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Abstract: With the widespread application of artificial intelligence technology 
in the field of education, how to achieve emotion recognition and personalised 
regulation within the teaching process has become a significant research focus 
for intelligent teaching systems. This research provides an adaptive music 
teaching system solution based on transfer learning to address the constraints of 
traditional music education in emotional perception and delayed feedback. In 
this framework, learners’ multimodal signals are initially acquired 
synchronously; later, transfer learning is utilised to facilitate emotion 
recognition and cross-domain feature transfer; ultimately, the system achieves 
synchronous optimisation of emotional regulation and learning performance. 
The proposed system shows improvements of 12.4%, 19.1%, 20.3%, and 
17.4% in learning performance, engagement, emotional stability, and user 
satisfaction, respectively, when compared to traditional teaching techniques. 
This offers innovative theoretical frameworks and technological assistance for 
the development of emotion-driven intelligent educational systems. 

Keywords: TL; adaptive music teaching system; emotion recognition; 
intelligent education. 
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1 Introduction 

The rapid growth of artificial intelligence (AI) and educational technology is causing a 
big change in the field of education (Barakina et al., 2021). This change is based on data 
and backed by smart algorithms. Information technology is increasingly driving and 
changing music education, which is an important part of arts education. In the past, 
teachers’ experience and the mood of the classroom were the main ways that traditional 
music lessons worked. Nonetheless, when faced with individual learner variances and 
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variable emotional conditions, it frequently encounters difficulties in attaining authentic 
personalisation and emotional adaptation. In modern higher education, the emotional and 
mental health challenges faced by university students are garnering heightened attention. 
How to use smart technology to improve the music education process, which will lead to 
better emotional experiences and more drive to study, has become a research area of great 
theoretical and practical importance. 

Adaptive learning systems (ALS) have been used a lot in schools in the past few 
years. Their main idea is to change the content and ways of interacting with students 
based on their skill level, progress, interests, and emotional condition. This is how they 
achieve personalised training. Adaptive music teaching systems are a new type of smart 
teaching platform that was created based on this idea (Li and Han, 2023). These systems 
change their teaching methods, suggest topics, or change the settings for music 
generation in real-time based on how well students play music and what they say about it. 
This helps students get more involved and feel better about themselves while they are 
learning interactively. 

Transfer learning (TL), a key machine learning (ML) technique, can solve the above 
problems. The introduction of TL can reduce these limits. By using models trained on 
large-scale emotion identification tasks to specific teaching scenarios, systems can 
accurately recognise and forecast emotions and states with minimal student data, 
supporting adaptive music instruction. Emotion recognition stands as a pivotal 
technology for human-machine affective interaction. Its objective is to discern and 
quantify learners’ emotional states by analysing multimodal data encompassing 
physiological signals, vocal characteristics, facial expressions, or electroencephalogram 
(EEG) waves. In recent years, the convergence of affective computing with deep learning 
(DL) techniques has markedly enhanced both the accuracy and real-time capabilities of 
emotion recognition systems (Afzal et al., 2024). 

With the proliferation of educational informatisation and AI technology, an 
increasing number of researchers are exploring the integration of emotion recognition 
technology into music education to develop intelligent systems capable of perceiving, 
understanding, and responding to students’ emotional states. But there are still certain 
problems with existing adaptive music instruction technologies. First, the accuracy of 
emotion recognition is hampered by the lack of data sources and the fact that samples 
might vary; most systems only use vocal or facial expressions to figure out how someone 
feels, ignoring more consistent signs like EEG or physiological signals. Second, models 
do not generalise well, and their performance generally drops when they are used with 
students from different cultural backgrounds, musical styles, or learning environments 
(Ouyang et al., 2022). Thirdly, the emotional control mechanisms in the systems do not 
have dynamic feedback loops, which makes it impossible to have really adaptive 
interactions. Thus, employing TL to facilitate cross-domain knowledge transfer, augment 
the resilience of emotion recognition, and enhance the customisation of system responses 
represents the principal achievement of this research. 

This research seeks to develop an adaptable music education system grounded in TL. 
The system uses an emotion detection module to detect how university students are 
feeling in real-time and then uses TL techniques to improve the model. This lets it keep 
its ability to recognise emotions with high accuracy even when there is not a lot of data in 
the target domain. When the system notices change in students’ emotions, it 
automatically changes the content and speed of the lessons to improve both emotional 
management and learning outcomes. This study examines the adaptation of teaching 
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content and the evolution and feedback of learners’ emotional states, investigating 
interactive mechanisms enabled by technological intervention, in contrast to previous 
studies. 

This project aims to develop an emotion recognition model utilising deep neural 
networks (DNNs) at the technical implementation level. Using TL techniques, the model 
that was pre-trained on a generic emotion database will be used in a music teaching 
setting. By mapping features and fine-tuning parameters, the system will change and 
improve to fit different groups of learners. At the same time, the system design includes a 
closed-loop emotional feedback system that creates a dynamic cycle of interaction 
between changing the instructional content and detecting emotions. This makes a music 
teaching system that really adapts. Development will use Python and DL frameworks like 
TensorFlow. Real-time feedback and data visualisation will be possible through database 
and front-end interfaces. 

This study presents several innovations: firstly, it proposes an emotion-driven 
adaptive teaching framework based on emotion recognition, thereby enriching the 
affective computing theoretical foundation of intelligent education systems; secondly, by 
integrating TL with emotion recognition methods, it enhances the model’s performance 
across domains and in scenarios with limited data; thirdly, through empirical research in 
music teaching contexts, it reveals the mechanism by which emotional states influence 
learning experience optimisation and pedagogical interventions, providing reference for 
future development of emotion-aware learning systems. 

From a practical standpoint, the results of this study can be immediately implemented 
in higher education, music paedagogy and mental health education. Adaptive music 
teaching systems allow teachers to keep an eye on how their students are feeling in  
real-time. This helps them improve their teaching methods and boosts their students’ 
motivation to learn and their sense of self-efficacy through positive affect regulation. As 
AI and education continue to merge, these technologies are likely to become an important 
part of smart classrooms of the future, giving college students more customised and 
humanised learning experiences. 

In summary, our project, located at the convergence of AI and educational 
technology, seeks to improve the emotional recognition and response functionalities of 
adaptive music teaching systems via TL technology. This investigation seeks to elucidate 
the prospective benefits of intelligent systems in emotional control and educational 
assistance. This project aims to establish the feasibility and application potential of 
emotion recognition in educational affective computing through methodical development, 
experimental validation, and data analysis. It offers both theoretical frameworks and 
practical instances for the development of a new generation of educational systems 
endowed with emotion-sensitive and individualised regulating functionalities. 

