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Abstract: This study addresses limitations in current dance action style transfer
methods, such as weak spatiotemporal coupling and poor generalisation. It
proposes a novel approach using improved adaptive instance normalisation
(I Ada IN) with a joint-limb-global layered normalisation structure to enhance
style decoupling. The method incorporates a spatiotemporal transformer and
inverse kinematics correction to improve stability and style fidelity in long
sequences. Experiments show significant gains: a 43% higher style detail
retention rate (0.89 vs. 0.62), a 27% improvement in structural similarity
(0.94), and a 50% reduction in joint motion error (4.3 mm) over the original
Ada IN. With a frame rate of 120 and processing time of 8ms per frame, the
model meets real-time performance standards. This method achieves
high-fidelity style transfer, accurate content preservation, and stable
cross-domain generalisation through innovative hierarchical feature fusion and
spatiotemporal modelling strategies, providing feasible technical support and
application prospects for virtual dance teaching, intelligent choreography
systems, and the digital protection of intangible cultural heritage.
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1 Introduction

With the rapid development of computer algorithms in the field of motion analysis and
generation, deep learning-based motion style transfer technology has become a hot topic
in the interdisciplinary research of digital art and sports science (Yin et al., 2023). As a
highly stylised physical art, dance has both general kinematic laws and unique cultural
expressions and emotional semantics (Yin et al., 2024). In particular, Latin dance, with its
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distinct rhythmic characteristics, strong limb tension and the distinct stylistic features of
its five branches (cha-cha, samba, rumba, paso doble, and jive), has become an ideal
carrier for studying the transfer of dance motion style (Zhang et al., 2023; Zhou et al.,
2023). However, existing motion style transfer methods generally have limitations. The
traditional linear interpolation method based on key points is difficult to capture the
nonlinear hip swing and spinal wave deformation unique to Latin dance, resulting in a
lack of real rhythm in the generated movements. In particular, problems such as joint
stiffness and insufficient amplitude are easily found in the pelvic bounce of samba and
the hip ‘8’ trajectory of rumba (Chen et al., 2025). In addition, the five Latin dances
differ significantly in rhythmic structure, power distribution and body centre control.
Samba emphasises bouncing rhythm and rebounding movements, Rumba emphasises
slow and smooth hip rotation and emotional extension; Cha-cha embodies agility with
short and fast footwork transitions, Paso Doble highlights upper body tension and posture
control, and Jive combines strong rthythm and high-frequency movement switching. The
structural differences in movement rhythm, body kinetic chain and emotional expression
among different dance styles make style transfer models face challenges such as style
coupling, movement amplitude imbalance and temporal alignment difficulties in
cross-dance learning (Jiang and Yan, 2024). Secondly, most studies focus on overall
movement transformation and neglect fine-grained decoupling of ‘style factors’ (such as
the bouncing rebounding movements of Samba and the upright posture of Paso Doble) (Ji
and Tian, 2024). In addition, existing normalisation algorithms are directly transferred
from the image domain, and their mean and variance statistics cannot effectively model
the spatiotemporal dependence of dance movement sequences, resulting in rhythmic
breaks or style confusion in the generated movements (Song et al., 2023). To address the
aforementioned issues, this research proposes a Latin dance movement style transfer
method based on an improved adaptive instance normalisation (I Ada IN) algorithm. Its
innovation lies in reconstructing the style statistics calculation method by introducing a
spatiotemporal attention mechanism, constructing a hierarchical style control module,
and achieving high-fidelity transfer from the source movement to the target Latin dance
style. This method not only adaptively captures the rhythmic form differences between
different Latin dance styles but also maintains the consistency of movement energy and
rhythmic dynamics during style transitions. This research breaks through the expressive
limitations of existing methods in cross-dance style transfer, providing a new technical
framework for the digital inheritance and intelligent choreography of dance.

2 Related works

The rapid development of intelligent algorithms in the fields of computer vision and
motion analysis provides a new technological path for dance action style transfer (Hu
et al., 2024). In recent years, with the breakthroughs of deep learning in pose estimation,
image generation, and other fields, style transfer has become a hot research topic at the
intersection of digital art and artificial intelligence. It has shown broad application
prospects in areas such as virtual idol performance, intelligent choreography assistance,
and digitalisation of dance teaching (Wiset and Champadaeng, 2024). Therefore, more
scholars are explored. Koo et al. (2022) proposed a new type of sports style transfer
network called Sports Jigsaw for sports style transfer, which achieved control over
individual body part sports styles and arbitrary sports style transfer without paired
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labelled data. Mason et al. (2022) proposed a style modelling system based on animation
synthesis network and style modulation network for controlling character motion in
real-time animation systems, which had practical value. The system achieved efficient,
robust representation and high-quality generation of real-time stylised motion. Chen et al.
(2022) proposed an indoor camera pose estimation method that did not require mapping,
in response to the tedious and comprehensive pre-environment mapping required in
traditional visual-based indoor positioning methods. The method utilised a 3D style
transfer building information model and photogrammetry technology for indoor
positioning. Ao et al. (2023) proposed a neural network framework called gesture
diffusion editing to address the lack of flexibility in style control and difficulty in
accurately conveying user intent in previous speech gesture generation systems. Flexible
style control and stylised speech accompanied gesture synthesis could be achieved
through the transfer of styles from multiple input modalities such as text, example action
clips, or videos.

