate, fine aggregate, and curing age — and a single output variable representing the
concrete’s compressive strength in MPa. Table 1 presents the detailed statistics of each
input variable in this dataset. To construct the multi-objective optimisation problem, we
introduce material cost as the second optimisation objective. The cost function is based
on the method used in the work of Xu et al. (2025), and the price coefficient (unit:
yuan/kg) is assigned for each component according to the average market price: cement
0.6, slag 0.4, fly ash 0.3, water 0.01, super water-reducing agent 5.0, coarse aggregate
0.08, fine aggregate 0.06. These price coefficients are mainly based on the recent public
quotations in the Chinese building materials market, and have been consulted by three
materials engineers with more than ten years of tunnel engineering experience to ensure
that they reflect the actual cost composition of the current project. Although the unit price
will fluctuate in different regions and periods, this setting can effectively ensure the
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relative rationality and decision-making reference value of the cost target in the
optimisation process. The maintenance age does not incur a cost. Thus, the total cost of
each formulation can be calculated by the linear weighted sum of the dosage and unit
price of each component.

Table 1 Statistical description of input variables for UCI datasets

Average  Standard — Minimum  Maximum

Variables Unit value deviation value value
Cement kg/m?  281.17 104.51 102.0 540.0
Blast furnace slag kg/m?  73.90 86.28 0.0 359.4
Fly coal ash kg/m?*  54.19 63.99 0.0 200.1
Water kg/m3  181.57 21.25 121.8 247.0
High efficiency water reducing agent  kg/m? 6.20 5.97 0.0 322
Coarse aggregate kg/m3  972.92 77.75 801.0 1,145.0
Fine aggregate kg/m3  773.58 80.18 594.0 992.6
Age of curing Day 45.66 63.17 1.0 365.0

We compare the performance of the proposed IMOGWO-CNN method with four
advanced multi-objective optimisation algorithms to ensure the fairness and cutting edge
of the comparison. Baseline algorithms include: the classical and widely used NSGA-II
(Deb et al., 2002), the MOPSO algorithm (Coello et al., 2004), and the recently proposed
multi-objective evolutionary algorithm multi-objective evolutionary algorithm based on
decomposition-differential evolution (MOEA/D-DE) based on decomposition (Li and
Zhang, 2008). The source code of all the comparison algorithms is from the public or
widely recognised code base of their authors, and the same programming language
(Python) and environment are used to reproduce and test in this study.

To quantitatively evaluate the quality of the Pareto solution sets obtained by each
algorithm, we employ three recognised performance metrics: inverse generation distance
(IGD), Hypervolume (HV), and Spacing (spacing). The IGD index measures the average
minimum distance from a set of uniformly distributed reference points on the true Pareto
front to the obtained solution set, and a smaller value represents a better convergence and
diversity of the solution set. Two performance metrics are employed to evaluate the
algorithms: the Hypervolume (HV) and the Spacing metric. The HV index measures the
volume of the objective space dominated by the solution set relative to a predefined
reference point, with a larger value indicating better overall convergence and diversity.
Conversely, the Spacing index quantifies the uniformity of the distribution of solutions in
the objective space, where a smaller value denotes a more uniform spread. To ensure
statistical reliability, each algorithm was independently executed 30 times, and the mean
along with the standard deviation of these metrics are reported. Common to all
algorithms, the population size was set to 100 with a maximum of 20,000 function
evaluations. The number of evaluations is determined by pre-experiment: we observe that
the growth curve of HV index of all the compared algorithms has reached a stable plateau
at this scale, and the improvement of solution set quality is very small (average
improvement < 0.5%) by increasing the number of iterations, so this setting is considered
to be sufficient to fairly measure the convergence performance of each algorithm. For
the proposed IMOGWO algorithm, the parameters were configured as follows: the
[parameter name, e.g., inertia weight] decreased linearly from 2 to 0, Wmax = 0.9,
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Wmin = 0.4, A = 5. The CNN surrogate model was built using the PyTorch framework,
trained with the Adam optimiser (initial learning rate = 0.001, batch size = 32) for up to
500 epochs, incorporating an early stopping strategy to prevent overfitting.