2 Relevant technologies 

2.1 Transfer learning 

TL is a major method in the field of ML that tries to use what is already known to 
improve how well people learn new tasks. Conventional ML models often presume that 
training and testing datasets derive from the same distribution and possess comparable 
task objectives. As a result, the performance of the model drops a lot when the data 
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distribution changes, the task changes, or there are not enough labelled examples. The 
fundamental tenet of TL is the transference of information from a source domain to a 
target domain (Zhang and Gao, 2022). This method lessens the requirement for labelled 
data in the target domain and improves the model’s ability to adapt to new tasks or 
settings, as shown in Figure 1. The main goal of TL is to answer this question: how can 
information from existing models be efficiently reused to help learn new tasks when two 
tasks or data distributions are different but yet relevant? 

Figure 1 The framework of TL (see online version for colours) 

Source Task Target Task

Knowledge Learning system
 

Formally defining the TL problem, let the source domain be DS and the corresponding 
source task be DS. Similarly, the target domain is DT and the target task is TT. When  
DS ≠ DT or TS ≠ TT, the objective of TL is to optimise learning performance by leveraging 
knowledge from both DS and TS. Mathematically, this can be expressed as: 

( ) ( )),( (min , ,)
T

T
TL x y D T T Sf

L L f x y f f∼= + Ω  λ  (1) 

where L(·) is the loss function, Ω(fT, fS) is the term that shows how related the source and 
target tasks are, and λ is the balancing parameter. This formula shows the core of TL: it 
uses the regularisation term to transfer and modify source information effectively while 
minimising the loss of the target task. 

TL can be divided into four main forms based on how it transfers knowledge: 
Inductive TL, transductive TL, unsupervised TL, and multi-task TL. Inductive TL deals 
with situations where the source and target tasks are different but have similar data 
distributions. This is usually used when the source task is labelled but the target task is 
not. Transductive TL deals with situations where the source and target tasks are the same 
but have different distributions, like when you need to adapt to a new domain. 
Unsupervised TL is mostly used for unlabelled target tasks, and it works by learning 
latent feature representations to share knowledge. Multi-task TL focuses on learning 
shared representations across multiple tasks at the same time to improve performance. 
These four categories each have their own use cases in different application 
environments, which is the theoretical basis for the TL methodology framework. 

The main problem with TL when it comes to implementation strategies is figuring out 
what transferable knowledge is. There are four main types of TL approaches based on 
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how knowledge is stored: instance-based transfer, feature-based transfer, parameter-based 
transfer, and relation-based transfer. Instance-based approaches make things consistent 
by changing the weights or filtering the samples from the source domain so that they 
match the distributions of the target domain (Chen et al., 2022). Feature-based 
approaches employ feature space transformations or alignment techniques to alleviate 
distributional discrepancies between domains. Parameter-based methods entail the 
sharing or partial sharing of model parameters, such as the weights of neural network 
layers. Relation-based methods move structural relationships between samples or features 
from one task to another. These can be graph structures or semantic relationships. 

Fine-tuning is one of the most common methods used in modern DL frameworks. The 
basic idea is to pre-train a DNN model on data from a source domain and then fine-tune it 
on data from a target domain to acquire some knowledge transfer. For example, 
ImageNet for image tasks or BERT models for natural language processing are big 
datasets that are often used for pre-training (Min et al., 2023). During the fine-tuning 
phase, some layers’ parameters are frozen, and updates are only made to higher-level or 
particular modules. This makes it easy to quickly adapt to the target domain task. This 
method uses generalisable representations learnt from vast amounts of data while 
avoiding the extra work and risk of overfitting that comes with training models from 
scratch. Fine-tuning has shown to be very effective in many areas, including visual 
recognition, audio recognition, text classification, and others. It has become the typical 
way to reuse DL models across tasks. 

Domain adaptation is an important part of TL. Its goal is to achieve high-performance 
generalisation in target domains where the objectives are the same, but the data 
distributions are different. Because the distributions between domains are different by 
nature, models that were trained on source domain data usually do not work as well in 
target domains. As a result, domain adaptation approaches make it easier to share 
information by reducing the differences in feature distribution between the source and 
target domains. Common methods include using maximum mean discrepancy (MMD) to 
align features and using adversarial learning to train domain discriminators (Jiang et al., 
2025). Deep domain adaptation has become a popular area of research in the last few 
years. Domain-adversarial neural networks (DANN) are an example of a model that uses 
adversarial mechanisms to help models learn features that are not specific to a certain 
domain while still being able to tell the difference between tasks. This improves the 
model’s ability to generalise to new domains. 

Feature transfer concentrates on acquiring common feature representations across 
various tasks or data distributions. The basic idea behind it is that there is a hidden high-
dimensional feature space where the data distributions of the source and target domains 
can be translated to similar structural forms. Feature transfer methods usually use 
techniques for extracting features and changing their locations, like linear projection, 
sparse coding, and autoencoders. These methods improve the similarity and alignability 
of domain-specific features by mapping or rebuilding input features. In the DL paradigm, 
convolutional neural networks (CNNs) and Transformer architecture inherently exhibit 
strong feature abstraction capabilities (Cong and Zhou, 2023). As a result, feature transfer 
using multi-task shared layers has become a common method. Additionally, some 
research employs statistical distance metrics, including Kullback-Leibler divergence or 
Wasserstein distance, to quantify and reduce the discrepancy between feature 
distributions of the source and target domains, hence augmenting transfer efficacy. 
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Sharing parts of model parameters across different tasks or domains is how parameter 
sharing strategies help people learn new things. For example, in multi-task learning, tasks 
generally share fundamental network designs to share features. Higher-level networks, on 
the other hand, are optimised for their own tasks. This method lets models pick up on 
common traits between related tasks, which improves performance as a whole. 
Regularisation-based transfer methods are another type of transfer method. They add 
limits to the parameters of the source model inside the loss function of the destination 
job. This lets the model keep some of what it learned from previous tasks while it learns 
new ones. 

In summary, TL bridges current knowledge with novel tasks, giving theoretical 
foundations and technical solutions to data shortages, task dissimilarity, and distribution 
shifts. Its main benefit is allowing robots to quickly adapt to new environments and 
activities through prior experience, like humans, reaching higher-level intelligent 
learning. 

