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Abstract: This study addresses limitations in current dance action style transfer 
methods, such as weak spatiotemporal coupling and poor generalisation. It 
proposes a novel approach using improved adaptive instance normalisation  
(I Ada IN) with a joint-limb-global layered normalisation structure to enhance 
style decoupling. The method incorporates a spatiotemporal transformer and 
inverse kinematics correction to improve stability and style fidelity in long 
sequences. Experiments show significant gains: a 43% higher style detail 
retention rate (0.89 vs. 0.62), a 27% improvement in structural similarity 
(0.94), and a 50% reduction in joint motion error (4.3 mm) over the original 
Ada IN. With a frame rate of 120 and processing time of 8ms per frame, the 
model meets real-time performance standards. This method achieves  
high-fidelity style transfer, accurate content preservation, and stable  
cross-domain generalisation through innovative hierarchical feature fusion and 
spatiotemporal modelling strategies, providing feasible technical support and 
application prospects for virtual dance teaching, intelligent choreography 
systems, and the digital protection of intangible cultural heritage. 

Keywords: dance action style transfer; improved adaptive instance 
normalisation; Ada IN algorithm; multi-feature fusion; feature extraction; 
digital art. 
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1 Introduction 

With the rapid development of computer algorithms in the field of motion analysis and 
generation, deep learning-based motion style transfer technology has become a hot topic 
in the interdisciplinary research of digital art and sports science (Yin et al., 2023). As a 
highly stylised physical art, dance has both general kinematic laws and unique cultural 
expressions and emotional semantics (Yin et al., 2024). In particular, Latin dance, with its 
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distinct rhythmic characteristics, strong limb tension and the distinct stylistic features of 
its five branches (cha-cha, samba, rumba, paso doble, and jive), has become an ideal 
carrier for studying the transfer of dance motion style (Zhang et al., 2023; Zhou et al., 
2023). However, existing motion style transfer methods generally have limitations. The 
traditional linear interpolation method based on key points is difficult to capture the 
nonlinear hip swing and spinal wave deformation unique to Latin dance, resulting in a 
lack of real rhythm in the generated movements. In particular, problems such as joint 
stiffness and insufficient amplitude are easily found in the pelvic bounce of samba and 
the hip ‘8’ trajectory of rumba (Chen et al., 2025). In addition, the five Latin dances 
differ significantly in rhythmic structure, power distribution and body centre control. 
Samba emphasises bouncing rhythm and rebounding movements, Rumba emphasises 
slow and smooth hip rotation and emotional extension; Cha-cha embodies agility with 
short and fast footwork transitions, Paso Doble highlights upper body tension and posture 
control, and Jive combines strong rhythm and high-frequency movement switching. The 
structural differences in movement rhythm, body kinetic chain and emotional expression 
among different dance styles make style transfer models face challenges such as style 
coupling, movement amplitude imbalance and temporal alignment difficulties in  
cross-dance learning (Jiang and Yan, 2024). Secondly, most studies focus on overall 
movement transformation and neglect fine-grained decoupling of ‘style factors’ (such as 
the bouncing rebounding movements of Samba and the upright posture of Paso Doble) (Ji 
and Tian, 2024). In addition, existing normalisation algorithms are directly transferred 
from the image domain, and their mean and variance statistics cannot effectively model 
the spatiotemporal dependence of dance movement sequences, resulting in rhythmic 
breaks or style confusion in the generated movements (Song et al., 2023). To address the 
aforementioned issues, this research proposes a Latin dance movement style transfer 
method based on an improved adaptive instance normalisation (I Ada IN) algorithm. Its 
innovation lies in reconstructing the style statistics calculation method by introducing a 
spatiotemporal attention mechanism, constructing a hierarchical style control module, 
and achieving high-fidelity transfer from the source movement to the target Latin dance 
style. This method not only adaptively captures the rhythmic form differences between 
different Latin dance styles but also maintains the consistency of movement energy and 
rhythmic dynamics during style transitions. This research breaks through the expressive 
limitations of existing methods in cross-dance style transfer, providing a new technical 
framework for the digital inheritance and intelligent choreography of dance. 

2 Related works 

The rapid development of intelligent algorithms in the fields of computer vision and 
motion analysis provides a new technological path for dance action style transfer (Hu  
et al., 2024). In recent years, with the breakthroughs of deep learning in pose estimation, 
image generation, and other fields, style transfer has become a hot research topic at the 
intersection of digital art and artificial intelligence. It has shown broad application 
prospects in areas such as virtual idol performance, intelligent choreography assistance, 
and digitalisation of dance teaching (Wiset and Champadaeng, 2024). Therefore, more 
scholars are explored. Koo et al. (2022) proposed a new type of sports style transfer 
network called Sports Jigsaw for sports style transfer, which achieved control over 
individual body part sports styles and arbitrary sports style transfer without paired 
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labelled data. Mason et al. (2022) proposed a style modelling system based on animation 
synthesis network and style modulation network for controlling character motion in  
real-time animation systems, which had practical value. The system achieved efficient, 
robust representation and high-quality generation of real-time stylised motion. Chen et al. 
(2022) proposed an indoor camera pose estimation method that did not require mapping, 
in response to the tedious and comprehensive pre-environment mapping required in 
traditional visual-based indoor positioning methods. The method utilised a 3D style 
transfer building information model and photogrammetry technology for indoor 
positioning. Ao et al. (2023) proposed a neural network framework called gesture 
diffusion editing to address the lack of flexibility in style control and difficulty in 
accurately conveying user intent in previous speech gesture generation systems. Flexible 
style control and stylised speech accompanied gesture synthesis could be achieved 
through the transfer of styles from multiple input modalities such as text, example action 
clips, or videos. 

