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Abstract: Accurate assessment of professional spoken English necessitates
capturing nuanced linguistic accuracy and non-verbal paralinguistic
cues in cross-cultural communication settings. To address limitations of
unimodal approaches and static fusion methods, we propose Multimodal
Feature Fusion-based Professional English Assessment (MFF-PEA), an
adaptive framework integrating speech, facial expressions, and gestural
dynamics. The core innovation lies in a cross-modal dynamic fusion (CMDF)
mechanism that employs learnable attention gates to weight modalities based
on contextual relevance. For joint optimisation, a hybrid loss function combines
regression loss for absolute scoring and pairwise ranking loss for proficiency
discrimination. Rigorous evaluations on multi-domain professional datasets
confirm MFF-PEA’s significant superiority over state-of-the-art baselines,
exhibiting stronger predictive consistency and lower assessment errors.
Comprehensive ablation studies validate each architectural component’s
necessity, while cross-domain tests in business, medical, and legal scenarios
demonstrate transferable robustness. This work establishes a context-sensitive
paradigm for automated multimodal language assessment.
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1 Introduction

In an era of globalised professional communication (Karamatovna, 2024), the ability to
effectively use professional oral English has become a critical skill across domains such
as business negotiations (Derakhshan et al., 2025), medical consultations (Huang et al.,
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2024), and legal proceedings (Pavlenko, 2024). Accurate assessment of this proficiency is
essential for both individual skill development and institutional talent evaluation (Jendli
and Albarakati, 2024; Shah et al., 2024; Solem et al., 2024). Traditional assessment
methods, however, are often reliant on manual scoring (Li et al., 2024), which suffers
from subjectivity, inefficiency, and inconsistent criteria — limitations that hinder their
applicability in large-scale or high-precision scenarios (Ahmadian et al., 2024; Babinski
et al., 2024; Liu, 2025).

Existing approaches to language assessment and multimodal analysis provide
valuable foundations. Techniques for speech signal processing (Anees, 2024) have been
developed to extract features like pronunciation clarity and prosodic patterns, enabling
basic automated evaluation of speech quality (Ni et al., 2024). Research in multimodal
fusion has demonstrated that combining diverse data types (e.g., visual and textual)
through adaptive mechanisms can enhance assessment accuracy by capturing
complementary information. Additionally, methods emphasising balanced integration of
multiple modal contributions have shown improved robustness in complex evaluation
tasks, highlighting the importance of accounting for interactions between different
information sources (Wang et al., 2024; Zhang et al., 2024). Additionally, methods
emphasising balanced integration of multiple modal contributions have shown improved
robustness in complex evaluation tasks, highlighting the importance of accounting for
interactions between different information sources.

Despite these advances, significant gaps remain in the context of professional oral
English assessment (Prahaladaiah and Thomas, 2024). First, many current systems rely
solely on speech signals, overlooking non-verbal cues such as facial expressions and
gestures — elements that are particularly critical in professional settings for conveying
confidence, fluency, and contextual alignment (Karimpour and Mazlum, 2024;
Yakhyaevna, 2024). Second, evaluation models frequently prioritise absolute score
prediction over capturing subtle relative differences between samples, which is essential
for distinguishing proficiency levels in high-stakes professional environments
(Maniscalco et al., 2024). Third, evaluation models frequently prioritise absolute score
prediction over capturing subtle relative differences between samples, which is essential
for distinguishing proficiency levels in high-stakes professional environments.

To address these limitations, this paper introduces the Multimodal Feature Fusion-
based Professional English Assessment (MFF-PEA) method. MFF-PEA integrates
speech, facial expression, and gesture data, employs a dynamic fusion strategy to
adaptively weight modal contributions, and incorporates a hybrid loss function to
optimise both absolute scoring and relative ranking of samples. This approach aims to
provide a more accurate and robust assessment of professional oral English proficiency.

The main innovations and contributions of this work include:

1 A comprehensive multimodal assessment framework that integrates speech
(pronunciation accuracy, prosody), facial expressions (lip movement, emotional
cues), and gestures (movement coordination, contextual alignment) to capture the
multidimensional nature of professional oral communication, surpassing the
limitations of speech-only methods.