2.2 Adaptive music teaching system 

Adaptive music teaching systems represent a significant research direction at the 
intersection of educational technology and AI. Their goal is to tailor training and 
maximise learning efficiency by dynamically adjusting teaching tactics and content based 
on learners’ differences, learning styles, and musical performance. 

Early research into adaptive music teaching can be traced back to the computer 
assisted instruction phase of the 1980s. The system at that time was primarily constructed 
using expert systems and logical rules, employing pre-set knowledge bases and decision 
tree (DT) to achieve tiered delivery of teaching content (Thaher et al., 2021). These 
systems had basic adaptive capabilities, but they depended a lot on rules that were written 
by hand and expert knowledge. Their capacity for learning and generalisation was 
constrained, making it difficult to meet the varied demands of learners. At the dawn of 
the 21st century, researchers began to focus on how to utilise learning process data to 
construct more refined adaptive models. Some systems, for example, use Bayesian 
networks or hidden Markov model (HMM) to look at changes in how well learners do 
and then change the difficulty and substance of the lessons on the fly. Research during 
this phase substantially propelled personalised teaching, transitioning adaptive music 
training from experience-based to data-informed methodologies. 

At the same time that multimedia technology and online education have improved, 
online music teaching platforms have slowly appeared, and adaptive mechanisms have 
been added to networked teaching settings. Researchers are investigating methods to 
implement customised music education in virtual learning environments. Some systems, 
for example, use musical instrument digital interface (MIDI) technology to record student 
performance data in real-time. They then use algorithms to evaluate the quality of the 
performance and give rapid feedback. Other studies use web services and database 
technology to make remote teaching support possible. This lets teachers change their 
teaching plans on the fly based on how well students are doing. 

Multimodal interfaces that include video, gestures, and voice are slowly taking the 
role of traditional keyboard or touchscreen inputs. Systems can learn more about how 
children learn by using cameras and sensors to record their playing posture, facial 
emotions, or lip movements. For example, several research initiatives have created virtual 
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fingering assistance systems that use cameras to find and fix learners’ hand movements in 
real-time (Wang et al., 2023). 

In recent years, research emphasis has increasingly transitioned towards augmenting 
the intelligence and humanisation of adaptive systems. Some researchers have started to 
focus on the long-term growth of learners and the development of their overall skills. 
They have introduced ideas like learner modelling and learning route recommendation. 
For instance, generative adversarial networks (GANs) or transformer models are 
employed to generate teaching materials, accompaniment music and practice pieces, 
thereby enhancing the diversity and creativity of system content (Takale et al., 2024). 
Such research advances the evolution of adaptive music teaching systems from 
supplementary teaching tools to intelligent teaching partners. 

Recent studies have also looked on system explainability and fairness in schooling. 
As algorithms get more complicated, the black-box nature of how systems make 
decisions has become more obvious. Researchers suggest incorporating explainable AI 
techniques to improve the clarity of recommendation and feedback systems. For example, 
showing feature weights or using rule extraction methods helps teachers and students 
understand how the system makes decisions, which builds trust and acceptance. To 
eliminate learning disparities caused by data biases in personalised systems, researchers 
have suggested model designs based on fair learning and privacy protection. This will 
make adaptive music teaching systems more in line with educational ethics and social 
values. 

In summary, adaptive music teaching systems, as a significant innovation within 
educational technology, have evolved from their early stages of computer-assisted 
instruction to a new era of intelligent teaching that integrates AI, learning analytics, and 
multimodal interaction. This process will give music education more and more strong 
technology backing and theoretical underpinnings for new ideas. 

2.3 Emotion recognition 

Early emotion recognition systems predominantly employed traditional ML approaches 
based on rules and feature engineering. Typical algorithms include support vector 
machines (SVM), HMM, and DT. A shared attribute of these methodologies was their 
dependence on manually crafted features. For example, local binary patterns or  
scale-invariant feature transformations were used to recognise facial expressions, and 
mel-frequency cepstral ccoefficients (MFCC) or Pitch were used to recognise speech 
emotions (Zhu et al., 2024). and examining frequency-domain and time-domain 
characteristics in physiological signal recognition, including heart rate variability and 
EEG power spectral density. Even though these methods worked well in some early 
studies, they could not be used in a lot of different situations since they were not very 
expressive, and the data distributions were too complicated. 

As DL became more popular, emotion recognition technologies became mostly based 
on data. DNNs use multi-layered nonlinear transformations to automatically extract high-
level semantic data. This greatly improves the accuracy and reliability of emotion 
recognition. CNNs are great at recognising emotions in pictures because they can 
automatically pick up on spatial elements in facial images, like muscle movements and 
micro-expressions. Recurrent neural networks (RNNs) and their variants, long short-term 
memory (LSTM) networks, are extensively utilised in speech and temporal emotion 
recognition, effectively capturing the dynamic attributes of emotional signals over time. 
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In recent years, models that use attention mechanisms and Transformer structures have 
made emotion recognition even better. 

In the field of facial expression recognition, research has expanded from  
two-dimensional static images to three-dimensional dynamic sequences. Early systems 
primarily relied on the facial action coding system (FACS) rules to encode facial action 
units, whereas modern systems utilise deep convolutional networks (DCNs) to directly 
learn spatial-temporal features from video sequences, enabling the recognition and 
estimation of continuous emotions (Karnati et al., 2023). For example, models like  
3D-CNN, C3D, and ConvLSTM can record both spatial texture changes and temporal 
dynamic information at the same time. This makes it much easier to recognise 
complicated emotions. This series of technological advancements has progressively 
shifted visual emotion recognition from discrete classification towards continuous 
prediction and multidimensional modelling. 

Physiological signals are generally generated by autonomic nervous system reactions, 
rendering them less vulnerable to subjective manipulation and so enabling them to more 
accurately represent genuine emotional experiences. EEG signals, due to their great 
temporal resolution, are extensively utilised for real-time emotion detection and brain 
state analysis. Studies show that there are strong links between distinct frequency bands 
of brainwaves and emotional states. DCNs and Sequence Networks have shown excellent 
results in recognising emotions from EEG signals in recent years. They automatically 
extract complicated spatial and temporal information from multi-channel inputs. 

