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Abstract: Fog computing environments comprise numerous heterogeneous and
resource-constrained nodes, resulting in significant generalisation deficiencies
in conventional machine learning models when addressing cross-node tasks
characterised by non-independent and identically distributed data and limited
labelling resources. This research offers a federated meta-learning architecture
designed for fog computing, with the objective of facilitating rapid,
privacy-preserving knowledge transfer and task adaptation between nodes. This
framework combines the distributed model training paradigm of federated
learning with the ‘learning to learn’ mechanism of meta-learning. We
performed comprehensive tests on public datasets to simulate standard non-IID
data settings in fog computing. Results indicate that, in comparison to
conventional federated learning baselines, our methodology attains an average
accuracy improvement of roughly 3.7% on novel tasks, while markedly
enhancing model convergence and task adaptation efficiency. This suggests
that the proposed approach significantly improves learning and generalisation
capabilities for resource-limited nodes in fog computing settings while
addressing unfamiliar tasks.
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1 Introduction

The internet of things and fifth-generation mobile communication technologies are
moving quickly, and edge devices make a lot of data. The centralised processing model
of traditional cloud computing makes it hard to deal with many problems, such as high
latency, limited network bandwidth, and privacy and security concerns (Zhou et al.,
2017). Fog computing has come up as a new way to do computing in this context. By
putting an intermediate layer of geographically spread-out fog nodes with different
resources between data sources and cloud data centres, it can provide services with low
latency and a lot of location awareness. But the fact that fog computing environments are
made up of many different types of devices and are spread out makes it hard to use Al
models effectively (Atlam et al., 2018).

One of the biggest problems with using collaborative machine learning in fog
computing is that data and tasks have certain properties that make it hard to do. Data
produced by individual fog nodes often demonstrates non-independent and identically
distributed (Non-IID) characteristics, indicating that data distributions among nodes
might vary considerably due to differences in their geographic locations, user
demographics, and functional specialties. On the other side, individual fog nodes
frequently have very limited computing, storage, and energy capabilities, and hence have
a hard time getting huge amounts of high-quality tagged data to train sophisticated
models (Verma et al., 2022). Conventional centralised machine learning methodologies
necessitate data consolidation at a central site. In fog computing, this not only goes
against data privacy rules, but it also costs a lot of time and effort to communicate.
Federated learning is a distributed learning method that protects privacy. It lets nodes
train models locally and send only model updates, not raw data, to a server for
aggregation. This is a potential way to solve these problems (Li et al., 2020).

Standard federated learning algorithms, on the other hand, mostly try to select one
model that works well for all participating nodes. This model has evident problems when
it comes to new activities that come up often in fog computing or nodes with very few
resources. When a new fog node joins the system or an old node has to do a task that it
hasn't done before, it might not have many labelled samples to learn from. In these ‘cold
start’ situations, the global model trained by normal federated learning sometimes has
trouble adapting fast, which leads to a big drop in generalisation performance (Zhang
et al., 2021).

Federated learning, a new way of doing distributed machine learning, wants to create
models together while keeping data private. Wu et al. (2020) came up with the FedSCR
algorithm, which trains a global model by running several local iterations and
aggregating data on a server every so often. Zhu et al. (2021) systematically established
through tests that Non-IID data promotes client drift, resulting in convergence issues and
performance loss in global models. Researchers have suggested a number of ways to
solve this problem. For example, Huang et al. (2023) suggested using knowledge
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distillation to reduce local model variance, and Zhang et al. (2024) looked into several
ways to compress and send data. These studies establish the groundwork for
implementing federated learning in situations with limited resources.

Meta-learning, or ‘learning to learn’ helps models learn from a sequence of related
tasks so they can quickly adapt to new ones. Model-agnostic meta-learning (MAML)
(Ng, and Guan, 2024) is a significant advancement in this domain. The main idea behind
MAML is to discover a model initialisation parameter that is sensitive to the task
distribution. This lets the model do well on new tasks with only a few gradient steps and
a minimal amount of labelled data. This idea is quite similar to the objective of nodes in
fog computing, which is to quickly adjust to changing needs. After then, Chua et al.
(2021) did a lot of research and made MAML and its derivatives better, making training
more stable and faster to converge. Memory-augmented neural networks (MANN),
presented by Geiger et al. (2014), introduced an alternate method to meta-learning based
on external memory processes, revealing a new technical avenue for addressing few-shot
learning difficulties.