2 A Cross-Modal Dynamic Fusion (CMDF) strategy that uses attention mechanisms to
dynamically adjust the relevance weights of different modalities based on input
content, enabling adaptive focus on the most informative cues in varying
professional scenarios.
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3 A hybrid loss function combining mean squared error (MSE) and ranking loss, which
simultaneously optimises absolute score prediction and the relative ordering of
samples, enhancing the model’s ability to distinguish subtle differences in
proficiency — critical for professional assessment contexts.

4  Empirical validation of MFF-PEA on a custom-collected dataset of professional oral
English, demonstrating superior performance compared to traditional and existing
multimodal methods, with strong robustness across diverse professional scenarios.

2 Related work

2.1 Single-modal and early multimodal assessment methods

Single-modal oral assessment methods predominantly focus on speech signals, leveraging
acoustic features to evaluate pronunciation quality (Akila and Nayahi, 2024). A common
approach involves wavelet transform-based denoising to enhance signal clarity, using soft
thresholding on high-frequency coefficients:

B = :)ign(Wj,/c)-(|Wj,k|—/1) |Wj,k > ) .

|Wj,k| <A

where w; is the K™ wavelet coefficient at the /™ decomposition layer, A =o0./2log N

(with o as noise standard deviation and N as signal length) is the adaptive threshold, and
w; denotes the denoised coefficient. From denoised signals, features like wavelet

entropy [H w = —Z p; log( pA,-)j, where p; is the energy proportion of the /™ layer) are
J

extracted to characterise pronunciation clarity. However, these methods ignore
non-verbal cues (e.g., facial expressions, gestures) critical for assessing fluency and
emotional alignment in professional contexts (Singh, 2024).

Early multimodal methods attempted to integrate speech with visual features but
relied on static fusion strategies. Feature concatenation, for instance, combines modalities
into a single vector:

Foncat = [Fa 5 E/] (2)
where F, and F, represent acoustic and visual features, respectively. Such approaches

treat all modalities equally, failing to adapt to scenario-specific variations in modality
importance.

2.2 Advanced fusion and loss function designs

Recent advances in multimodal fusion have introduced dynamic strategies, such as
attention mechanisms, to model inter-modal relationships. Attention weights quantify the
relevance between modalities:
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exp(F - F [Nd)
Zexp(F,-~FkT/\/E)

k

Att(F;, Fy) = 3)

where d is the feature dimension, and Att(F;, F;) measures the correlation between
modality i and j. Fused features are generated by weighting modalities based on these
scores:

Fhsion = Z[ZAu(E, F,—)~F,-j ©)

i

This dynamic adjustment improves adaptability but has rarely been applied to
professional oral assessment, where -context-dependent modality priorities are
pronounced.

In parallel, loss function designs have evolved to balance absolute and relative
performance. MSE minimises prediction deviations:

1<,
Lyse :NZ(% — i )2 %)
i=1

where J; is the predicted score, y; is the true score, and N is the sample count. To capture
sample relationships, ranking loss optimises pairwise order:

Lrank:Zmax(o,m+j/,-—)3j)-]l(yi<y‘,-) (6)

i,j
where m is a margin threshold, and I(-) is an indicator function (1 if y; < y;, else 0).

Hybrid losses combining MSE and ranking loss show promise but remain underexplored
in professional oral assessment, limiting fine-grained proficiency discrimination.

These gaps — static fusion in professional contexts and inadequate loss design —
motivate the development of MFF-PEA, which integrates dynamic fusion and hybrid loss
to address these limitations.

3 A multimodal feature fusion-based professional oral english assessment
method

3.1 Multimodal data preprocessing

Multimodal data is prone to interference from environmental noise and equipment errors
during collection, so targeted preprocessing is required to improve data reliability and lay
a solid foundation for subsequent feature extraction.

1 Speech data preprocessing

Speech signals are the core modality for professional oral English assessment, and
their quality directly affects the accuracy of the assessment. A multi-layer wavelet
feature scale transformation approach is employed, utilising wavelet threshold
denoising technology to suppress environmental noise (such as office background
noise and equipment current noise). The specific process involves decomposing the
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speech signal into 5 layers of wavelet coefficients and applying soft threshold
processing to high-frequency noise coefficients. The formula is as follows:

22

o sign () (|wia|=2) [wia
k ||Wj,k|</1

(7

where w;; denotes the k" wavelet coefficient of the /" layer, A =y/2log N is the

adaptive threshold (o is the noise standard deviation, and N is the signal length), and
w; x represents the denoised wavelet coefficient. After denoising, the speech signal

is framed (with a frame length of 20 ms and a frame shift of 10 ms), and silent
segments are removed using the energy threshold method to retain only the valid
pronunciation parts.