Furthermore, emotion recognition research confronts many obstacles. First, data 
diversity and generalisability are issues: emotional expression varies greatly by culture, 
gender, and age. Distribution disparities between datasets sometimes hinder model 
transferability. Second, emotions are ambiguous and changing, therefore they rarely fit 
into stable categories. The move from discrete recognition to continuous estimation is an 
important research area. Thirdly, annotation and interpretability are difficult since 
identifying emotions is subjective and expensive, and deep models are hard to explain in 
real-world situations because they are black boxes (Hassija et al., 2024). Researchers 
have suggested methods like self-supervised learning, meta-learning, explainable models, 
and cross-cultural emotion recognition to make systems stronger, more open, and more 
universal in order to deal with these problems. 

Emotion recognition technology has progressed from conventional feature-based 
approaches to DL-based intelligent modelling and is currently at the stage of multimodal 
and explainable fusion. As sensing technologies, computing power, and large-scale 
models continue to improve, emotion detection systems of the future will be more 
accurate, work in real-time, and work across different fields. They are ready to provide 
more value in education, healthcare, entertainment, and mental wellness. 

3 System design and implementation 

The TL-based adaptive music education system is built on a closed-loop logic of 
perception, recognition, optimisation, adjustment, and feedback. As shown in Figure 2, 
the system’s goal is to make emotion recognition and instructional content work together 
in a dynamic way through multi-layered module collaboration. The system is made up of 
five main modules: data gathering and pre-processing, emotion identification and 
modelling, TL optimisation, adaptive teaching material adjustment, and system interface 
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and visualisation. From the bottom up, these five modules make up the system’s input 
layer, analysis layer, intelligent optimisation layer, instructional regulation layer, and 
interactive feedback layer. They work together to let the system see and understand how 
learners are feeling in real-time, so it can provide them with tailored replies to their 
questions. 

Figure 2 Architecture of the adaptive music teaching system (see online version for colours) 

Perception

Recognition

Adjustment

Optimisation

Feedback

Source data

Target data

Source Task

Target Task

Knowledge 
transfer

Data sampleFeature 
extraction

 

3.1 Data acquisition and preprocessing module 

The module is the main part of the whole TL-based adaptive music instruction system. Its 
main job is to see, get, and standardise the data needed for recognising emotions and 
giving feedback on lessons. The way this module is built directly affects the quality of 
training for later models and the performance of TL. It is a key part of making sure the 
system is stable and accurate. This study utilises a multimodal fusion acquisition and a 
unified feature preprocessing technique. Data from different sources is mapped into a 
common feature space to meet the input needs of the upper-layer DNN (Liao et al., 
2023). This is done using a standardised signal collection interface and feature 
engineering procedure. 

The system uses multimodal sensing units to collect emotion-related signals and 
interaction behaviour data from learners while they are learning music. This module 
simultaneously acquires facial expression sequences from video monitoring, speech 
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signals from audio capture, and EEG data from physiological sensors. During collection, 
the system uses a unified sample frequency synchronisation method to make sure that 
multi-channel data is aligned in time. Drivers convert each sort of signal into digital form 
and store it in an organised database (Kostakis and Kargas, 2021). This makes sure that 
the data is always accurate and can be processed in real-time. All signals are sent to the 
preprocessing pipeline in fixed-window segments so that they may be processed in 
batches and the model can be trained consistently later. 

The goal of data preprocessing is to get rid of noise, scale changes, and temporal drift 
from the raw signals. This makes feature representation more stable. First, all input 
signals are denoised in the frequency domain using bandpass filters to get rid of low-
frequency baseline drift and high-frequency interference. Let x(t) be the original signal 
and H(f) be the filter transfer function. The filtered signal can be written as: 

{ }{ }1( ) ( ) ( )y t F H f F x t−= ⋅  (2) 

where F and F–1 are the Fourier transform and inverse Fourier transform operations, 
respectively. This method makes sure that the signal is clear in the effective frequency 
band, which gives a clean database for further feature extraction. For each feature 
dimension xi, its standardised representation is: 

i i
i

i

x
z

−
=

μ
σ

 (3) 

where μi is the average of feature xi, and σi is its standard deviation. After standardisation, 
all features follow a distribution with a mean of 0 and a variance of 1. 

The data gathering and preprocessing module is the main part of emotion recognition 
and TL optimisation. Its output directly affects how accurate and adaptable the next 
model inference is. Overall, this module establishes a robust technical foundation for the 
system’s emotion recognition, model optimisation, and instructional adaptation through a 
stable, scalable multimodal data acquisition and standardised preprocessing workflow. 

3.2 Emotion recognition and modelling module 

This module is the main part of the TL-based adaptive music teaching system. Its job is 
to accurately extract emotional characteristics from multimodal input data and transfer 
them to the right feature domain. It not only recognises the emotional states of learners in 
real-time, but it also transfers knowledge from the source domain (general emotion 
datasets) to the target domain (music learning situations). This keeps the recognition 
accuracy high even when there are not many target samples. 

The system uses a DNN-based emotion recognition framework for its model 
architecture. A hierarchical structure that combines convolutional and fully linked layers 
creates a high-dimensional abstract representation of multimodal information. The input 
layer gets the fused tensor X output from the module that collects and cleans up the data. 
The convolutional layer uses parameter sharing to automatically find local dependency 
features in the time series. It then outputs a feature mapping matrix that is triggered by 
ReLU (Lara-Benítez et al., 2020). After that, this goes into a fully connected layer to 
create high-level emotional feature variables h. A Softmax function is used in the model’s 
output layer to make probabilistic predictions about different emotional states. This may 
be written mathematically as: 
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where zi stands for the linear output that goes with the ith emotion category, and C stands 
for the total number of emotion categorisation categories. This function allows the model 
to output the probability distribution for each emotion category, which makes it possible 
to recognise the learner’s emotional state in more than one way. 

This work implements a TL technique predicated on feature alignment inside this 
module to facilitate model transfer between domains. The system initially engages in  
pre-training on a comprehensive emotion dataset (source domain) to acquire universal 
emotion feature representations. After that, the feature mapping function ϕ(·) projects 
data from the source domain and target domain onto a shared feature space. This makes 
sure that the feature distributions are the same in both domains. Let Ps(Xs) be the 
distribution of features in the source domain and Pt(Xt) be the distribution of features in 
the target domain. The goal of feature transfer is to make the difference in distribution 
between the two as small as possible (Hosna et al., 2022). This goal for optimisation can 
be put into writing as: 

( ) ( )( )min ,O s tL D X X=
φ

φ φ  (5) 

where D(·,·) is the function that measures the distance between feature distributions. This 
research utilises MMD as the optimisation objective for distribution distance, quantifying 
the similarity between distributions across domains via kernel function mapping in  
high-dimensional feature space, thus facilitating domain adaptation at the feature level. 

