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Abstract: At present, all the positioning methods for the trajectory of table 
tennis have limitations such as low accuracy and large deviation. Therefore, 
this study utilises the extrusion and excitation network to optimise YOLOv5, 
introduces the graph convolutional network to improve the hybrid algorithm of 
semi-global matching and census transformation, and combines the two to 
construct an intelligent positioning and recognition model for table tennis. The 
results show that the research model has an accuracy rate of 97.6%, a precision 
rate of 98.6%, a recall rate of 96.8%, and a specificity of 97.2%. The average 
error of the recall rate is 0.59%, and the overlap degree of trajectory positioning 
is 0.93. In conclusion, the research model not only ensures the reliability of the 
table tennis positioning and recognition results, but also improves the 
recognition efficiency and result quality, making significant contributions to the 
development of table tennis. 

Keywords: YOLOv5; squeeze-and-excitation network; semi-global matching 
and census; SGCM; graph neural network; GNN; positioning and recognition; 
ping-pong balls. 
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1 Introduction 

Ping-pong, as a global sport, not only promotes physical health and facilitates cultural 
exchange but also features characteristics such as high speed and strong spin (Wang  
et al., 2023). In sports competitions, the trajectory of a ping-pong ball is complex and 
varied, often leading to issues like motion blur and occlusion. Accurate localisation and 
recognition are essential for referees to make effective judgments on players’ actions and 
the ball’s trajectory. Therefore, research on localisation and recognition is of great 
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significance (Shi et al., 2024; Zaidi et al., 2023). Localisation and recognition aim to 
utilise advanced computer and image processing technologies to detect and analyse the 
position and state of an object, ultimately determining its complete motion trajectory. The 
core technologies involved include object detection, feature extraction, and motion 
tracking, which also constitute the major challenges in this field (Hu et al., 2023). As a 
result, numerous scholars worldwide have conducted research on this topic. For instance, 
the Tian team, in order to address the problem of existing algorithms being unable to 
precisely identify the movement position of human bodies, proposed a multidimensional 
information recognition algorithm for human targets based on CSI decomposition. This 
algorithm used linear discriminant analysis to achieve precise recognition of human body 
movement positions (Tian et al., 2023). To tackle the poor performance of existing 
methods in identifying faults and their positions in photovoltaic arrays, Sakthivel et al. 
(2023) proposed a PV fault experiment proposed method. By analysing module voltage, 
they could compute fault types and locations, showing that their approach could 
accurately identify fault locations and types (Sakthivel et al., 2023). To better recognise 
patients’ activity trajectories at home, A. Leal-Junior’s team introduced a sensor system 
based on feedforward neural networks. Through projection-reflection analysis, they 
detected patients’ movements, with experimental results indicating that the system could 
accurately locate the patient’s position and provide gait analysis (Leal-Junior et al., 
2023). In response to the challenge of traditional methods being unable to perform 
localisation in DC grid systems, Rao and Jena (2023) proposed a fault detection scheme 
based on DC energy differences. This method used least squares to calculate the fault 
point’s location and proved effective in distinguishing between internal and external 
faults, ensuring accurate localisation of the faults (Rao and Jena, 2023). 

Although certain achievements have been made in the research of positioning and 
recognition at present, the traditional positioning and recognition methods generally have 
the following problems, which are difficult to meet the positioning requirements of small 
size and high speed of table tennis balls (Hu et al., 2024). One of the issues is the 
insufficient recognition accuracy. Traditional template matching algorithms are 
extremely sensitive to changes such as the posture of the ping-pong ball and the intensity 
of the light. In competition scenarios, matching deviations are prone to occur, resulting in 
inaccurate positioning results (Annaby and Fouda, 2023). Second, it has poor real-time 
performance. For instance, the computational complexity of the scale-invariant feature 
transformation algorithm is relatively high. In scenarios where table tennis balls move at 
high speed, it cannot quickly output positioning results, making it difficult to meet the 
demands of real-time refereeing and trajectory playback in competitions (Langford et al., 
2023). Thirdly, it has weak adaptability to complex scenarios. In table tennis matches, 
situations such as blurred vision and chaotic scenes often occur. Existing algorithms are 
prone to losing targets in such scenarios, resulting in positioning interruption or increased 
errors. The YOLOv5 network, a target detection algorithm based on computer vision, is 
known for its speed and high accuracy and is widely used in fields such as object 
detection and image recognition (Rajamohanan and Latha, 2023). The semi-global 
matching and census (SGCM) transform algorithm encodes the local greyscale of motion 
images to generate specific representations, solving the issue of image matching for 
moving objects by judging the degree of matching between different representations (Liu 
et al., 2024). Furthermore, in order to further enhance the performance of the algorithm in 
table tennis positioning, the squeeze-and-excitation network (SE) and graph neural 
network (GNN) were introduced in the research to optimise and improve the YOLOv5 
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network and the SGCM algorithm respectively. By combining both, an intelligent model 
for ping-pong localisation and recognition is constructed, with the goal of solving the 
problems of low recognition accuracy and large deviation in traditional methods. The 
research aims to address the problems of low accuracy, large result deviation and weak 
adaptability to complex scenarios of traditional methods by constructing models, 
providing technical support for table tennis event adjudication, training analysis, etc. 