In addition, Mukherjee et al. (2022) proposed a novel generative model called 
Aggregation Generative Adversarial Network to address the dependence of deep learning 
models on large-scale annotated datasets in computer vision tasks and medical image 
analysis. They applied style transfer techniques to enhance the realism of images, 
achieving high-quality synthesis of brain tumour magnetic resonance imaging scan 
images. Liu and Tu (2021) proposed an intelligent animation synthesis method based on 
video database to address the long creation cycle and high cost of traditional dynamic art, 
achieving efficient and personalised dynamic painting generation. Khemakhem and Ltifi 
(2023) pointed out that with the increasing number of intelligent human-computer 
interaction systems, more research was focusing on the human emotion recognition. A 
neural style transfer generative adversarial network was proposed to reduce the impact of 
identity related features on facial expression recognition tasks. Khare et al. (2024) 
proposed an object level single style transfer method based on a single neural network to 
enhance the plant disease dataset, addressing the serious threat of plant diseases to global 
agriculture, crop yields, and food security. This method improved the model’s 
generalisation ability and accuracy in plant disease classification tasks. 

In summary, significant progress has been made in the field of style transfer in 
existing research, forming mature technical frameworks from images, text to motion data, 
and achieving important breakthroughs in cross-modal style control, unsupervised 
learning, real-time generation, and other directions. However, there are still key issues in 
the field of dance action style transfer, such as insufficient modelling of high-order 
motion features and neglect of beat structure and prosodic characteristics in temporal 
style modelling. Therefore, the study proposes an action style transfer method based on 
an improved Ada IN algorithm, which achieves high fidelity transfer of Latin dance style 
by constructing a spatiotemporal perception style statistics calculation module and 
introducing a loss function system based on dance prior knowledge. 

3 Methods and materials 

The study addresses the limitations of existing dance action style transfer, such as poor 
spatiotemporal feature coupling, insufficient physical rationality, and weak cross-dataset 
generalisation ability. A multi-feature extraction method and dance action style transfer 
model based on an improved Ada IN algorithm are proposed, which achieves  
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fine-grained style decoupling through a joint-limb-global three-level normalisation 
architecture. Combined with an inverse kinematics correction module to ensure the 
physical feasibility of generated actions, an end-to-end style transfer framework is finally 
constructed. 

Figure 1 Improved Ada in algorithm based on spatiotemporal transformer (see online version  
for colours) 
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3.1 Multi-feature fusion method based on improved Ada IN algorithm 

Feature extraction is crucial for dance action style transfer, as it can effectively decouple 
action content from style information (Alexanderson et al., 2023). However, existing 
feature extraction methods based on Ada IN algorithm mainly target static image style 
transfer, and their global mean and variance normalisation mechanisms are insufficient to 
capture the spatiotemporal dynamic characteristics and layered style representation of 
dance actions (Zhao and Yang, 2023). Therefore, the study combines spatiotemporal 
transformer and layered normalisation to improve the existing Ada IN algorithm, and 
extracts fine-grained action features through three-level style control modules at the joint 
level, limb level, and global level. Meanwhile, kinematic constraints are introduced to 
ensure the physical rationality of the generated actions, ultimately constructing an  
end-to-end dance action feature extraction framework. This improved method enhances 
the accuracy and precision of action feature extraction while maintaining the original 
action content. The improved Ada IN algorithm process is shown in Figure 1. 

As shown in Figure 1, the improved Ada IN algorithm based on spatiotemporal 
Transformer first maps the input dance action sequence to a high-dimensional feature 
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space through spatiotemporal position encoding, and uses a multi-head spatiotemporal 
attention mechanism to capture long-range dependencies between joints. Next, a layered 
Ada IN module is designed to calculate the mean and variance of each joint at the joint 
level and perform action stylisation. At the limb level, style parameters are grouped and 
aggregated through learnable joint grouping. Secondly, at the global level, the overall 
motion dynamics are normalised and styles are extracted. In the process, a motion 
physics constraint module is introduced to correct the rationality of the generated pose 
through inverse kinematics layers, and jointly optimise content reconstruction loss, style 
matrix loss, etc., ultimately outputting a rationalised action sequence that retains the 
original action content while conforming to the target style features. The spatiotemporal 
feature encoding process based on Transformer is shown in equation (1) (Tsuchida, 
2024). 

 2 // 10000

/ 100002( )

( )

/

t i dmodel
temp

j
spat

embed temp spat

P sin t

P cos j i dmodel

X Linear X P P

 
 
   

 (1) 

In equation (1), t represents the time frame index. j represents the joint index. dmodel is the 

dimension of the eigenvector. i is the dimension number. t
tempP  is a time dimensional 

position encoding that captures the temporal information of action sequences through a 

sine function. j
spatP  is spatial dimension position encoding, which uses cosine function to 

encode the spatial topological relationship of joint points, and together form 
spatiotemporal position encoding. X is the input 3D joint coordinate sequence, which is 
mapped to high-dimensional space after linear transformation Linear(X). It is then added 
to the spatiotemporal position encoding to obtain the final feature representation Xembed 
providing a feature input for subsequent Transformer layers that combines temporal 
dynamics and spatial structure. Subsequently, the Ada IN algorithm is hierarchically 
improved. Firstly, the traditional Ada IN algorithm is shown in equation (2) (Yuk et al., 
2023). 