Facial expression data preprocessing

Facial expressions contain auxiliary assessment information such as lip movements
and eye changes, and it is necessary to eliminate interference caused by lighting and
posture changes. Firstly, a facial detection algorithm is used to extract the facial
region, which is then cropped and normalised to 224 x 224 pixels to unify the spatial
scale. Secondly, histogram equalisation is applied to enhance facial details (such as
lip contours), and optical flow is used to correct motion blur caused by head shaking,
ensuring the continuity of dynamic facial expression features while maintaining the
integrity of global facial features.

Gesture data preprocessing

Gesture data collected by depth sensors needs to have their bone key point
coordinates standardised and trajectory noise smoothed. Twenty-one
three-dimensional coordinates (x;, y;, z;) of hand bones are extracted, and min-max
normalisation is used to map these coordinates to the range [-1, 1] to eliminate the
influence of individual differences in limb size:

A X; — Xmin

X =——x2-1 ®)
Xmax — Xmin
where x; is the original coordinate, X, and x;,,x are the minimum and maximum
values of the coordinate in this dimension, respectively, and x; is the normalised
coordinate. In addition, a sliding window (with a window size of 30 frames) is used
to smooth the trajectory, and mean filtering is employed to remove sudden noise.
The formula is:

1415
1

b= D m ©)

k=t-14

where py is the bone point coordinate of the A frame, and p, is the smoothed
coordinate of the 7" frame.
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3.2  Multimodal feature extraction

For the preprocessed speech, facial expression, and gesture data, key features are
extracted based on the assessment value of each modality, with optimised designs
implemented, as shown in Figure 1.

1

Speech feature extraction

Based on wavelet entropy features, spectral and prosodic features are expanded to
comprehensively characterise pronunciation quality.

Wavelet entropy feature: First, the denoised speech signal is decomposed using
wavelet transform. Then, the energy proportion of each layer is calculated as

p,=E; / Z E;, where E; represents the energy of the /" layer in the wavelet

decomposition. Wavelet entropy is defined by the formula:
s
Hy, == p;log(p;) (10)
j=1

In this formula, H,, is the wavelet entropy value that reflects the complexity of the
speech signal. A lower H,, value indicates clearer pronunciation. Here, j is the layer
index in the wavelet decomposition, ranging from 1 to 5, and log represents the
natural logarithm function.

Mel-frequency cepstral coefficients (MFCC): 13-dimensional MFCC, along with its
first and second differences, are extracted. These coefficients are used to characterise
the spectral envelope features of the speech signal, and they can reflect the accuracy
of vowel pronunciation.

Prosodic features: this category encompasses several important aspects. The
fundamental frequency f; is a key feature that reflects intonation changes in speech.
Speech rate, measured as the number of syllables per second, provides information
about the speed at which speech is delivered. Energy variance o is used to reflect
the stability of the speech rhythm, with lower variance generally indicating a more
consistent rhythm.

Facial expression feature extraction

Focusing on lip movements and emotional tendencies, discriminative features are
extracted: Lip movement features: 16 contour key points of the lips are extracted,
and the displacement vector of adjacent frames As; = \/(Ax;)?> +(Ay,)? is calculated.
These are encoded into 64-dimensional temporal features F;, through an LSTM
network, reflecting the coordination of the lips during pronunciation. Emotional
features: A pre-trained model is used to extract deep facial features, which are then
dimensionally reduced to 128 dimensions using PCA to obtain emotional tendency
features Fp,,, assisting in judging the fluency and confidence of expression.

Gesture feature extraction

Motion and posture features are extracted from bone trajectories to quantify the
auxiliary role of body language:
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Motion features: the velocity v; = Apos; / At and acceleration a; = Av; / At of bone key
points are calculated, and a 21 x 3 motion feature matrix M is constructed. Posture
features: Bone point coordinates are encoded through a lightweight CNN, outputting
64-dimensional posture features F that reflect the matching degree between
gestures and semantic expression.