The innovation of the research lies in the following three points. The first one is that, 
in view of the small target and high dynamic characteristics of table tennis, the channel 
attention mechanism of YOLOv5 is strengthened through the SE module to increase the 
weight of the network on key features such as the outline and movement trajectory of the 
table tennis. And the node association relationship of image features is constructed by 
using GNN, so that SGCM can still accurately match features when the local features of 
table tennis balls change. Secondly, a dual-module collaborative architecture for target 
detection and stereo matching was studied and constructed. With the help of the  
SE-YOLOv5 module, the real-time position of the table tennis ball was quickly located, 
providing precise initial coordinates for subsequent motion matching. Then, the  
three-dimensional scene diagram of table tennis movement is constructed with the  
GNN-SGCM module to achieve the continuous tracking of the movement trajectory. 
Thirdly, in response to the actual scene issues such as lighting changes, limb occlusion, 
and differences among multi-brand balls in table tennis matches, targeted optimisations 
were carried out during the model construction. For instance, the research enhances the 
model’s robustness under different lighting conditions through the adaptive feature 
weighting of the SE module, and reduces the impact of limb occlusion on positioning by 
leveraging the global relationship modelling capability of GNN. 

The study is divided into four main parts. The first part introduces the research 
background and relevant literature, analysing the current state of research on localisation 
and recognition. At the same time, study proposes a ping-pong localisation and 
recognition model based on the SE-YOLOv5 network and GNN-SGCM algorithm. The 
second part details the advantages of the SE-YOLOv5 and GNN-SGCM algorithms in 
target detection and image recognition, while also highlighting the benefits of the 
proposed model compared to others, and outlines its process for ping-pong localisation. 
The third part validates the performance of SE-YOLOv5 and GNN-SGCM through 
comparative experiments and evaluates the effect of the proposed model in practical 
applications. The fourth part discusses and summarises the experimental data and results, 
while also exploring potential future research directions. 

2 Methods and materials 

2.1 Target detection algorithm design based on SE-optimised YOLOv5 network 

Ping-pong localisation and recognition require both high accuracy and real-time 
performance, and during the actual process, the system must handle various motion states 
and the interference from complex backgrounds (Li and Wu, 2023). YOLOv5, as an 
optimised version of the YOLO network, possesses timely, efficient, and accurate object 
detection capabilities. With its well-designed network architecture and reasonable 
training strategies, YOLOv5 significantly enhances multi-scale object detection 
performance (Ghose et al., 2023; Saidani, 2023). During the iterative process, feature 
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reuse effectively reduces computational complexity, while various optimisation 
techniques are introduced during training to enhance the network’s generalisation ability 
and convergence speed (Han et al., 2023). The specific structure of YOLOv5 is shown in 
Figure 1. 

Figure 1 YOLOv5 structure diagram (see online version for colours) 
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Neck network

Input

Output

ConvFocus C3

 

As shown in Figure 1, YOLOv5 mainly consists of four parts: the input, backbone 
network, neck network, and output. When the input data enters the backbone network, it 
is first split by the Focus module. Then, the data undergo convolution stacking in the 
Conv module and feature maps are formed in the C3 module. Afterward, the data passes 
through the neck network, where the FPN-PAN structure further extracts local 
information from the feature map. Iteratively, multi-scale feature maps with feature 
information are generated, and they are combined and output as the final result. The 
convolution operation in the Conv module is shown in equation (1). 

,M NY N X W b= ⋅ ⋅ +  (1) 

In equation (1), Y represents the output feature map, X denotes the input feature map, M 
and N are the sizes of the convolution kernels, W represents the weights, b is the bias 
term, and N is the number of channels in the input feature map. The Conv module not 
only performs convolution on the input feature map but also alleviates gradient vanishing 
and prevents output overfitting through batch normalisation (Chitraningrum et al., 2024). 
The specific process of normalisation is shown in equation (2). 

2

i
i

i i

x μx
σ ε

y γx

− =
+

 = + β
 (2) 

In equation (2), xi and yi denote the normalisation of the data in two branches, μ is the 
mean of the current data, σ2 is the variance of the current data, ε is a constant for 
numerical stability, and γ and β are hyperparameters. Throughout the target data detection 
process, YOLOv5 uses its loss function to constrain data processing and prevent 
significant result deviations (Liang et al., 2023). The loss function is expressed in 
equation (3). 
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cls cls obj objL λ L λ L= +  (3) 

In equation (3), Lcls defines the classification loss function, λcls is its weight coefficient, 
Lobj represents the object confidence loss function, and λobj is its weight coefficient. 
However, a single YOLOv5 network faces issues such as weak motion blur handling and 
poor adaptability to complex environments when performing ping-pong localisation and 
recognition, requiring optimisation. SE, as an optimisation algorithm, can adjust the 
weights of the data channels, emphasising local feature information while suppressing 
unimportant features to improve the network’s ability to extract feature maps (Phan et al., 
2023; Liu et al., 2025). Therefore, the study introduces SE to optimise the YOLOv5 
network, resulting in the SE-YOLOv5 hybrid algorithm, as shown in Figure 2. 

Figure 2 SE-YOLOv5 hybrid algorithm flowchart Figure 1 YOLOv5 structure diagram  
(see online version for colours) 
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As shown in Figure 2, in the SE-YOLOv5 hybrid algorithm, SE primarily performs 
secondary processing on the feature maps generated by YOLOv5. It adjusts the network 
structure by weighting the channel attention of the feature maps and enables the network 
to learn the weighted features. Then, SE adaptively adjusts the response strength of the 
weighted features within the channels, ultimately enhancing the detail representation of 
the feature maps and outputting the results. The function for weighting channel attention 
is expressed in equation (4). 