(
,

)
( ) ( ) ( )

( )

c μ c
AdaIN c s σ s μ s

σ c
 








  (2) 

In equation (2), c represents the content feature. s represents the style feature. (c) and 
(c) are the mean and standard deviation of content features, respectively, used for 
normalising the content. (s) and (s) are the mean and standard deviation of style 
features, used as parameters for affine transformation. Equation (2) first normalises the 
content features into a distribution with a mean of 0 and a standard deviation of 1, and 
then scales and shifts them using the statistical measures of style features, ultimately 
adapting content features to the target style distribution while preserving structural 
information. Next, the first level joint features are extracted, as shown in equation (3). 
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In equation (3), Fc[t, j] represents the content feature of the jth joint point in the tth frame. 
t(Fc[t, j]) and t(Fc[t, j]) calculate the mean and standard deviation of the joint point at 

all time frames, respectively, for temporal normalisation. j
sσ  and j

sμ  are the mean and 

scaling parameters corresponding to the jth joint point in the content features. Equation (3) 
first standardises the content features according to the time dimension, and then uses style 
parameters for affine transformation, ultimately achieving single joint temporal action 
style extraction. Next, the second layer of limb features is extracted, as shown in equation 
(4) (Li et al., 2023). 

  1
,

arm

j j
arm s arm s arm

arm j G

μ μ σ MLP σ j G
G 

    (4) 

In equation (4), Garm represents the set of arm joints (such as shoulders, elbows, wrists, 

etc.). j
sμ  is the mean of joint level features. arm is the limb level feature offset obtained 

by averaging the mean of all arm joints.  js armσ j G  is the set of style scaling 

parameters for each joint, which is fused into a unified scaling factor arm at the limb 
level using a multi-layer perceptron (MLP). Finally, global dynamic feature extraction is 
performed, as shown in equation (5). 

  ,global limb globalF AdaIN MaxPool F s  (5) 

In equation (5), Flimb represents the feature after body stylisation. MaxPool represents the 
global motion features extracted through max pooling operation. sglobal is the overall style 
parameter. Equation (5) combines the global style feature sglobal with the pooled content 
feature through Ada IN to achieve feature extraction of the overall motion dynamics, 
ensuring that the generated actions are consistent with the target style in both details and 
globally. In the extraction and transfer of dance action features, data features are divided 
into action content features and style features. Content features mainly represent the basic 
motion trajectory and spatial position relationship of human joint points, while style 
features include unique attributes such as rhythm patterns and intensity distribution 
unique to dance styles (Shih et al., 2021). Therefore, the study designs a dance action 
style feature extraction network, as shown in Figure 2. 

According to Figure 2, Figure 2(a) shows the main structure of the network, and 
Figure 2(b) shows the residual structure. This structure preserves the spatiotemporal 
features of the original actions through skip connections, enhancing gradient propagation. 
Compared with traditional normalisation methods, I Ada IN breaks through the batch 
dependency of batch normalisation layers and the single sample limitation of instance 
normalisation layers. By dynamically adapting style features in different time 
dimensions, it solves the spatiotemporal alignment problem of skeletal actions during the 
transfer of style attributes such as amplitude and velocity. The content features are first 
standardised to eliminate the source style, and then linearly transformed through the 
mean and variance of the style features, ultimately generating a new skeleton sequence 
that retains both action categories and incorporates the target style. The I Ada IN is 
shown in equation (6). 
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Figure 2 Design of the bone style feature extraction network (see online version for colours) 
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In equation (6), ),(c n
sμ  represents the average style. T represents the total duration or 

frame rate in the time dimension. From 1 to T, ( ,
,

)c n
s tM  represents the intensity of style 

actions with content c and number n at time t. Style mean measures the average intensity 

of style actions in the time dimension. ),(c n
sσ  is the variance of style, used to characterise 

the dynamic changes in style actions.  is a numerical stability term to prevent numerical 
instability during square root calculation. Next, it is necessary to standardise the 
characteristics of the action content, as shown in equation (7). 

( , ) ( , ) ( , )

( , )
 

c n c n c n
c c

c c n
cσ

M μ
M
 

  (7) 

In equation (7), 
( , )c n

cM


 is the standardised feature. ( , )c n
cM  is the original skeletal action 

feature of the content. ( , )c n
c  is the mean of the corresponding feature. ( , )c n

c  is the 

standard deviation. By subtracting the mean from the original features and dividing it by 
the standard deviation, the processed data has zero mean and unit variance, achieving  
de-stylising and normalising features for subsequent analysis and processing. Finally, the 
standardised content features are combined with the target style features, as shown in 
equation (8). 

( , )
( , ) ( , ) ( , )

c n
c n c n c n

coutput γM M
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In equation (8), the standardised content feature 
( , )c n

cM


 is linearly combined with the 

target style statistic (represented by c,n) and (c,n)) to obtain the fused feature ( , ) .c n
outputM  c,n) 

and (c,n) play a regulating role, adjusting the fusion ratio of content features and target 
style statistic according to different situations to achieve adaptive fusion of content and 
target style. The multi-feature fusion network based on the improved Ada IN algorithm is 
shown in Figure 3. 

