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Abstract: Accurate assessment of professional spoken English necessitates 
capturing nuanced linguistic accuracy and non-verbal paralinguistic  
cues in cross-cultural communication settings. To address limitations of 
unimodal approaches and static fusion methods, we propose Multimodal 
Feature Fusion-based Professional English Assessment (MFF-PEA), an 
adaptive framework integrating speech, facial expressions, and gestural 
dynamics. The core innovation lies in a cross-modal dynamic fusion (CMDF) 
mechanism that employs learnable attention gates to weight modalities based 
on contextual relevance. For joint optimisation, a hybrid loss function combines 
regression loss for absolute scoring and pairwise ranking loss for proficiency 
discrimination. Rigorous evaluations on multi-domain professional datasets 
confirm MFF-PEA’s significant superiority over state-of-the-art baselines, 
exhibiting stronger predictive consistency and lower assessment errors. 
Comprehensive ablation studies validate each architectural component’s 
necessity, while cross-domain tests in business, medical, and legal scenarios 
demonstrate transferable robustness. This work establishes a context-sensitive 
paradigm for automated multimodal language assessment. 

Keywords: professional oral English assessment; multimodal fusion; dynamic 
attention; ranking loss; cross-domain evaluation. 
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1 Introduction 

In an era of globalised professional communication (Karamatovna, 2024), the ability to 
effectively use professional oral English has become a critical skill across domains such 
as business negotiations (Derakhshan et al., 2025), medical consultations (Huang et al., 
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2024), and legal proceedings (Pavlenko, 2024). Accurate assessment of this proficiency is 
essential for both individual skill development and institutional talent evaluation (Jendli 
and Albarakati, 2024; Shah et al., 2024; Solem et al., 2024). Traditional assessment 
methods, however, are often reliant on manual scoring (Li et al., 2024), which suffers 
from subjectivity, inefficiency, and inconsistent criteria – limitations that hinder their 
applicability in large-scale or high-precision scenarios (Ahmadian et al., 2024; Babinski 
et al., 2024; Liu, 2025). 

Existing approaches to language assessment and multimodal analysis provide 
valuable foundations. Techniques for speech signal processing (Anees, 2024) have been 
developed to extract features like pronunciation clarity and prosodic patterns, enabling 
basic automated evaluation of speech quality (Ni et al., 2024). Research in multimodal 
fusion has demonstrated that combining diverse data types (e.g., visual and textual) 
through adaptive mechanisms can enhance assessment accuracy by capturing 
complementary information. Additionally, methods emphasising balanced integration of 
multiple modal contributions have shown improved robustness in complex evaluation 
tasks, highlighting the importance of accounting for interactions between different 
information sources (Wang et al., 2024; Zhang et al., 2024). Additionally, methods 
emphasising balanced integration of multiple modal contributions have shown improved 
robustness in complex evaluation tasks, highlighting the importance of accounting for 
interactions between different information sources. 

Despite these advances, significant gaps remain in the context of professional oral 
English assessment (Prahaladaiah and Thomas, 2024). First, many current systems rely 
solely on speech signals, overlooking non-verbal cues such as facial expressions and 
gestures – elements that are particularly critical in professional settings for conveying 
confidence, fluency, and contextual alignment (Karimpour and Mazlum, 2024; 
Yakhyaevna, 2024). Second, evaluation models frequently prioritise absolute score 
prediction over capturing subtle relative differences between samples, which is essential 
for distinguishing proficiency levels in high-stakes professional environments 
(Maniscalco et al., 2024). Third, evaluation models frequently prioritise absolute score 
prediction over capturing subtle relative differences between samples, which is essential 
for distinguishing proficiency levels in high-stakes professional environments. 

To address these limitations, this paper introduces the Multimodal Feature Fusion-
based Professional English Assessment (MFF-PEA) method. MFF-PEA integrates 
speech, facial expression, and gesture data, employs a dynamic fusion strategy to 
adaptively weight modal contributions, and incorporates a hybrid loss function to 
optimise both absolute scoring and relative ranking of samples. This approach aims to 
provide a more accurate and robust assessment of professional oral English proficiency. 

The main innovations and contributions of this work include: 

1 A comprehensive multimodal assessment framework that integrates speech 
(pronunciation accuracy, prosody), facial expressions (lip movement, emotional 
cues), and gestures (movement coordination, contextual alignment) to capture the 
multidimensional nature of professional oral communication, surpassing the 
limitations of speech-only methods. 