Combining federated learning with meta-learning has become a promising area of
research in the last few years. The basic idea behind it is that each client in federated
learning may be seen as a separate work, which naturally creates a meta-learning
environment. Chen et al. (2023) introduced a federated meta-learning (FedFogMeta)
architecture for industrial edge intelligence, adeptly tackling the issue of small-sample
device defect detection while safeguarding data privacy, and markedly improving the
rapid adaptability of diagnostic models to new devices. Fallah et al. (2020) presented the
Per-FedAvg method through a theoretical analysis, formally combining the objective
function of MAML with the optimisation process of FedAvg, so establishing a robust
mathematical framework for FedFogMeta.

This research tackles this issue by merging federated learning with meta-learning to
provide a FedFogMeta architecture specifically designed for fog computing. MAML is a
well-known gradient-based meta-learning technique that seeks to identify optimal model
startup parameters. From this point on, the model just needs one or a few gradient update
steps and a minimal number of labelled data to do very well on new tasks. This study
incorporates this concept into the federated learning architecture, with the objective of
collectively training a globally initialised meta-model that possesses robust generalisation
capabilities within a distributed setting.

The primary contributions of this paper are as follows: firstly, it formulates a formal
FedFogMeta framework that systematically amalgamates distributed model training with
cross-task knowledge transfer mechanisms, thereby offering a theoretical model for
ongoing learning and task adaptation in fog computing environments. Second, we create
and put into action a federated optimisation method that is based on MAML. This
approach gradually improves the global model's starting state by combining
meta-gradient updates from fog nodes at the server. This creates a strong base for quickly
adapting to new jobs. Third, a lot of tests were done on a number of standard datasets to
mimic real-world fog computing situations using Non-IID data. The results confirm the
proposed framework's efficacy and its superiority over conventional federated learning
baselines in addressing novel problems, showcasing consistent enhancements, especially
in model convergence velocity and generalisation accuracy with sparse samples.
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2 Related theoretical research

2.1 Federated learning

Federated learning, as a disruptive distributed machine learning paradigm, fundamentally
addresses data privacy, security, and accessibility issues by training machine learning
models through the collaborative effort of multiple clients (referred to as fog nodes in this
context) without aggregating raw data. Its typical training workflow comprises the
following core steps: first, a central server initialises a global model and distributes it to
all participating clients. Subsequently, each client updates the received model using its
local dataset. Finally, clients send model updates (such as gradients or weight increments)
rather than raw data back to the server, which aggregates these updates to generate a new
generation of the global model. This process iterates until the model converges.

Among the numerous federated learning algorithms, the FedAvg algorithm (Collins
et al., 2022) stands as the most representative and widely applied classic approach. The
core idea of FedAvg lies in performing a weighted average of the locally updated model
parameters from clients. The update rule for its global model can be expressed by the
following formula:

K nk y
Wt+1:z _Wt(() (1)

k=1 p

where wy1 denotes the global model parameters after the #+1-st communication round, K
is the total number of clients participating in training, n; is the number of local data
samples possessed by the k™ client, n is the total number of samples across all

participating clients, and w,(k) is the model parameters obtained by the ™ client after

multiple rounds of local training based on the previous global model w,. Through this
approach, FedAvg effectively reduces the number of communication rounds while
enabling the utilisation of distributed data with enhanced data privacy protection.

Federated learning is commonly seen as the best way to achieve collaborative
intelligence in edge and fog computing environments since it is distributed and protects
privacy. In fog computing, fog nodes operate as clients and use their closeness to data
sources to train local models with minimal latency. After that, only updates to the model
are synced with cloud servers or coordinators. This method cuts down on the amount of
bandwidth used on backhaul links and lets models better adjust to local data statistics.
This makes it possible to create smart solutions for things like smart cities, industrial [oT,
and vehicle-to-everything networks.

Federated learning has a lot of benefits, but it also has certain built-in drawbacks
when it comes to dealing with Non-IID data and cold-start issues. FedAvg's convergence
is weakened when client data distributions significantly deviate from the global
distribution, potentially resulting in a global model that performs inadequately on the
local data of any given customer. This process is distinctly referred to as ‘client drift’
arising from each client’s progression towards its local optimum. When you add together
all of these different update directions, they make the global model less efficient and less
able to generalise.