1 1

1 ( , ) 1, 2, ,
H w

c cm n
z U m n c c

H w = =
= =

×     (4) 

In equation (4), z defines the channel attention descriptor, Uc(m, n) represents the value at 
position U in the cth channel of feature map (m, n), and H and w are the weighting 
constants. Then, SE learns the weighted features across channels through a fully 
connected layer, generating weights within each channel. This process is shown in 
equation (5) (Ruifeng et al., 2024). 
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( )Re 'g LU Kz b= +  (5) 

In equation (5), K is the weight matrix, with values ranging from [0, 1], b′ is the bias 
vector, and g defines the generated weights. 

2.2 Binocular stereo matching algorithm based on GNN-improved SGCM 

Although SE-YOLOv5 can quickly lock the two-dimensional position of the ping-pong 
ball in a single frame image, it helps solve the problems of insufficient accuracy and poor 
real-time performance of traditional algorithms in small target detection. However, the 
movement of table tennis has the characteristics of three-dimensional space and trajectory 
correlation. When using SE-YOLOv5 only for positioning and recognition, the following 
limitations exist. One is that the two-dimensional coordinates output cannot reflect the 
information of the sphere in three-dimensional space, which is likely to cause confusion 
in the positioning of table tennis balls at different distances on the court. Secondly, the 
single-frame detection results lack continuous correlation with the motion trajectory, 
making it difficult to handle the problem of target matching interruption in scenarios such 
as high-speed ball movement and athlete limb occlusion. Therefore, it is necessary to 
combine the stereo matching algorithm. SGCM, as a hybrid algorithm that combines 
SGM and Census transformations, possesses strong anti-interference ability and can 
better adapt to various complex scenarios. Its powerful feature matching ability improves 
computational efficiency to some extent, making it suitable for detecting the motion of 
small objects (Singh and Adhikari, 2025; Yao et al., 2025). The architecture of SGCM is 
shown in Figure 3. 

As shown in Figure 3, SGCM is divided into two parts: SGM and census. First, SGM 
matches image features with actual objects by optimising cost paths in multiple directions 
to find the best matching results, while capturing long-range correlations in the image to 
improve result quality. Then, Census performs a mapping transformation on the best 
matching results, turning abstract image features into clear greyscale values, which are 
then integrated and output. The process of image feature matching by SGM is shown in 
equation (6). 

( ) ( )( ), , ,l rC C x y C x d y′ ′ ′ ′= × −α  (6) 

In equation (6), α defines the Hamming distance used to optimise the path for finding the 
optimal match, Cl(x′, y′) represents the left image feature at pixel (x′, y′), and Cr(x′ – d, y′) 
is the right image feature with disparity. The specific expression of the Hamming 
distance is shown in equation (7). 

( )( , )
N

i ii
A B A B

′
′ ′′

= ⊕α  (7) 

In equation (7), A and B represent two binary numbers, Ai′ and Bi′ are their i′th bit digits, 
N′ is the number of binary digits, and ⊕ represents the operator. Optimising the path for 
finding the best match using the Hamming distance significantly improves the 
convergence speed, as shown in equation (8). 

1
( , )

R

r
S L r d

′=
′=  (8) 
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Figure 3 SGCM structure diagram Figure 1 YOLOv5 structure diagram (see online version  
for colours) 
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In equation (8), R represents the total number of directions, and L(r′, d) defines the 
disparity between different directions. Census transformation, as a local image feature 
description method, reduces complexity by mapping feature images to greyscale values, 
which in turn improves matching accuracy (Oddo et al., 2024). The process of census 
transformation is shown in equation (9). 

, ,( , ) ( , )
2e

m n o po p m n
C a′ ′ ′ ′∈

′ = ×  (9) 

In equation (9), (m′, n′) represents the centre pixel position of the image feature, (o, p) 
denotes the pixel positions of other image features in the neighbourhood, and a defines 
the matching result. However, a single SGCM has weak adaptability in special situations. 
For example, when the ping-pong ball rotates rapidly, the texture and features of the 
image change continuously, affecting the matching results. Therefore, further 
optimisation methods are needed. GNN is a neural network designed for processing 
image structural data. The core idea is to pass information between the nodes of image 
features to learn the representations of each node. This approach allows GNN to capture 
the complex relationships and dependencies between nodes (Preethi and Mamatha, 2023; 
Kunal et al., 2023). Therefore, the study introduces GNN to improve SGCM, resulting in 
the GNN-SGCM hybrid algorithm. The specific process is shown in Figure 4. 

As shown in Figure 4, in the GNN-SGCM hybrid algorithm, SGCM preprocesses the 
data first, and then GNN transforms the image processed by SGCM into a specific 
structure. Based on the spatial distance, structural similarity, colour, and other 
information between structures, GNN constructs a related model. The model then learns 
the feature representations of each structure, ultimately generating results with all the 
prominent features of the structure. The process of transforming the image into a graph 
structure by GNN is shown in equation (10). 

0 ,j j jh d g′ ′ ′′ =    (10) 

In equation (10), 0
jh ′  defines the initial graph structure, dj′ represents the disparity value 

of the j′th image, and jg ′′  is the greyscale value of the j′th pixel. When constructing the 
related model, GNN constantly updates the model parameters by passing information 
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between the graph structures. The information transmission function is shown in equation 
(11). 

( )
*

1t
t v N

q f h −
∈

=  (11) 

In equation (11), f represents the nonlinear function, ht–1 is the graph structure at time  
t – 1, qt is the graph structure information transmitted at time t, v is the node in the graph 
structure, and N* is the feature set of the neighbouring nodes. After receiving the 
information, each node updates its features according to its state. The mathematical 
formula for this update is shown in equation (12). 