Figure 3 Multi-feature fusion network based on the improved Ada IN algorithm (see online 
version for colours) 
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Figure 3 shows the dual channel network architecture for dance action feature extraction. 
The right part is the content extraction network, which extracts features from the input 
raw action data through Conv1D convolutional layers and GLU gated linear units. After 
multi-level downsampling, it is connected to a 6-layer transformer + improved Ada IN 
residual structure, and finally outputs content feature vectors representing joint motion 
trajectories and spatial relationships. The left part is the style extraction network, which 
adopts a parallel processing structure. The input action data is combined through a series 
of Conv1D-GLU modules to extract the unique rhythm patterns and intensity distribution 
features of the dance variety, and then output the style feature vector through the 
Improved Ada IN module. Finally, the content vector is fused with the style vector to 
generate a skeletal sequence that combines both the original action semantics and the 
target dance style features for subsequent style transfer. 

3.2 Action style transfer network model based on multi feature fusion 

The aforementioned multi-feature fusion method is constructed by improving the Ada IN 
algorithm, achieving efficient decoupling and precise fusion of dance action content and 
style features. Next, this study proposes a Latin dance action style transfer network model 
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based on multi-feature fusion of bone sequences. This model adopts a three-level feature 
layering mechanism of joint-limb-global, combined with I Ada IN, to solve the style 
distortion of traditional methods in cross-dance transfer. In response to the unique style 
features of Latin dance such as hip swing and rotation, the model introduces an attention 
mechanism in the decoding stage to enhance the transfer effect of key joints, ultimately 
generating a transfer result that retains both the original action trajectory and integrates 
the target dance style features, as shown in Figure 4. 

Figure 4 Action style transfer model based on multi-feature fusion (see online version  
for colours) 
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Source: https://cdn.pixabay.com/photo/2015/09/08/11/47/dancing-
929815_1280.jpg) 

As shown in Figure 4, the action style transfer network model adopts a dual encoder 
decoder architecture, which achieves style transfer without paired data by decoupling 
action content and style features. The path on the left side of the network is the style 
encoder, which receives style action inputs represented by three-dimensional joint 
coordinate sequences and extracts style features through multi-layer convolution. The 
path on the right side is the content encoder, which processes action content represented 
by quaternion sequences and uses temporal convolutional networks to extract style 
independent motion features (Garg et al., 2023; Zhang et al., 2025). The decoder adopts 
the I Ada IN technology to dynamically modulate the statistical features (mean and 
variance) of the style encoder onto the content features, achieving the embedding and 
fusion of style features. The discriminator improves the authenticity of generated actions 
through adversarial training mechanisms, and ultimately outputs a transfer result that 
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preserves the motion trajectory of the source action while incorporating the target style 
features. This structure innovatively solves the dependency problem of traditional 
methods on paired data through feature space decoupling and dynamic normalisation. 
The style encoder for the model is constructed, as shown in Figure 5. 

Figure 5 Network structure of style encoder (see online version for colours) 
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Source: https://cdn.pixabay.com/photo/2015/09/08/11/47/dancing-
929815_1280.jpg) 

As shown in Figure 5, the style encoder network presented adopts a layered feature 
extraction architecture, specifically designed to capture style features in dance actions. 
The network input receives style samples composed of multiple pose sequences, which 
are processed through a two-stage feature transformation module. The first stage takes 
ReflectPad1d to preserve temporal boundary features and combines it with a 96 channel 
one-dimensional convolution kernel (Conv1d) to extract primary style patterns. The 
second level deepens feature abstraction through a 144 channel convolutional layer, 
combined with LeakyReLU activation function to enhance nonlinear expression ability. 
By gradually improving the feature dimension, the design effectively captures multi-scale 
style features from local joint motion patterns to overall dance rhythm. This modular 
design is particularly suitable for handling hip swings and rotations with strong rhythmic 
features in Latin dance. The final output style encoding vector can fully preserve the style 
attributes of the original actions, providing discriminative feature representations for 
subsequent style transfer. The reflective filling is shown in equation (9) (Zhang et al., 
2024). 

[ ] [ ( ( ) )], , 3,0 , 1paddedX i j X i min max j L    (9) 
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Figure 6 Content encoder network structure (see online version for colours) 
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In equation (9), for the position [i, j] of the filled matrix Xpadded, its value is determined by 
the mirror reflection position min(max(j–30), L–1) of the original matrix X. Specifically, 
when j–3 exceeds the left boundary of the original sequence (< 0), it is taken as 0. When 
it exceeds the right boundary (> L–1), it is taken as L–1. Otherwise, it is directly mapped 
to the position of j–3. j[0, L + 6] indicates that the length of the filled sequence has been 
extended by 7. This symmetric filling method can effectively avoid the loss of boundary 
information, especially suitable for convolution processing of dance action sequences, 
ensuring that temporal convolution can still capture effective motion features at the data 
boundary. The Conv1d is shown in equation (10) (Zhang et al., 2024). 

1 1

, , , ,
0 0

inC K

c j c k m k j m c
k m

Y W X b
 


 

    (10) 

In equation (10), the value Yc,j of the output feature map Y in channel c and position j is 
obtained by summing the element wise product of the local region of the input feature 
map X and the convolution kernel weight W, and superimposing the bias bc. Double 
summation represents weighted aggregation of all input channels Cln and each position of 
the convolution kernel, ultimately generating output features with spatial locality and 
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channel combination characteristics. The LeakyReLU activation function is shown in 
equation (11) (Chung and Huang, 2023). 