In addition, Mukherjee et al. (2022) proposed a novel generative model called
Aggregation Generative Adversarial Network to address the dependence of deep learning
models on large-scale annotated datasets in computer vision tasks and medical image
analysis. They applied style transfer techniques to enhance the realism of images,
achieving high-quality synthesis of brain tumour magnetic resonance imaging scan
images. Liu and Tu (2021) proposed an intelligent animation synthesis method based on
video database to address the long creation cycle and high cost of traditional dynamic art,
achieving efficient and personalised dynamic painting generation. Khemakhem and Ltifi
(2023) pointed out that with the increasing number of intelligent human-computer
interaction systems, more research was focusing on the human emotion recognition. A
neural style transfer generative adversarial network was proposed to reduce the impact of
identity related features on facial expression recognition tasks. Khare et al. (2024)
proposed an object level single style transfer method based on a single neural network to
enhance the plant disease dataset, addressing the serious threat of plant diseases to global
agriculture, crop yields, and food security. This method improved the model’s
generalisation ability and accuracy in plant disease classification tasks.

In summary, significant progress has been made in the field of style transfer in
existing research, forming mature technical frameworks from images, text to motion data,
and achieving important breakthroughs in cross-modal style control, unsupervised
learning, real-time generation, and other directions. However, there are still key issues in
the field of dance action style transfer, such as insufficient modelling of high-order
motion features and neglect of beat structure and prosodic characteristics in temporal
style modelling. Therefore, the study proposes an action style transfer method based on
an improved Ada IN algorithm, which achieves high fidelity transfer of Latin dance style
by constructing a spatiotemporal perception style statistics calculation module and
introducing a loss function system based on dance prior knowledge.

3 Methods and materials

The study addresses the limitations of existing dance action style transfer, such as poor
spatiotemporal feature coupling, insufficient physical rationality, and weak cross-dataset
generalisation ability. A multi-feature extraction method and dance action style transfer
model based on an improved Ada IN algorithm are proposed, which achieves
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fine-grained style decoupling through a joint-limb-global three-level normalisation
architecture. Combined with an inverse kinematics correction module to ensure the
physical feasibility of generated actions, an end-to-end style transfer framework is finally
constructed.

Figure 1 Improved Ada in algorithm based on spatiotemporal transformer (see online version
for colours)
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3.1 Multi-feature fusion method based on improved Ada IN algorithm

Feature extraction is crucial for dance action style transfer, as it can effectively decouple
action content from style information (Alexanderson et al., 2023). However, existing
feature extraction methods based on Ada IN algorithm mainly target static image style
transfer, and their global mean and variance normalisation mechanisms are insufficient to
capture the spatiotemporal dynamic characteristics and layered style representation of
dance actions (Zhao and Yang, 2023). Therefore, the study combines spatiotemporal
transformer and layered normalisation to improve the existing Ada IN algorithm, and
extracts fine-grained action features through three-level style control modules at the joint
level, limb level, and global level. Meanwhile, kinematic constraints are introduced to
ensure the physical rationality of the generated actions, ultimately constructing an
end-to-end dance action feature extraction framework. This improved method enhances
the accuracy and precision of action feature extraction while maintaining the original
action content. The improved Ada IN algorithm process is shown in Figure 1.

As shown in Figure 1, the improved Ada IN algorithm based on spatiotemporal
Transformer first maps the input dance action sequence to a high-dimensional feature
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space through spatiotemporal position encoding, and uses a multi-head spatiotemporal
attention mechanism to capture long-range dependencies between joints. Next, a layered
Ada IN module is designed to calculate the mean and variance of each joint at the joint
level and perform action stylisation. At the limb level, style parameters are grouped and
aggregated through learnable joint grouping. Secondly, at the global level, the overall
motion dynamics are normalised and styles are extracted. In the process, a motion
physics constraint module is introduced to correct the rationality of the generated pose
through inverse kinematics layers, and jointly optimise content reconstruction loss, style
matrix loss, etc., ultimately outputting a rationalised action sequence that retains the
original action content while conforming to the target style features. The spatiotemporal
feature encoding process based on Transformer is shown in equation (1) (Tsuchida,
2024).

P, = sin(1/10000%/ 4!
R‘ém: cos(j /100002i / dmodel) €))
Xembed = Linear(X) + Ptemp+ Pspat

In equation (1), ¢ represents the time frame index. j represents the joint index. .. is the
dimension of the eigenvector. i is the dimension number. P!~ is a time dimensional

emp

position encoding that captures the temporal information of action sequences through a

sine function. P’/

spat

is spatial dimension position encoding, which uses cosine function to

encode the spatial topological relationship of joint points, and together form
spatiotemporal position encoding. X is the input 3D joint coordinate sequence, which is
mapped to high-dimensional space after linear transformation Linear(X). It is then added
to the spatiotemporal position encoding to obtain the final feature representation X,,peq
providing a feature input for subsequent Transformer layers that combines temporal
dynamics and spatial structure. Subsequently, the Ada IN algorithm is hierarchically
improved. Firstly, the traditional Ada IN algorithm is shown in equation (2) (Yuk et al.,
2023).