( )1t t th v W h −′= × ⋅η  (12) 

In equation (12), W′ defines the weight matrix of the learning process, with values 
ranging from [0, 1], and η represents the activation function. By continuously updating 
the node features, a final image feature is obtained, which can optimise the disparity 
values in the process of converting the image to a graph structure. The optimisation 
process is shown in equation (13). 

( )* Td h ′= δ  (13) 

In equation (13), δ represents the specific regression function, d* is the disparity value 
optimised using the final node features, and T′ is the number of iterations. 

Figure 4 GNN-SGCM hybrid algorithm flowchart (see online version for colours) 
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2.3 Construction of ping-pong localisation and recognition model combining 
SE-YOLOv5 and GNN-SGCM 

Compared to the traditional YOLOv5 network, SE-YOLOv5 not only adapts the 
importance of feature channels through the SE module, but also retains the fast detection 
characteristics of YOLOv5, meeting the real-time recognition requirements. At the same 
time, it demonstrates strong generalisation ability in various conditions and complex 
dynamic environments. On the other hand, GNN-SGCM also has unique advantages in 
localisation and recognition. By transforming image features into a graph structure, 
GNN-SGCM uses its powerful relationship modelling ability to capture the spatial 
relationships between objects and environmental elements. Even in the presence of 
interference and cluttered backgrounds, it can accurately infer the object’s position using 
the scene graph information for precise localisation. Based on this, the study combines 
SE-YOLOv5 and GNN-SGCM to achieve a more comprehensive localisation and 
recognition of ping-pong balls. The structure of the hybrid algorithm is shown in  
Figure 5. 
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Figure 5 Diagram of the hybrid algorithm combining SE-YOLOv5 and GNN-SGCM (see online 
version for colours) 
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As shown in Figure 5, the hybrid algorithm performs localisation and recognition by 
processing the input image through two operation units, SE-YOLOv5 and GNN-SGCM. 
SE-YOLOv5 performs operations such as splitting, weighting, and combining the image, 
leveraging its efficient feature extraction and fast object detection capabilities to achieve 
high-quality recognition results. Meanwhile, GNN-SGCM uses its powerful relationship 
modelling ability and strong adaptability to complex scenes to perform operations such as 
matching, mapping, and learning, yielding positioning results with prominent feature 
information. The image processing by SE-YOLOv5 is assisted by the activation function, 
as expressed in equation (14). 

*
* 1

1
sy x

f x
e−

= ⋅
+

 (14) 

In equation (14), fsy defines the activation function of the SE-YOLOv5 network, 
specifically the Sigmoid function, and x* represents the input image. In the GNN-SGCM 
process of transforming the image into a graph structure, the final disparity of each image 
feature needs to be calculated. The specific calculation process is shown in equation (15). 

( ) ( )* * * * * *, arg min , ,dD m n S m n d=  (15) 

In equation (15), D(m*, n*) represents the final disparity value of pixel (m*, n*) after 
transforming into a graph structure, and S*(m*, n*, d*) is the accumulated cost during the 
transformation process. Compared to the individual SE-YOLOv5 and GNN-SGCM, the 
hybrid algorithm combines efficient feature extraction and fast object detection 
capabilities, while also considering dynamic and complex environments, facilitating the 
rapid localisation of ping-pong balls. Based on this, the study constructs an intelligent 
model suitable for ping-pong ball localisation and recognition, as shown in the 
localisation process diagram in Figure 6. 

As shown in Figure 6, when the proposed model performs ping-pong ball localisation 
and recognition, the first step is to preprocess the captured image, including resizing and 
data deduplication. Then, the backbone network of the YOLOv5 network is used for 
feature extraction, and the SE module enhances image features while suppressing 
irrelevant interference. Meanwhile, GNN-SGCM generates preliminary boundary 
locations and confidence scores, and constructs a graph scene based on image elements. 
Subsequently, SE-YOLOv5 generates initial localisation results, which are input into the 
GNN-SGCM operation unit to match the image features and transform them into a 
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specific graph structure. Finally, the model performs relationship reasoning between the 
ping-pong ball and surrounding objects, the environment, etc., to optimise the 
preliminary localisation results by excluding errors that do not fit the logic or scene, 
ultimately outputting precise ping-pong ball localisation results. 

Figure 6 Flowchart of the proposed model for ping-pong ball positioning and recognition  
(see online version for colours) 
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3 Results 

3.1 Performance validation of SE-YOLOv5 for ping-pong motion path detection 

To verify the performance of SE-YOLOv5, the study compared it with the improved 
single shot multibox detector (ISSD) algorithm, improved long short-term memory 
(ILSTM), and YOLOv3 network. And four different line types and ICONS are adopted 
for distinction. The software and hardware framework of the experimental environment 
and the key training parameters of the algorithm are shown in Table 1. 

Figure 7 Comparison of localisation accuracy and position error, (a) comparison of the accuracy 
rates of each algorithm in locating table tennis balls (b) comparison of the position 
errors of each algorithm in locating table tennis balls (see online version for colours) 
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The experimental dataset was rotated by OpenTTGames, which includes over 38,000 
table tennis training samples, covering ping-pong ball position coordinates, semantic 
segmentation templates such as figures and scoreboards, and other labelled content, 
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making it suitable for ball detection tasks. The study first conducted comparison 
experiments on the accuracy and position error of ping-pong ball localisation by the four 
algorithms. The results are shown in Figure 7. 
Table 1 Information table of software and hardware configuration and algorithm 

hyperparameters 

Category Specific information 
Hardware configuration CPU: Intel Core i7-14600KF 

GPU: NVIDIA RTX 5060Ti 16 GB 
Internal memory: 64 GB DDR5 6,400 MHz 

Storage: 2 TB SSD and 2 TB Mechanical hard disk 
Operating system: Windows 11 Professional 