The system uses a two-stage optimisation process during model training. The first 
step is source domain pre-training, in which the model learns from a large-scale emotion 
identification dataset with supervision so that it can completely understand basic 
emotional patterns. The second step is adapting to the target domain by fine-tuning on a 
modest amount of music teaching scenario data. During fine-tuning, only the weight 
parameters close to the output layer are changed (Ding et al., 2023). This keeps the 
general feature extraction ability of the layers before it from overfitting. The optimisation 
goal function is characterised as a weighted amalgamation of cross-entropy loss and 
distribution alignment loss: 

ce mmdL L L= + λ  (6) 

where Lce is the loss for emotion recognition, Lmmd is the loss for aligning feature 
distributions, and λ is the balancing coefficient. The model improves cross-domain 
recognition performance by minimising classification error and domain distribution 
divergence at the same time through combined optimisation. 

The system uses the TensorFlow framework at the network implementation level to 
make automatic gradient backpropagation and dynamic graph optimisation easier. To 
make training more stable, batch normalisation and Dropout regularisation techniques are 
used. These stop gradient explosions and overfitting. During model training, an early 
stopping mechanism is used. This means that when the validation set loss stops going 
down over several iterations, training stops automatically, and the best weight parameters 
are saved (Bai et al., 2021). This makes the model better at generalising. 
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The emotion recognition and feature transfer module work together to make the 
system work. The TL method lets you map low-level features into understandable 
emotional states at the same time as it lets you quickly share knowledge and change the 
model to fit new situations. The module’s design takes full advantage of the benefits of 
DL and TL working together. This lets the system keep high accuracy and stability in 
recognising emotions even when there is not much data and people are very different 
from each other. This makes for a strong algorithmic base for further changes to teaching 
content and emotional feedback loops. 

3.3 TL optimisation module 

The TL optimisation module is the algorithmic heart of the TL-based adaptive music 
education system. It is in charge of cross-domain feature adaption and performance 
optimisation during model transfer. This module lets source domain pre-trained models 
converge quickly and keep a high recognition accuracy with less target domain data by 
adding parameter fine-tuning and feature mapping optimisation techniques. Its main goal 
is to fix performance problems that happen when there are differences in how data is 
distributed across the source and target domains. This will make emotion detection 
models in music education more stable and able to generalise. 

The main parts of the workflow are feature layer alignment and parameter layer 
optimisation. First, the system reconstructs and normalises features taken from the source 
domain model to make sure that input features are statistically consistent across domains. 
Let Ps(Xs) be the distribution of features in the source domain and Pt(Xt) be the 
distribution of features in the target domain. The goal of optimisation is to make the 
difference between these distributions in the embedding space as small as possible. To 
align the domains, we use MMD to measure the distance between the two domains’ 
distributions. This is technically written as: 

( ) ( )
2

1 1

1 1s tn n
s t

mmd i j
s ti j

L x x
n n= =

= − φ φ  (7) 

where ϕ(·) is the operator that maps the high-dimensional kernel function. By reducing 
Lmmd, the model efficiently eradicates differences at the feature level caused by domain 
bias, facilitating the robust transfer of emotional traits across varied circumstances (Yan 
et al., 2025). 

The parameter-level fine-tuning layer is the most important part of the TL 
optimisation module. The model’s overall optimisation objective function is defined as: 

1 2total ce mmd regL L L L= + +λ λ  (8) 

where Lce stands for the cross-entropy loss for classification error, Lreg stands for the 
weight regularisation term to stop overfitting, λ1 and λ2 are the adjustment coefficients. 
This combined optimisation technique reduces classification error while making sure that 
feature distribution is aligned and model parameters may be updated smoothly. 

The system has an adaptive learning rate scheduling technique that makes 
optimisation faster and more stable during the TL process. This system changes the 
learning rate in real-time based on how quickly the loss function is going down. It keeps 
greater strides during the early convergence phase to speed up learning and then 
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gradually reduces strides near the optimum to stop oscillations. At the same time, 
Dropout and Batch Normalisation are added to the module to stop overfitting and speed 
up training convergence, which will help the model generalise better. 

The TL optimisation module can also optimise online, which means that it can make 
small changes to the system while it is running depending on fresh target domain data. 
When the system sees big changes in the distribution of input data, it uses the KL 
divergence to figure out how much the distribution has drifted. This technique updates 
local parameters with tiny batches of fresh samples, so the model does not have to be 
retrained from scratch. 

3.4 Adaptive teaching content adjustment module 

The module is the part of the TL-based adaptive music teaching system that makes 
decisions and lets people interact. It is in charge of turning results from emotional 
recognition and learner conduct into flexible teaching tactics, which allows for 
individualised presentation of instructional content and control over the pace of the 
lesson. This module changes the complexity of the instructional content, the choice of 
musical material, and the pace settings in real-time based on the learner’s emotional state. 
This lets the system improve the learning experience and cognitive performance in 
different emotional states. 

It has three parts: the emotional state analysis layer, the instructional strategy 
generation layer, and the instructional content execution layer. The emotional state 
analysis layer accepts the emotional variable E that the emotion recognition module 
outputs as input. It then uses an emotion evaluation model to show the learner’s 
psychological condition in numbers. The system uses a two-dimensional emotional 
model for mapping. Valence shows whether an emotion is positive or negative, and 
Arousal shows how active an emotion is (Petrolini and Viola, 2020). Let the detected 
emotional attribute be designated as ei; the emotional state can then be represented as a 
two-dimensional variable: 

( , )S v a=  (9) 

where v stands for pleasure and a stands for arousal. The system fully balances emotional 
control and learning effectiveness using a weighted multi-objective optimisation function, 
which is defined as follows: 

( ) ( ) ( )max , ,
T

L U T L T B R T S= = ⋅ + ⋅α β  (10) 

where L(T, B) is the function that shows how the instructional task helps with learning 
behaviour, R(T, S) is the function that shows how the instructional approach controls 
emotional state, α and β are the equilibrium coefficients. By optimising the utility 
function U(T), the system attains a dynamic equilibrium between emotional regulation 
and learning performance, thus fulfilling the educational aim of synergistic optimisation. 