o(c)

In equation (2), c represents the content feature. s represents the style feature. z4(c) and
o(c) are the mean and standard deviation of content features, respectively, used for
normalising the content. z(s) and of(s) are the mean and standard deviation of style
features, used as parameters for affine transformation. Equation (2) first normalises the
content features into a distribution with a mean of 0 and a standard deviation of 1, and
then scales and shifts them using the statistical measures of style features, ultimately
adapting content features to the target style distribution while preserving structural
information. Next, the first level joint features are extracted, as shown in equation (3).

b Fc[taj]_luz[Fc[:aj]] j
Fjo/‘nl[t’ ]] - O-s( at(E.[:a ]]) J + M (3)

AdaIN(c,s) = o(s) (C_—”(C)j +u(s) )
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In equation (3), F.[t, j] represents the content feature of the /™ joint point in the /" frame.
H(F[t, j]) and o(F.[t, j]) calculate the mean and standard deviation of the joint point at

all time frames, respectively, for temporal normalisation. ¢/ and x/ are the mean and

scaling parameters corresponding to the j joint point in the content features. Equation (3)

first standardises the content features according to the time dimension, and then uses style

parameters for affine transformation, ultimately achieving single joint temporal action

style extraction. Next, the second layer of limb features is extracted, as shown in equation

(4) (Li et al., 2023).

LZ 1,0 =MLP({0!} j €G,,,) ()
S arm N arm

/€Gam

/uarm =

arm

In equation (4), G,., represents the set of arm joints (such as shoulders, elbows, wrists,
etc.). u/ is the mean of joint level features. ,,, is the limb level feature offset obtained

by averaging the mean of all arm joints. {O'X/ } jeG,, is the set of style scaling

parameters for each joint, which is fused into a unified scaling factor o, at the limb
level using a multi-layer perceptron (MLP). Finally, global dynamic feature extraction is
performed, as shown in equation (5).

F, ,,= AdaIN (MaxPool(Eim,,),sglo,ml) 5)

global —

In equation (5), Fj;.» represents the feature after body stylisation. MaxPool represents the
global motion features extracted through max pooling operation. g,y is the overall style
parameter. Equation (5) combines the global style feature g4, With the pooled content
feature through Ada IN to achieve feature extraction of the overall motion dynamics,
ensuring that the generated actions are consistent with the target style in both details and
globally. In the extraction and transfer of dance action features, data features are divided
into action content features and style features. Content features mainly represent the basic
motion trajectory and spatial position relationship of human joint points, while style
features include unique attributes such as rhythm patterns and intensity distribution
unique to dance styles (Shih et al., 2021). Therefore, the study designs a dance action
style feature extraction network, as shown in Figure 2.

According to Figure 2, Figure 2(a) shows the main structure of the network, and
Figure 2(b) shows the residual structure. This structure preserves the spatiotemporal
features of the original actions through skip connections, enhancing gradient propagation.
Compared with traditional normalisation methods, I Ada IN breaks through the batch
dependency of batch normalisation layers and the single sample limitation of instance
normalisation layers. By dynamically adapting style features in different time
dimensions, it solves the spatiotemporal alignment problem of skeletal actions during the
transfer of style attributes such as amplitude and velocity. The content features are first
standardised to eliminate the source style, and then linearly transformed through the
mean and variance of the style features, ultimately generating a new skeleton sequence
that retains both action categories and incorporates the target style. The I Ada IN is
shown in equation (6).
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Figure 2 Design of the bone style feature extraction network (see online version for colours)
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In equation (6), u,”" represents the average style. T represents the total duration or

frame rate in the time dimension. From 1 to 7, M ff;'” represents the intensity of style

actions with content ¢ and number # at time ¢. Style mean measures the average intensity
(c,n)

of style actions in the time dimension. ¢,°" is the variance of style, used to characterise

the dynamic changes in style actions. € is a numerical stability term to prevent numerical
instability during square root calculation. Next, it is necessary to standardise the
characteristics of the action content, as shown in equation (7).

A (en) M _ (em
M. = e e 7
(c,n)
o,
c
A (cn)

In equation (7), M. is the standardised feature. M " is the original skeletal action

(e.n)

feature of the content. 4“" is the mean of the corresponding feature. o'“" is the

standard deviation. By subtracting the mean from the original features and dividing it by
the standard deviation, the processed data has zero mean and unit variance, achieving
de-stylising and normalising features for subsequent analysis and processing. Finally, the
standardised content features are combined with the target style features, as shown in
equation (8).

A (en)

M(c,n) — y(c,n) M. +ﬂ(c,n) (8)

output
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A (cn)
In equation (8), the standardised content feature M.  is linearly combined with the

target style statistic (represented by " and ™) to obtain the fused feature M (<" = ™

output *
and A°" play a regulating role, adjusting the fusion ratio of content features and target
style statistic according to different situations to achieve adaptive fusion of content and
target style. The multi-feature fusion network based on the improved Ada IN algorithm is
shown in Figure 3.