Software framework Deep learning framework: PyTorch 2.1.0 
Image processing library: OpenCV 4.8.1 

Data annotation tool: LabelImg 1.8.6 
Visualisation tool: Matplotlib 3.8.2 
Programming language: Python 3.8 

Algorithm hyperparameters Learning rate:0.001 
Batch size: 16 

Optimiser: AdamW 
Epochs:300 

Loss function: CIoU loss 

As shown in Figure 7(a), SE-YOLOv5 achieved the highest localisation accuracy of 
97.6% at the 268th iteration, which is significantly higher than ISSD at 91.2%, YOLOv3 
at 88.4%, and ILSTM at 85.9%. Its average accuracy was 90.3%, also outperforming the 
average accuracy of the three comparison algorithms. Additionally, SE-YOLOv5’s 
accuracy curve rises quickly with only two increases in value, without the sharp 
fluctuations seen in ISSD and ILSTM. Although YOLOv3’s accuracy also fluctuates 
relatively little, the increase is slow and much lower than SE-YOLOv5’s accuracy. From 
Figure 7(b), it can be observed that SE-YOLOv5’s localisation results are consistently on 
the same side as the actual position, and the error rapidly decreases as the number of 
iterations increases. Its minimum position error was 2.7 mm, significantly lower than 
YOLOv3’s 9.8 mm, ISSD’s 12.2 mm, and ILSTM’s 15.3 mm, indicating that  
SE-YOLOv5’s localisation results are more aligned with the actual position of the  
ping-pong ball. The study then compared the localisation efficiency, and the experimental 
results are shown in Figure 8. 

In Figure 8(a), SE-YOLOv5 required a maximum time of only 207 ms for ping-pong 
ball localisation, significantly lower than ISSD at 317 ms, YOLOv3 at 338 ms, and 
ILSTM at 446ms. This indicates that SE-YOLOv5 has a well-structured design that 
efficiently utilises computational resources, and the algorithm can provide timely position 
information for ping-pong balls in scenarios with high real-time requirements. As shown 
in Figure 8(b), SE-YOLOv5 achieved a maximum frame rate of 48FPS for ping-pong ball 
localisation, which is significantly higher than YOLOv3 at 32FPS, ISSD at 29FPS, and 
ILSTM at 25FPS. Furthermore, SE-YOLOv5’s frame rate showed the smallest 
fluctuation and followed an approximately linear relationship. Overall, SE-YOLOv5 not 
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only demonstrated higher accuracy and lower error in ping-pong ball localisation but also 
showed strong efficiency, enabling smooth and timely tracking of the ball’s movement. 

Figure 8 Comparison of ping-pong ball localisation efficiency, (a) comparison of the time 
required for different algorithms to locate tennis balls (b) comparison of frame rates of 
tennis ball positioning results by different algorithms (see online version for colours) 
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In addition, the study also analysed the practical application of SE-YOLOv5. The 
research selected the standard balls for international competitions and conducted actual 
tests in two real scenarios: amateur and professional venues. Among them, the lighting in 
the amateur competition venue was uneven, and there was also a situation where athletes’ 
limbs were blocked. The study embedded the SE-YOLOv5 into the live event system for 
continuous detection of ten matches. The results showed that its average accuracy rate in 
positioning table tennis balls was 89.24%. When facing occluding scenes, its accuracy 
rate only dropped to 89.93%, and the frame rate was stable at 40–45 FPS. It can 
accurately output the trajectory of the ball to assist referees in judging balls that are out of 
bounds or on the edge. However, in professional training venues, there are scenes of 
strong light interference and multiple balls moving simultaneously, and the rotation 
intensity of the balls is high. The study integrated SE-YOLOv5 into the training analysis 
system to provide trajectory playback and landing point statistics for athletes. The 
measured results show that the accuracy rate of SE-YOLOv5 in distinguishing multiple 
balls is as high as 87.63%, and the positioning error in high-spin scenarios is less than  
4.2 mm. It can accurately count the landing point distribution of table tennis balls to 
assist coaches in adjusting training plans. 

3.2 Performance evaluation of GNN-SGCM for ping-pong stereo motion 
recognition 

To verify the performance of GNN-SGCM, the study compared it with the YOLOv3 
network, ISSD, and ILSTM. To ensure the accuracy and reliability of the experimental 
results, the experimental environment and specific parameters were kept unchanged, with 
only the dataset being switched to the PaddlePaddle-based temporal action localisation 
dataset. This dataset mainly involves videos of athletes performing the action of hitting a 
ping-pong ball, designed specifically for instantaneous action localisation. The study first 
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conducted comparison experiments on the precision and specificity of the four algorithms 
in recognising the movement of the ping-pong ball. The results are shown in Figure 9. 

Figure 9 Comparison of recognition precision and specificity, (a) comparison of the accuracy 
rates of four algorithms in locating and recognising table tennis balls (b) comparison  
of the specificity of four algorithms in locating and recognising table tennis balls  
(see online version for colours) 
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As shown in Figure 9(a), the precision of GNN-SGCM in recognising the movement of 
the ping-pong ball reached its maximum value of 98.6% at the 293rd iteration, after 
which it stabilised and remained unchanged. This is significantly higher than ISSD’s 
92.3%, YOLOv3’s 91.9%, and ILSTM’s 95.1%. Furthermore, the precision curve of 
GNN-SGCM increased smoothly without any obvious fluctuations, whereas YOLOv3’s 
precision curve experienced significant variations during the first 250 iterations, with the 
other two comparison algorithms also showing noticeable fluctuations. In Figure 9(b), the 
specificity of all four algorithms increased significantly during the first 300 iterations. 
However, after 300 iterations, only GNN-SGCM continued to show a significant increase 
in specificity, reaching a maximum of 97.2%, which is much higher than YOLOv3’s 
82.5%, ISSD’s 78.6%, and ILSTM’s 84.1%. This indicates that GNN-SGCM is better at 
distinguishing non-ping-pong ball objects when recognising the movement positions of 
objects. The study then compared the trajectory overlap and memory usage of each 
algorithm in recognising the position of the ping-pong ball, with the experimental results 
shown in Figure 10. 