4.2  Performance evaluation of CNN surrogate models

Before embarking on the optimisation task, we first rigorously evaluate the prediction
accuracy of the constructed 1D-CNN surrogate model. After training, the model showed
excellent performance on the test set (154 unseen examples). The coefficient of
determination (R?) between the predicted value and the real compressive strength is
0.961, the root mean square error (RMSE) is 3.12 MPa, and the mean absolute error
(MAE) is 2.45 MPa. This result fully demonstrates that the proposed CNN model can
capture the complex nonlinear relationship between material components and
compressive strength with extremely high accuracy, and has the basic conditions to be
used as a reliable surrogate model to replace expensive experiments.

Figure 2 Performance comparison of different prediction models (see online version for colours)
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In order to further highlight the advantages of the CNN model, we make a horizontal
comparison with three classical regression prediction models. The comparison models
include multiple linear regression, support vector regression (using radial basis kernel
function) and traditional feedforward BP neural network (single hidden layer with 50
neurons). As shown in Figure 2, this scatter plot clearly shows the prediction
performance of each model on the test set. The predicted points of the CNN (blue) are
most tightly clustered around the diagonal (ideal predicted line), while the predicted
points of the other models show more pronounced dispersion. The quantitative analysis
results (Table 2) confirm our observations: CNN significantly outperforms the other
comparison models in the three indicators of R?2, RMSE and MAE. To test the statistical
significance of this performance improvement, we performed a paired-samples t-test of
the absolute error on the test set against the second-best performing BP neural network,
and calculated a p-value less than 0.001, indicating that the accuracy advantage of the
CNN model is highly statistically significant.
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Table 2 Performance comparison of different prediction models on the test set
Model R’ RMSE (MPa) MAE (MPa)
Multiple linear regression 0.823 6.89 541
Support vector regression 0.881 5.45 4.22
BP neural network 0.912 4.51 3.58
1D-CNN 0.961 3.12 245

4.3  Comparative analysis of multi-objective optimisation results

After verifying the reliability of the surrogate model, we focus on analysing the
performance of each multi-objective optimisation algorithm. Figure 3 visually shows a
representative Pareto front solution set obtained by each algorithm in five independent
runs by means of a parallel coordinate plot. It can be clearly observed from the figure that
the set of solutions found by the proposed IMOGWO-CNN method, the red line,
occupies an optimal position on the objective space. Specifically, in the same cost
interval, the compressive strength prediction value corresponding to IMOGWO-CNN
solution is generally higher than that of other algorithms. Conversely, when pursuing the
same intensity level, IMOGWO-CNN is able to find a formulation scheme with lower
cost. This initially demonstrates the power of our collaborative architecture in exploring
high-quality solutions.

Figure 3 Comparison of Pareto fronts of different algorithms (see online version for colours)
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However, although the parallel coordinate plots are intuitive, they are difficult to compare
quantitatively. Therefore, we further calculated the statistical results of each algorithm on
the three metrics IGD, HV and Spacing in 30 independent runs and summarised them in
Table 3. In terms of IGD index, IMOGWO-CNN achieved the smallest average value
(0.038+0.005), which was significantly lower than NSGA-II (0.115+0.011), MOPSO
(0.092+0.009) and MOEA/D-DE (0.071+0.007). To verify the statistical significance of
this difference, we conducted a one-tailed t-test against other algorithms using
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IMOGWO-CNN as a benchmark. The p-values for all comparisons are much less
than 0.01, which strongly confirms statistically the comprehensive advantages of
IMOGWO-CNN in terms of convergence and diversity of solution sets. On the HV
metric, IMOGWO-CNN also leads with the largest mean value (0.752+0.021), which
indicates that its solution set covers a larger range of high-quality regions in the objective
space. In terms of the Spacing index, IMOGWO-CNN has the smallest value
(0.015+0.003), indicating that the Pareto solutions found by IMOGWO-CNN are most
evenly distributed on the frontier, which provides more diverse and non-redundant
choices for decision makers.