Federated learning also has trouble with the cold-start problem. This happens when a
new fog node joins the system but does not have any previous data or hasn't been trained
before. The current global model might not work effectively on this node since it hasn't
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learned useful information from data that is similar to the node's task (Lika et al., 2014).
The conventional federated learning workflow's goal is to create a ‘one-size-fits-all’
global model. However, it does not have a built-in way to quickly move and adapt
learned ‘knowledge’ or ‘experience’ to new jobs and nodes where there isn't much data.
Traditional federated learning frameworks don't perform well in fog computing
environments that are always changing since they aren't flexible enough to handle new
demands.

2.2 Meta-learning

Meta-learning, or ‘learning to learn’ is a cutting-edge way for machines to learn that is
meant to help with learning challenges when there isn't much data (Hospedales et al.,
2021). Traditional machine learning models focus on learning mapping functions from
data that is particular to a task. The main goal of this model is to help models build up
and improve their meta-knowledge about task distributions by exposing them to many
different but related learning tasks. The model's internal structure or parameters store this
meta-knowledge, which lets it quickly get good results with little effort and extra
processing power when faced with a brand-new task with only a few labelled examples.

The MAML framework has a very elegant main idea: instead of training a
complicated model that can directly predict results for subsequent tasks, it looks for
model starting parameters that are very sensitive to the task distribution. This ideal
starting point has one important feature: when you start from this parameter point and
take one or a few steps down the gradient for a new task, the model does much better on
that task. To achieve this goal, MAML employs a two-stage optimisation structure. In the
inner loop, the model performs a small number of gradient updates for each task sampled
from the meta-training task set, simulating rapid adaptation to the new task.
Subsequently, in the outer loop, the model backpropagates updates to the initial
parameters based on the performance of these rapidly adapted models on the new task's
validation set.

This process can be formally expressed through the following key formula. Let the
model be a parameterised function fo with initial parameters €. For a task 7j, its inner
update (adaptation) process is:

0, =0-0V,L; (f,) ©)

where o denotes the inner-layer learning rate, and L, represents the loss function on task

T;. After obtaining the adapted parameters 6, across a series of tasks, MAML optimises
the original parameters @ to minimise the overall loss across all tasks following
inner-layer updates. Its meta-objective function is:
min L.(fy 3
2, L) ®
By minimising the above objective, model parameter €is guided toward a region that can
rapidly adapt to any new task within the task distribution p(7).
The MAML method's main strengths are that it can quickly adapt and that it does not

depend on any one model. First, it directly encodes quick adaptability into the model's
initialisation settings through the optimisation technique discussed above. This shows
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that it is very sample-efficient when faced with novel jobs that only have a few samples.
Second, its ‘model-agnostic’ nature makes it easy to work with any model architecture
trained using gradient descent, like fully connected neural networks or convolutional
neural networks. This gives it a lot of flexibility for use in a wide range of visual,
linguistic, and decision-making tasks.

3 System modelling and problem formulation

3.1 Fog computing network model

The fog computing network examined in this research utilises a conventional three-tier
hierarchical architecture, consisting of edge devices, fog nodes, and cloud servers. It
shows a layered, distributed collaboration interaction in a logical way. There are a lot of
edge devices at the bottom level, like smartphones, [oT sensors, and security cameras.
These devices are direct data producers, but they usually have very limited processing
power, storage space, and battery life, which makes it hard for them to undertake
sophisticated model training tasks on their own. Powerful cloud data centres are at the top
of the list. They have almost unlimited computing and storage power, but they are often
far away from data sources, which makes communication slow.

The fog node is the main thing this paper is about. It is in between the edge and the
cloud. Fog nodes are like infrastructure in the middle layer that can do some computing
and communication, like network gateways, base stations, mini data centres, or dedicated
servers. They are spread out geographically near edge devices, creating an edge
computing layer between the edge and the cloud. We formally denote the entire set of fog
nodes in the system as N = {N;, NV, ..., Ng}, where K represents the total number of fog
nodes. Each fog node connects to and manages a local set of terminal devices, collecting
data generated by these devices to form its local dataset. There may be big differences in
the processing power, storage capacity, and data distribution of these fog nodes, which
shows that the network is not homogeneous.