2 A Cross-Modal Dynamic Fusion (CMDF) strategy that uses attention mechanisms to 
dynamically adjust the relevance weights of different modalities based on input 
content, enabling adaptive focus on the most informative cues in varying 
professional scenarios. 
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3 A hybrid loss function combining mean squared error (MSE) and ranking loss, which 
simultaneously optimises absolute score prediction and the relative ordering of 
samples, enhancing the model’s ability to distinguish subtle differences in 
proficiency – critical for professional assessment contexts. 

4 Empirical validation of MFF-PEA on a custom-collected dataset of professional oral 
English, demonstrating superior performance compared to traditional and existing 
multimodal methods, with strong robustness across diverse professional scenarios. 

2 Related work 

2.1 Single-modal and early multimodal assessment methods 

Single-modal oral assessment methods predominantly focus on speech signals, leveraging 
acoustic features to evaluate pronunciation quality (Akila and Nayahi, 2024). A common 
approach involves wavelet transform-based denoising to enhance signal clarity, using soft 
thresholding on high-frequency coefficients: 
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where wj,k is the kth wavelet coefficient at the jth decomposition layer, 2 logλ σ N  

(with σ as noise standard deviation and N as signal length) is the adaptive threshold, and 
,ˆ j kw  denotes the denoised coefficient. From denoised signals, features like wavelet 

entropy log( ) ,w j j

j

H p p  
 
 

  where pj is the energy proportion of the jth layer) are 

extracted to characterise pronunciation clarity. However, these methods ignore  
non-verbal cues (e.g., facial expressions, gestures) critical for assessing fluency and 
emotional alignment in professional contexts (Singh, 2024). 

Early multimodal methods attempted to integrate speech with visual features but 
relied on static fusion strategies. Feature concatenation, for instance, combines modalities 
into a single vector: 

 concat ,a vF F F  (2) 

where Fa and Fv represent acoustic and visual features, respectively. Such approaches 
treat all modalities equally, failing to adapt to scenario-specific variations in modality 
importance. 

2.2 Advanced fusion and loss function designs 

Recent advances in multimodal fusion have introduced dynamic strategies, such as 
attention mechanisms, to model inter-modal relationships. Attention weights quantify the 
relevance between modalities: 
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where d is the feature dimension, and Att(Fi, Fj) measures the correlation between 
modality i and j. Fused features are generated by weighting modalities based on these 
scores: 

 fusion Att ,i j i

i j

F F F F 







   (4) 

This dynamic adjustment improves adaptability but has rarely been applied to 
professional oral assessment, where context-dependent modality priorities are 
pronounced. 

In parallel, loss function designs have evolved to balance absolute and relative 
performance. MSE minimises prediction deviations: 

 2
MSE

1

1
ˆ

N

i i

i

L y y
N 

   (5) 

where ˆiy  is the predicted score, yi is the true score, and N is the sample count. To capture 

sample relationships, ranking loss optimises pairwise order: 

   rank

,

ˆ ˆmax 0, i j i j

i j

L m y y y y       (6) 

where m is a margin threshold, and ( )  is an indicator function (1 if yi < yj, else 0). 

Hybrid losses combining MSE and ranking loss show promise but remain underexplored 
in professional oral assessment, limiting fine-grained proficiency discrimination. 

These gaps – static fusion in professional contexts and inadequate loss design – 
motivate the development of MFF-PEA, which integrates dynamic fusion and hybrid loss 
to address these limitations. 

3 A multimodal feature fusion-based professional oral english assessment 
method 

3.1 Multimodal data preprocessing 

Multimodal data is prone to interference from environmental noise and equipment errors 
during collection, so targeted preprocessing is required to improve data reliability and lay 
a solid foundation for subsequent feature extraction. 

1 Speech data preprocessing 

Speech signals are the core modality for professional oral English assessment, and 
their quality directly affects the accuracy of the assessment. A multi-layer wavelet 
feature scale transformation approach is employed, utilising wavelet threshold 
denoising technology to suppress environmental noise (such as office background 
noise and equipment current noise). The specific process involves decomposing the 
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speech signal into 5 layers of wavelet coefficients and applying soft threshold 
processing to high-frequency noise coefficients. The formula is as follows: 
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where wj,k denotes the kth wavelet coefficient of the jth layer, 2 logλ σ N  is the 

adaptive threshold (σ is the noise standard deviation, and N is the signal length), and 
,ˆ j kw  represents the denoised wavelet coefficient. After denoising, the speech signal 

is framed (with a frame length of 20 ms and a frame shift of 10 ms), and silent 
segments are removed using the energy threshold method to retain only the valid 
pronunciation parts. 

