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Abstract: A multi-instrument polyphonic automatic transcription method
integrating bidirectional gated recurrent units and an improved Deeplabv3+
network is proposed to enhance transcription accuracy under complex audio
conditions. A pre-separation module first performs source separation and
denoising. Frequency-harmonic composite features are then extracted, and
temporal dependencies are modelled using a gated recurrent network, followed
by lightweight decoding for note onset localisation and instrument
classification. Experiments show that the proposed model achieves 92.8%,
91.5%, and 92.1% accuracy, recall, and F1 on the training set, and
91.2%, 88.7%, and 89.9% on the test set, surpassing baseline methods. In
mixed-instrument scenarios, the model attains an average F1 of 83.65% and
88.3% note recognition accuracy, improving piano-violin transcription by 7%.
The method offers high precision and robustness for polyphonic transcription,
providing a practical foundation for intelligent music analysis and automatic
orchestration.

Keywords: multi-instrument polyphonic auto-transcription, DeepLabv3+
network; bi-directional gated loop unit; audio feature extraction; preamplifier
separation.

Reference to this paper should be made as follows: Ye, X. (2026)
‘Multi-instrument polyphonic automatic transcription method combining gated
recurrent units and DeepLabv3+ model’, Int. J. Information and
Communication Technology, Vol. 27, No. 4, pp.69-90.

Biographical notes: Xiaochen Ye holds a Doctoral in String Performance from
the Saint Petersburg State Conservatory. He is currently a Lecturer at the
School of Music, Neijiang Normal University, teaching courses including
history of western music, basic music theory, harmony, chamber music and
string instrument performance. He has published a number of academic papers
in various domestic journals. He studied under several Russian Meritorious
Artists and served as their teaching assistant. He was invited to conduct
academic visits and participate in master classes in multiple countries. With
extensive orchestral performance experience, she has worked with many
prestigious orchestras such as the Symphony Orchestra of the Mariinsky
Theatre and the Saint Petersburg Philharmonic Orchestra.

Copyright © The Author(s) 2026. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)



70 X Ye
1 Background

With the continuous development of artificial intelligence technology in the field of
music information processing, automatic music transcription (ADT) has gradually
become one of the key tasks in intelligent music analysis and digital content generation
(Wang et al., 2024). In the context of multi-instrument polyphony, problems such as
overlapping note frequencies, mutual interference of different instrument timbres and
background noise make it much more difficult to model the transcription system (Lee and
Jeong, 2023). A number of scholars at home and abroad have conducted research on
ADT systems. For example, Cahyaningtyas et al. (2023) proposed an ADT method based
on deep learning. The method first performed segmentation by parameter optimisation,
and subsequently the extracted spectral features were fed into a classification model.
Experimental results indicated that the method achieved 77.42%, 86.97% and 82.87%
multi-objective optimisation scores on different datasets.

Park et al. (2023) proposed a singing melody transcription model based on a
sequence-to-sequence transformer. The model represented the melody as a monophonic
sequence, used overlapping decoding to ensure context continuity, and enhanced the
generalisation ability of the model through pitch enhancement and noisy data cleaning.
The results of ablation experiments indicated that the model outperformed existing
schemes in all evaluation metrics. Velazquez Lopez et al. (2022) proposed a piano music
transcription system based on an improved non-negative matrix decomposition, which
enhanced the Fourier spectrogram visual representation by a novel cochlear filter. System
evaluation showed that the scheme achieved higher accuracy in the task of transcribing
polyphonic piano music, validating the effectiveness of auditory feature filtering. Lee and
Lee (2024) used fast Fourier transform (FFT) and short-time Fourier transform (STFT) to
extract musical bass notes. This study identifies frequency separated fundamental
frequencies by Hamming window FFT. In a simple polyphonic music test, the word error
rate was 3.13% and the character error rate was 6.25%, verifying the effectiveness of the
method.

Transcription task has also made significant development, and convolutional neural
networks are widely used in the field of image semantic segmentation (ISS) because of
their ability to effectively capture spatio-temporal features in audio (Preethi and
Mamatha, 2023). The DeepLabv3+ network efficiently extracts multi-scale features
through the collaboration of the atrous spatial pyramid pooling (ASPP) module and the
decoder. It performs well in the field of ISS (Chen et al., 2024). Ji et al. (2022) proposed
a semantic segmentation method based on multilayer feature fusion. The method
improved the accuracy of semantic segmentation by introducing a flexible and
lightweight extrusion excitation module into the spatial pyramid pool (SPP) network. The
enhanced multilayer feature fusion structure may greatly increase the accuracy of
semantic fusion, according to experimental results. Yang et al. (2022) proposed an ISS
method based on deep neural networks, which extracted pixel-level and image-level
features through convolutional structures, and fused the features after refining them using
upsampling. Experimental results revealed that the method outperformed the comparison
method in terms of performance and operation speed.

However, the standard structure of convolutional networks suffers from a large
number of parameters and insufficiently targeted feature learning in audio transcription
tasks, which makes it difficult to be directly applied to multi-instrument scenarios. In
contrast, bidirectional gated recurrent unit (BiGRU) can efficiently model the timing
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dependence of sequence data. It also has the advantages of low computational overhead
and stable gradient transfer (Wang et al., 2023). Suresh Kumar and Rajan (2023)
proposed a transformer-based multimodal music mood classification system and
compared the performance with BiGRU-based system. Additionally, they analysed the
performance of other advanced methods. The outcomes showed that the transformer
model achieved higher accuracy than the single-layer attention-based multi-modal system
using BiGRU, with a maximum accuracy of 77.94%. Mohamed and Yassine (2023)
employed multimodal feature learning using a Siamese network to learn distance
measures between audiovisual features. The study used the GRU-Attention network to
learn sequential semantic and spatial location information, and then combined principal
component analysis with the Python program Tsfresh to extract features from the power
spectral density of audio streams. Experimental results indicated that incorporating audio
features significantly improved the F1-score and gradient detection performance.