In this architecture, there are mainly two ways for communication to happen. The
first type is ‘lateral communication’, which is when fog nodes and cloud servers talk to
each other (Zhang et al., 2019). This is the main way for the federated learning model to
work. Fog nodes send model updates (not raw data) to cloud servers to be combined.
Then, the cloud server sends the combined global model back to all of the fog nodes. The
second type is ‘vertical communication’, which is when terminal devices talk to the fog
nodes they are connected to. End devices send raw data or features that have been
processed in a preliminary way to their fog node. The fog node can then send inference
results or lightweight models back to the end device to help it make decisions.

This network's whole collaborative workflow can be summed up as follows: data
produced by end devices is initially kept locally and subjected to preliminary processing
on the associated fog node. Fog nodes learn from their own datasets while working
together to optimise a global goal by talking to cloud servers several times. In the end, the
trained models can either be put on fog nodes to give terminal devices smart services
with low latency, or they can be put together on cloud servers to give a bigger picture.
This architecture makes the most of strong cloud resources while also lowering
communication latency, easing bandwidth load on core network lines, and improving
data privacy by moving computing tasks to the network edge. Fog nodes are very
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important in this concept since they are both data aggregators and local processing units.
They also serve as the main way to balance global intelligence with personalised
demands.

3.2 Federal Yuan learning framework model

This part explicitly explains our suggested FedFogMeta framework concept. There are
two main parts to the framework: a central server and a group of fog nodes. The central
server does not have any raw data on it. Its major job is to keep a global
meta-model up to date and make changes to it over time. This meta-model is not a final
model for inference; instead, it provides a starting point that can quickly modify. Each
fog node is seen as its own task instance, with its own private, small-scale dataset that
may not follow a iid distribution. These nodes are in charge of using their data to give the
global meta-model directional suggestions on how to get better.

The framework's training process is divided into communication cycles, each of
which contains two important parts: local meta-learning and global meta-aggregation.
The central server picks a random group of fog nodes from all the ones that are registered
at the start of each round. After that, the server sends the current global meta-model
parameters to the nodes that were picked. When each fog node gets the global
meta-model parameters, it runs a local learning process. In particular, the node randomly

splits its local dataset Dx into a training set Dg” and a query set DI to mimic a

machine learning activity. It first does one or more steps of gradient descent on the
training set to get customisable model parameters ¢ that are specific to its own data. This
process of adapting from the inside can be shown as:

4=0-0aV,L,.(0,) @)

where « is the inner learning rate. Next, the node calculates the loss gradient of this
personalised model ¢ on its query set DZ“. This gradient, referred to as the

meta-gradient, represents the effectiveness of adaptation from the initial parameters 6,
toward the specific task of this node. The formula for calculating the meta-gradient gy is:

8= V@LDgw(@() (5)

It is worth noting that nodes do not send their personalised model parameters ¢ back to
the server; instead, they upload the computed meta-gradient g, This design protects the
privacy of local data while conveying critical information on how to improve the global
initialisation parameters.

Once the server collects all meta-gradients uploaded by participating nodes, it enters
the global meta-aggregation phase. The server performs a weighted average of these
meta-gradients from different tasks to update the global meta-model. The update rule is
as follows:

0,4=0,— ﬂz n_kgk (6)

keS; N

where fis the outer learning rate (or meta-learning rate), n is the data volume of node £,
and n is the total data volume of all participating nodes in this round. By iteratively
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executing the above process, the parameters of the global meta-model are continuously
optimised, gradually converging to a point with strong generalisation capabilities across
the task distribution of fog nodes. When a new, data-scarce fog node joins the system, it
can directly obtain this trained global meta-model as initialisation. By leveraging its own
limited labelled data and undergoing one or a few fine-tuning steps through the
aforementioned inner-layer adaptation process, it can acquire a high-performance
personalised model, thereby efficiently resolving the cold-start problem.

3.3 Problem formulation

In this section, we formalise the problem of cross-node knowledge transfer and
generalisation in fog computing environments as a mathematical optimisation problem.
We assume the existence of a probability distribution p(7) comprising all possible fog
node tasks within the system. Each specific task corresponds to a particular fog node,
which possesses its own private local dataset sampled from the task-specific data
distribution. These task distributions may exhibit significant differences from one
another, meaning the overall environment typically presents a Non-IID characteristic.