As shown in Figure 10(a), GNN-SGCM’s trajectory overlap reached its maximum 
value of 0.93 quickly before the 200th iteration, which is significantly higher than 
YOLOv3’s 0.84, ISSD’s 0.77, and ILSTM’s 0.81. Moreover, GNN-SGCM maintained a 
higher trajectory overlap than the other three comparison algorithms throughout the 
process and showed the fastest and smoothest increasing trend as the number of iterations 
increased, without frequent fluctuations. In Figure 10(b), GNN-SGCM’s maximum 
memory usage during trajectory recognition was only 223 dB, which is significantly 
lower than YOLOv3’s 346dB, ISSD’s 403dB, and ILSTM’s 518 dB. Additionally, its 
memory usage showed a nearly linear increase before 450 iterations, after which it 
gradually stabilised without any significant changes. In summary, using GNN-SGCM to 
track the movement trajectory of the ping-pong ball not only achieved high recall, 
specificity, and trajectory overlap but also demonstrated low computational resource 
requirements. This suggests that GNN-SGCM can effectively capture the spatial 
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information of the ping-pong ball and simulate its movement trajectory, ultimately 
completing the localisation and recognition. 

Figure 10 Comparison of trajectory overlap and memory usage, (a) comparison of the overlap 
degree of the table tennis ball trajectories identifies by each algorithm (b) comparison 
of the memory usage of each algorithm for locating and identifying table tennis balls 
(see online version for colours) 
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3.3 Application effect evaluation of ping-pong localisation and recognition 
model based on SE-YOLOv5 and GNN-SGCM 

After verifying the performance of SE-YOLOv5 and GNN-SGCM, the study conducted 
field tests to prove the feasibility and superiority of the proposed model. The study 
selected the Hongshuangxi competition-grade three-star D40+ ping-pong ball as the 
experimental object and invited two professional table tennis players to cooperate in the 
experiment. First, the study compared the anti-interference ability of the proposed model 
with that of the improved support vector machine (ISVM) model, improved decision tree 
(IDT) model, and region convolutional neural network (R-CNN) model for ping-pong 
ball localisation recognition. The results are shown in Figure 11. 

As shown in Figure 11(a), the proposed model achieved the highest precision of 
98.7% in locating the ping-pong ball under uneven lighting, which is significantly higher 
than R-CNN’s maximum precision of 87.3%, ISVM’s maximum precision of 89.8%, and 
IDT’s maximum precision of 91.0%. Under weak and strong lighting conditions, the 
proposed model’s precision in locating the ping-pong ball was 95.6% and 92.9%, 
respectively, with an average precision of 95.7%. These results were better than those of 
the three comparison models. Additionally, the precision difference in locating and 
recognising the ping-pong ball under different lighting conditions was small, with no 
obvious discrepancies. In Figure 11(b), it can be seen that when the rotation intensity was 
33 rps, the precision of the proposed model in locating the ping-pong ball decreased to its 
minimum value of 90.7%, which is still noticeably higher than ISVM’s 86.0%, IDT’s 
83.6%, and R-CNN’s 81.9%. Furthermore, the proposed model showed the slowest 
decrease in precision as it tracked the ping-pong ball, maintaining a higher precision than 
the other three models throughout the experiment, indicating that the proposed model 
possesses strong anti-interference capability and higher accuracy when locating and 
recognising the ping-pong ball. The study then introduced the TTSwing dataset and 
compared the sensitivity of each model across the OpenTTGames, PaddlePaddle Action 
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Localisation, and TTSwing datasets to verify the generalisation ability of the proposed 
model. The results are shown in Table 2. 

Figure 11 Comparison of anti-interference ability during localisation, (a) comparison of the 
accuracy of table tennis balls under different lighting conditions in four models  
(b) comparison of the accuracy of the four models under different rotational intensities 
(see online version for colours) 
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Table 2 Comparison of sensitivity across different datasets 

Dataset Number of 
experiments 

Sensitivity/% 
Proposed model R-CNN ISVM IDT 

OpenTTGames Experiment 5 92.7 85.6 74.7 90.2 
Experiment 10 93.6 89.4 73.5 92.4 
Experiment 15 95.3 88.3 79.2 89.8 
Experiment 20 97.6 89.5 80.4 91.5 
Experiment 25 97.9 90.7 83.1 90.6 

Positioning of the 
flying paddle 
movement 

Experiment 5 90.7 78.9 82.8 73.8 
Experiment 10 92.4 77.2 83.5 79.4 
Experiment 15 94.9 73.4 86.9 85.9 
Experiment 20 95.5 75.6 89.2 86.7 
Experiment 25 96.8 77.3 92.0 88.2 

TTSwing Experiment 5 91.7 82.0 88.4 83.4 
 Experiment 10 92.6 85.6 89.5 86.9 
 Experiment 15 94.2 86.2 91.3 84.8 
 Experiment 20 96.0 90.1 90.8 83.3 
 Experiment 25 97.1 87.5 92.7 88.0 