Figure 3 Multi-feature fusion network based on the improved Ada IN algorithm (see online
version for colours)
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Figure 3 shows the dual channel network architecture for dance action feature extraction.
The right part is the content extraction network, which extracts features from the input
raw action data through Conv1D convolutional layers and GLU gated linear units. After
multi-level downsampling, it is connected to a 6-layer transformer + improved Ada IN
residual structure, and finally outputs content feature vectors representing joint motion
trajectories and spatial relationships. The left part is the style extraction network, which
adopts a parallel processing structure. The input action data is combined through a series
of Conv1D-GLU modules to extract the unique rhythm patterns and intensity distribution
features of the dance variety, and then output the style feature vector through the
Improved Ada IN module. Finally, the content vector is fused with the style vector to
generate a skeletal sequence that combines both the original action semantics and the
target dance style features for subsequent style transfer.

3.2 Action style transfer network model based on multi feature fusion

The aforementioned multi-feature fusion method is constructed by improving the Ada IN
algorithm, achieving efficient decoupling and precise fusion of dance action content and
style features. Next, this study proposes a Latin dance action style transfer network model
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based on multi-feature fusion of bone sequences. This model adopts a three-level feature
layering mechanism of joint-limb-global, combined with I Ada IN, to solve the style
distortion of traditional methods in cross-dance transfer. In response to the unique style
features of Latin dance such as hip swing and rotation, the model introduces an attention
mechanism in the decoding stage to enhance the transfer effect of key joints, ultimately
generating a transfer result that retains both the original action trajectory and integrates
the target dance style features, as shown in Figure 4.

Figure 4 Action style transfer model based on multi-feature fusion (see online version
for colours)
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As shown in Figure 4, the action style transfer network model adopts a dual encoder
decoder architecture, which achieves style transfer without paired data by decoupling
action content and style features. The path on the left side of the network is the style
encoder, which receives style action inputs represented by three-dimensional joint
coordinate sequences and extracts style features through multi-layer convolution. The
path on the right side is the content encoder, which processes action content represented
by quaternion sequences and uses temporal convolutional networks to extract style
independent motion features (Garg et al., 2023; Zhang et al., 2025). The decoder adopts
the I Ada IN technology to dynamically modulate the statistical features (mean and
variance) of the style encoder onto the content features, achieving the embedding and
fusion of style features. The discriminator improves the authenticity of generated actions
through adversarial training mechanisms, and ultimately outputs a transfer result that
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preserves the motion trajectory of the source action while incorporating the target style
features. This structure innovatively solves the dependency problem of traditional
methods on paired data through feature space decoupling and dynamic normalisation.
The style encoder for the model is constructed, as shown in Figure 5.

Figure 5 Network structure of style encoder (see online version for colours)
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As shown in Figure 5, the style encoder network presented adopts a layered feature
extraction architecture, specifically designed to capture style features in dance actions.
The network input receives style samples composed of multiple pose sequences, which
are processed through a two-stage feature transformation module. The first stage takes
ReflectPadld to preserve temporal boundary features and combines it with a 96 channel
one-dimensional convolution kernel (Convld) to extract primary style patterns. The
second level deepens feature abstraction through a 144 channel convolutional layer,
combined with LeakyReLU activation function to enhance nonlinear expression ability.
By gradually improving the feature dimension, the design effectively captures multi-scale
style features from local joint motion patterns to overall dance rhythm. This modular
design is particularly suitable for handling hip swings and rotations with strong rhythmic
features in Latin dance. The final output style encoding vector can fully preserve the style
attributes of the original actions, providing discriminative feature representations for
subsequent style transfer. The reflective filling is shown in equation (9) (Zhang et al.,
2024).

X paddealt> J1= X[, min(max(j —3,0), L =1)] (€)]
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Figure 6 Content encoder network structure (see online version for colours)
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In equation (9), for the position [i, /] of the filled matrix X, qzeq, its value is determined by
the mirror reflection position min(max(j—30), L—1) of the original matrix X. Specifically,
when j—3 exceeds the left boundary of the original sequence (< 0), it is taken as 0. When
it exceeds the right boundary (> L-1), it is taken as L—1. Otherwise, it is directly mapped
to the position of j—3. j€[0, L + 6] indicates that the length of the filled sequence has been
extended by 7. This symmetric filling method can effectively avoid the loss of boundary
information, especially suitable for convolution processing of dance action sequences,
ensuring that temporal convolution can still capture effective motion features at the data
boundary. The Convl1d is shown in equation (10) (Zhang et al., 2024).

Cy—1 K-1
Yc,j:ZZI/Vc,k,m'Xk,j+m+bc (10)
k=0 m=0

In equation (10), the value Y,; of the output feature map Y in channel ¢ and position j is
obtained by summing the element wise product of the local region of the input feature
map X and the convolution kernel weight W, and superimposing the bias b.. Double
summation represents weighted aggregation of all input channels C;, and each position of
the convolution kernel, ultimately generating output features with spatial locality and
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channel combination characteristics. The LeakyReLU activation function is shown in
equation (11) (Chung and Huang, 2023).