For a newly arrived fog node that has never participated in the training process, the
task it faces is also drawn from p(7). However, it can only obtain a very small labelled

dataset D,, = {(x,, Y, )}Ml, where M is a very small number (e.g., far fewer samples than

i
in conventional training). Our core objective is to leverage the system's accumulated
experience from numerous heterogeneous tasks to provide this new node with robust
prior knowledge, embodied as high-quality model initialisation parameters. This enables
the new node to rapidly obtain a personalised model @, that excels on its local task by
performing one or a few (e.g., H) gradient descent steps using its limited M samples,
starting from these initial parameters. This rapid adaptation process can be formulated as:

H
QI@W: Adapt (9’ Dnew’ H) =6- (Zz h=1 VGLDMW(thl ) (7)

where « is the adaptation learning rate, and L, is the loss function computed on the

new task dataset.

We need to set up a meta-objective function to discover this optimum initialisation
parameter. The goal is not to reduce the model's loss on a single work, but to reduce its
expected loss across all tasks after it has quickly adapted to each query set. This is really
a problem of minimising empirical meta-risk:

min Eqpin| L (4)] = min Efrp(r)[Ln(Adapt (0.0}, H ))J ®)

where D;"” represents the support set for task 7% (used for simulation adaptation), while

Ly denotes the loss computed over the query set of that task (used to evaluate the

adapted performance). This objective function drives model parameters to converge
toward a point where, for any new task sampled from p(7), optimal or near-optimal
performance can be achieved with minimal samples and computational steps.

But because of the privacy rules of federated learning, we can't directly get data from
all tasks to figure out the expectation we talked about earlier. So, we use federated
optimisation to get close to solving this problem. We specifically approximate the
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sampling of the job distribution by utilising local datasets disseminated over fog nodes.
The main purpose of FedFogMeta is to use the distributed collaborative training system
described in Section 3.2 to tackle this meta-optimisation challenge. This allows for the
learning of globally shared model initialisation parameters with robust generalisation
capabilities, essentially augmenting the system's capacity to swiftly integrate new nodes
and enhance the efficiency of individualised services.

4 Knowledge transfer algorithm based on federated meta-learning

4.1 Core algorithm design

The dual-layer optimisation structure is the most important part of the proposed
FedFogMeta algorithm. This structure combines the distributed training of federated
learning with the quick adaptability of meta-learning through a well-thought-out
collaboration mechanism. The algorithm works mainly in two main stages: the global
meta-model setup stage and the local task quick adaption stage. These steps repeat over
and over until the model converges.

The goal of the global meta-model initialisation phase is to have all the fog nodes on
the server side to work together to find high-quality starting parameters that are sensitive
to how tasks are distributed. This phase's main job is to combine meta-gradients from
each node, which is different from standard federated learning methods like FedAvg,
which combine model weights. During each communication cycle, the server sends the
current global meta-model parameters to a random group of fog nodes. Each node k that
takes part does a meta-learning process on its own: first, it splits its data into a training set
and a query set. Next, it uses the training set to do one or more steps of gradient descent
on the global model it got to make a personalised model that fits its local task. The node
then finds the loss gradient of this personalised model on its query set, which is the meta-
gradient. You can say this about the aggregation update rule:

0 0-5Y, e, ©

where [ represents the meta-learning rate. Through iterative processing, the global
meta-model parameters @ are continuously optimised toward an ideal initialisation point
that minimises the expected loss across all nodes after rapid adaptation.

The local task rapid adaptation phase describes how newly added or
resource-constrained fog nodes are empowered after global meta-model training
completes. This phase requires minimal communication with the server, demonstrating
the algorithm's ultimate efficiency. When a new node N, seeks a model suitable for its
own task, it first obtains the fully trained global meta-model initialisation parameters ¢"
from the server. Subsequently, using its own limited labelled data D,.., the node
performs one or a few steps of gradient descent starting from &. This adaptation process
can be formalised as:

Go=0" -V, L, (07) (10)

where o represents the locally adapted learning rate, while @, denotes the ultimately
generated, highly personalised model. Since the initial parameters & have been
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pre-optimised across numerous heterogencous tasks to a region conducive to rapid
adaptation, new nodes can converge swiftly to a high-performance model even with
minimal samples D,., and few iteration steps. This efficiently resolves cold-start
challenges and resource constraints.

Figure 1 Structure of FedFogMeta (see online version for colours)
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The three core entities of the FedFogMeta algorithm (cloud servers, fog nodes, and new
nodes) and their interaction during training and inference phases are illustrated in
Figure 1.