As shown in Table 2, the maximum sensitivity of the proposed model in the 
OpenTTGames, PaddlePaddle Action Localisation, and TTSwing datasets was 97.9%, 
96.8%, and 97.1%, respectively. The average sensitivities for these datasets were 95.42%, 
94.06%, and 94.32%, all significantly higher than the maximum sensitivity of the three 
comparison models. Additionally, the sensitivity difference of the proposed model 
between the OpenTTGames and PaddlePaddle Action Localisation datasets was only 
1.36%, the difference between OpenTTGames and TTSwing was 1.1%, and the 
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difference between PaddlePaddle Action Localisation and TTSwing was as small as 
0.26%. In contrast, the sensitivity of the three comparison models varied greatly across 
the datasets. For instance, the ISVM model achieved a sensitivity of 92.7% in the 
TTSwing dataset but only 73.5% in the OpenTTGames dataset. These experimental data 
and comparison results clearly show that the proposed model has strong generalisation 
ability. The study then randomly added Gaussian white noise to the TTSwing dataset and 
compared the recall rates and localisation errors of the four models at different noise 
intensities to verify their robustness. The experimental results are shown in Figure 12. 

Figure 12 Comparison of recall rate and localisation error under different noise intensities,  
(a) comparison of the recall rates of table tennis balls identified by different models 
under noise interference (b) comparison of positioning errors of table tennis balls by 
different models under noise interference (see online version for colours) 
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Table 3 Comparison of localisation coverage for tracking ping-pong ball motion trajectories 

Dataset Types of 
table tennis 

Positioning coverage rate (%) 
Proposed model R-CNN ISVM IDT 

OpenTTGames DHS 92.7 82.7 65.4 86.4 
 DoubleFish 96.1 83.6 69.8 81.8 
 Butterfly 93.4 88.4 74.6 83.6 
 STIGA 95.2 86.9 79.2 79.7 
 YINHE 94.6 83.5 83.0 80.2 
Positioning of 
the flying 
paddle 
movement 

DHS 97.1 78.8 92.3 53.7 
DoubleFish 93.6 76.2 88.7 59.4 

Butterfly 94.8 75.1 90.5 63.2 
STIGA 96.0 79.6 87.4 68.1 
YINHE 94.2 80.9 89.6 74.9 

TTSwing DHS 91.9 83.4 67.8 83.4 
 DoubleFish 93.7 86.1 62.5 86.7 
 Butterfly 98.3 84.9 69.3 90.1 
 STIGA 96.5 83.8 72.1 85.4 
 YINHE 93.4 82.0 74.6 89.5 
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As shown in Figure 12(a), with noise intensities ranging from –20 dB to 0 dB, the recall 
rate of the proposed model was 76.9%, which is significantly higher than R-CNN’s 
62.3%, ISVM’s 65.1%, and IDT’s 60.4%. As the noise increased to 0dB, the recall rate of 
all four models experienced a sharp increase, with the proposed model reaching a 
maximum recall rate of 96.8%, much higher than the recall rates of the three comparison 
models. As the noise further increased, the recall rate of all models showed a decreasing 
trend, but the proposed model’s recall rate decreased the least, maintaining a recall rate of 
91.4% even at a 20 dB noise level. From Figure 12(b), it can be seen that the average 
localisation error of the proposed model was as low as 0.59%, the error calculation basis 
is the relative deviation between the recall rate output by the model and the manually 
labelled statistical recall rate in the real scenario, which is much lower than ISVM’s 
1.68%, R-CNN’s 1.96%, and IDT’s 3.07%. These data further demonstrate the robust 
performance of the proposed model. Next, the study compared the localisation coverage 
of the four models in tracking the motion trajectories of different brands of ping-pong 
balls across the three datasets. The results are shown in Table 3. 

Figure 13 Comparison of simulated ping-pong ball motion trajectories for each model,  
(a) generate the simulation results of table tennis movement trajectories using the 
proposed model (b) generate the simulation results of table tennis movement 
trajectories using the ISVM (c) generate the simulation results of table tennis 
movement trajectories using the R-CNN (d) generate the simulation results of table 
tennis movement trajectories using the IDT (see online version for colours) 
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As shown in Table 3, the proposed model achieved the maximum localisation coverage 
of 96.1%, 97.1%, and 98.3% in the three datasets, with average coverage rates of 94.4%, 
95.1%, and 94.8%, all of which are noticeably better than the localisation coverage of the 
three comparison models. Furthermore, the proposed model showed no significant 
differences in the localisation coverage for different brands of ping-pong balls, such as 
Hongshuangxi, Double Fish, and Stiga, with the maximum difference being only 6.4%. 
This fully demonstrates the promising application prospects of the proposed model. 
Finally, to further demonstrate the superiority of the proposed model in tracking  
ping-pong ball motion trajectories, the study compared the simulated ping-pong ball 
motion trajectories generated by the four models. The results are shown in Figure 13. 

From Figures 13(a) to 13(d), it can be seen that the motion trajectories simulated by 
the proposed model closely matched the actual trajectories. The ISVM model’s trajectory 
also closely followed the actual path, with only slight deviations in the initial and middle 
stages. The R-CNN and IDT models performed poorly, with their simulated trajectories 
deviating significantly from the actual path and even shifting the starting point, making 
their results much less stable and reliable compared to the proposed model. In conclusion, 
the proposed model demonstrated strong robustness and generalisation ability in  
ping-pong ball localisation and recognition, and its simulated motion trajectories were the 
most accurate and closest to the real trajectories. 

