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Abstract: A multi-instrument polyphonic automatic transcription method 
integrating bidirectional gated recurrent units and an improved Deeplabv3+ 
network is proposed to enhance transcription accuracy under complex audio 
conditions. A pre-separation module first performs source separation and 
denoising. Frequency-harmonic composite features are then extracted, and 
temporal dependencies are modelled using a gated recurrent network, followed 
by lightweight decoding for note onset localisation and instrument 
classification. Experiments show that the proposed model achieves 92.8%, 
91.5%, and 92.1% accuracy, recall, and F1 on the training set, and  
91.2%, 88.7%, and 89.9% on the test set, surpassing baseline methods. In 
mixed-instrument scenarios, the model attains an average F1 of 83.65% and 
88.3% note recognition accuracy, improving piano-violin transcription by 7%. 
The method offers high precision and robustness for polyphonic transcription, 
providing a practical foundation for intelligent music analysis and automatic 
orchestration. 

Keywords: multi-instrument polyphonic auto-transcription; DeepLabv3+ 
network; bi-directional gated loop unit; audio feature extraction; preamplifier 
separation. 
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1 Background 

With the continuous development of artificial intelligence technology in the field of 
music information processing, automatic music transcription (ADT) has gradually 
become one of the key tasks in intelligent music analysis and digital content generation 
(Wang et al., 2024). In the context of multi-instrument polyphony, problems such as 
overlapping note frequencies, mutual interference of different instrument timbres and 
background noise make it much more difficult to model the transcription system (Lee and 
Jeong, 2023). A number of scholars at home and abroad have conducted research on 
ADT systems. For example, Cahyaningtyas et al. (2023) proposed an ADT method based 
on deep learning. The method first performed segmentation by parameter optimisation, 
and subsequently the extracted spectral features were fed into a classification model. 
Experimental results indicated that the method achieved 77.42%, 86.97% and 82.87% 
multi-objective optimisation scores on different datasets. 

Park et al. (2023) proposed a singing melody transcription model based on a 
sequence-to-sequence transformer. The model represented the melody as a monophonic 
sequence, used overlapping decoding to ensure context continuity, and enhanced the 
generalisation ability of the model through pitch enhancement and noisy data cleaning. 
The results of ablation experiments indicated that the model outperformed existing 
schemes in all evaluation metrics. Velazquez Lopez et al. (2022) proposed a piano music 
transcription system based on an improved non-negative matrix decomposition, which 
enhanced the Fourier spectrogram visual representation by a novel cochlear filter. System 
evaluation showed that the scheme achieved higher accuracy in the task of transcribing 
polyphonic piano music, validating the effectiveness of auditory feature filtering. Lee and 
Lee (2024) used fast Fourier transform (FFT) and short-time Fourier transform (STFT) to 
extract musical bass notes. This study identifies frequency separated fundamental 
frequencies by Hamming window FFT. In a simple polyphonic music test, the word error 
rate was 3.13% and the character error rate was 6.25%, verifying the effectiveness of the 
method. 

Transcription task has also made significant development, and convolutional neural 
networks are widely used in the field of image semantic segmentation (ISS) because of 
their ability to effectively capture spatio-temporal features in audio (Preethi and 
Mamatha, 2023). The DeepLabv3+ network efficiently extracts multi-scale features 
through the collaboration of the atrous spatial pyramid pooling (ASPP) module and the 
decoder. It performs well in the field of ISS (Chen et al., 2024). Ji et al. (2022) proposed 
a semantic segmentation method based on multilayer feature fusion. The method 
improved the accuracy of semantic segmentation by introducing a flexible and 
lightweight extrusion excitation module into the spatial pyramid pool (SPP) network. The 
enhanced multilayer feature fusion structure may greatly increase the accuracy of 
semantic fusion, according to experimental results. Yang et al. (2022) proposed an ISS 
method based on deep neural networks, which extracted pixel-level and image-level 
features through convolutional structures, and fused the features after refining them using 
upsampling. Experimental results revealed that the method outperformed the comparison 
method in terms of performance and operation speed. 

However, the standard structure of convolutional networks suffers from a large 
number of parameters and insufficiently targeted feature learning in audio transcription 
tasks, which makes it difficult to be directly applied to multi-instrument scenarios. In 
contrast, bidirectional gated recurrent unit (BiGRU) can efficiently model the timing 
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dependence of sequence data. It also has the advantages of low computational overhead 
and stable gradient transfer (Wang et al., 2023). Suresh Kumar and Rajan (2023) 
proposed a transformer-based multimodal music mood classification system and 
compared the performance with BiGRU-based system. Additionally, they analysed the 
performance of other advanced methods. The outcomes showed that the transformer 
model achieved higher accuracy than the single-layer attention-based multi-modal system 
using BiGRU, with a maximum accuracy of 77.94%. Mohamed and Yassine (2023) 
employed multimodal feature learning using a Siamese network to learn distance 
measures between audiovisual features. The study used the GRU-Attention network to 
learn sequential semantic and spatial location information, and then combined principal 
component analysis with the Python program Tsfresh to extract features from the power 
spectral density of audio streams. Experimental results indicated that incorporating audio 
features significantly improved the F1-score and gradient detection performance. 