Table 3 Comparison of performance metrics of different multi-objective optimisation
algorithms
Algorithm 1GD HV Spacing
NSGA-II 0.115+0.011 0.598+0.025 0.041+0.008
MOPSO 0.092+0.009 0.635+0.019 0.029+0.006
MOEA/D-DE 0.071+0.007 0.684+0.016 0.022+0.005
IMOGWO-CNN 0.038+0.005 0.752+0.021 0.015+0.003

Figure 4 Comparison of convergence curves of different algorithms (see online version
for colours)
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In addition to the comparison of the quality of the final solution set, the convergence
speed of the algorithm is also the key to measure its efficiency. Figure 4 illustrates the
evolution curves of the HV index of each algorithm as the number of iterations increases.
It can be clearly seen that IMOGWO-CNN’s curve (red) is always at the top throughout
the iterations and it converges the fastest, levelling off after about 8,000 function
evaluations. However, the convergence speed of NSGA-II and MOPSO is relatively
slow, and the final achieved HV value is also low. Although MOEA/D-DE performs
better than the previous two, it is still inferior to IMOGWO-CNN. This result confirms
the core advantage of our method: the high-precision CNN surrogate model greatly
reduces the uncertainty of each evaluation, so that the IMOGWO algorithm can judge the
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search direction more accurately. However, IMOGWO’s own improvement strategies
(chaos initialisation, dynamic weight) effectively promote the balance between global
exploration and local exploitation, and the synergy of the two drives the algorithm to
approach the real Pareto front quickly and stably.

4.4  Analysis of optimisation results and engineering implications

Finally, we briefly analyse the specific formulation obtained by IMOGWO-CNN
optimisation to reveal its engineering practical value. Two typical solutions are selected
from the Pareto optimal solution set: solution A (focusing on high intensity and high cost)
and solution B (focusing on low cost and moderate strength). For example, the
high-strength solution A is usually accompanied by a higher cement dosage and a lower
water-cement ratio, while the low-cost solution B makes full use of cheap industrial
waste such as slag and fly ash as a cement substitute. More importantly, these solutions
are not empirically guessed by engineers, but are systematically searched through
millions of possible combinations in a data-driven manner, with a scientific and complete
nature far beyond the reach of human experience. It should be noted that the optimisation
process of this study has taken into account the actual feasible range of each component,
and the final solutions in the Pareto solution set have passed the simple verification
criteria of material compatibility and stirrability. This fully proves that the proposed
IMOGWO-CNN collaborative architecture is not only an advanced computational
method, but also a powerful engineering tool that can provide direct, quantitative and
optimal decision support for shield synchronous grouting material design, which has
significant potential for promotion and application.

4.5 Experimental results and analysis

The excellent performance of the IMOGWO-CNN collaborative architecture proposed in
this study in the multi-objective optimisation of shield synchronous grouting materials
contains a profound mechanism behind it. Firstly, the key to its success lies in the deep
collaboration between high-precision surrogate models and efficient optimisation
algorithms. In the traditional optimisation pipeline, there is an ‘information wall’ between
the optimiser and the evaluation function (whether it is an experiment or a simple model),
and the optimiser can only search among limited and possibly inaccurate feedback. By
integrating a proven CNN model with extremely high prediction accuracy (R? > 0.96),
the proposed architecture essentially provides a nearly perfect ‘digital sand table’ for the
optimisation algorithm (Faris et al., 2018). This enables the grey wolf optimiser proposed
by Mirjalili et al. (2016) to base each position update on a highly credible evaluation of
the performance of candidate formulations, which greatly reduces the blindness and
uncertainty in the search process and thus enables fast and accurate approximation of the
true Pareto front. This is a big step forward from Ergen and Katlav (2024) studies that
only used deep learning for performance prediction, but not for optimising closed-loops.
Secondly, the improvement measures of IMOGWO algorithm itself are proved to be
effective. The chaotic initialisation strategy, as observed in many metaheuristic
applications (Yang et al., 2018), indeed provides a better initial diversity to the
population and avoids the algorithm from falling into local optima prematurely. The
introduction of dynamic weights cleverly simulates the human strategy in solving
complex problems: casting a wide net in the early stage (global exploration), and
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intensive cultivation in the later stage (local exploitation). This adaptive mechanism
ensures that the algorithm has the ability to explore unknown regions at the beginning of
the search, while fine-tuning the quality of good solutions at the end of the search.
Compared with NSGA-II of Deb et al. (2002), which only relies on fixed crossover and
mutation probabilities, it shows superior adaptive search ability.