( ) ( ),LeakyReLU x max x x   (11) 

In equation (11), x is the input value.  is a fixed small constant between 0 and 1 (usually 
taken as 0.01). This function outputs x directly when the input x is positive, maintaining 
linear characteristics. When x is negative, x is output and a weak negative response is 
introduced. Compared to traditional ReLU functions, LeakyReLU effectively alleviates 
the ‘neuron death’ that may occur during neural network training by preserving the 
gradient flow of negative intervals, while maintaining computational efficiency. Next, a 
content encoder for the model is constructed, as shown in Figure 6. 

In equation (11), x is the input value.  is a fixed small constant between 0 and 1 
(usually taken as 0.01). This function outputs x directly when the input x is positive, 
maintaining linear characteristics. When x is negative, x is output and a weak negative 
response is introduced. Compared to traditional ReLU functions, LeakyReLU effectively 
alleviates the ‘neuron death’ that may occur during neural network training by preserving 
the gradient flow of negative intervals, while maintaining computational efficiency. Next, 
a content encoder for the model is constructed, as shown in Figure 6. 

The content encoder network shown in Figure 6 adopts a three-level progressive 
feature extraction architecture, dedicated to separating style independent motion content 
features from dance action sequences. The network input receives the content sequence 
represented by joint quaternions, and each processing stage sequentially performs 
reflection padding, 144 channel one-dimensional convolution, InstanceNormd 
normalisation, and LeakyReLU activation operations. This repetitive stacking design 
gradually expands the receptive field while deepening the feature abstraction level and 
maintaining the temporal length. The instance normalisation layer independently 
normalises each sample, effectively eliminating the influence of action amplitude 
differences on content features. LeakyReLU preserves the weak gradient in the negative 
range to avoid neuronal inactivation caused by brief stationary frames during dance 
actions. The parallel outputs of the three modules fuse multi-scale motion information 
through feature concatenation. The resulting content encoding can represent the joint 
basic motion trajectory and has robustness to style perturbations, providing a stable 
content base for subsequent cross-dance style transfer. The instance normalisation is 
shown in equation (12) (Chen et al., 2023). 
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In equation (12), instance normalisation effectively eliminates style related features in 
dance action data through channel independent normalisation processing. Firstly, the 

mean c of channel c is calculated. Then the variance 2
cσ  is calculated. Finally, the 

original feature Yc,j is normalised to zero mean and unit variance. Finally, the decoder of 
the model is introduced, as shown in Figure 7. 

The decoder network shown in Figure 7 adopts a progressive feature fusion and  
up-sampling architecture to achieve high-quality synthesis of dance action style and 
content. The network input receives decoupled content and style features, and first 
performs dynamic style injection through the I Ada IN module. Subsequently, after two 
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levels of feature refinement modules, each level includes ReflectPad1d, Conv1d, and 
LeakyReLU, gradually enhancing the spatiotemporal consistency of the features. The  
up-sampling layer inserted in the middle expands the temporal dimension through 
interpolation, and finally outputs a joint motion sequence that conforms to the target style 
through 124 channel convolution. 

Figure 7 Decoder network structure (see online version for colours) 
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Source: https://cdn.pixabay.com/photo/2015/09/08/11/47/dancing-
929815_1280.jpg) 

4 Results 

4.1 Verification of the effectiveness of the improved Ada IN algorithm and 
multi-level feature fusion 

To verify the superiority and reliability of the proposed Latin dance action style transfer 
method based on the improved Ada IN algorithm, experimental performance verification 
and analysis are conducted. Firstly, the experimental environment and parameters are 
configured, as shown in Table 1. 

Table 1 shows the experimental environment and parameter settings of this study. 
The study selected two publicly available motion datasets, CMU MoCap and Mixamo, as 
the main data sources. CMU MoCap contains approximately 2,500 sets of high-precision 
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3D motion capture sequences, covering various movements such as walking, running, 
and dancing. Mixamo provides thousands of 3D skeletal models and various dance styles 
(such as hip-hop, Latin dance, and street dance), demonstrating good style diversity. 
Before the experiment, the data was cleaned and pr-processed uniformly. Missing frames 
and abnormal pose samples were removed, the skeleton topology was unified, and the 
frame rate was normalised to 30 fps through temporal resampling and smooth 
interpolation. To enhance the model’s generalisation ability, lightweight data 
augmentation methods such as random time reversal, joint rotation perturbation (±5°), 
and mirror flipping were used. Finally, the training, validation, and test sets were divided 
in a 7:2:1 ratio to ensure consistent style distribution across dance genres. The training set 
was used for feature learning, the validation set for parameter optimisation, and the test 
set for performance evaluation. To enhance the reliability and stability of the 
experimental results, a five-fold cross-validation approach was employed. The model was 
repeatedly trained and evaluated under different data partitions, and the average 
performance index was used as the final result. 

Table 1 Experimental environment and key parameters 

Experimental environment  Key experimental parameters 

CPU Intel Xeon 
Gold 6248R 

 Convolutional 
layer 
channels 

[96, 144, 
144] 

GPU NVIDIA 
Tesla V100 × 
4 

 Convolution 
kernel size 

7 

Hardware 

Memory 256GB DDR4  Number of 
residual 
blocks 

six floors 

Operating 
system 

Ubuntu 20.04 
LTS 

 

Model 
parameters 

Hierarchical 
weight ratio 

[0.4, 0.3, 
0.3] 