In summary, although existing research has made some progress in note recognition,
timbre differentiation, and temporal modelling, the traditional segmentation
classification-based AMT method in Cahyaningtyas et al. (2023) is insufficient for
modelling the temporal evolution process. The transformer-based schemes in Park et al.
(2023) and Suresh Kumar and Rajan (2023) have certain advantages in global sequence
modelling, but their ability to recover local time-frequency structures is limited, and
attention dilution is prone to occur under long sequence input conditions. Lee and Lee
(2024) relies on the combination of FFT and STFT features for statistical estimation
methods, which are suitable for low complexity polyphonic scenes, but are susceptible to
note overlap interference in complex multi-track environments. In contrast, BIGRU can
bidirectionally model the temporal evolution of musical notes, enhance rhythm and
structural boundary recognition, and has advantages in smaller parameter scale and stable
gradient transfer, making it more suitable for real-time scenes. The improved
DeepLabv3+ achieves fine-grained reconstruction of spectral semantics through
multi-scale dilated convolution and staged deconvolution, effectively compensating for
the shortcomings of traditional convolutional networks in long-term frequency coupling
modelling.

In light of this, the study proposes a multi-instrument polyphonic automatic
transcription method that combines BiGRU with an improved DeepLabv3+ network. It
innovatively introduces a pre-source separation structure to preprocess mixed audio,
further reducing the interference of background noise on modelling accuracy. The study
placed BiGRU before spectral feature integration, forming an encoding order of
‘temporal first, semantic second’ to involve temporal prior information in subsequent
spatial structure optimisation, and completing feature domain alignment through 1 x 1
convolutional mapping instead of simple parallel connections or hard stacking. The
combination of the two forms a collaborative mechanism of ‘time modelling + spatial
refinement’, which is more suitable for dealing with complex tone spectral line crossing
and pronunciation structure coupling problems compared to single convolutional neural
networks, transformers and other structures, demonstrating higher theoretical adaptability
and modelling hierarchy advantages. The study aims to integrate temporal modelling and
spatial decoding capabilities in order to achieve the high-precision transcription and
classification of multi-instrument signals. This will be accomplished through noise
reduction preprocessing, composite spectral feature construction, and multi-level
deconvolution structures.
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2 Improving the DeepLabv3+ network architecture and multi-instrument
audio transcription method

2.1 Music input and feature construction

The goal of ADT is to convert audio signals into corresponding digital symbols, with the
key being to identify the pitch, start time, and end time of notes (Edwards et al., 2023).
The piano, for example, has 88 keys covering a frequency range of 27.5 Hz to 4,186 Hz,
and produces sound through the vibration of strings when played. Each note can be
viewed as the superposition of multiple sine waves, forming a harmonic structure. A note
consists of a transient and a steady state, with the onset typically determined by
identifying energy changes. For example, the piano produces a sound that rises rapidly,
enters a stable phase, and then decays gradually. This sound has a rich tone and long
reverberation. Modern music uses the 12-tone equal temperament (12-TET) system,
which divides an octave into 12 semitones, standardising the pitch system. The
distribution of same-named notes across different octaves on the keyboard provides a
reference for automatic recognition, as shown in Figure 1 (Wang, 2023).

Figure 1 The distribution of the same named notes on the keyboard (see online version

for colours)
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In Figure 1, the 12-TET divides the octave into 12 semitones, with the smallest pitch
interval being the adjacent semitone. According to the 12-TET, the frequency
relationship of each note in the piano range is shown in equation (1) (Yi et al., 2024).

fa=fo-21 Q)
In equation (1), f, is the frequency of the n' note. f; represents the fundamental frequency
of the leftmost note on the piano keyboard, typically set to 27.5 Hz. % denotes the

number of semitones above the reference pitch, with each octave consisting of
12 semitones. In time-frequency analysis, the STFT has insufficient resolution in the
high-frequency range due to its fixed window length. Additionally, its linear spectrum
does not match the exponential characteristics of the piano signal, resulting in poor
analysis performance (Simonetta et al., 2022). In contrast, the constant-Q transform
(CQT) uses a logarithmic frequency axis and a dynamically changing window length.
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This design accurately reflects the audio characteristics of the piano and reduces the
number of model parameters due to its lower spectral dimension. These features make the
CQT more suitable for piano audio analysis. CQT is defined as shown in equation (2)
(Wang and Dai, 2025).

Ni—1 L f

X(k)= Z x(n)-wi(n)- e_jZEJTk (2)

n=0

In equation (2), X(k) represents the CQT coefficient corresponding to the & frequency
component. # is the sampling rate. f; represents the k frequency point. x(n) represents the
original discrete audio signal. wi(n) represents the window function corresponding to
ST
—joplilk
frequency fi. Ni represents the window length corresponding to frequency fi. e TN
represents a complex sine wave with frequency fi. fx is defined as shown in equation (3).
K

fk :fmin'2§ (3)

In equation (3), fmin represents the lowest frequency. B represents the number of
frequencies within each octave. K represents the total number of frequency bands. The
time-frequency spectrum expression is displayed in equation (4) (Spoorthy and
Koolagudi, 2024).

X(t, k)e RTK 4)

In equation (4), X(¢, k) is the two-dimensional CQT spectrum. 7 is the quantity of time
frames. X(¢, k) can be input into the DeepLabv3+ network for automatic transcription,
pitch recognition, note start and end detection, and other tasks. The CQT process is
shown in Figure 2 (Peng, 2023).

Figure 2 CQT process (see online version for colours)
X , <: § :> , k
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In Figure 2, the CQT calculation process mainly includes signal preprocessing, frequency
axis construction, windowing, and frequency response calculation. First, the original
audio signal is standardised, and then the frequency axis is constructed on a logarithmic
scale based on the set minimum frequency and the number of frequencies per octave.
Next, for each frequency component f;, the window length Nj is calculated based on its
corresponding period length, and a corresponding window function is designed for it.
Next, a sliding window is applied to the signal to extract local segments. These segments
are weighted by the window function and multiplied by the complex exponential basis
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function N, at the corresponding frequency. This process extracts the response intensity
of that frequency component. By repeating this process for all frequency components and
all time frames, the resulting X(z, k) can be used for subsequent note recognition and
model input.