2 Facial expression data preprocessing 

Facial expressions contain auxiliary assessment information such as lip movements 
and eye changes, and it is necessary to eliminate interference caused by lighting and 
posture changes. Firstly, a facial detection algorithm is used to extract the facial 
region, which is then cropped and normalised to 224 × 224 pixels to unify the spatial 
scale. Secondly, histogram equalisation is applied to enhance facial details (such as 
lip contours), and optical flow is used to correct motion blur caused by head shaking, 
ensuring the continuity of dynamic facial expression features while maintaining the 
integrity of global facial features. 

3 Gesture data preprocessing 

Gesture data collected by depth sensors needs to have their bone key point 
coordinates standardised and trajectory noise smoothed. Twenty-one 
three-dimensional coordinates (xi, yi, zi) of hand bones are extracted, and min-max 
normalisation is used to map these coordinates to the range [–1, 1] to eliminate the 
influence of individual differences in limb size: 

min

max min

ˆ 2 1i
i

x x
x

x x


  


 (8) 

where xi is the original coordinate, xmin and xmax are the minimum and maximum 
values of the coordinate in this dimension, respectively, and ˆix  is the normalised 
coordinate. In addition, a sliding window (with a window size of 30 frames) is used 
to smooth the trajectory, and mean filtering is employed to remove sudden noise. 
The formula is: 
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where pk is the bone point coordinate of the kth frame, and ˆ tp  is the smoothed 

coordinate of the tth frame. 
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3.2 Multimodal feature extraction 

For the preprocessed speech, facial expression, and gesture data, key features are 
extracted based on the assessment value of each modality, with optimised designs 
implemented, as shown in Figure 1. 

1 Speech feature extraction 

Based on wavelet entropy features, spectral and prosodic features are expanded to 
comprehensively characterise pronunciation quality. 

Wavelet entropy feature: First, the denoised speech signal is decomposed using 
wavelet transform. Then, the energy proportion of each layer is calculated as 

,j j jp E E   where Ej represents the energy of the jth layer in the wavelet 

decomposition. Wavelet entropy is defined by the formula: 

 
5

1

logw j j

j

H p p


   (10) 

In this formula, Hw is the wavelet entropy value that reflects the complexity of the 
speech signal. A lower Hw value indicates clearer pronunciation. Here, j is the layer 
index in the wavelet decomposition, ranging from 1 to 5, and log represents the 
natural logarithm function. 

Mel-frequency cepstral coefficients (MFCC): 13-dimensional MFCC, along with its 
first and second differences, are extracted. These coefficients are used to characterise 
the spectral envelope features of the speech signal, and they can reflect the accuracy 
of vowel pronunciation. 

Prosodic features: this category encompasses several important aspects. The 
fundamental frequency f0 is a key feature that reflects intonation changes in speech. 
Speech rate, measured as the number of syllables per second, provides information 
about the speed at which speech is delivered. Energy variance σE is used to reflect 
the stability of the speech rhythm, with lower variance generally indicating a more 
consistent rhythm. 

2 Facial expression feature extraction 

Focusing on lip movements and emotional tendencies, discriminative features are 
extracted: Lip movement features: 16 contour key points of the lips are extracted, 

and the displacement vector of adjacent frames 2 2Δ (Δ ) (Δ )t t ts x y   is calculated. 

These are encoded into 64-dimensional temporal features Flip through an LSTM 
network, reflecting the coordination of the lips during pronunciation. Emotional 
features: A pre-trained model is used to extract deep facial features, which are then 
dimensionally reduced to 128 dimensions using PCA to obtain emotional tendency 
features Femo, assisting in judging the fluency and confidence of expression. 

3 Gesture feature extraction 

Motion and posture features are extracted from bone trajectories to quantify the 
auxiliary role of body language: 
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Motion features: the velocity vi = ∆posi / ∆t and acceleration ai = ∆vi / ∆t of bone key 
points are calculated, and a 21 × 3 motion feature matrix M is constructed. Posture 
features: Bone point coordinates are encoded through a lightweight CNN, outputting 
64-dimensional posture features Fgest that reflect the matching degree between 
gestures and semantic expression. 