In summary, although existing research has made some progress in note recognition, 
timbre differentiation, and temporal modelling, the traditional segmentation 
classification-based AMT method in Cahyaningtyas et al. (2023) is insufficient for 
modelling the temporal evolution process. The transformer-based schemes in Park et al. 
(2023) and Suresh Kumar and Rajan (2023) have certain advantages in global sequence 
modelling, but their ability to recover local time-frequency structures is limited, and 
attention dilution is prone to occur under long sequence input conditions. Lee and Lee 
(2024) relies on the combination of FFT and STFT features for statistical estimation 
methods, which are suitable for low complexity polyphonic scenes, but are susceptible to 
note overlap interference in complex multi-track environments. In contrast, BiGRU can 
bidirectionally model the temporal evolution of musical notes, enhance rhythm and 
structural boundary recognition, and has advantages in smaller parameter scale and stable 
gradient transfer, making it more suitable for real-time scenes. The improved 
DeepLabv3+ achieves fine-grained reconstruction of spectral semantics through  
multi-scale dilated convolution and staged deconvolution, effectively compensating for 
the shortcomings of traditional convolutional networks in long-term frequency coupling 
modelling. 

In light of this, the study proposes a multi-instrument polyphonic automatic 
transcription method that combines BiGRU with an improved DeepLabv3+ network. It 
innovatively introduces a pre-source separation structure to preprocess mixed audio, 
further reducing the interference of background noise on modelling accuracy. The study 
placed BiGRU before spectral feature integration, forming an encoding order of 
‘temporal first, semantic second’ to involve temporal prior information in subsequent 
spatial structure optimisation, and completing feature domain alignment through 1 × 1 
convolutional mapping instead of simple parallel connections or hard stacking. The 
combination of the two forms a collaborative mechanism of ‘time modelling + spatial 
refinement’, which is more suitable for dealing with complex tone spectral line crossing 
and pronunciation structure coupling problems compared to single convolutional neural 
networks, transformers and other structures, demonstrating higher theoretical adaptability 
and modelling hierarchy advantages. The study aims to integrate temporal modelling and 
spatial decoding capabilities in order to achieve the high-precision transcription and 
classification of multi-instrument signals. This will be accomplished through noise 
reduction preprocessing, composite spectral feature construction, and multi-level 
deconvolution structures. 
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2 Improving the DeepLabv3+ network architecture and multi-instrument 
audio transcription method 

2.1 Music input and feature construction 

The goal of ADT is to convert audio signals into corresponding digital symbols, with the 
key being to identify the pitch, start time, and end time of notes (Edwards et al., 2023). 
The piano, for example, has 88 keys covering a frequency range of 27.5 Hz to 4,186 Hz, 
and produces sound through the vibration of strings when played. Each note can be 
viewed as the superposition of multiple sine waves, forming a harmonic structure. A note 
consists of a transient and a steady state, with the onset typically determined by 
identifying energy changes. For example, the piano produces a sound that rises rapidly, 
enters a stable phase, and then decays gradually. This sound has a rich tone and long 
reverberation. Modern music uses the 12-tone equal temperament (12-TET) system, 
which divides an octave into 12 semitones, standardising the pitch system. The 
distribution of same-named notes across different octaves on the keyboard provides a 
reference for automatic recognition, as shown in Figure 1 (Wang, 2023). 

Figure 1 The distribution of the same named notes on the keyboard (see online version  
for colours) 

 

Octave Octave 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2  

In Figure 1, the 12-TET divides the octave into 12 semitones, with the smallest pitch 
interval being the adjacent semitone. According to the 12-TET, the frequency 
relationship of each note in the piano range is shown in equation (1) (Yi et al., 2024). 

120 2
n

nf f= ⋅  (1) 

In equation (1), fn is the frequency of the nth note. f0 represents the fundamental frequency 

of the leftmost note on the piano keyboard, typically set to 27.5 Hz. 
12
n  denotes the 

number of semitones above the reference pitch, with each octave consisting of  
12 semitones. In time-frequency analysis, the STFT has insufficient resolution in the 
high-frequency range due to its fixed window length. Additionally, its linear spectrum 
does not match the exponential characteristics of the piano signal, resulting in poor 
analysis performance (Simonetta et al., 2022). In contrast, the constant-Q transform 
(CQT) uses a logarithmic frequency axis and a dynamically changing window length. 
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This design accurately reflects the audio characteristics of the piano and reduces the 
number of model parameters due to its lower spectral dimension. These features make the 
CQT more suitable for piano audio analysis. CQT is defined as shown in equation (2) 
(Wang and Dai, 2025). 