2.2 Multi-instrument polyphonic transcription model based on
GRU-DeepLabv3+

After constructing and preprocessing the spectral features of the audio signal, it is
necessary to further design an efficient deep learning network structure to achieve
accurate note recognition and transcription. The long-term dependencies in audio signals
are better suited for modelling in the time-frequency domain, and music processing can
be viewed as a semantic segmentation task on time-frequency images. The Deeplab series
of networks capture multi-scale features through dilated convolutions, with DeepLabv3+
demonstrating the best segmentation performance. Its network architecture is shown in
Figure 3 (Wang and Dong, 2024).

Figure 3 DeepLabv3+ network structure (see online version for colours)
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In Figure 3, the model adopts an encoder-decoder structure. In the encoder part,
ResNet101 deep residual network is first used as the feature extraction backbone to
perform multi-level feature representation on the input spectrogram (Wu et al., 2022).
Then, the ASPP module is introduced to achieve multi-scale feature fusion by using
hollow convolution operations with different sampling rates in parallel. Finally, the
dimension is reduced by 1 x 1 convolution. The decoder performs deconvolution
processing on the encoded features and fuses them with the backbone network features to
ultimately output the classification results. Since audio signal transcription requires
modelling temporal context information, the DeepLabv3+ network has limited temporal
modelling capabilities and an excessive number of model parameters, which can easily
lead to feature information loss and other issues. To address this, the study proposes a
BiGRU-DeepLabv3+ network structure. The structure is shown in Figure 4.
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Figure 4 BiGRU-DeepLabv3+ network structure (see online version for colours)
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In Figure 4, the model uses the extracted feature map (FM) as input. Before inputting into
the BiGRU module, take the spectral vector corresponding to each time frame as an input
sequence element. After modelling the sequence along the timeline using BiGRU, the
dimension of the output temporal feature matrix becomes 7 X 256, where 256 is the
output dimension of the bidirectional structure. First, it performs preliminary temporal
modelling on the input feature sequence. Through BiGRU, it filters and remembers the
information generated by each layer, effectively reducing redundant information
interference and improving the temporal correlation of feature expression. To ensure that
the output of BiGRU is consistent with the dimensions of the subsequent DeepLabv3+
encoder structure, the model adds a 1 X 1 convolutional linear mapping layer after
BiGRU, converts the 7" x 256 temporal features into a form that can be fused with the
convolutional backbone features, and forms a 7 x 256 x 1 FM through spatial expansion
to input into the subsequent encoding module.

When entering the encoder stage, it is first concatenated directly with the spatial
features output by the DeepLabv3+ encoder along the channel dimension to form a joint
feature tensor. Subsequently, the model adopts a streamlined main feature extraction
structure. It replaces the ResNet101 backbone network of the original DeepLabv3+ with
a submodule containing only four convolutions. Each module adopts a 3 % 3 convolution
+ 1 x 1 shortcut connection’ structure, with input channels set to 64, 128, 256, and 512 in
sequence. This reduces the parameter size and speeds up training. Following the main
trunk extraction module, the model incorporates an enhanced ASPP module. This
improves the ability to capture local and mesoscale semantic features by setting a smaller
hole rate. This avoids the sparsity of features caused by a large hole rate. The hole rate of
the ASPP module is adjusted from (6, 12, 18) to (3, 6, 9) to adapt to the high-frequency
local density features of the music spectrogram structure, while adding a 1 X 1
convolution branch for global semantic compensation. Additionally, to improve the
spatial resolution of high-level semantic information, the network introduces a
deconvolution structure during the decoding stage, effectively achieving FM upsampling
and boundary restoration. The final output stage performs feature fusion via 1 x 1
convolution to generate prediction results. The BiGRU module structure is shown in
Figure 5 (Xu et al., 2023).

In Figure 5, the BiGRU module adopts a two-layer bidirectional structure, with
128 hidden units in each direction, resulting in a bidirectional output dimension of 256. x;
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and /4, are the input vector and hidden state (HS) at the current time step. /,;is the hidden
state of the previous time step. y, is the final HS of the output. Z, is the update gate. R, is
the reset gate. H, represents the candidate HS. ¢ is the Sigmoid activation function.
BiGRU enhances semantic information capture capabilities by modelling historical and
future dependencies in parallel through two GRU submodules: forward and backward.
Although ResNetl01 alleviates the vanishing gradient problem, its deep structure
contains redundancy, with many network layers serving only to prevent model
degradation. Therefore, the study streamlines the backbone network of DeepLabv3+ to
four convolutional modules and adopts a layer design from shallow to deep to enhance
feature learning capabilities. The specific structure is shown in Figure 6 (Todjro and
Mensah, 2023).

Figure 5 BiGRU module structure (see online version for colours)
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Figure 6 Internal structure of convolutional block (see online version for colours)
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In Figure 6, the Convl module first uses a 7 x 7 convolution to expand the number of
input channels from 3 to 64, followed by a pooling operation to reduce the spatial
dimension. The Conv2 module consists of multiple stacked 3 % 3 convolutions, with
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channel dimensions ranging from 64 to 128, and uses a 1 x 1 convolution to align the
dimensions, facilitating residual connections. The Conv3 and Conv4 modules have
similar structures, expanding the number of channels from 128 to 256, and then from 256
to 512, respectively. Each stage contains multiple 3 x 3 convolution layers and uses 1 x 1
convolution to construct constant channel or dimension-increasing shortcut paths to form
a residual structure. Based on the optimisation of the encoder structure, to further
improve the accuracy of polyphonic information recovery for multiple instruments, the
study improves the original DeepLabv3+ decoder. The original decoder uses a two-stage
4x upsampling deconvolution module, which can easily cause the loss of high-frequency
detail information.