 Input 
resolution 

512 × 512 
pixels 

Deep learning 
framework 

PyTorch 1.10 
+ CUDA 11.3 

 Batch size 16 

Software 

Key 
dependency 
library 

OpenCV  

Experimental 
settings 

Average 
processing 
time 

8 
ms/frame 

The experiment first conducted ablation experiments to validate the effectiveness of the 
improved AdaIN three-level normalised architecture. The independent contributions and 
synergistic effects of the joint-level, limb-level, and global-level style transfer layers 
were systematically evaluated using the controlled variable method. Four comparison 
groups were set up: M-A (joint-level only) as the base model; M-B (joint + limb-level) to 
verify the gain of limb-level feature aggregation; M-C (joint + global-level) to verify the 
gain of global motion constraints; and M-D (complete three-level fusion), which is the 
complete I-AdaIN architecture. The impact of each layer combination on style fidelity 
and motion rationality was tested under a unified dataset and training environment. The 
experimental results are shown in Figure 8. 
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Figure 8 Verification of the effectiveness of multi-level feature fusion for improved Ada IN,  
(a) comparison of contributions at different levels, (b) style preserved in comparison 
(see online version for colours) 
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As shown in Figure 8(a), in terms of stratified contribution, the M-D group achieved the 
optimal balanced distribution (42.36 ± 1.95% at the joint level, 28.51 ± 1.73% at the limb 
level, and 29.13 ± 1.82% at the global level), and its contribution balance index (0.89 ± 
0.03) was higher than that of the M-A group (0.28 ± 0.04) and the M-B group (0.65 ± 
0.06). As shown in Figure 8(b), in terms of style detail retention rate, the M-D group 
achieved a comprehensive SDR of 0.89 ± 0.02, maintaining the highest level at all levels 
(0.91 ± 0.03 at the joint level, 0.87 ± 0.04 at the limb level, and 0.85 ± 0.04 at the global 
level), which was significantly better than that of the M-A group (0.63 ± 0.06) and the  
M-C group (0.72 ± 0.05). The results demonstrate that the complete three-level fusion 
architecture plays an irreplaceable role in controlling balance and detail fidelity, with 
statistically significant performance differences between all levels (P < 0.01). Next, an 
experiment was conducted to test style transfer fidelity, with the experimental group 
being I Ada IN + Transformer. Subsequently, the original Ada IN and CycleGAN were 
selected as control groups. The experimental results are shown in Figure 9. 

As shown in Figure 9(a), the proposed I-AdaIN + transformer achieves a style 
similarity score (SSIM) of 0.94 ± 0.01, which is 21%–27% higher than the original 
AdaIN (0.77 ± 0.02) and CycleGAN (0.74 ± 0.03). Figure 9(b) shows that the joint 
motion error (JME) of I-AdaIN is 4.3 ± 0.9 mm, which is more than 50% lower than the 
original AdaIN (8.5 ± 1.8 mm) and CycleGAN (11.5 ± 2.4 mm). It maintains a stable low 
error level (standard deviation < 1.0 mm) even in long sequences (100 frames), 
outperforming the control group. The experiments verify that the hierarchical 
normalisation mechanism of I-AdaIN can effectively improve style transfer accuracy, and 
the spatiotemporal transformer structure, through its long-range dependency modelling 
capability, solves the error accumulation problem of traditional methods in long 
sequences. All performance differences passed the significance test (P < 0.01) and were 
statistically significant. Next, the content retention ability of the I Ada IN + content 
encoder is tested. Pure transformer encoder and variational autoencoder (VAE) are 
selected as the control groups. The experimental results are shown in Figure 10. 
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Figure 9 Style transfer fidelity comparison experiment, (a) comparison of style similarity,  
(b) comparison of joint movement errors (see online version for colours) 
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Figure 10 Action content retention ability test, (a) comparison of content reconstruction errors,  
(b) comparison of joint trajectory consistency (see online version for colours) 
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As shown in Figure 10(a), the MSE of the I-AdaIN + content encoder is 0.008 ± 0.001, 
which is 50% and 60% lower than that of the pure transformer (0.016 ± 0.002) and VAE 
(0.020 ± 0.003), respectively, and has the smallest standard deviation, indicating that its 
reconstruction accuracy is the most stable. As shown in Figure 10(b), the DTW distance 
of the I-AdaIN + content encoder is 0.73 ± 0.07, which is also better than that of the pure 
transformer (1.48 ± 0.15) and VAE (2.10 ± 0.22), with a trajectory consistency 
improvement of more than 1.5 times, and a standard deviation much smaller than that of 
the control group, proving that it has a better motion trajectory preservation ability. All 
performance differences passed the significance test (P < 0.01) and were statistically 
significant. Next, the real-time performance testing is conducted on the improved I Ada 
IN. The original Ada IN and pure GAN models are selected as the control groups, and the 
experimental results are shown in Figure 11. 
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Figure 11 Real-time performance test, (a) comparison of single-frame processing time,  
(b) frame rate comparison (see online version for colours) 
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As shown in Figure 11(a), the single-frame processing time of I-AdaIN is stable in the 
range of 7.9–8.3 ms (standard deviation ≤ 0.4 ms), which is 38% faster than the original 
AdaIN (12.5–13.6 ms, standard deviation ≥ 0.5 ms) and 67% faster than the GAN model 
(22.7–24.5 ms, standard deviation ≥ 1.1 ms). As shown in Figure 11(b), I-AdaIN 
consistently maintains an excellent level of 120+ FPS (standard deviation ≤ 6), 
significantly surpassing the original AdaIN (74–80 FPS, standard deviation ≥ 4) and the 
GAN model (40–44 FPS, standard deviation ≥ 3), with frame rate improvements of 53% 
and 200%, respectively. I-AdaIN exhibits the smallest standard deviation in both 
processing speed stability and frame rate consistency, proving that it has optimal  
real-time performance. All performance differences passed the significance test  
(P < 0.01) and are statistically significant. 