The cloud server serves as the coordination centre of the entire framework. Its process
begins with initialising the global meta-model. In each communication round, the server
selects a subset of fog nodes to form a set and broadcasts the current global model
parameters to these nodes. Subsequently, the server waits for and receives the
meta-gradients returned by each node, aggregating them according to a weighted
averaging rule. Finally, the server updates the global meta-model using the aggregated
meta-gradients. This cycle continues until the model converges.

Fog nodes serve as distributed computational units. Upon receiving the global model,
each selected node first divides its local data into a training set and a test set. It then
enters the core meta-learning process: the node performs inner adaptation using the
training set, obtaining a personalised model for its specific task through gradient descent.
Next, the node evaluates the performance of this personalised model on the test set and
calculates a meta-gradient, which indicates the direction for improving the initial
parameters. Finally, the node uploads the meta-gradient back to the server, completing its
contribution for this round.

New nodes represent target entities requiring service. After training concludes, a new
node first retrieves the fully trained global meta-model from the server. Combining this
with its own small sample dataset, the new node independently performs rapid adaptation
— executing one or a few gradient updates — to ultimately obtain a high-performance
personalised model. This entire process occurs locally, eliminating the need for multiple
server communications.

4.2  Rapid adaptation phase for local tasks

The rapid adaptation phase for local tasks is the best way to show how useful this
framework is. It solves the problems of cold-starting and personalising models for fresh
nodes or nodes with limited resources. This phase happens after global meta-model
training is done. It is marked by efficiency and independence, meaning that there is no
need to go to a central server often. When a new node N, joins the system or an existing
node requires rapid deployment of a high-performance model for its specific task, it first
requests and obtains the fully trained global meta-model initialisation parameters & from
the server. These parameters embody meta-knowledge distilled from a vast array of
heterogeneous tasks, serving as a powerful, rapidly adaptable common starting point.

Upon acquiring the global initialisation parameters, the node immediately enters a
fully local, lightweight model personalisation process. Using its private, typically very
small labelled dataset D, the node performs one or a few steps of gradient descent
optimisation starting from &. Mathematically, this process resembles a classical inner
optimisation loop, but its iteration count is strictly limited to a very small number, such as
one or two steps (Jin and Huang, 2024). Specifically, the node computes the gradient of
its local loss function with respect to the current model parameters and updates the
parameters by moving along the negative gradient direction at a preset adaptation
learning rate, thereby obtaining the final personalised model parameters.

Benefiting from the fact that the global meta-model & has been optimised to a
‘sensitive’ region within the task distribution, even gradient directions computed from a
minimal number of samples starting from this point typically point effectively toward the
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node's local optimum. Consequently, this highly streamlined adaptation process enables
rapid model convergence to a high-performance state tailored to the local data
characteristics of the node, achieved with minimal computational overhead and sample
requirements.

4.3 Analysis of key technologies and innovation points

The main feature of this framework is that it uses a meta-learning mechanism to change
the optimisation goals and collaborative processes of federated learning. This makes it
much better at solving important problems in fog computing. This technique, on the other
hand, focuses on learning model initialisation parameters that may quickly adapt.
Standard federated learning, on the other hand, tries to identify a single globally optimal
model. This major change lets it turn the differences in data between fog nodes from a
problem into an opportunity. In particular, the Non-IID data distribution of each node is
regarded as an independent sample extracted from a more extensive fog computing job
distribution. The approach uses a meta-learning inner-outer optimisation loop to train the
model initialisation parameters directly so that the anticipated loss is as low as possible
across all tasks following quick adaption. This means that the goal of the optimisation is
not to improve the model's performance on current data, but to improve its ability to
adapt and generalise across tasks. This naturally reduces client drift and model
generalisation degradation that might happen with Non-IID data.

This method uses an indirect but effective way of communicating to improve
communication efficiency. This system sends meta-gradients instead of model
parameters, like federated averaging techniques and their variations do. The load per
communication round may be same for gradient and parameter transmission, but the
optimisation semantics they express are very different. Meta-gradients convey directional
information regarding the enhancement of initial parameters, rather than an
intermediate model state. The goal of this design is to make sure that each cycle of
communication directly helps the meta-model's ability to generalise across tasks. From a
macro-convergence point of view, the meta-model is optimised for a ‘niche point’ that is
sensitive to task distribution. This means that new nodes only need to download the final
model once and execute some local computation to adapt quickly. This cuts down on the
system's total communication cost and processing latency by a lot, which is needed to
solve the cold-start problem for new activities.