Figure 1 Framework of multimodal feature extraction (see online version for colours) 

 

3.3 Feature fusion strategy 

A CMDF strategy is proposed, based on the dynamic weight idea of multimodal fusion, 
to address the issue of differences in modal importance in different scenarios. 

Firstly, speech, facial, and gesture features are mapped to a unified dimension  
(512 dimensions): 
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 (11) 

where Ws, Wf, Wg are mapping matrices, bs, bf, bg are bias terms, and 512, ,s f gF F F     

are the aligned feature vectors. 
Secondly, an attention mechanism is used to calculate the correlation weight between 

modalities: 
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
 (12) 

where d = 512 is the feature dimension, and Att(Fi, Fj) represents the correlation degree 
between modality i and modality j. The final fused feature is: 

 fusion
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Att ,i j i

i s f g j s f g
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 
 
 

    (13) 
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This strategy dynamically adjusts weights to enhance the contribution of facial and 
gesture features when speech is unclear, improving the robustness of the assessment. 

3.4 Evaluation model construction 

The model architecture consists of a feature fusion layer and an evaluation layer, based 
on the integration idea of multimodal energy balance, to achieve accurate score output. 
The feature fusion layer receives the mapped multimodal features Fs, Ff, Fg, outputs the 
fused feature 512

fusionF   through the CMDF strategy, and standardises the feature 
distribution via the BatchNorm layer. The evaluation layer uses a 3-layer fully connected 
network (FC) to implement score regression, with the activation function being ReLU: 
the first fully connected layer takes the fused feature f as input and outputs  
h1 = ReLU(W1f + b1), where W1 is the weight matrix and b1 is the bias vector. The second 
layer processes h1 to produce h2 = ReLU(W2h1 + b2). Finally, the output layer calculates 
the predicted score 3 2 3ˆ ( ) 100,y Sigmoid W h b    where 256

1h   and 128
2h   are 

hidden layer outputs, σ is the Sigmoid function, and ŷ  is the predicted score ranging 

from 0 to 100. 
A weighted loss function is adopted, combining mean square error (MSE) and 

ranking loss to balance score accuracy and the relative relationship between samples: 

MSE rank(1 )L L L     (14) 

where  2
MSE

1

1
ˆ

N

i i

i

L y y
N 

   (yi is the manually labelled score). The ranking loss 

function, Lrank, is formulated as: 

   rank

1 1

ˆ ˆmax 0,
N N

i j i j

i j

L m y y y y
 

       (15) 

where m = 5 represents the boundary threshold, ( )  is the indicator function, and  

 = 0.7 serves as the balance coefficient. 
In the context of wavelet decomposition, wj,k denotes the kth wavelet coefficient of the 

jth layer, with λ signifying the wavelet denoising threshold, and Hw denoting the wavelet 
entropy of the speech signal. Flip, Femo, and Fgest represent the feature vectors associated 
with lip movement, emotional expression, and gestural activity, respectively. Meanwhile, 
Fs, Ff, Fg denote the aligned feature vectors for speech, facial expression, and gesture 
modalities. The notation Att(Fi, Fj) quantifies the correlation weight between modality i 
and modality j, and Ffusion represents the resultant multimodal fused feature vector. The 
symbol ŷ  corresponds to the model-predicted score for oral English proficiency. The 

MSE loss and ranking loss are denoted as LMSE and Lrank, respectively, where m is the 
defined boundary threshold for the ranking loss, and  acts as the balance coefficient 
within the overall loss function formulation. 
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4 Experimental results and analysis 

4.1 Datasets and experimental setup 

4.1.1 Introduction to the dataset 

This study conducts experiments using a self-built multimodal dataset for professional 
English speaking. The dataset covers three typical professional scenarios: business, 
medical, and legal, and includes 10,000 valid samples from 500 participants (aged 20–45, 
including native and non-native English speakers). This study conducts experiments 
using a self-built multimodal dataset for professional English speaking. The dataset 
covers three typical professional scenarios: business, medical, and legal, and includes 
10,000 valid samples from 500 participants (aged 20–45, including native and non-native 
English speakers). Each sample synchronously collects multimodal data: 

1 the speech modality records professional English conversations and monologues at a 
sampling rate of 16 kHz, covering speech information such as word pronunciation 
and situational questions and answers 

2 the visual modality captures video data of lip movements and facial 
microexpressions at a frame rate of 25 fps 

3 the motion capture modality obtains three-dimensional coordinate sequences of body 
movements through depth sensors. 