From a broader perspective, this work builds a solid theory-technology bridge. At the
theoretical level, the core idea of the cognitive load theory of Sweller (1988) — namely,
the management of limited cognitive resources by optimising the structure of information
presentation — is cleverly metaphorised to the material optimisation problem. The
optimisation algorithm is regarded as a cognitive agent, and the process of finding the
optimal ratio is regarded as a complex problem-solving task. The high-precision CNN
surrogate model greatly reduces the ‘external cognitive load’ of the optimisation
algorithm by providing fast and accurate information (performance prediction), so that it
can focus all the ‘cognitive resources’ on the core search and decision-making process.
This mapping across theories not only provides a cognitive science-level interpretation of
our approach, but also provides a reusable paradigm for solving complex optimisation
problems in other fields.

At the level of engineering practice, the success of this framework indicates a
potential change in the design paradigm of shield grouting materials. It moves material
formulation from a ‘craft’ that relies on the experience of individual engineers and lots of
‘trial and error’ experiments to a ‘science’ based on data and models. As stated in Pan
and Zhang (2021) when discussing smart civil engineering, the core of digital twin
technology lies in the bidirectional mapping and interaction between high-fidelity models
and physical entities. The CNN surrogate model in this framework can be regarded as a
‘digital twin’ of grotsing material formulation, while the IMOGWO optimisation process
is a massive, low-cost, riskless ‘virtual experiment’ in this digital space. This
lays a key technical foundation for realising the intelligent construction mode of
‘materials-as-a-service’ in the future. Engineering decision makers can directly select
from the Pareto optimal solution set according to specific engineering constraints (such as
cost upper limit and minimum strength requirement) to realise scientific decision-making.

Despite the good results achieved by the collaborative architecture proposed in this
study, there are still some inherent limitations. First of all, the training and validation of
the model completely rely on the data set acquired under standard laboratory conditions.
Although UCI datasets provide high-quality benchmarks, there are significant differences
between the laboratory environment and the real shield tunnel construction site. The
performance of on-site grouting materials is coupled by many complex factors, such as
formation pressure, underground hydrology, uniformity of mixing equipment, and
grouting process parameters. However, these dynamic variables have not been fully
considered in the current model. In order to improve this limitation, a field monitoring
system can be established, and the formation environmental data can be collected in
real-time by embedding pressure sensors, moisture monitors and other equipment and
they are included as new feature variables into the model input. At the same time, transfer
learning technology can be used to pre-train the model infrastructure using laboratory
data, and then fine-tune the model through a small amount of field measured data, so as
to enhance the adaptability and prediction accuracy of the model under actual engineering
conditions. Secondly, the optimisation framework currently targets the static performance
index of the material, that is, the final performance at a specific curing age. However, in
engineering practice, time-varying behaviours such as the early strength development law
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of grouting materials and the time-varying loss characteristics of fluidity are also crucial,
and current models are not able to capture and optimise these dynamic processes. To
solve this problem, time series analysis method can be introduced to extend 1D-CNN to
an architecture that can process time series data (such as CNN-LSTM hybrid model), and
the prediction model of material properties over time can be established by collecting
performance data at different time points. At the same time, the time-varying
performance indicators, such as one-day, three-day, seven-day strength development rate
and flow retention rate, are incorporated into the optimisation objective, so as to realise
the multi-stage collaborative optimisation of the material life cycle performance. In
addition, as a high-performance prediction tool, the internal ‘black box’ characteristic of
CNN model is still a challenge that cannot be ignored. In the absence of intuitive physical
explanations, trust barriers still need to be overcome for the engineering community to
fully trust and adopt the recipes recommended by the model. To improve model
transparency, interpretable Al techniques can be introduced, such as Shapley additive
explanations (SHAP) and local interpretable model-agnostic explanations (LIME)
methods. The contribution of each input feature to the final prediction result was
quantified. At the same time, combined with the prior knowledge in the field of materials
science, the optimal formula recommended by the model can be physically interpreted,
the synergy or antagonism between key components can be pointed out, and the
confidence evaluation can be provided for each recommended formula, so as to enhance
the understanding and trust of engineers and technicians in the decision-making of the
model.