Compared to directly using high magnification upsampling, this progressive approach
can achieve gradual reconstruction of local semantic features at each stage, which helps
preserve high-frequency details and improve the smoothness of boundary restoration. At
the same time, the intermediate FM size of the four-stage decoding structure matches
more closely with the time series features generated by BiGRU, avoiding the problem of
inconsistent feature scales that may occur in the three-stage design, thereby achieving
efficient fusion of spatiotemporal features and improving the accuracy of note boundary
localisation. Therefore, in order to balance the semantic information recovery ability and
model parameter quantity in the decoding stage, the two-stage upsampling mechanism of
the original DeepLabv3+ was optimised to a four level deconvolution structure after
analysing the fuzzy characteristics of musical score boundaries and the time sensitivity of
note start and end positions in multi-scale audio spectra. The structure is shown in
Figure 7 (Xu and He, 2023).

Figure 7 Internal structure of decoder (see online version for colours)
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In Figure 7, the improved decoder uses a 2x upsampling deconvolution module to
gradually restore the FM size. After each module, a batch normalisation (BN) layer is
added, combined with convolutional BN ReLU lightweight mapping to achieve feature
compression and spatial alignment, replacing the standard 4x interpolation method and
reducing boundary blurring caused by high magnification upsampling (Peng et al., 2023).
By combining the compressed features from the encoder with the reconstructed features
from the decoder and applying two-dimensional convolution processing, the feature
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interaction capability is effectively enhanced. The polyphonic transcription output of the
BiGRU-DeepLabv3+ network includes instrument categories, note pitches, and timing
information. For noisy multi-instrument audio, a preprocessing module based on
convolutional time-frequency spectrum separation network is first used for noise
reduction processing. This module adopts the MultiConv TPsnet sound source separation
scheme, and its core structure consists of depthwise separable convolution and
time-frequency domain attention mechanism. By performing multi-scale convolution
scanning on the STFT converted spectrogram, it achieves adaptive separation of the main
voice and background noise. Separating the network to output a filtering matrix in the
form of a spectral mask, multiplying it with the original audio to restore the target sound
source spectrum, can improve the signal-to-noise ratio (SNR) in the harmonic region.
Afterwards, transcription is carried out through the BiGRU-DeepLabv3+ network. First,
this process extracts combined frequency and periodicity (CFP) features and analyses the
fundamental frequency and harmonic relationships to obtain the harmonic structure.
Then, it performs instrument identification and note transcription based on the unique
timbre characteristics of different instruments (Talwar et al., 2023). CFP features
combine the advantages of STFT and periodic spectra, obtaining spectra through STFT as
shown in equation (5) (Luo et al., 2022).

N-1 ol
Xzrr(t, f)= Y x(m)-win—1)-¢ "N (5)

n=0

In equation (5), Xs7ri(t, f) represents the spectral coefficient at time frame ¢ and frequency
f- w(n — f) represents the window function used to extract the local signal segment centred
at t. Equation (6) provides the calculation of the periodic spectrum.

C(t, q) =|1FFT (log|x . 1)) 6)

In equation (6), g represents the sampling point on the cycle axis. C(f, g) represents
the intensity of the periodic component in the signal. CFP feature fusion is shown in
equation (7).

Ferp(t, )= X(1, f)-C(t,77) O]

In equation (7), Fcrp(t, f) is the CFP fusion feature. 7y represents the period position
corresponding to the frequency, which is used to remap the period information to the
frequency domain. The total loss function (LF) is a multi-task weighted combination
form, as shown in equation (8).

L =X Lopser + /IZLQ{]Set + /13Lpitch + 24 Lingt (8)

In equation (8), L is the total LF. Lo is the note onset detection loss. Lo represents the
note offset detection loss. L,ic» represents the pitch classification loss. L represents the
instrument recognition loss. 4i, 42, 43, and 14 are the corresponding weight coefficients for
each sub-loss.
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3 Results

3.1 BiGRU-DeepLabv3+ performance testing

To validate the overall performance of the proposed BiGRU-DeepLabv3+ model in
multi-instrument polyphonic transcription tasks, the study is based on an Ubuntu 20.04
system, NVIDIA RTX 3090 GPU, Intel 19-12900K processor, and 32 GB of memory. All
model modules are implemented using the Python 3.10 and PyTorch 2.0 deep learning
frameworks, and the Slakh2100 multi-instrument synthesis dataset is selected as the
primary test dataset. Slakh2100 covers a variety of instruments, including piano, guitar,
strings, and percussion, and supports note-level annotation and instrument labeling,
making it suitable for comprehensive evaluation of polyphonic transcription tasks. First, a
systematic ablation experiment is designed to validate the contribution of each module to
the overall model performance. This experiment primarily analyses the effectiveness of
the BiGRU temporal modelling structure, the ASPP module in DeepLabv3+, the
deconvolution structure in the decoder, and the pre-source separation module. Onset
detection Fl-score (Onset-F1), Offset Detection Fl-score (Offset-F1) and pitch
recognition F1-score (Pitch-F1) are used. Table 1 displays the findings.