Each sample synchronously collects multimodal data: 

1 the speech modality records professional English conversations and monologues at a 
sampling rate of 16 kHz, covering speech information such as word pronunciation 
and situational questions and answers 

2 the visual modality captures video data of lip movements and facial 
microexpressions at a frame rate of 25 fps. 

The sample annotation is completed by three experts with a linguistic background, who 
conduct subjective scoring on a scale of 1–10 based on three dimensions: pronunciation 
accuracy, expression fluency, and emotional appropriateness. Finally, the dataset is 
divided into a training set and a test set at a ratio of 8:2 for model training and evaluation. 

4.1.2 Evaluation metrics 

This study employs a three-category evaluation index system: Firstly, the Spearman’s 
rank correlation coefficient (SRCC) is used to quantify the monotonic association 
between predicted scores and subjective scores. The closer this coefficient is to 1, the 
stronger the monotonic consistency between the two. Secondly, the Pearson linear 
correlation coefficient (PLCC) measures the linear dependence between predicted values 
and true values. The closer its value is to 1, the higher the goodness of linear fit. The root 
mean square error (RMSE) is introduced as an error measurement index to quantify the 
discrepancy between predicted scores and true scores. A lower RMSE value indicates 
better prediction accuracy and smaller deviations from the true values. 

Additionally, inter-rater reliability was quantified using Cohen’s Kappa coefficient, 
achieving a Kappa value of 0.85, which demonstrates strong agreement among 
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annotators. This comprehensive evaluation framework ensures both the reliability of 
subjective assessments and the validity of model predictions. 

4.1.3 Experimental environment 

The implementation is based on the PyTorch framework, with the hardware being an 
NVIDIA GTX 3090 GPU. The number of training epochs is 50, the batch size is 64, the 
initial learning rate is 0.001, and the Adam optimiser is used. 

4.2 Comparative experiments 

To comprehensively evaluate the performance of the proposed MFF-PEA model, five 
types of baseline methods are selected for comparative experiments: The first is a  
single-modal speech quality assessment method based on wavelet entropy, which uses 
only speech features for quality determination; Single-modal methods like this often 
underperform because they fail to capture complementary information from other 
modalities, such as facial expressions and gestures. For instance, while speech features 
can reflect pronunciation accuracy, they lack the ability to convey non-verbal cues related 
to emotional engagement or contextual alignment, which are critical in professional 
communication scenarios. This limitation leads to an incomplete assessment of overall 
performance. The second is a CNN-LSTM fusion model, also focusing on the processing 
of speech modality features; the third is the ResNet architecture, specifically designed for 
extracting facial expression modality features; the fourth employs the Concat-Fusion 
strategy, that is, directly concatenating the features of speech, facial expressions, and 
gestures and then inputting them into a fully connected network for fusion; the fifth is a 
cross-modal attention model (CMA) based on Transformer, which achieves multimodal 
feature fusion through a simple attention mechanism. 

Table 1 Comparison of evaluation metrics between MFF-PEA and baseline methods on the 
professional oral English dataset 

Method SRCC PLCC RMSE 

Wavelet entropy 0.682 0.659 1.823 

CNN-LST 0.735 0.712 1.567 

ResNe 0.621 0.598 2.015 

Concat-fusion 0.796 0.773 1.328 

CMA Model 0.843 0.821 1.105 

MFF-PEA 0.927 0.905 0.783 

As shown in the experimental data of Table 1, the proposed MFF-PEA model 
significantly outperforms the baseline methods in three core evaluation indicators: 
accuracy, stability, and generalisation. Among the multimodal baseline models, the 
traditional fusion strategy based on feature concatenation simply stacks features from 
different modalities and fails to effectively capture the dynamic interaction between 
speech rhythm changes and facial microexpressions in professional scenarios, thus 
limiting the assessment accuracy. The proposed model achieves deep fusion and accurate 
assessment of multimodal information by constructing a dynamic cross-modal interaction 
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network and combining an attention allocation mechanism guided by a professional 
scenario semantic graph, verifying the effectiveness and advancement of the method. 