LeakyReLU (x) = max(x, otx) (11)

In equation (11), x is the input value. « is a fixed small constant between 0 and 1 (usually
taken as 0.01). This function outputs x directly when the input x is positive, maintaining
linear characteristics. When x is negative, ax is output and a weak negative response is
introduced. Compared to traditional ReLU functions, LeakyReLU effectively alleviates
the ‘neuron death’ that may occur during neural network training by preserving the
gradient flow of negative intervals, while maintaining computational efficiency. Next, a
content encoder for the model is constructed, as shown in Figure 6.

In equation (11), x is the input value. « is a fixed small constant between 0 and 1
(usually taken as 0.01). This function outputs x directly when the input x is positive,
maintaining linear characteristics. When x is negative, ax is output and a weak negative
response is introduced. Compared to traditional ReLU functions, LeakyReLU effectively
alleviates the ‘neuron death’ that may occur during neural network training by preserving
the gradient flow of negative intervals, while maintaining computational efficiency. Next,
a content encoder for the model is constructed, as shown in Figure 6.

The content encoder network shown in Figure 6 adopts a three-level progressive
feature extraction architecture, dedicated to separating style independent motion content
features from dance action sequences. The network input receives the content sequence
represented by joint quaternions, and each processing stage sequentially performs
reflection padding, 144 channel one-dimensional convolution, InstanceNormd
normalisation, and LeakyReLU activation operations. This repetitive stacking design
gradually expands the receptive field while deepening the feature abstraction level and
maintaining the temporal length. The instance normalisation layer independently
normalises each sample, effectively eliminating the influence of action amplitude
differences on content features. LeakyReLU preserves the weak gradient in the negative
range to avoid neuronal inactivation caused by brief stationary frames during dance
actions. The parallel outputs of the three modules fuse multi-scale motion information
through feature concatenation. The resulting content encoding can represent the joint
basic motion trajectory and has robustness to style perturbations, providing a stable
content base for subsequent cross-dance style transfer. The instance normalisation is
shown in equation (12) (Chen et al., 2023).

> YL : . 2
Vey =2l = D0 el = D (Ve ) (12)

UC+€ ‘=1 ,1

In equation (12), instance normalisation effectively eliminates style related features in
dance action data through channel independent normalisation processing. Firstly, the

mean g of channel c is calculated. Then the variance af is calculated. Finally, the

original feature Y,; is normalised to zero mean and unit variance. Finally, the decoder of
the model is introduced, as shown in Figure 7.

The decoder network shown in Figure 7 adopts a progressive feature fusion and
up-sampling architecture to achieve high-quality synthesis of dance action style and
content. The network input receives decoupled content and style features, and first
performs dynamic style injection through the I Ada IN module. Subsequently, after two
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levels of feature refinement modules, each level includes ReflectPadld, Convld, and
LeakyReLU, gradually enhancing the spatiotemporal consistency of the features. The
up-sampling layer inserted in the middle expands the temporal dimension through
interpolation, and finally outputs a joint motion sequence that conforms to the target style
through 124 channel convolution.

Figure 7 Decoder network structure (see online version for colours)
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4 Results

4.1 Verification of the effectiveness of the improved Ada IN algorithm and
multi-level feature fusion

To verify the superiority and reliability of the proposed Latin dance action style transfer
method based on the improved Ada IN algorithm, experimental performance verification
and analysis are conducted. Firstly, the experimental environment and parameters are
configured, as shown in Table 1.

Table 1 shows the experimental environment and parameter settings of this study.
The study selected two publicly available motion datasets, CMU MoCap and Mixamo, as
the main data sources. CMU MoCap contains approximately 2,500 sets of high-precision



Latin dance action style transfer based on improved Ada IN algorithm 51

3D motion capture sequences, covering various movements such as walking, running,
and dancing. Mixamo provides thousands of 3D skeletal models and various dance styles
(such as hip-hop, Latin dance, and street dance), demonstrating good style diversity.
Before the experiment, the data was cleaned and pr-processed uniformly. Missing frames
and abnormal pose samples were removed, the skeleton topology was unified, and the
frame rate was normalised to 30 fps through temporal resampling and smooth
interpolation. To enhance the model’s generalisation ability, lightweight data
augmentation methods such as random time reversal, joint rotation perturbation (+5°),
and mirror flipping were used. Finally, the training, validation, and test sets were divided
in a 7:2:1 ratio to ensure consistent style distribution across dance genres. The training set
was used for feature learning, the validation set for parameter optimisation, and the test
set for performance evaluation. To enhance the reliability and stability of the
experimental results, a five-fold cross-validation approach was employed. The model was
repeatedly trained and evaluated under different data partitions, and the average
performance index was used as the final result.