Table 1 Results of ablation experiment
Model Onset-F1 (%)  Offset-FI (%)  Pitch-F1 (%)
BiGRU-DeepLabv3+ 89.15 86.45 82.71
Remove BiGRU module 84.25 81.07 77.66
Remove ASPP structure 85.62 82.36 78.14
Remove the decoder deconvolution structure 86.13 83.58 79.48
Remove MultiConv-Tpsnet preprocessing 83.78 80.54 76.36

In Table 1, the complete BIGRU-DeepLabv3+ model achieves the highest performance
across all three metrics. Specifically, the note onset detection accuracy reaches 89.15%,
the note offset detection accuracy is 86.45%, and the pitch recognition accuracy is
82.71%, demonstrating excellent overall recognition capabilities. When the GRU module
is removed, the note onset detection accuracy and note offset detection accuracy decrease
to 84.25% and 81.07%. This indicates that BiIGRU plays a crucial role in modelling note
time series contexts, particularly in note boundary detection. After removing the ASPP
structure, the pitch recognition accuracy decreases from 82.71% to 78.14%, indicating
that ASPP plays a key role in extracting multi-scale frequency features, which helps
improve pitch recognition accuracy. Removing the deconvolution structure from the
decoder results in a relatively small decline in various indicators, but still shows a certain
degree of performance degradation. This indicates that deconvolution positively affects
spatial feature restoration and boundary refinement. In addition, when the pre-processing
step of separating the pre-source module is removed, the overall performance of the
model declines most significantly, with the three metrics decreasing by approximately
5 percentage points each. This validates the important supporting role of the
pre-processing stage in complex multi-instrument mixed scenarios for noise reduction
and source separation in subsequent transcription tasks.

To further evaluate the performance of the proposed BiGRU-DeepLabv3+, the study
divides the Slakh2100 dataset into training and test sets at a ratio of 8:2. It selects a
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transcription algorithm based on convolutional recurrent neural network (CRNN)
(Guo and Zhu, 2025), shift-invariant probabilistic latent component analysis multi-pitch
estimation (SI-PLCA-MPE) method (Li et al., 2023), and BiGRU-DeepLabv3+ for
comparison. Among them, CRNN represents the widely used convolution and temporal
joint modelling strategy in the field of audio transcription, which can reflect the basic
performance of convolution feature extraction and cyclic temporal modelling in
multi-track scenes. The SI-PLCA-MPE method relies on probability graph models to
analyse pitch structures, which is representative in dealing with multi-source frequency
overlap and stability modelling. Therefore, it can verify the advantages of the proposed
method in deep spatiotemporal structure modelling from the perspective of classical
statistical modelling. To ensure experimental fairness, the CRNN model adopts a
three-layer convolution and single-layer GRU structure, and adjusts the number of hidden
units to 128 to maintain consistency with the main network in terms of temporal
modelling scale. The SI-PLCA-MPE method is implemented based on the parameter
configuration in the original paper, and the number of iterations for spectral
decomposition is set to 100 rounds. All models run on a unified hardware platform and
the same training set partitioning strategy. When comparing, comprehensive evaluation is
conducted using LF, recognition accuracy, precision, recall, and F1-score indicators. The
training loss curves for the three methods are shown in Figure 8.

Figure 8 Training loss curve, (a) training set (b) test set (see online version for colours)
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Figures 8(a) and 8(b) show the loss values of the three models on the training set
and test set as the quantity of iterations changes. Among them, BiGRU-DeepLabv3+
exhibits better convergence speed and stability. In Figure 8(a), the initial loss of
BiGRU-DeepLabv3+ decreases rapidly, stabilises after the 150th iteration, and ultimately
reaches the minimum loss value of 0.04 at the 300th iteration, which is significantly
lower than CRNN and SI-PLCA-MPE. This indicates that the proposed model has
stronger fitting capabilities, smaller training process fluctuations, and a smoother
convergence process. In Figure 8(b), the final loss of BiGRU-DeepLabv3+ is 0.03,
which is significantly lower than that of CRNN and SI-PLCA-MPE. In conclusion,
BiGRU-DeepLabv3+ exhibits a reduced final error during training and a faster rate of
convergence. In multi-instrument polyphonic transcription tasks, it also exhibits great
stability and robustness during testing, demonstrating its capacity for learning and
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generalisation. Figure 9 displays the results of several approaches’ time frame level
recognition accuracy.

Figure 9 Time frame level recognition accuracy results, (a) training set (b) test set (see online
version for colours)
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The trends in the three models’ time frame level recognition accuracy on the training and
test sets, respectively, as the number of iterations rises are displayed in Figure 9(a) and
Figure 9(b). The BiGRU-DeepLabv3+ model consistently leads during training, as shown
in Figure 9(a), and by the 300th iteration, its accuracy has increased to 92%. In contrast,
the SI-PLCA-MPE model achieves a final accuracy of 88%, while the CRNN model
reaches only 72%. This suggests that the BIGRU-DeepLabv3+ model fits the training
set better than other models, especially when it comes to simulating the structural
features of note activation frames. Figure 9(b) shows that BIGRU-DeepLabv3+ achieved
a frame-level accuracy of 93% on the test set, which is also higher than SI-PLCA-MPE
and CRNN. Notably, BiGRU-DeepLabv3+ shows a smoother improvement in accuracy
throughout the testing process and consistently outperforms the other two methods. This
suggests that while working with unseen samples, the model has superior stability and
generalisation skills. The combined data from the two figures further demonstrates the
efficacy of BiGRU-DeepLabv3+ in multi-instrument polyphonic transcription tasks by
demonstrating both a significant frame-level recognition advantage in the testing stage
and a superior learning efficiency in the training stage. Metrics including as accuracy,
recall, and F1-score are used in the evaluation. Table 2 displays the findings.

Table 2 Classification performance evaluation
Dataset Model Precision (%) Recall (%) Fl-score (%)
Training CRNN 82.7 81.9 82.3
set SI-PLCA-MPE 86.4 85.1 85.7
GRU-DeepLabv3+ 92.8 91.5 92.1
Test set CRNN 80.6 79.2 79.9
SI-PLCA-MPE 84.5 81.4 82.9

GRU-DeepLabv3+ 91.2 88.7 89.9
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In Table 2, BiGRU-DeepLabv3+ significantly outperforms the comparison models in
terms of precision, recall, and F1-score on both the training and test sets, demonstrating
stronger note recognition capabilities and generalisation performance. When compared
against SI-PLCA-MPE and CRNN, BiGRU-DeepLabv3+ maintains its lead on the test
set with an Fl-score, accuracy rate, and recall rate of 89.9%, 91.2%, and 88.7%. When
processing unseen data, the model’s recognition performance is more consistent, and its
false positive and false negative rates are lower. BiGRU-DeepLabv3+ outperforms
SI-PLCA-MPE and CRNN on the training set, achieving an Fl-score, precision, and
recall rates of 92.1%, 92.8%, and 91.5%, respectively. This illustrates its better
modelling benefits and fitting capacity for intricate spectral structures. In conclusion,
BiGRU-DeepLabv3+ outperforms probabilistic modelling techniques and conventional
convolutional recurrent networks in terms of model stability and note and border
recognition accuracy. This makes it a superior option for applications involving
multi-instrument polyphonic automated transcription and complicated music signal
processing.