The system uses a two-layer decision-making process that combines rule-based and 
learning-based methods when it comes up with instructional strategies. The first layer has 
an emotional rule engine that uses pre-set behavioural mapping rules to respond quickly. 
For example, if the system sees that a student is in a low-arousal, low-pleasure state, it 
immediately makes the lessons easier and plays happy music in the background to make 
the student feel better. On the other hand, when students are in a state of high arousal and 
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high tension, the system slows down the speed and lowers the number of tasks to avoid 
cognitive overload. A strategy optimiser that uses reinforcement learning makes up the 
second layer. This optimiser keeps changing the weights of strategies depending on past 
interactions and emotional input, which makes training more personalised. 

The instructional content execution layer takes the parameterised strategies made by 
the strategy layer and turns them into precise directives for how to behave in the system’s 
multimedia teaching components. Changes to instructional content mostly show up in 
three ways: controlling the difficulty, controlling the pace, and choosing the musical 
material. In terms of difficulty modification, the system changes the complexity of the 
exercises and the frequency of feedback prompts in real-time to match the learner’s 
present cognitive load (Seyderhelm and Blackmore, 2023). The module uses real-time 
parameter control algorithms to change the tempo and density of music playback to keep 
learners focused and comfortable. The system picks the right musical styles and melodic 
structures from its database based on the user’s emotional state and the goals of the 
activity. 

The system uses database interfaces to get learning records and emotional feature data 
in real-time. It then uses a RESTful API to connect to the front-end teaching platform and 
show audio, graphics, and text in real-time. The instructional content execution layer 
makes it possible to implement TensorFlow Serving, which makes sure that strategy 
inference and feedback responses happen quickly. 

The adaptive teaching content adjustment module uses an emotion-driven intelligent 
decision-making mechanism to deeply connect instructional materials with the 
psychological states of learners. This module not only dynamically optimises the 
educational experience across diverse emotional states but also constantly learns and  
self-evolves through sustained interaction, gradually building individualised learning 
pathways. It therefore offers a novel framework for human-machine collaborative 
learning in higher education settings. 

3.5 System interaction and visualisation module 

The system interaction and visualisation module is the main user interface for the  
TL-based adaptive music education system. It is responsible for important functions 
including showing statistics, giving interactive feedback, and making the system easier to 
understand. The goal of its design is to make it easier for learners, teachers, and the 
system to share information quickly and easily. This will allow for the intuitive and 
dynamic visualisation of emotion recognition findings, instructional material adjustment 
procedures, and assessments of learning efficacy. This module not only improves how 
people and computers interact with each other, but it also makes sure that teaching data 
can be understood, and decisions can be made in a clear way. This makes sure that the 
whole adaptive teaching process can be tracked, understood, and improved. 

The data visualisation layer is the main part of this module for analysing and 
presenting data. It does multidimensional visualisations for emotional data, learning 
performance measurements, and instructional approach parameters. The system uses 
multimodal data fusion techniques to combine the results of the emotion detection and 
instructional adjustment modules to construct multi-tiered visualisation models. If E 
stands for the emotional state set and P stands for the learning performance indicators, the 
system creates a composite performance index using a weighted fusion function: 
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where ωi and γj are the weighting coefficients for emotional and learning traits, 
respectively. This composite indicator gives a clear picture of the learner’s emotional 
stability and learning efficiency. It can be shown in the interface in a number of different 
ways. In this way, the method not only helps students keep track of changes in their 
emotions and performance, but it also gives teachers measurable reasons to step in and 
help. 

The feedback management layer enables real-time closed-loop interaction between 
learners and the system, based on a human-machine co-adaptive feedback paradigm. The 
system’s operating logic is as follows: after implementing pedagogical adjustment 
procedures, it collects learner reaction signals through sensors and behavioural 
monitoring modules. To find the feedback error ε, these are compared to the desired 
targets: 

1t tS S += −ε  (12) 

where St and St+1 are the emotional state variables that show how the person feels before 
and after the change in instruction. If the feedback error is greater than the defined 
threshold δ, the system immediately starts a policy re-optimisation method to make small 
changes to the teaching parameters. This method allows the system to adaptively track 
and optimise learner conduct throughout ongoing engagement, creating a dynamic 
process of human-machine co-evolution. 

This module uses a front-end architecture that combines python with React. The back 
end uses the Flask framework to construct API services that analyse input and send 
model inference results in real-time. The front-end uses React and D3.js to show data in a 
way that lets users interact with it. The system uses the WebSocket protocol to sync 
emotion detection results and changes to instructional content within milliseconds (Jagtap 
et al., 2023). This makes sure that both emotional changes and visualised displays happen 
right away. The module also uses caching and asynchronous rendering to make sure that 
the interface is stable and smooth, so that users may have smooth experience even when 
there are a lot of people using it at once. 

The interaction and visualisation module also keeps track of data and records learning 
logs. All interaction events and emotional change data are stored in the database so that 
we may later analyse learning behaviour and improve teaching strategies. By looking at 
the logs, the system can find long-term patterns of emotional changes and learning 
problems. This sets up a system for ongoing improvement based on data. 

The module not only shows emotional recognition results, teaching strategies, and 
learning performance in a multidimensional, dynamic way, but it also makes the system’s 
intelligent interaction capabilities better by providing real-time feedback and making the 
data easier to understand. The architecture of this module changes how people and 
machines work together from one-way information sharing to a two-way, intelligent,  
co-adaptive process. This gives important technical support for making future intelligent 
education systems more understandable, clear, and trustworthy for users. 
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4 Experiment and results analysis 

4.1 Experimental data 

The experimental data utilised in this study is derived from two principal datasets: the 
source domain dataset and the target domain dataset. The primary aim of data production 
is to provide a multimodal, high-quality data foundation for the training, transfer, and 
validation of TL models. The two datasets differ in where they came from and what tasks 
they were made for, but they are structurally consistent in design. This makes it possible 
to recognise emotions across domains and improve instruction in a way that works best 
for each student. 

The source domain dataset is mostly used to train the TL model before it is used for 
anything else. This dataset combines publicly available multimodal emotion recognition 
resources, such as FER2013 (facial expression data) and RAVDESS (speech emotion 
data), with ethically approved classroom emotion video samples from colleges and 
universities to improve the model’s ability to recognise emotions in general. This dataset 
consists of over 28,000 multimodal samples, each having image frames, audio signals, 
and emotion labels (Valence, Arousal, Category) that were all recorded at the same time. 
Standardisation and label harmonisation were applied to all data to create a single feature 
space for feature transfer and parameter fine-tuning. 