4 Discussion 

To address the current issues of low accuracy and high errors in ping-pong ball 
localisation and recognition, the study introduced SE and GNN to optimise and improve 
the YOLOv5 network and SGCM algorithm, respectively. The performance of both 
models was then verified. In the performance verification experiment of SE-YOLOv5, 
the integrated algorithm achieved an impressive ping-pong ball localisation accuracy of 
97.6%, with a landing error of only 2.7 mm. The computational efficiency was as low as 
207 ms, and the recognition image quality reached 48 FPS, all of which were superior to 
the three comparison algorithms. Xu et al. (2024) proposed an improved YOLOv5 
detection method to address the issue of false positives when detecting small objects. 
This method improved detection quality by optimising the backbone module of YOLOv5. 
Experimental results showed that this method effectively alleviated the issues of small 
target imbalance and poor target pixel quality (Xu et al., 2024). This approach, which 
involves improving the traditional network architecture to enhance performance, shares 
similarities with the results in this study. Furthermore, in the performance testing of 
GNN-SGCM, the results showed that its accuracy in matching ping-pong ball positions 
was 98.6%, with a specificity of 97.2%. This indicated that the integrated algorithm was 
more effective at recognising non-ping-pong ball movements. Additionally, the 
algorithm’s trajectory tracking overlap for the ping-pong ball was 0.93, and the maximum 
memory usage during computation was only 223 dB. These results were similar to those 
of Ramezani’s work, where he improved existing recognition methods for LiDAR 
positioning, breaking through the limitations of frame-to-frame retrieval. To address the 
issue of current recognition methods having poor adaptability to scenes with indistinct 
features, M. Ramezani and his team proposed a posture attention GNN, which achieved 
precise localisation by comparing key nodes between sequential and non-sequential 
subgraphs. Their method was found to be adaptable to various scenarios (Ramezani et al., 
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2023). These experimental data and discussion results thoroughly verify the strong 
performance of SE-YOLOv5 and GNN-SGCM in ping-pong ball localisation and 
recognition. 

In the field tests, the SE-YOLOv5 and GNN-SGCM-based intelligent ping-pong ball 
localisation and recognition model also performed exceptionally well. The proposed 
model achieved an average accuracy of 95.7% in tracking ping-pong ball movement 
under different lighting conditions. Even when the ball was rotating at high speeds, the 
minimum accuracy for ping-pong ball localisation was 90.7%. When tested with three 
different datasets, the average sensitivity of the model’s recognition results was 95.42%, 
94.06%, and 94.32%, all of which surpassed the three comparison models. Moreover, 
when Gaussian white noise was added to the dataset, the model achieved a maximum 
recall rate of 96.8% in tracking the ping-pong ball’s trajectory, with a result error of only 
0.59%. When tested with different datasets, the model achieved a maximum localisation 
coverage rate of 96.1%, 97.1%, and 98.3%, respectively. Additionally, the ping-pong ball 
movement trajectory generated by the model closely matched the actual motion path. 
These experimental results are similar to the final experimental results of Chiang’s team 
in predicting the motion trajectory of a ping-pong ball. Chiang’s team proposed a 
complex system based on a binocular vision system, odourless Kalman filter trajectory, 
and speed prediction system to improve the accuracy of ping-pong ball trajectory tracking 
by 25%, controlling the error range within 86 mm (Chiang et al., 2024). These 
experimental results fully demonstrate the feasibility and superiority of the proposed 
model. 

The contributions of this study are primarily reflected in three aspects. First, by 
introducing SE and GNN to optimise and improve the traditional YOLOv5 network and 
SGCM, and combining the two into an integrated algorithm. Second, an innovative 
intelligent model for ping-pong ball movement trajectory localisation and recognition 
was built based on the integrated algorithm. Third, the proposed model was successfully 
applied to a real-world problem, and its feasibility and superiority were verified through 
field experiments comparing it with three traditional models. These three contributions 
not only provide new ideas and methods for research in related fields but also lay the 
foundation and guarantee for the practical localisation and recognition of ping-pong balls, 
contributing to the development of the ping-pong ball field. 

5 Conclusions 

To address the deficiencies of existing ping-pong ball localisation and recognition 
methods, the study optimised and improved the YOLOv5 network and SGCM algorithm 
using SE and GNN, respectively, and combined the two to form a novel algorithm. Based 
on this, an intelligent model for ping-pong ball movement trajectory localisation and 
recognition was developed. The results showed that the proposed model not only 
achieved rapid and accurate ping-pong ball localisation but also demonstrated strong 
robustness and generalisation ability, with excellent adaptability to various complex 
scenarios. Although the proposed model performed excellently in practical applications, 
however, the research has the following two deficiencies. The first is that the specific 
table tennis competition rules were not integrated into the model, and only the objective 
position and trajectory of the table tennis ball were located and identified. Second, the 
research did not subdivide the trajectory of table tennis by technical movements, which 
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may make it difficult to meet the analysis requirements for the deviation between 
movements and trajectories during training. Therefore, future research will explore from 
the following three aspects. The first is to quantify the specific parameters of table tennis 
related rules and construct a scenario-based decision-making module that matches the 
positioning results with the rules, which is conducive to enabling the model to directly 
output the penalty results. Second, the research needs to collect trajectory samples of 
various technical actions, so as to achieve the collaborative recognition of trajectory 
tracking and action classification by the model. Thirdly, it is necessary to introduce 
multi-object tracking algorithms to optimise the graph structure modelling of GNN, so as 
to enhance the stability of the model in scenarios such as multi-ball interaction and limb 
occlusion, and further expand the practical application value of the model. 
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