3.2 Analysis of multi-instrument transcription effects

The study performs transcription simulation experiments on polyphonic segments of
several instruments to confirm the versatility and applicability of BIGRU-DeepLabv3+ in
real complicated musical contexts. The experiment constructs four sets of combined
audio data covering typical instruments such as piano, violin, electric guitar, percussion
instruments, and flute. Based on the Slakh2100 dataset, mixed audio samples with
reverberation, overlap, and style differences are extracted to simulate a real music
environment. The recognition accuracy results for multi-instrument mixed segments are
shown in Figure 10.

In Figures 10 (a), 10(b), and 10(c) show the confusion matrix results of the three
methods in the multi-instrument classification task. In Figure 10(a), the overall
recognition accuracy of the CRNN method is relatively low, especially in distinguishing
between electric guitars, percussion instruments, and other instruments. The classification
accuracy rates for piano and violin are 0.86 and 0.87, respectively. The flute has the
highest recognition accuracy value among instruments other than the piano and
violin at 0.86, but there is still some degree of confusion. Figure 10(b) shows that
the SI-PLCA-MPE method achieves high recognition accuracy for melodic instruments,
such as the piano, violin, and electric guitar. Accuracy rates are 0.90, 0.91, and 0.92,
respectively, demonstrating the method’s advantages in pitch probability modelling.
The accuracy rates for percussion instruments and flutes are 0.91 and 0.89,
respectively. However, their confusion rates are slightly higher, particularly with minor
cross-misclassification between the violin and the electric guitar. This is manifested as
mutual interference probabilities of 0.11 and 0.09, respectively.

In Figure 10(c), the overall accuracy of the BiGRU-DeepLabv3+ model is
significantly better than the other two methods. The recognition accuracy for piano,
violin, and flute is 0.95, 0.94, and 0.94, respectively. The accuracy for electric guitar and
percussion instruments reaches 0.97 and 0.96, respectively, which is much higher than
CRNN and SI-PLCA-MPE. This indicates that BiGRU-DeepLabv3+ not only
demonstrates powerful modelling capabilities in the recognition of melodic instruments,
but also exhibits high robustness in the analysis of rhythmic instruments. The study
divides five instruments into distinct test groups in order to better assess the model’s
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generalisation abilities in complex instrument combinations. The metrics used to
compare the transcription performance of the three approaches in each group are the
signal-to-distortion ratio (SDR) and the SNR. Among them, SDR is used to measure the
accuracy of the model in reconstructing the target instrument signal during the sound
source separation process. The higher the value, the more sufficient the suppression of
non target sound sources and noise components, and the transcription results are closer to
the real signal. SNR is used to reflect the ratio between the effective instrument signal
and background noise in the reconstructed audio, with a high value indicating that the
model has stronger anti-interference ability in complex reverberation environments.
Table 3 displays the findings.

Figure 10 Identification accuracy results, (a) CRNN (b) SI-PLCA-MPE (c) BiGRU-DeepLabv3+
(see online version for colours)
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In Table 3, BiGRU-DeepLabv3+ model outperforms the CRNN and SI-PLCA-MPE
methods in both SDR and SNR metrics, indicating its stronger spectral line separation
and fidelity characteristics under complex multi-source audio conditions; At the same
time, the improvement of F1 score validates the advantages of the model in note structure
recovery and time boundary detection, demonstrating high recognition stability and
generalisation ability. In the first piano and violin combination, the SDR and SNR of
BiGRU-DeepLabv3+ are 12.8 dB and 13.7 dB, respectively, and the Fl-score also
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reaches 88.3%, which is significantly better than that of CRNN and SI-PLCA-MPE. This
suggests that the method possesses a good capability of feature recognition in the
co-transcription of harmonic instruments.

Table 3 Comparison of transcriptional performance among different test groups

Test group Instrument Model SDR SNR Fl-score

number combination (dB) (dB) (%)

1 Piano + Violin CRNN 9.6 9.2 83.5

SI-PLCA-MPE 8.1 104 80.7

GRU-DeepLabv3+ 12.8 13.7 88.3

2 Electric guitar + CRNN 8.7 8.2 77.3

percussion instrument gy py CA-MPE 74 9.6 742

GRU-DeepLabv3+ 11.9 12.8 84.5

3 Violin and flute CRNN 8.2 7.9 71.8

SI-PLCA-MPE 7.1 8.6 69.1

GRU-DeepLabv3+ 10.4 11.3 79.2

4 Piano + electric guitar + CRNN 9.1 9.1 75.1

percussion instrument gy py CA-MPE 8.3 10.2 71.4

GRU-DeepLabv3+ 12.1 13.3 82.6

In the second group of electric guitar and percussion instruments, the traditional model is
prone to miss or confuse the short-time energy peaks due to the strong rhythmic and
transient characteristics of this type of instruments. BiGRU-DeepLabv3+, however, is
able to maintain a high accuracy rate with an F1-score of 84.5%. The third group is the
combination of violin and flute, and the two instruments have close frequency bands, soft
timbre and high structural overlap. Among them, the F1-score of BIGRU-DeepLabv3+ is
79.2%, which is significantly better than that of CRNN and SI-PLCA-MPE. This
demonstrates the model’s good modelling ability for fine-grained spectral features. The
fourth group combines three types of instruments with large differences in timbre, piano,
electric guitar and percussion, to form a complex polyphonic background. The F1-score
of BiGRU-DeepLabv3+ in this scenario is 82.6%, which is an improvement of
7.5 percentage points compared to CRNN. This demonstrates that the model has equally
good robustness in the highly diverse mixed-instrument condition.