Table 1 Experimental environment and key parameters
Experimental environment Key experimental parameters
Hardware = CPU Intel Xeon Model Convolutional [96, 144,
Gold 6248R parameters layer 144]
channels
GPU NVIDIA Convolution 7
Tesla V100 x kernel size
4
Memory 256GB DDR4 Number of six floors
residual
blocks
Software Operating Ubuntu 20.04 Hierarchical [0.4,0.3,
system LTS weight ratio 0.3]
Deep learning ~ PyTorch 1.10 Experimental  Input 512 x 512
framework +CUDA 11.3 settings resolution pixels
Batch size 16
Key OpenCV Average 8
dependency processing ms/frame
library time

The experiment first conducted ablation experiments to validate the effectiveness of the
improved AdalN three-level normalised architecture. The independent contributions and
synergistic effects of the joint-level, limb-level, and global-level style transfer layers
were systematically evaluated using the controlled variable method. Four comparison
groups were set up: M-A (joint-level only) as the base model; M-B (joint + limb-level) to
verify the gain of limb-level feature aggregation; M-C (joint + global-level) to verify the
gain of global motion constraints; and M-D (complete three-level fusion), which is the
complete I-AdalIN architecture. The impact of each layer combination on style fidelity
and motion rationality was tested under a unified dataset and training environment. The
experimental results are shown in Figure 8.
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Figure 8 Verification of the effectiveness of multi-level feature fusion for improved Ada IN,
(a) comparison of contributions at different levels, (b) style preserved in comparison

(see online version for colours)
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As shown in Figure 8(a), in terms of stratified contribution, the M-D group achieved the
optimal balanced distribution (42.36 £ 1.95% at the joint level, 28.51 + 1.73% at the limb
level, and 29.13 + 1.82% at the global level), and its contribution balance index (0.89 +
0.03) was higher than that of the M-A group (0.28 + 0.04) and the M-B group (0.65 +
0.06). As shown in Figure 8(b), in terms of style detail retention rate, the M-D group
achieved a comprehensive SDR of 0.89 + 0.02, maintaining the highest level at all levels
(0.91 £ 0.03 at the joint level, 0.87 £ 0.04 at the limb level, and 0.85 + 0.04 at the global
level), which was significantly better than that of the M-A group (0.63 + 0.06) and the
M-C group (0.72 + 0.05). The results demonstrate that the complete three-level fusion
architecture plays an irreplaceable role in controlling balance and detail fidelity, with
statistically significant performance differences between all levels (P < 0.01). Next, an
experiment was conducted to test style transfer fidelity, with the experimental group
being I Ada IN + Transformer. Subsequently, the original Ada IN and CycleGAN were
selected as control groups. The experimental results are shown in Figure 9.

As shown in Figure 9(a), the proposed I-AdaIN + transformer achieves a style
similarity score (SSIM) of 0.94 + 0.01, which is 21%—-27% higher than the original
AdaIN (0.77 + 0.02) and CycleGAN (0.74 £ 0.03). Figure 9(b) shows that the joint
motion error (JME) of I-AdalN is 4.3 = 0.9 mm, which is more than 50% lower than the
original AdalN (8.5 + 1.8 mm) and CycleGAN (11.5 + 2.4 mm). It maintains a stable low
error level (standard deviation < 1.0 mm) even in long sequences (100 frames),
outperforming the control group. The experiments verify that the hierarchical
normalisation mechanism of I-AdaIN can effectively improve style transfer accuracy, and
the spatiotemporal transformer structure, through its long-range dependency modelling
capability, solves the error accumulation problem of traditional methods in long
sequences. All performance differences passed the significance test (P < 0.01) and were
statistically significant. Next, the content retention ability of the I Ada IN + content
encoder is tested. Pure transformer encoder and variational autoencoder (VAE) are
selected as the control groups. The experimental results are shown in Figure 10.
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Figure 9 Style transfer fidelity comparison experiment, (a) comparison of style similarity,
(b) comparison of joint movement errors (see online version for colours)
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Figure 10 Action content retention ability test, (a) comparison of content reconstruction errors,
(b) comparison of joint trajectory consistency (see online version for colours)
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As shown in Figure 10(a), the MSE of the I-AdaIN + content encoder is 0.008 + 0.001,
which is 50% and 60% lower than that of the pure transformer (0.016 + 0.002) and VAE
(0.020 £ 0.003), respectively, and has the smallest standard deviation, indicating that its
reconstruction accuracy is the most stable. As shown in Figure 10(b), the DTW distance
of the I-AdalN + content encoder is 0.73 + 0.07, which is also better than that of the pure
transformer (1.48 = 0.15) and VAE (2.10 £ 0.22), with a trajectory consistency
improvement of more than 1.5 times, and a standard deviation much smaller than that of
the control group, proving that it has a better motion trajectory preservation ability. All
performance differences passed the significance test (P < 0.01) and were statistically
significant. Next, the real-time performance testing is conducted on the improved I Ada
IN. The original Ada IN and pure GAN models are selected as the control groups, and the
experimental results are shown in Figure 11.
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Figure 11 Real-time performance test, (a) comparison of single-frame processing time,
(b) frame rate comparison (see online version for colours)
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As shown in Figure 11(a), the single-frame processing time of I-AdalN is stable in the
range of 7.9-8.3 ms (standard deviation < 0.4 ms), which is 38% faster than the original
AdalN (12.5-13.6 ms, standard deviation > 0.5 ms) and 67% faster than the GAN model
(22.7-24.5 ms, standard deviation > 1.1 ms). As shown in Figure 11(b), I-AdaIN
consistently maintains an excellent level of 120+ FPS (standard deviation < 6),
significantly surpassing the original AdaIN (74-80 FPS, standard deviation > 4) and the
GAN model (40—44 FPS, standard deviation > 3), with frame rate improvements of 53%
and 200%, respectively. [-AdaIN exhibits the smallest standard deviation in both
processing speed stability and frame rate consistency, proving that it has optimal
real-time performance. All performance differences passed the significance test
(P <0.01) and are statistically significant.