Moreover, the algorithm's originality consists in reconciling private protection with
tailored effectiveness. The framework follows the most important rule of federated
learning: no exchange of raw data (Lu et al., 2019). During local updates, nodes only use
simulated jobs (the support set) to figure out adaptation directions. Then, they use a
different, non-overlapping simulated validation set (the query set) to see how well these
directions work and make meta-gradients. There is no need to provide raw data at any
point in this procedure. At the same time, the built-in simulation and validation system
makes sure that the meta-information being conveyed is very relevant to the task at hand.
The architecture ultimately enables a smooth and quick transition from globally shared
knowledge to node-specific knowledge by combining a global meta-model with an
efficient local adaptation process, all while keeping data private. This method
successfully combines privacy protection with accurate customisation.
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5 Experiments and results analysis

5.1 Experimental setup

This study was validated on widely utilised image classification benchmark datasets,
specifically CIFAR-10 (Lv, 2020) and Fashion-MNIST (Hankin, 2010), to guarantee the
reliability and comparability of the experiments. The CIFAR-10 dataset has 60,000
colour images that are 32 x 32 pixels and belong to 10 different groups. The
Fashion-MNIST dataset has 70,000 grayscale images that are 28 x 28 pixels and belong
to 10 different groups. We used non-independent identically distributed (NIID)
partitioning on the training datasets to mimic the very different types of data that can be
found in fog computing environments. We used a partitioning strategy based on the
Dirichlet distribution (Fallah et al., 2020). to give each fog node a data subset that was
biased toward one or more specified categories. This method manages the level of data
distribution heterogeneity to closely resemble the significant variations in data
distribution among nodes in practical situations.

We created a number of typical baseline algorithms for comparative analysis in order
to fully assess the effectiveness of the proposed FedFogMeta framework. The baselines
consist of the standard federated averaging algorithm, designed to learn a cohesive global
model; the centralised MAML algorithm (Yang et al., 2023), which presumes that all data
can be consolidated at a central server for centralised meta-training, thereby establishing
a performance upper bound reference; and pure local training, wherein each node
independently trains its model utilising solely its own data without any collaboration. A
systematic comparison with these baselines clearly shows that our strategy is better at
transferring knowledge between nodes and adapting quickly.

This experiment uses multi-dimensional assessment measures to fully measure how
well the algorithm works. The main measure is test accuracy, which looks at how well
different algorithms classify data when they are used on new fog nodes with little labelled
data. Second, we look at the speed of convergence by counting the number of
communication rounds needed to reach the goal performance level. This helps us see how
well the training is going. Sample efficiency is another important measure. It looks at
how well a model does after adapting to new nodes using only a small number of labelled
samples from those nodes (Vettoruzzo et al., 2024). All of these metrics together make up
a complete evaluation framework.

We made some little changes to the way we established the parameters, but we
mostly followed common methods in the area. The global meta-learning rate was set to
0.001, and the local adaption learning rate was set to 0.01. The training batch size was
always set at 32. Experiments simulated a network of 100 fog nodes, with 10 nodes
randomly activated for training in each communication round. The inner adaptation
gradient update step size for the FedFogMeta algorithm and its meta-learning
counterparts in the baseline comparisons was set to 1 step to show that the goal was to
adapt quickly. To make sure things were fair, all of the models used the same
convolutional neural network architecture, and grid search found the best combinations of
hyperparameters.
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5.2 Experimental results and analysis

The overall performance comparison test results are shown in Figure 2. In extensive
performance comparison studies, the FedFogMeta architecture introduced in this article
was rigorously assessed against several baseline approaches using the CIFAR-10 dataset.
Experimental results show that FedFogMeta has big advantages in two important areas:
test accuracy and speed of convergence. After 200 rounds of communication-based
training, FedFogMeta obtained around 72% test accuracy, which is far better than the
classic federated averaging approach (about 70%) and pure local training (about 40%).
Notably, FedFogMeta converges quickly at the start of training, reaching 68% accuracy
after only 80 communication cycles. In contrast, federated averaging needs about 120
rounds to acquire the same level of performance. Theoretically, centralised MAML can
reach the best performance of about 75%. However, with strong data privacy rules in
federated learning, FedFogMeta gets closest to this level. This totally shows how well the
suggested framework works for transferring knowledge across nodes.