4.2 Verification of the effectiveness of dance action style transfer 

After verifying the effectiveness of the improved Ada IN algorithm and multi-layer 
feature fusion, the stability of long sequence action transfer is tested. The original Ada IN 
algorithm and sequential CNN are selected as the control group. The experimental 
parameters, environment, and dataset are the same as above. The result is shown in 
Figure 12. 

As shown in Figure 12(a), the TSC score of I-AdaIN remained at 88.7 ± 2.0, which 
was superior to the original AdaIN (34.6 ± 7.5) and the non-temporal CNN (22.4 ± 8.3). 
Figure 12(b) shows that the cumulative joint drift error of I-AdaIN was only 9.7 ± 1.2 
mm, a 4-6 fold reduction compared to the original AdaIN (40.2 ± 6.1 mm) and the  
non-temporal CNN (62.3 ± 8.4 mm), with the error growth exhibiting an ideal linear 
trend. This indicates that the research method can effectively solve the error 
accumulation problem in long sequence motion transfer and achieve highly stable 
transfer of dance movement styles. All performance differences passed the significance 
test (P < 0.01) and were statistically significant. Next, a cross-dataset generalisation 
ability test is conducted, selecting untrained raw Ada IN, Fine-tuned I Ada IN, and 
CycleGAN as control groups. The experimental group I Ada IN is directly transferred to 
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the CMU MoCap dataset after training on the Mixamo dataset. The experimental results 
are shown in Table 2. 

Figure 12 Stability test of long sequence action transfer, (a) sequence coherence comparison,  
(b) cumulative joint drift error comparison (see online version for colours) 
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Table 2 Cross-dataset generalisation capability test 

Method 
Style similarity 

(CSS) 

Domain 
adaptation error 

(DAE) 

Probabilistic 
divergence 

Style transfer 
intensity (Frechet 

distance) 

I Ada IN (transfer 
training) 

0.87 ± 0.02** 0.12 ± 0.03** 0.08 ± 0.01** 15.3 ± 1.2** 

Ada IN(no 
training) 

0.52 ± 0.05 0.38 ± 0.06 0.34 ± 0.04 42.7 ± 3.5 

Fine-tuned I-Ada 
IN 

0.83 ± 0.03 0.15 ± 0.04 0.11 ± 0.02 18.6 ± 1.8 

CycleGAN 0.65 ± 0.06 0.27 ± 0.05 0.22 ± 0.03 31.4 ± 2.9 

Notes: The symbol ‘**’ indicates that this indicator is statistically due to other models  
(p < 0.01). 

Table 2 shows that the cross-dataset style similarity (CSS) of the experimental group  
I-AdaIN reached 0.87 ± 0.02, significantly better than the original AdaIN (0.52 ± 0.05) 
and CycleGAN (0.65 ± 0.06). In terms of domain adaptation error (DAE), the 
experimental group I-AdaIN (0.12 ± 0.03) reduced the DAE by 68% compared to the 
original AdaIN (0.38 ± 0.06), maintaining an advantage even compared to the fine-tuned 
I-AdaIN (0.15 ± 0.04). Furthermore, I-AdaIN’s probability divergence (0.08 ± 0.01) and 
Fréchet distance (15.3 ± 1.2) were optimal, with standard deviations smaller than the 
control group, indicating that it can achieve high-quality cross-domain style transfer 
without fine-tuning. All performance differences passed the significance test (P < 0.01), 
indicating statistical significance. Next, the current mainstream cross-domain action 
transfer method based on manifold alignment (FAb-Net), domain adversarial network 
(DAN), diffusion model driven action generation (MotionDiffuse), and pose style 
decoupling transfer method (PoseStyle) are selected. The experimental results are shown 
in Table 3. 
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Table 3 A comprehensive comparative experiment of the improved Ada IN algorithm and 
mainstream style transfer methods 

Method 

Cross-
domain style 
consistency 

(CDS) 

Modal 
compatibility 
error (MCE) 

Sports 
diversity 

(MD) 

Training 
convergence 
rate (TCS) 

Adversarial 
attack 

robustness 
(AAR) 

I Ada IN 0.89 ± 0.02 0.08 ± 0.01 1.45 ± 0.12 90 ± 5 
rounds 

92 ± 2% 

FAb-Net 0.76 ± 0.04 0.12 ± 0.02 0.82 ± 0.15 120 ± 8 
rounds 

85 ± 4% 

DAN 0.68 ± 0.05 0.25 ± 0.04 0.95 ± 0.18 150 ± 12 
rounds 

72 ± 6% 

MotionDiffuse 0.82 ± 0.03 0.15 ± 0.03 1.62 ± 0.20 180 ± 15 
rounds 

65 ± 8% 

PoseStyle 0.71 ± 0.04 0.18 ± 0.03 1.12 ± 0.16 110 ± 10 
rounds 

78 ± 5% 

Notes: The symbol ‘**’ indicates that this indicator is statistically due to other models  
(p < 0.01). 