4.2 Verification of the effectiveness of dance action style transfer

After verifying the effectiveness of the improved Ada IN algorithm and multi-layer
feature fusion, the stability of long sequence action transfer is tested. The original Ada IN
algorithm and sequential CNN are selected as the control group. The experimental
parameters, environment, and dataset are the same as above. The result is shown in
Figure 12.

As shown in Figure 12(a), the TSC score of [-AdaIN remained at 88.7 + 2.0, which
was superior to the original AdaIN (34.6 + 7.5) and the non-temporal CNN (22.4 + 8.3).
Figure 12(b) shows that the cumulative joint drift error of I-AdaIN was only 9.7 = 1.2
mm, a 4-6 fold reduction compared to the original AdaIN (40.2 £ 6.1 mm) and the
non-temporal CNN (62.3 = 8.4 mm), with the error growth exhibiting an ideal linear
trend. This indicates that the research method can effectively solve the error
accumulation problem in long sequence motion transfer and achieve highly stable
transfer of dance movement styles. All performance differences passed the significance
test (P < 0.01) and were statistically significant. Next, a cross-dataset generalisation
ability test is conducted, selecting untrained raw Ada IN, Fine-tuned I Ada IN, and
CycleGAN as control groups. The experimental group I Ada IN is directly transferred to
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the CMU MoCap dataset after training on the Mixamo dataset. The experimental results
are shown in Table 2.

Figure 12 Stability test of long sequence action transfer, (a) sequence coherence comparison,
(b) cumulative joint drift error comparison (see online version for colours)
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Table 2 Cross-dataset generalisation capability test
R Domain e Style transfer
Method Style (sggglarlty adaptation error P:;)babllzstlc intensity (Frechet
(DAE) tvergence distance)
I Ada IN (transfer ~ 0.87 + 0.02** 0.12 £ 0.03** 0.08 £ 0.01** 153 £ 1.2%*
training)
Ada IN(no 0.52£0.05 0.38 £0.06 0.34£0.04 427+35
training)
Fine-tuned I-Ada 0.83£0.03 0.15+£0.04 0.11£0.02 18.6=1.8
IN
CycleGAN 0.65+0.06 0.27 £0.05 0.22+0.03 314+29

Notes: The symbol ‘**’ indicates that this indicator is statistically due to other models
(p <0.01).

Table 2 shows that the cross-dataset style similarity (CSS) of the experimental group
I-AdalN reached 0.87 + 0.02, significantly better than the original AdaIN (0.52 + 0.05)
and CycleGAN (0.65 + 0.06). In terms of domain adaptation error (DAE), the
experimental group I-AdaIN (0.12 + 0.03) reduced the DAE by 68% compared to the
original AdaIN (0.38 + 0.06), maintaining an advantage even compared to the fine-tuned
I-AdalN (0.15 £ 0.04). Furthermore, [-AdaIN’s probability divergence (0.08 + 0.01) and
Fréchet distance (15.3 £ 1.2) were optimal, with standard deviations smaller than the
control group, indicating that it can achieve high-quality cross-domain style transfer
without fine-tuning. All performance differences passed the significance test (P < 0.01),
indicating statistical significance. Next, the current mainstream cross-domain action
transfer method based on manifold alignment (FAb-Net), domain adversarial network
(DAN), diffusion model driven action generation (MotionDiffuse), and pose style
decoupling transfer method (PoseStyle) are selected. The experimental results are shown
in Table 3.
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Table 3 A comprehensive comparative experiment of the improved Ada IN algorithm and
mainstream style transfer methods

d Crst- Modal Sports Training Adversarial

omain style s X ; attack

Method consistency compatibility diversity convergence robusiness

(CDS) error (MCE) (MD) rate (TCS) (AAR)

I Ada IN 0.89 +0.02 0.08 £0.01 1.45+0.12 90+ 5 92 +2%
rounds

FAb-Net 0.76 + 0.04 0.12£0.02 0.82+0.15 120+ 8 85+ 4%
rounds

DAN 0.68 £ 0.05 0.25+£0.04 0.95+0.18 150+ 12 72 + 6%
rounds

MotionDiffuse  0.82 +0.03 0.15+0.03 1.62+0.20 180+ 15 65+ 8%
rounds

PoseStyle 0.71 £0.04 0.18 £0.03 1.12+0.16 110+ 10 78 £ 5%
rounds

Notes: The symbol ‘**’ indicates that this indicator is statistically due to other models
(p<0.01).