Figure 2 Overall performance comparison on CIFAR-10 (see online version for colours)
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The melting test results are shown in Figure 3. We did a thorough study of the need for
each fundamental part of the FedFogMeta framework by carefully designing ablation
experiments. When the meta-learning initialisation component was taken out — meaning
that federated training only used randomly initialised parameters — the model's
performance dropped sharply to about 58%. This clearly shows that learnt high-quality
startup parameters from task distributions are the most important part of quick adaptation.
Disabling the individualised adaptation process and making all nodes use a single global
model also caused a big loss in performance, down to about 63%. This shows that in
extremely heterogeneous fog computing systems, it is important to combine global
knowledge sharing with local tailored optimisation. The federated averaging technique
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only got approximately 55% accuracy as a baseline, which shows even more how
important it is to include meta-learning capabilities to the federated learning framework.
These ablation results repeatedly show that each part of FedFogMeta plays an important
role in the ultimate performance. The framework can only achieve effective knowledge
transfer while protecting data privacy if they work together in a way that benefits both
parties.

Figure 3 Ablation study: component analysis (see online version for colours)
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The results of the sensitivity analysis experiment are shown in Figure 4. We did a
thorough sensitivity analysis to see how well FedFogMeta works under different
scenarios. We focused on how the size of the local adaption sample affects model
performance. The experimental findings reveal that FedFogMeta always does better than
the federated averaging algorithm, and this advantage is especially clear when there is
very little data. FedFogMeta keeps an accuracy of roughly 52% when each new node gets
just 5 local samples. Federated averaging, on the other hand, only gets about 32%
accuracy. As the sample size grew, the difference in performance between the two
techniques slowly got smaller. But even when the sample size grew to 100, FedFogMeta
still had a 3-point lead. This scenario thoroughly illustrates the distinctive efficacy of the
suggested approach in tackling the cold-start issue. The starting settings derived from
meta-learning can actually swiftly adjust in scenarios characterised by exceedingly
limited samples. This has important real-world implications for deploying models on
nodes with limited resources in fog computing applications.
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Figure 4 Sensitivity analysis: impact of local sample size (see online version for colours)
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6 Conclusions

This research tackles the difficulties of model generalisation and cold start in fog
computing settings, characterised by nodes with very diverse data and limited resources,
by introducing a novel FedFogMeta framework. The main idea is to combine the
‘learning to learn” mechanism of meta-learning with the distributed training model of
federated learning to make a two-stage optimisation architecture. Its goal is not to learn
one global model, but to find high-quality model starting parameters that are responsive
to the task distribution. This major change in the way things work lets new fog nodes
quickly get high-performance tailored models using only a few local samples and
calculation steps, based on these startup parameters.

Tests on the CIFAR-10 dataset show that the new FedFogMeta method gets a test
accuracy of 72.1% after 200 training rounds, which is much better than the previous
FedAvg algorithm's 68.5%. FedFogMeta only needs 80 communication cycles to get to
68% accuracy, but FedAvg needs 120 rounds to get to the same level of performance.
Ablation experiments confirm the essentiality of each framework component: the
removal of the meta-learning initialisation component results in a performance decline to
58.3%, whereas the deactivation of the personalised adaptation process leads to a
performance reduction to 63.7%, thereby fully illustrating the efficacy of the core design.
In terms of sample efficiency, FedFogMeta is very important because it keeps 52.4%
accuracy even when fresh nodes only get 5 local samples. This is far better than FedAvg's
32.1%, which shows that it can handle cold-start problems.

Even while this study met its goals, there are a few areas that need more research:
First, when it comes to model architecture, most of the work done so far is based on basic
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convolutional neural networks. Future improvements could let the framework function
with more complicated models, like Transformers, so it can manage more types of data
and jobs. Second, in terms of privacy and security, the current architecture uses federated
learning's built-in privacy protection features. Future endeavours may integrate more
stringent methodologies such as differential privacy or homomorphic encryption to
deliver verifiable, enhanced privacy assurances while preserving model efficacy. Third,
this research underscores the importance of empirical validation in theoretical analysis.
Future research may concentrate on developing more stringent convergence analyses and
generalisation error constraints for the FedFogMeta framework, thereby offering robust
theoretical underpinnings for its efficacy.
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