As shown in Table 3, the experimental group I-AdaIN achieved a cross-domain style 
consistency (CDS) score of 0.89±0.02, which was superior to FAb-Net (0.76 ± 0.04) and 
DAN (0.68 ± 0.05). Its hierarchical feature fusion mechanism effectively maintained the 
core rhythmic features of the target style. Especially when dealing with the hip swing 
unique to Latin dance, joint-level style modulation improved the CDS by an average of 
23% compared to the global transfer method. In terms of modal compatibility, the MCE 
of I-AdaIN (0.08 ± 0.01) was 68% lower than that of the traditional domain adaptation 
method DAN (0.25 ± 0.04). In addition, although the motion diversity (MD) of the 
control group MotionDiffuse (1.62 ± 0.20) was slightly higher than that of I-AdaIN 
(1.45±0.12), some of the generated movements had physical inconsistencies (such as 
reverse joint rotation), and the training cost (TCS) (180 ± 15 rounds) was twice that of  
I-AdaIN (90 ± 5 rounds). In the adversarial robustness test, I-AdaIN’s AAR (92 ± 2%) 
under PGD attack significantly outperformed PoseStyle’s (78 ± 5%). The experimental 
results demonstrate that I-AdaIN, while maintaining movement rationality, significantly 
surpasses existing mainstream methods in style consistency, training efficiency, and  
anti-interference ability, achieving the optimal balance between dance movement style 
transfer effectiveness and practicality. All performance differences passed the 
significance test (P < 0.01), indicating statistical significance. 

5 Discussion 

The research proposes a dance action style transfer model based on an improved Ada IN 
algorithm, which achieves high fidelity transfer of fine-grained action styles. By 
introducing the spatiotemporal transformer structure and the joint limb global three-level 
layered style fusion mechanism, the accuracy and style consistency of action feature 
extraction are significantly improved. This method achieved a style detail retention rate 
of 0.89 and a JME of only 4.3mm, both of which were superior to those of the control 
group, demonstrating excellent detail preservation and structural integrity. Compared 
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with the ‘motion puzzle’ method proposed by Koo et al. (2022) although it has the ability 
to control the style of body parts, it is still relatively coarse-grained in multi-level style 
modelling and overall style fusion. This study achieves a better balance between action 
style consistency and content fidelity through layered normalisation and transformer 
collaborative enhancement strategy. In addition, regarding the dynamic stability during 
style transfer, this study maintained a TSC score of 88.7 in the long sequence transfer 
task, far exceeding that of the sequential CNN, indicating its stronger modelling ability 
for dance rhythm and motion coherence. Compared to the style modulation animation 
synthesis system proposed by Mason et al. (2022) this study not only has higher 
efficiency in real-time (with a single-frame delay of only 8 ms), but also has higher 
controllability and physical rationality for the transfer effect of real dance actions, 
making it suitable for high dynamic rhythm Latin dance style scenes. In addition, in terms 
of cross-dataset generalisation ability, the research method still maintains a SSIM of 0.87 
and a DAE of 0.12 on the CMU MoCap dataset without fine-tuning, demonstrating good 
transfer robustness. Especially when dealing with Latin dance actions with complex hip 
swing features, its multi-layer style modelling is superior to pose-based decoupling 
strategies such as PoseStyle, avoiding motion distortion caused by insufficient style 
feature expressions. Compared with the speech gesture style diffusion network proposed 
by Ao et al. (2023) this study enhances the structural rationality of style transfer actions 
through physical feasibility constraints and inverse kinematics correction modules, 
overcoming the ‘drift’ problem in high degree of freedom skeleton actions. 

While research has significantly improved the fidelity, temporal consistency, and 
style control of dance style transfer, a bottleneck remains in the integration of dance 
styles with significant differences. This can be addressed by introducing cross-domain 
contrastive learning and style self-attention mechanisms to enhance the discriminative 
and expressive power of style features. Since the model relies on high-precision skeleton 
data, pose estimation errors in real-world scenarios may lead to fluctuations in results; 
further improvements in stability can be made by incorporating multi-view videos or 
robust filtering algorithms. Simultaneously, the model can be further optimised through 
lightweight structures and distillation generation modules to achieve efficient deployment 
on mobile devices and in AR/VR environments. Furthermore, the application of dance 
style transfer may raise ethical issues such as copyright and identity verification of 
dancers’ performance styles. Future research should establish authorisation and 
traceability mechanisms during the data collection and model generation stages to ensure 
that technological innovation and artistic creation develop within a legal and controllable 
framework. 

6 Conclusions 

To improve the rationality of dance action style transfer methods on spatiotemporal 
feature coupling and physics, this study proposed a Latin dance action style transfer 
method based on improved Ada IN multi-feature fusion. The joint-limb-global three-level 
normalisation architecture was constructed to achieve fine-grained style decoupling, 
combined with inverse kinematics correction module to ensure the physical feasibility of 
actions, ultimately achieving high fidelity cross-dance style transfer. The experimental 
results showed that the improved method achieved SSIM of 0.94 in style transfer fidelity 
testing, which was 21%–27% higher than that of the original Ada IN (0.77) and 
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CycleGAN (0.74). The JME was reduced to 4.3 mm, with a decrease of more than 50%. 
In the content retention ability test, the MSE was 0.008, which was 50%–60% lower than 
that of the pure transformer (0.016) and VAE (0.020). The DTW distance (0.73) was 1.5 
times better than that of the control group. SSIM and DAE maintained excellent 
performance of 0.87 and 0.12, respectively, in cross-dataset testing. In terms of system 
performance, the real-time processing speed reached 120 FPS, the single-frame 
processing time was controlled within 8 ms, and the TSC score was still 88.7 under long 
sequence migration (100,000 frames). The proposed method has significant advantages in 
style fidelity, content retention, real-time performance, and cross-domain adaptability, 
providing an effective technical solution for dance action style transfer. 
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