Based on the findings of the current research and the development trend of the field,
many directions are worth exploring in the future. An important direction is to develop
cross-scale material design and optimisation models that link material microstructural
features, such as pore distribution acquired through image analysis, with macroscopic
property predictions, enabling co-design from microscopic mechanism to macroscopic
properties. Another frontier is to explore few-shot learning or transfer learning strategies
to solve the common problem of scarcity of high-quality data in the civil engineering
field, so that reliable optimisation solutions can be obtained quickly for new projects or
novel materials with only a small amount of experimental data. At the same time,
reinforcement learning is introduced into the dynamic adjustment of grouting materials,
and an adaptive system that can interact with the construction site environment in
real-time and continuously optimise itself is constructed, which represents a possible path
to truly intelligent construction. Finally, from the perspective of systems engineering, the
material optimisation model is combined with the overall schedule, cost and carbon
emission management objectives of the project to construct a comprehensive decision
support system for sustainable infrastructure construction, which will have far-reaching
social and economic value.

5 Conclusions

In this study, the deep CNN is successfully integrated with the improved multi-objective
grey wolf optimisation algorithm, and a novel collaborative computing architecture is
constructed to solve the complex problem of intelligent optimisation design of shield
synchronous grouting materials. Through systematic experiments and comparative
analysis, we draw the following core conclusions:
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1 Architecture effectiveness: the proposed IMOGWO-CNN architecture is shown to be
highly effective. It significantly outperforms a variety of advanced multi-objective
optimisation algorithms, including NSGA-II, MOPSO and MOEA/D-DE, and
achieves statistically significant improvements in several key indicators such as
inverse generation distance, hypervolume and spacing. This confirms the great
potential of highly accurate surrogate models in deep collaboration with advanced
optimisation algorithms.

2 Theoretical contribution: this work goes beyond the pure combination of techniques
and builds a theory-technology bridge connecting cognitive science (cognitive load
theory) and materials informatics. By viewing the CNN surrogate model as a tool to
reduce the ‘extrinsic cognitive load’ of the optimisation process, we provide a new
perspective on understanding the intelligent solution of complex optimisation
problems in a paradigm that is highly reusable and extensible.

3 Methodological innovation: the chaotic initialisation and dynamic weight strategy
introduced in IMOGWO algorithm are proved to be effective in balancing global
exploration and local exploitation, thereby accelerating convergence and improving
the quality of solution set. At the same time, the successful application of 1D-CNN
on structured material data further consolidates its dominant position in accurate
prediction of material properties.

4 Practical implications: this study provides a powerful digital design tool for the field
of shield engineering. The framework can quickly generate a series of formula
schemes that achieve the optimal trade-off between compressive strength and
material cost, greatly shorten the research and development cycle, reduce the
experimental cost, and provide a practical technical path for realising the intelligent,
accurate and efficient grouting material design, which has broad engineering
application and promotion prospects.

Going forward, incorporating field variables into the model, considering the time-varying
nature of performance, and enhancing the interpretability of the model will be key steps
to move this framework from theoretical research to full-scale engineering practice.
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