The study classifies complexity based on the number of instruments that produce
sound simultaneously, the density of notes, and the degree of spectral line overlap.
Complexity level 1 indicates dominance of a single instrument, with large intervals
between notes and no significant overlap; Level 2 represents the simultaneous production
of melodic or rhythmic combinations by two instruments, with mild frequency aliasing;
Level 3 involves the simultaneous production of three or more instruments, accompanied
by continuous notes or rapid rhythm switching, resulting in moderate spectral line
crossing; Level 4 corresponds to multi-instrument and multi-segment stacking with
obvious harmonic structures, short rhythm intervals, or strong reverberation conditions,
making it the most complex scene. The musical instrument digital interface (MIDI),
matching reconstruction rate (MMRR) and note accuracy rate are used as indicators. The
higher the MMRR, the closer the MIDI structure reconstructed by the model is to the real
track, and the more complete the note structure, instrumental hierarchy, and rhythmic
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reproduction will be; whereas note accuracy is used to measure the overall correctness of
the system in terms of note detection. The results are shown in Figure 11.

Figure 11 Multi-instrument polyphonic transcription accuracy results, (a) MMRR (b) note
accuracy (see online version for colours)
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Figures 11(a) and 11(b) show the trends in MMRR and note accuracy for the three
models at different audio complexity levels. Figure 11(a) shows that as the audio
complexity gradually increases from level 1 to level 4, the MMRR of the CRNN and
SI-PLCA-MPE methods exhibit a gradual increase, reaching 88% and 89%, respectively.
However, there are significant overall fluctuations and limited increases. In contrast,
BiGRU-DeepLabv3+ demonstrates greater stability and robustness, with MMRR
consistently maintaining above 90% and reaching 96.4% in high-complexity scenarios.
This indicates that the model has stronger temporal alignment and note boundary
reconstruction capabilities when processing complex audio segments with multiple
tracks, harmonic overlaps, or intertwined rhythms. Figure 11(b) shows that the
overall trend is basically consistent with MMRR, but the data is more distinctive.
BiGRU-DeepLabv3+ achieves a note accuracy rate of over 93% at all levels of
complexity, reaching 97.6% at the highest level of complexity. The traditional CRNN
method achieves a recognition accuracy of 86% at low complexity, while SI-PLCA-MPE
performs slightly better than CRNN, maintaining a lead of approximately 1.5%-2%
across all levels. However, it still lags behind BiGRU-DeepLabv3+ by more than 5% in
terms of performance. In summary, BiGRU-DeepLabv3+ outperforms other models in
terms of structural capture and time series modelling. It effectively enhances the overall
stability and recognition accuracy of multi-instrument transcription systems when faced
with challenges such as high-frequency signal overlap, increased instrument variety, and
complex rhythmic changes. The audio duration represents the continuous duration of the
input audio segment, ranging from 10 s to 60 s, reflecting the changes in computational
efficiency of the model at different audio lengths. A comparison of resource consumption
among different methods during the transcription task is shown in Figure 12.

Figure 12(a) and Figure 12(b) show the changes in CPU usage and bandwidth
utilisation of the three methods at different audio durations. In Figure 12(a), as the audio
duration increases, the CPU usage of the three methods first rises rapidly and then
stabilises. The CRNN method has the highest resource consumption. When the audio
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length reaches 20 seconds, its CPU usage stabilises at around 75%, while SI-PLCA-MPE
remains slightly below this value, stabilising at around 70%. In contrast, BiGRU-
DeepLabv3+ has more controllable resource consumption, with CPU usage stabilising at
around 60%, demonstrating its excellent computational efficiency and lightweight
advantages.

Figure 12 Comparison of resource consumption, (a) CPU usage rate (b) bandwidth utilisation
rate (see online version for colours)
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In Figure 12(b), the bandwidth utilisation rates of all three methods gradually decrease as
the audio length increases. Among them, the bandwidth utilisation of CRNN and SI-
PLCA-MPE exceeds 80% and 75%, respectively, at the initial stage, and after the audio
duration reaches 40s, the bandwidth utilisation of both models drops rapidly to below
35%. In contrast, BiGRU-DeepLabv3+ maintains a much smoother decreasing trend
throughout the process, indicating that the model’s bandwidth consumption is more stable
in long-duration audio processing. In addition, the model is still able to maintain 35%
bandwidth utilisation at 50s, which is significantly better than the other two methods. It
shows that the model is suitable for deployment in real-world scenarios with limited
bandwidth or high transmission stability requirements.

Table 4 Comparison of transcriptional performance of models under different noise conditions
Floscore Pz: tc}.z Rh )./th.m Fl-score Inference
SNR Model (%) devzgtzon deviation  decrease (vs. delay
(semitones) (ms) 25 dB, %) (ms/frame)
25dB CRNN 85.2 +0.29 22 / 50
SI-PLCA-MPE 82.6 +0.34 27 / 48
GRU-DeepLabv3+ 90.4 +0.16 10 / 35
15dB CRNN 79.1 +0.41 31 =7.2% 52
SI-PLCA-MPE 76.8 +0.45 36 =7.0% 50
GRU-DeepLabv3+ 89.1 +0.24 16 -1.3% 38
5dB CRNN 71.6 +0.58 47 —13.6% 55
SI-PLCA-MPE 69.2 +0.61 51 —13.5% 53

GRU-DeepLabv3+ 86.4 +0.32 19 —4.0% 40
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In order to further evaluate the robustness and generalisation ability of the proposed
BiGRU-DeepLabv3+ transcription network in real acoustic environments, additional
experiments were conducted using audio samples with different levels of background
noise. Specifically, three SNR conditions were tested, namely 25 dB, 15 dB, and 5 dB,
while keeping all other settings consistent. In addition to the F1 score indicator, pitch
deviation and rhythm deviation were also introduced to quantify the accuracy of note
frequency estimation and time alignment, and the degradation of F1 score relative to high
SNR was calculated to evaluate noise sensitivity. Pitch deviation measures the degree of
deviation between the output note frequency of the model and the true pitch. Rhythm
deviation reflects the time deviation between the start and end times of the notes
recognised by the model and the true annotations. The smaller the value, the more
accurate the rhythm positioning. The results are shown in Table 4.