Table 1 Datasets characteristic information 

Dataset Data type Main indicators Data source Acquisition 
method Description 

Source 
domain 
dataset 

Emotional data Facial 
expressions, 
voice tone, 

valence, 
arousal, 
emotion 
category 

Public 
datasets 

(FER2013, 
RAVDESS) 

Pre-collected 
and 

standardised 
multimodal 

data 

Used for TL 
model 

pretraining to 
capture 

generalised 
emotional 
features 

Target 
domain 
dataset 

Emotional 
data, learning 
behavioural 
data, system 

interaction data 

HRV, EDA, 
RR, Task 

completion rate, 
error rate, 

response time 

University 
music 

learning 
scenarios 

Real-time 
synchronous 
acquisition 
via sensors 
and system 

logs 

Used for 
model fine-
tuning and 
adaptive 
learning 

optimisation 
Dataset Data type Main indicators Data source Acquisition 

method 
Description 

The second dataset, which comes from real-world data collected during music lessons at 
colleges and universities, is meant to show how learners’ emotions and behaviour change 
when they interact with the system. The participants consisted of 80 individuals from 
three comprehensive colleges, exhibiting an almost 1:1 male-to-female ratio, aged 18 to 
23 years, and included both music and non-music majors. The target domain dataset 
consists of three key types of data: emotional data, learning behaviour data, and system 
interaction data. The system captured all the data in real-time during training sessions, 
including heart rate variability (HRV), electrodermal activity (EDA), respiration rate  
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(RR), facial features, voice characteristics, and interaction logs. This produced almost 
9,600 synchronised multimodal samples, offering genuine scenario assistance for TL 
model transfer training and validation. 

Table 1 shows the main features and organisation of the datasets. 
During the data preprocessing phase, data from both the source and target domains 

underwent multimodal synchronisation, temporal alignment, and feature normalisation. 
Butterworth filters were used to remove noise from physiological inputs, while face 
landmark identification and pose calibration were used to keep image data consistent. 
MFCC conversion was used to get acoustic information from speech data. In the end, all 
features were brought down to the [0, 1] range to get rid of disparities in dimensions 
between modalities. 

To sum up, the experimental data framework created in this study creates a structural 
match and feature complementarity between the source and target domains. This  
dual-dataset architecture offers a solid data basis for the cross-domain adaptation of TL 
models and the validation of system adaptive performance. 

4.2 Emotion recognition performance comparison experiment 

The goal of this part is to test how well TL-based emotion identification models work 
with diverse types of data. Two datasets are used for the experiments: a source domain 
dataset and a target domain dataset. Experiments in the source domain mostly test the 
model’s capacity to extract features and recognise emotions in general. Experiments in 
the target domain, on the other hand, mainly test the model’s ability to recognise music 
instruction scenarios accurately and consistently. By comparing performance indicators 
across several DL and classical models, this study thoroughly checks the TL approach’s 
usefulness and benefits across many domains. 

This research evaluated seven emotion identification models across several 
paradigms, including classical ML, DNN, and TL architecture. The SVM model used a 
standard classification structure with an RBF kernel function as a starting point for basic 
performance testing. The RF model uses multi-DT integration to discriminate features, is 
a benchmark for performance, the CNN model captures local spatial features in 
multimodal data like images and speech, and the LSTM model can model temporal data, 
making it suitable for analysing dynamic emotional signal changes. The ResNet-50 
model, which is a pre-trained convolutional network, is used for deep feature transfer and 
expression optimisation. The DANN model uses an adversarial domain adaptation 
mechanism to improve cross-domain recognition capabilities through feature distribution 
alignment. 

We did pre-training tests on the source domains (FER2013 + RAVDESS) to see how 
well each model did on generic emotion recognition tasks. The evaluation parameters 
comprised accuracy and macro-average F1-score. Figure 3 shows the outcomes of the 
experiments: 

We tested and transferred models in the target domain (music instruction scenario 
data) to see how well each model could adapt to small sample sets and changes in 
environment. All models, except for the proposed system, were trained or fine-tuned 
directly on the target domain while keeping the data partitioning the same. Figure 4 
shows the outcomes of the experiment: 
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Figure 3 Performance comparison of emotion recognition models on the source domain dataset 
(see online version for colours) 

SVM

RF

CNN

LSTM

ResNet
-50

DANN

Proposed
ystem

Accuracy F1-score

0.7210 ~ 0.7640 0.7640 ~ 0.8070 0.8070 ~ 0.8500 0.8500 ~ 0.8930 0.8930 ~ 0.9360

 

Figure 4 Performance comparison of emotion recognition models on the target domain dataset 
(see online version for colours) 
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The experimental findings from both datasets indicate that the proposed method 
demonstrates substantial performance benefits in emotion recognition tasks. Its 
recognition accuracy and stability are better than those of the comparison models in both 
the source domain and the target domain. The suggested system obtains an accuracy of 
0.9358 and an F1 score of 0.912 on the source domain dataset, which is far better than 
classic ML models like SVM and RF, as well as DL models like CNN, LSTM, and 
ResNet-50. The suggested system has a big performance lead over the DANN model, 
which completely proves that TL-based feature extraction and parameter fine-tuning 
processes work well for recognising emotions. 

In general, the performance of a model gets better as the structure gets more complex 
and the learning capacity increases. For example, the accuracy of recognition goes up 
from traditional methods like SVM and RF to deep models like CNN and LSTM, and 
finally to the current system that uses TL strategies. This result shows that jobs that 
include recognising emotions require a lot of abstraction at the feature level. 

In the target domain experiments, although all models exhibited performance 
degradation due to domain transfer, the proposed system maintained optimal results with 
an accuracy of 0.8975 and an F1 score of 0.856. These figures represent improvements of 
0.0651 and 0.0462 over ResNet-50 and DANN respectively. Its feature transfer and 
parameter fine-tuning mechanisms effectively mitigated the disparity in feature 
distributions between source and target domains, enabling the model to accurately 
recognise students’ emotional states within music learning environments. 

Overall, experimental results conclusively demonstrate the system’s efficacy and 
advancement in emotion recognition. Through the introduction of the TL mechanism, the 
system achieves high-precision emotion recognition in the source domain while 
exhibiting outstanding generalisation capabilities in target domain transfer tasks. This 
cross-domain robustness lays a solid foundation for implementing emotion perception 
and feedback regulation in subsequent adaptive music teaching systems, while also 
providing novel insights and technical support for integrating affective computing with 
intelligent education technologies. 