4.3 Ablation experiments 

To systematically explore the impact of multimodal features and fusion strategies on 
model performance, this study carefully designs four groups of ablation experiments: 

1 removing facial expression modality features (facial) 

2 removing gesture modality features (gesture) 

3 replacing the feature fusion method based on CMDF with a feature addition strategy 
(add-fusion) 

4 removing the ranking loss function (RankLoss). 

Figure 2 Results of ablation experiments on MFF-PEA components (see online version  
for colours) 

 

(a)     (b) 

 

(c) 
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As can be seen from the detailed experimental data in Figure 2, when facial features or 
gesture features are removed separately, the Spearman Rank Correlation Coefficient 
(SRCC) of the model significantly decreases, with a decrease range of 4.2% to 7.5%. 
This result fully confirms that in the professional English speaking assessment scenario, 
the emotional information conveyed by facial expressions and the auxiliary semantics 
contained in gesture movements are both indispensable key modal features. In the loss 
function optimisation experiment, after removing the ranking loss function, the Pearson 
Linear Correlation Coefficient (PLCC) of the model decreases by 5.3%, indicating that 
this loss function plays a crucial role in optimising the relative scoring relationship 
between samples and improving the accuracy of assessment result ranking. 

4.4 Robustness experiments in professional scenarios 

In view of the scenario specificity of professional English, the generalisation performance 
of the model is tested in three sub-scenarios: business, medical, and legal, and the 
differences in evaluation indicators among these scenarios are compared. 

Figure 3 Model performance across different professional scenarios (see online version  
for colours) 

 

As shown in Figure 3, the MFF-PEA assessment model demonstrates excellent 
performance in various professional English application scenarios such as business 
negotiations, medical consultations, and legal debates. The Spearman Rank Correlation 
Coefficient (SRCC) in each scenario is higher than 0.9, fully verifying the high 
consistency between the model’s assessment results and manual annotation results. In 
legal scenario assessment, due to the high pronunciation complexity of legal English 
terms and the stricter requirements for intonation and stress in professional expressions, 
the root mean squared error (RMSE) of the model increases slightly compared to other 
scenarios. Even so, compared with traditional assessment methods based on a single text 
modality (RMSE = 0.21) and baseline models relying only on speech recognition  
(RMSE = 0.18), the RMSE value of MFF-PEA remains at a low level of 0.15, 
significantly outperforming all baseline methods. The above experimental results fully 
demonstrate that, with its multimodal fusion advantages, MFF-PEA can effectively cope 
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with the language characteristics and assessment requirements of different professional 
scenarios, showing strong scenario adaptability and generalisation ability. 

5 Conclusions 

In this paper, a Multimodal Feature Fusion-based Professional Oral English Assessment 
method (MFF-PEA) is proposed, which effectively solves the limitations of traditional 
methods in dealing with professional oral English assessment scenarios, such as ignoring 
non-verbal cues and lacking adaptive fusion mechanisms. By integrating speech, facial 
expression, and gesture features, the comprehensiveness of assessment is significantly 
improved. The CMDF strategy is introduced to ensure the adaptability to different 
professional scenarios. In addition, a hybrid loss function combining MSE and ranking 
loss is designed to enhance the model’s ability to distinguish subtle differences in 
pronunciation quality. The optimised feature extraction process for each modality further 
improves the model performance. The following conclusions can be drawn from the 
experiments on self-collected professional oral English datasets: 

1 integrating speech, facial expression, and gesture features significantly enriches the 
assessment information and enhances the comprehensiveness of the system in 
evaluating professional oral English 

2 the introduction of the CMDF strategy improves the adaptability of the assessment 
model, especially performing well in different professional scenarios where the 
importance of modalities varies 

3 the hybrid loss function combining MSE and ranking loss enhances the model’s 
ability to distinguish subtle differences in pronunciation quality, improving both 
absolute score accuracy and relative relationship discrimination 

4 the optimised feature extraction process for each modality, such as extracting 
wavelet entropy from speech and lip movement features from facial expressions, 
further improves the effectiveness of feature representation and the overall 
performance of the model. 

The experimental data in this paper, mainly from self-collected professional oral English 
datasets covering business, medical, and legal scenarios, validates the effectiveness and 
usefulness of the proposed method. However, the limitations of the dataset scale may 
affect the generalisation ability of the model in more diverse professional environments. 
Future work should consider expanding the dataset with more samples from various 
professional domains to validate the effectiveness of the model in a wider range of 
application scenarios and further optimise the fusion strategy to adapt to more complex 
cross-domain assessment tasks. 
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