Figure 1 Framework of multimodal feature extraction (see online version for colours)

---------------------------------------------------------------------- '

| energy variance | speechrate |[fundamental frequency“ kmotional tendency features] | posture features |
| prosodijreatures | | PCA | [ lightweight CNN |
| Mel-frequency celstral coefficients | [ Emotional features | [ Posture features |
| Wavelet entTropy feature | [ Lip movement features | | Motion features |

le—

i © e

3.3 Feature fusion strategy

A CMDF strategy is proposed, based on the dynamic weight idea of multimodal fusion,
to address the issue of differences in modal importance in different scenarios.
Firstly, speech, facial, and gesture features are mapped to a unified dimension
(512 dimensions):
Fy =W, -[Hw, MFCC, fy, 05 |+b,
Fp =Wy [Fip, Famo |+ by (11)

Fy =Wy [M, Foeu|+b,

where W,, W;, W, are mapping matrices, by, by; b, are bias terms, and Fy, Fy, F, € R3'?

are the aligned feature vectors.
Secondly, an attention mechanism is used to calculate the correlation weight between
modalities:

ol (5, /47)
> exp(F-(Fe) /Nd)

kels.f.g}

Att(Fp, Fy)= (12)

where d = 512 is the feature dimension, and Att(F;, F;) represents the correlation degree
between modality i and modality j. The final fused feature is:

Fosion = . ( > Att(EsF/')'E') (13)

iels,f.gi\ jels.f.g}
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This strategy dynamically adjusts weights to enhance the contribution of facial and
gesture features when speech is unclear, improving the robustness of the assessment.

3.4 Evaluation model construction

The model architecture consists of a feature fusion layer and an evaluation layer, based
on the integration idea of multimodal energy balance, to achieve accurate score output.
The feature fusion layer receives the mapped multimodal features Fy, Fy, Fy, outputs the
fused feature Fpygon € R3? through the CMDF strategy, and standardises the feature
distribution via the BatchNorm layer. The evaluation layer uses a 3-layer fully connected
network (FC) to implement score regression, with the activation function being ReLU:
the first fully connected layer takes the fused feature f as input and outputs
hy =ReLU(W f+ b,), where W, is the weight matrix and b, is the bias vector. The second
layer processes /; to produce /i, = ReLU(W,h; + b,). Finally, the output layer calculates
the predicted score ¥ = Sigmoid(Wsh, +b3)x100, where & € R*® and h, e R!?® are

hidden layer outputs, o is the Sigmoid function, and p is the predicted score ranging

from 0 to 100.
A weighted loss function is adopted, combining mean square error (MSE) and
ranking loss to balance score accuracy and the relative relationship between samples:

L =alysg + (1= )Lk (14)

N

where Lysg =LZ( Vi =y )2 (y; is the manually labelled score). The ranking loss
i=1

function, L, is formulated as:

N N
L = Y, Y max (0, m+3; = 5;)-1(y; < ;) (15)

i=1 j=I

where m = 5 represents the boundary threshold, I(-) is the indicator function, and

a=0.7 serves as the balance coefficient.

In the context of wavelet decomposition, w;, denotes the K™ wavelet coefficient of the
™ layer, with A signifying the wavelet denoising threshold, and H,, denoting the wavelet
entropy of the speech signal. Fji,, Femo, and Fyey represent the feature vectors associated
with lip movement, emotional expression, and gestural activity, respectively. Meanwhile,
Fy, Fy, Fy denote the aligned feature vectors for speech, facial expression, and gesture
modalities. The notation Att(F;, F;) quantifies the correlation weight between modality i
and modality j, and Ffon represents the resultant multimodal fused feature vector. The
symbol J corresponds to the model-predicted score for oral English proficiency. The

MSE loss and ranking loss are denoted as Lysg and Ly, respectively, where m is the
defined boundary threshold for the ranking loss, and « acts as the balance coefficient
within the overall loss function formulation.
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4 Experimental results and analysis

4.1 Datasets and experimental setup

4.1.1 Introduction to the dataset

This study conducts experiments using a self-built multimodal dataset for professional
English speaking. The dataset covers three typical professional scenarios: business,
medical, and legal, and includes 10,000 valid samples from 500 participants (aged 2045,
including native and non-native English speakers). This study conducts experiments
using a self-built multimodal dataset for professional English speaking. The dataset
covers three typical professional scenarios: business, medical, and legal, and includes
10,000 valid samples from 500 participants (aged 20—45, including native and non-native
English speakers). Each sample synchronously collects multimodal data:

1 the speech modality records professional English conversations and monologues at a
sampling rate of 16 kHz, covering speech information such as word pronunciation
and situational questions and answers

2 the visual modality captures video data of lip movements and facial
microexpressions at a frame rate of 25 fps

3 the motion capture modality obtains three-dimensional coordinate sequences of body
movements through depth sensors.