4.3 Adaptive teaching effectiveness comparison experiment 

This study recruited 80 university students from three institutions as participants, 
comprising 41 males and 39 females with an average age of 20.4 years. All participants 
completed baseline assessments of musical proficiency and emotional state prior to the 
experiment. They were then randomly divided into two groups: an experimental group 
(the proposed system) and a control group (the non-adaptive system). Both groups 
received identical instructional content, time allocation, and task structure, with the sole 
distinction being the activation of an adaptive adjustment module based on emotion 
recognition and feature transfer within the experimental group. 

The two-week experimental cycle comprised three learning tasks: melody imitation, 
rhythm recognition, and emotional expression. Experimental results are presented in 
Figure 5. 

The results demonstrate that the proposed system significantly outperforms the 
control group in overall teaching effectiveness, with all metrics exhibiting stable and 
positive improvement trends. Notably, learning performance increased by 12.4%, 
indicating the system’s substantial role in enhancing knowledge acquisition and skill 
consolidation. This improvement stems primarily from the system’s ability to 
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dynamically adjust teaching pace and difficulty levels in real-time following emotional 
recognition. This ensures learning content aligns more closely with students’ current 
psychological states, thereby optimising learning efficiency. 

Figure 5 Overall adaptive teaching performance comparison (see online version for colours) 
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Engagement levels increased by 19.1%, reflecting how the system’s interactive design 
and emotion-sensing mechanisms markedly enhanced students’ focus and immersion. 
Utilising an emotion recognition model optimised with TL, the system automatically 
triggers musical feedback and visual cues upon detecting waning attention or fatigue, 
thereby reactivating learning motivation. 

Emotional stability improved by 20.3%, a particularly noteworthy outcome. This 
metric directly reflects the system’s capacity to maintain learners’ emotional equilibrium. 
Compared to the control group, experimental group learners exhibited more stable 
emotional fluctuations during prolonged study sessions, indicating the system’s distinct 
advantage in emotional intervention and feedback regulation. 

Furthermore, user satisfaction increased by 17.4%, indicating learners’ generally 
positive attitudes towards the system’s instructional experience. Questionnaire data 
revealed that experimental group students perceived the system’s emotional feedback as 
more natural, its teaching pace as better aligned with their personal states, and that the 
integration of visual and auditory feedback enhanced immersion. 

The experimental results confirm the suggested system’s multifaceted benefits: it 
improves learning performance, engagement, and emotional regulation. These findings 
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provide a solid empirical foundation for applying the system to varied learning 
environments. 

However, to further elucidate the specific mechanisms underlying the system’s 
functioning across different emotional states, this study also conducted a detailed analysis 
of the overall experimental results according to emotional dimensions. Based on the 
multimodal emotional data collected during the experiment, the learning process was 
categorised into three primary emotional states: Positive, Neutral, and Negative. 
Comparative results for key metrics such as learning scores, participation duration, 
emotional stability, and recovery time across each state are presented in Table 2. 
Table 2 Teaching effectiveness across emotional states 

Emotional state Indicator Control 
group 

Experimental group 
(proposed system) 

Improvement 
(%) 

Positive 
(joyful/relaxed) 

Learning score 86.3 90.7 +5.1 
Engagement time 

(min) 
42.1 45.4 +7.8 

Emotional stability 
index 

0.89 0.94 +5.6 

Recovery time (s) 4.8 4.2 –12.5 
Neutral 
(calm/focused) 

Learning score 81.6 88.9 +8.9 
Engagement time 

(min) 
38.5 43.1 +11.9 

Emotional stability 
index 

0.84 0.93 +10.7 

Recovery time (s) 6.7 5.2 –22.4 
Negative 
(anxious/tired) 

Learning score 73.4 84.6 +15.3 
Engagement time 

(min) 
33.9 40.2 +18.6 

Emotional stability 
index 

0.71 0.87 +22.5 

Recovery time (s) 9.1 6.0 –34.1 

Table 2 shows the suggested system’s improved instructional adaptation across emotional 
states. The minor improvement under positive emotions implies learners already focus 
and motivate in heightened emotional states, with the system mostly stabilising. Neutral 
learners’ learning scores improve by 8.9%, demonstrating the approach improves 
concentration and interest. 

Negative emotions cause the greatest changes: learning scores rise 15.3%, emotional 
stability rises 22.5%, and emotional recovery time falls 34.1%. When negative emotions 
are detected, the system quickly adapts instructional content and speed to help students 
regain psychological equilibrium and improve learning efficiency. 

Experimental results show that the TL-based adaptive music teaching system can 
dynamically regulate multiple emotional variables. This proves its efficacy in improving 
learning, emotional regulation, and interaction. The system accurately detects and 
responds to emotional changes and optimises educational content and emotional 
feedback, laying the groundwork for future research into intelligent affective teaching 
systems. 
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5 Conclusions 

The system is based on DNN architecture and combines feature transfer and parameter 
fine-tuning methods to greatly improve the accuracy of emotion recognition and the 
capacity to work across domains. Experimental comparisons showed that the suggested 
system did better than both traditional and DL models on two datasets when it came to 
recognising emotions. Teaching efficacy trials further confirmed the system’s substantial 
benefits in learning performance, emotional stability, and user pleasure, notably 
highlighting its strong regulating and restorative effects in adverse emotional states. 

Even with these good results, there are still some problems. First, the sample size for 
the trial was small and mostly focused on music learning areas. More research is needed 
to see if the results can be used in other fields or forms of learning. Second, the emotion 
recognition model has TL mechanism, but it still needs EEG and facial expressions to be 
recorded at the same time. Thirdly, the current system’s adaptive strategies primarily rely 
on rule-based approaches and model mapping, with insufficient incorporation of 
reinforcement learning or generative modelling mechanisms. Consequently, there 
remains scope for improvement in long-term teaching interactions and the modelling of 
individual emotional evolution. 

Future research may be pursued in three directions: firstly, expanding the sample 
scope to validate the system’s adaptability across different disciplines; secondly, 
incorporating generative modelling techniques to enhance the intelligence level of 
emotional dynamic regulation. Third, we need to make the system easier to understand 
and lighter so that it can be used in real-time and for a long time in real-world teaching 
situations. 
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