In Table 4, under the condition of 25 dB, the F1 score of GRU-DeepLabv3+ is
90.4%, which is 5.2% and 7.8% higher than CRNN and SI-PLCA-MPE, respectively. At
the same time, the pitch deviation is controlled within +0.16 semitones, and the rhythm
deviation is only 10 ms, indicating that it has strong ability to recover musical score
structures in high-quality audio. As the SNR decreases to 15 dB, the recognition
performance of traditional models shows a significant decline. The F1 score of CRNN
drops to 79.1%, the rhythm deviation increases to 31 ms, and the pitch deviation also
expands to £0.41 semitone. SI-PLCA-MPE also showed a similar trend. However, GRU-
DeepLabv3+ only decreased by 1.3%, still maintaining an F1 score of 89.1%. The pitch
deviation and rhythm deviation were +0.24 semitones and 16 ms, respectively, indicating
that the model can still effectively capture note boundaries and spectral structures under
moderate noise interference. Under the condition of 5 dB, the recognition performance of
CRNN and SI-PLCA-MPE decreased to 71.6% and 69.2%, respectively. Compared with
clear scenes, F1 score decreased by more than 13%, pitch deviation reached +0.58 to
+0.61 semitones, and rhythm error exceeded 47 ms, indicating severe noise interference
in spectral feature extraction. However, the F1 score of GRU-DeepLabv3+ remained at
86.4%, only decreasing by 4.0%, with a pitch deviation of +0.32 semitones and a rhythm
deviation of 19 ms, demonstrating strong noise resistance and structural recovery ability.
In addition, the inference delay of GRU-DeepLabv3+ remained at 3540 ms/frame at all
noise levels, significantly lower than that of CRNN and SI-PLCA-MPE, verifying its
engineering adaptability in real-time automatic transcription tasks.

4 Discussion and interpretation

Aiming at the problems of low accuracy and sensitivity to noise interference of
multi-instrument polyphony automatic transcription, a multi-instrument polyphony
automatic transcription method based on BiGRU-DeepLabv3+ network was proposed.
The time series modelling capability was enhanced by introducing the BiGRU module,
while the network structure was lightened and the structural design of the null
convolution and decoder was optimised. In addition, the audio was pre-processed using
the front source separation module, which effectively enhanced the source separation and
denoising capability. The experimental results indicated that the F1-score of the proposed
method was 92.1% and 89.9% on the training and test sets, respectively, which was
significantly better than the other two comparison models. In addition, the average note
Fl-score of the proposed model reached 83.65% and the average note accuracy was
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85.4% in the four test sets with different instrument combinations. Significant
improvement over the comparative approach was demonstrated by the improvement in
SDR and SNR to 12.8 dB and 13.7 dB, respectively.

The model’s great generalisation capacity for multi-source complicated instrument
structures was demonstrated by the Fl-score, which reached 84.5%, particularly when
electric guitar and percussion instruments were combined. Compared with the automatic
percussion transcription model based on the CNN-LSTM structure proposed by
Cahyaningtyas et al. (2023), the BiGRU structure used in the study has more advantages
in dealing with long-term dependencies and effectively reduces the possible gradient
explosion problem. Park et al. (2023) constructed a transformer melody transcription
model that performed well in modelling long sequences. However, its model parameters
were large and inference time was long, making it unsuitable for deployment on
resource-constrained devices. In contrast, the method proposed by the research achieved
structural compression and computational optimisation while maintaining high
transcription performance, demonstrating strong practicality.

In addition, the model also performed well in terms of MMRR and note accuracy,
achieving 96.4% and 97.6% at the highest complexity level, respectively. Resource
utilisation analysis indicated that BIGRU-DeepLabv3+ had good system overhead control
capabilities while maintaining high accuracy. However, the study still has certain
limitations. For example, the model still exhibits some performance fluctuations under
extreme reverberation or low SNR audio conditions, and it has high requirements for
training resources. Future work will explore lightweight structures further to improve
real-time performance. Additionally, attention mechanisms will be introduced to enhance
the model’s ability to distinguish between different instrument features. These efforts will
drive the development of multi-instrument automatic transcription systems toward higher
accuracy and broader adaptability.

5 Conclusions

The study proposed a multi-instrument polyphonic transcription model that integrated
BiGRU with an improved DeepLabv3+ structure, innovatively introducing semantic
segmentation ideas into the note recognition task of audio spectrograms. By enhancing
the model’s temporal modelling capabilities through BiGRU and combining it with the
ASPP structure to achieve multi-scale semantic decoding, the accuracy of note
recognition in polyphonic environments was significantly improved. The experiments
showed that the proposed model outperformed the comparison model in key accuracy,
precision, and average precision indexes, particularly in accuracy and recognition recall
rates. There was a significant 6.8% improvement in note-level precision compared to the
traditional model and a more than 23.5% improvement in inference efficiency.
Meanwhile, the model also had better resource utilisation and reasoning efficiency,
showing good engineering practicability and scalability. The research provides new ideas
in the field of music information processing and theoretical and methodological support
for the practical deployment of real-time, multi-instrument transcription systems. This
lays the foundation for subsequent applications, such as intelligent music creation, music
analysis, and human-computer interaction.
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