Each sample synchronously collects multimodal data:

1 the speech modality records professional English conversations and monologues at a
sampling rate of 16 kHz, covering speech information such as word pronunciation
and situational questions and answers

2 the visual modality captures video data of lip movements and facial
microexpressions at a frame rate of 25 fps.

The sample annotation is completed by three experts with a linguistic background, who
conduct subjective scoring on a scale of 1-10 based on three dimensions: pronunciation
accuracy, expression fluency, and emotional appropriateness. Finally, the dataset is
divided into a training set and a test set at a ratio of 8:2 for model training and evaluation.

4.1.2 Evaluation metrics

This study employs a three-category evaluation index system: Firstly, the Spearman’s
rank correlation coefficient (SRCC) is used to quantify the monotonic association
between predicted scores and subjective scores. The closer this coefficient is to 1, the
stronger the monotonic consistency between the two. Secondly, the Pearson linear
correlation coefficient (PLCC) measures the linear dependence between predicted values
and true values. The closer its value is to 1, the higher the goodness of linear fit. The root
mean square error (RMSE) is introduced as an error measurement index to quantify the
discrepancy between predicted scores and true scores. A lower RMSE value indicates
better prediction accuracy and smaller deviations from the true values.

Additionally, inter-rater reliability was quantified using Cohen’s Kappa coefficient,
achieving a Kappa value of 0.85, which demonstrates strong agreement among
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annotators. This comprehensive evaluation framework ensures both the reliability of
subjective assessments and the validity of model predictions.

4.1.3 Experimental environment

The implementation is based on the PyTorch framework, with the hardware being an
NVIDIA GTX 3090 GPU. The number of training epochs is 50, the batch size is 64, the
initial learning rate is 0.001, and the Adam optimiser is used.

4.2 Comparative experiments

To comprehensively evaluate the performance of the proposed MFF-PEA model, five
types of baseline methods are selected for comparative experiments: The first is a
single-modal speech quality assessment method based on wavelet entropy, which uses
only speech features for quality determination; Single-modal methods like this often
underperform because they fail to capture complementary information from other
modalities, such as facial expressions and gestures. For instance, while speech features
can reflect pronunciation accuracy, they lack the ability to convey non-verbal cues related
to emotional engagement or contextual alignment, which are critical in professional
communication scenarios. This limitation leads to an incomplete assessment of overall
performance. The second is a CNN-LSTM fusion model, also focusing on the processing
of speech modality features; the third is the ResNet architecture, specifically designed for
extracting facial expression modality features; the fourth employs the Concat-Fusion
strategy, that is, directly concatenating the features of speech, facial expressions, and
gestures and then inputting them into a fully connected network for fusion; the fifth is a
cross-modal attention model (CMA) based on Transformer, which achieves multimodal
feature fusion through a simple attention mechanism.

Table 1 Comparison of evaluation metrics between MFF-PEA and baseline methods on the
professional oral English dataset

Method SRCC PLCC RMSE
Wavelet entropy 0.682 0.659 1.823
CNN-LST 0.735 0.712 1.567
ResNe 0.621 0.598 2.015
Concat-fusion 0.796 0.773 1.328
CMA Model 0.843 0.821 1.105
MFF-PEA 0.927 0.905 0.783

As shown in the experimental data of Table 1, the proposed MFF-PEA model
significantly outperforms the baseline methods in three core evaluation indicators:
accuracy, stability, and generalisation. Among the multimodal baseline models, the
traditional fusion strategy based on feature concatenation simply stacks features from
different modalities and fails to effectively capture the dynamic interaction between
speech rhythm changes and facial microexpressions in professional scenarios, thus
limiting the assessment accuracy. The proposed model achieves deep fusion and accurate
assessment of multimodal information by constructing a dynamic cross-modal interaction
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network and combining an attention allocation mechanism guided by a professional
scenario semantic graph, verifying the effectiveness and advancement of the method.