As shown in Table 3, the experimental group I-AdaIN achieved a cross-domain style
consistency (CDS) score of 0.89+0.02, which was superior to FAb-Net (0.76 + 0.04) and
DAN (0.68 £ 0.05). Its hierarchical feature fusion mechanism effectively maintained the
core rhythmic features of the target style. Especially when dealing with the hip swing
unique to Latin dance, joint-level style modulation improved the CDS by an average of
23% compared to the global transfer method. In terms of modal compatibility, the MCE
of I-AdaIN (0.08 = 0.01) was 68% lower than that of the traditional domain adaptation
method DAN (0.25 + 0.04). In addition, although the motion diversity (MD) of the
control group MotionDiffuse (1.62 + 0.20) was slightly higher than that of I-AdaIN
(1.45£0.12), some of the generated movements had physical inconsistencies (such as
reverse joint rotation), and the training cost (TCS) (180 £ 15 rounds) was twice that of
I-AdaIN (90 + 5 rounds). In the adversarial robustness test, I-AdaIN’s AAR (92 £ 2%)
under PGD attack significantly outperformed PoseStyle’s (78 + 5%). The experimental
results demonstrate that I-AdaIN, while maintaining movement rationality, significantly
surpasses existing mainstream methods in style consistency, training efficiency, and
anti-interference ability, achieving the optimal balance between dance movement style
transfer effectiveness and practicality. All performance differences passed the
significance test (P < 0.01), indicating statistical significance.

5 Discussion

The research proposes a dance action style transfer model based on an improved Ada IN
algorithm, which achieves high fidelity transfer of fine-grained action styles. By
introducing the spatiotemporal transformer structure and the joint limb global three-level
layered style fusion mechanism, the accuracy and style consistency of action feature
extraction are significantly improved. This method achieved a style detail retention rate
of 0.89 and a JME of only 4.3mm, both of which were superior to those of the control
group, demonstrating excellent detail preservation and structural integrity. Compared
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with the ‘motion puzzle’ method proposed by Koo et al. (2022) although it has the ability
to control the style of body parts, it is still relatively coarse-grained in multi-level style
modelling and overall style fusion. This study achieves a better balance between action
style consistency and content fidelity through layered normalisation and transformer
collaborative enhancement strategy. In addition, regarding the dynamic stability during
style transfer, this study maintained a TSC score of 88.7 in the long sequence transfer
task, far exceeding that of the sequential CNN, indicating its stronger modelling ability
for dance rhythm and motion coherence. Compared to the style modulation animation
synthesis system proposed by Mason et al. (2022) this study not only has higher
efficiency in real-time (with a single-frame delay of only 8 ms), but also has higher
controllability and physical rationality for the transfer effect of real dance actions,
making it suitable for high dynamic rhythm Latin dance style scenes. In addition, in terms
of cross-dataset generalisation ability, the research method still maintains a SSIM of 0.87
and a DAE of 0.12 on the CMU MoCap dataset without fine-tuning, demonstrating good
transfer robustness. Especially when dealing with Latin dance actions with complex hip
swing features, its multi-layer style modelling is superior to pose-based decoupling
strategies such as PoseStyle, avoiding motion distortion caused by insufficient style
feature expressions. Compared with the speech gesture style diffusion network proposed
by Ao et al. (2023) this study enhances the structural rationality of style transfer actions
through physical feasibility constraints and inverse kinematics correction modules,
overcoming the ‘drift’ problem in high degree of freedom skeleton actions.

While research has significantly improved the fidelity, temporal consistency, and
style control of dance style transfer, a bottleneck remains in the integration of dance
styles with significant differences. This can be addressed by introducing cross-domain
contrastive learning and style self-attention mechanisms to enhance the discriminative
and expressive power of style features. Since the model relies on high-precision skeleton
data, pose estimation errors in real-world scenarios may lead to fluctuations in results;
further improvements in stability can be made by incorporating multi-view videos or
robust filtering algorithms. Simultaneously, the model can be further optimised through
lightweight structures and distillation generation modules to achieve efficient deployment
on mobile devices and in AR/VR environments. Furthermore, the application of dance
style transfer may raise ethical issues such as copyright and identity verification of
dancers’ performance styles. Future research should establish authorisation and
traceability mechanisms during the data collection and model generation stages to ensure
that technological innovation and artistic creation develop within a legal and controllable
framework.

6 Conclusions

To improve the rationality of dance action style transfer methods on spatiotemporal
feature coupling and physics, this study proposed a Latin dance action style transfer
method based on improved Ada IN multi-feature fusion. The joint-limb-global three-level
normalisation architecture was constructed to achieve fine-grained style decoupling,
combined with inverse kinematics correction module to ensure the physical feasibility of
actions, ultimately achieving high fidelity cross-dance style transfer. The experimental
results showed that the improved method achieved SSIM of 0.94 in style transfer fidelity
testing, which was 21%-27% higher than that of the original Ada IN (0.77) and



58 H. Lan

CycleGAN (0.74). The JME was reduced to 4.3 mm, with a decrease of more than 50%.
In the content retention ability test, the MSE was 0.008, which was 50%—60% lower than
that of the pure transformer (0.016) and VAE (0.020). The DTW distance (0.73) was 1.5
times better than that of the control group. SSIM and DAE maintained excellent
performance of 0.87 and 0.12, respectively, in cross-dataset testing. In terms of system
performance, the real-time processing speed reached 120 FPS, the single-frame
processing time was controlled within 8 ms, and the TSC score was still 88.7 under long
sequence migration (100,000 frames). The proposed method has significant advantages in
style fidelity, content retention, real-time performance, and cross-domain adaptability,
providing an effective technical solution for dance action style transfer.
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