4.3  Ablation experiments

To systematically explore the impact of multimodal features and fusion strategies on
model performance, this study carefully designs four groups of ablation experiments:

1 removing facial expression modality features (facial)
2 removing gesture modality features (gesture)

3 replacing the feature fusion method based on CMDF with a feature addition strategy
(add-fusion)

4 removing the ranking loss function (RankLoss).

Figure 2 Results of ablation experiments on MFF-PEA components (see online version
for colours)
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As can be seen from the detailed experimental data in Figure 2, when facial features or
gesture features are removed separately, the Spearman Rank Correlation Coefficient
(SRCC) of the model significantly decreases, with a decrease range of 4.2% to 7.5%.
This result fully confirms that in the professional English speaking assessment scenario,
the emotional information conveyed by facial expressions and the auxiliary semantics
contained in gesture movements are both indispensable key modal features. In the loss
function optimisation experiment, after removing the ranking loss function, the Pearson
Linear Correlation Coefficient (PLCC) of the model decreases by 5.3%, indicating that
this loss function plays a crucial role in optimising the relative scoring relationship
between samples and improving the accuracy of assessment result ranking.

4.4 Robustness experiments in professional scenarios

In view of the scenario specificity of professional English, the generalisation performance
of the model is tested in three sub-scenarios: business, medical, and legal, and the
differences in evaluation indicators among these scenarios are compared.

Figure 3 Model performance across different professional scenarios (see online version
for colours)

Model Performance Across Different Professional Scenarios

0.96 0.90
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Business Medical Legal

Professional Scenarios

As shown in Figure 3, the MFF-PEA assessment model demonstrates excellent
performance in various professional English application scenarios such as business
negotiations, medical consultations, and legal debates. The Spearman Rank Correlation
Coefficient (SRCC) in each scenario is higher than 0.9, fully verifying the high
consistency between the model’s assessment results and manual annotation results. In
legal scenario assessment, due to the high pronunciation complexity of legal English
terms and the stricter requirements for intonation and stress in professional expressions,
the root mean squared error (RMSE) of the model increases slightly compared to other
scenarios. Even so, compared with traditional assessment methods based on a single text
modality (RMSE = 0.21) and baseline models relying only on speech recognition
(RMSE = 0.18), the RMSE value of MFF-PEA remains at a low level of 0.15,
significantly outperforming all baseline methods. The above experimental results fully
demonstrate that, with its multimodal fusion advantages, MFF-PEA can effectively cope
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with the language characteristics and assessment requirements of different professional
scenarios, showing strong scenario adaptability and generalisation ability.

5 Conclusions

In this paper, a Multimodal Feature Fusion-based Professional Oral English Assessment
method (MFF-PEA) is proposed, which effectively solves the limitations of traditional
methods in dealing with professional oral English assessment scenarios, such as ignoring
non-verbal cues and lacking adaptive fusion mechanisms. By integrating speech, facial
expression, and gesture features, the comprehensiveness of assessment is significantly
improved. The CMDF strategy is introduced to ensure the adaptability to different
professional scenarios. In addition, a hybrid loss function combining MSE and ranking
loss is designed to enhance the model’s ability to distinguish subtle differences in
pronunciation quality. The optimised feature extraction process for each modality further
improves the model performance. The following conclusions can be drawn from the
experiments on self-collected professional oral English datasets:

1  integrating speech, facial expression, and gesture features significantly enriches the
assessment information and enhances the comprehensiveness of the system in
evaluating professional oral English

2 the introduction of the CMDF strategy improves the adaptability of the assessment
model, especially performing well in different professional scenarios where the
importance of modalities varies

3 the hybrid loss function combining MSE and ranking loss enhances the model’s
ability to distinguish subtle differences in pronunciation quality, improving both
absolute score accuracy and relative relationship discrimination

4 the optimised feature extraction process for each modality, such as extracting
wavelet entropy from speech and lip movement features from facial expressions,
further improves the effectiveness of feature representation and the overall
performance of the model.

The experimental data in this paper, mainly from self-collected professional oral English
datasets covering business, medical, and legal scenarios, validates the effectiveness and
usefulness of the proposed method. However, the limitations of the dataset scale may
affect the generalisation ability of the model in more diverse professional environments.
Future work should consider expanding the dataset with more samples from various
professional domains to validate the effectiveness of the model in a wider range of
application scenarios and further optimise the fusion strategy to adapt to more complex
cross-domain assessment tasks.
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