1 2

0

( ) ( ) ( )
n

k k

k

ηfN j π
Nk

n

X k x n w n e
− −

=

= ⋅ ⋅  (2) 

In equation (2), X(k) represents the CQT coefficient corresponding to the k frequency 
component. η is the sampling rate. fk represents the k frequency point. x(n) represents the 
original discrete audio signal. wk(n) represents the window function corresponding to 

frequency fk. Nk represents the window length corresponding to frequency fk. 
2

ns k

k

f f
j π

Ne
−

 
represents a complex sine wave with frequency fk. fk is defined as shown in equation (3). 

min 2
K
Bkf f= ⋅  (3) 

In equation (3), fmin represents the lowest frequency. B represents the number of 
frequencies within each octave. K represents the total number of frequency bands. The 
time-frequency spectrum expression is displayed in equation (4) (Spoorthy and 
Koolagudi, 2024). 

( ), T KX t k R ×∈  (4) 

In equation (4), X(t, k) is the two-dimensional CQT spectrum. T is the quantity of time 
frames. X(t, k) can be input into the DeepLabv3+ network for automatic transcription, 
pitch recognition, note start and end detection, and other tasks. The CQT process is 
shown in Figure 2 (Peng, 2023). 

Figure 2 CQT process (see online version for colours) 

 

AUDIO IN Log frequency 
construction

Calculate the bandwidth 
window length

Window processing

Sliding window time-
domain convolution

Take the mold lengthFinal spectrum input Obtain complex 
spectrogram

 

In Figure 2, the CQT calculation process mainly includes signal preprocessing, frequency 
axis construction, windowing, and frequency response calculation. First, the original 
audio signal is standardised, and then the frequency axis is constructed on a logarithmic 
scale based on the set minimum frequency and the number of frequencies per octave. 
Next, for each frequency component fk, the window length Nk is calculated based on its 
corresponding period length, and a corresponding window function is designed for it. 
Next, a sliding window is applied to the signal to extract local segments. These segments 
are weighted by the window function and multiplied by the complex exponential basis 



   

 

   

   
 

   

   

 

   

   74 X. Ye    
 

    
 
 

   

   
 

   

   

 

   

       
 

function Nk at the corresponding frequency. This process extracts the response intensity 
of that frequency component. By repeating this process for all frequency components and 
all time frames, the resulting X(t, k) can be used for subsequent note recognition and 
model input. 

2.2 Multi-instrument polyphonic transcription model based on  
GRU-DeepLabv3+ 

After constructing and preprocessing the spectral features of the audio signal, it is 
necessary to further design an efficient deep learning network structure to achieve 
accurate note recognition and transcription. The long-term dependencies in audio signals 
are better suited for modelling in the time-frequency domain, and music processing can 
be viewed as a semantic segmentation task on time-frequency images. The Deeplab series 
of networks capture multi-scale features through dilated convolutions, with DeepLabv3+ 
demonstrating the best segmentation performance. Its network architecture is shown in 
Figure 3 (Wang and Dong, 2024). 

Figure 3 DeepLabv3+ network structure (see online version for colours) 

 

1×1 Conv 3×3 Conv
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In Figure 3, the model adopts an encoder-decoder structure. In the encoder part, 
ResNet101 deep residual network is first used as the feature extraction backbone to 
perform multi-level feature representation on the input spectrogram (Wu et al., 2022). 
Then, the ASPP module is introduced to achieve multi-scale feature fusion by using 
hollow convolution operations with different sampling rates in parallel. Finally, the 
dimension is reduced by 1 × 1 convolution. The decoder performs deconvolution 
processing on the encoded features and fuses them with the backbone network features to 
ultimately output the classification results. Since audio signal transcription requires 
modelling temporal context information, the DeepLabv3+ network has limited temporal 
modelling capabilities and an excessive number of model parameters, which can easily 
lead to feature information loss and other issues. To address this, the study proposes a 
BiGRU-DeepLabv3+ network structure. The structure is shown in Figure 4. 
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Figure 4 BiGRU-DeepLabv3+ network structure (see online version for colours) 
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In Figure 4, the model uses the extracted feature map (FM) as input. Before inputting into 
the BiGRU module, take the spectral vector corresponding to each time frame as an input 
sequence element. After modelling the sequence along the timeline using BiGRU, the 
dimension of the output temporal feature matrix becomes T × 256, where 256 is the 
output dimension of the bidirectional structure. First, it performs preliminary temporal 
modelling on the input feature sequence. Through BiGRU, it filters and remembers the 
information generated by each layer, effectively reducing redundant information 
interference and improving the temporal correlation of feature expression. To ensure that 
the output of BiGRU is consistent with the dimensions of the subsequent DeepLabv3+ 
encoder structure, the model adds a 1 × 1 convolutional linear mapping layer after 
BiGRU, converts the T × 256 temporal features into a form that can be fused with the 
convolutional backbone features, and forms a T × 256 × 1 FM through spatial expansion 
to input into the subsequent encoding module. 

When entering the encoder stage, it is first concatenated directly with the spatial 
features output by the DeepLabv3+ encoder along the channel dimension to form a joint 
feature tensor. Subsequently, the model adopts a streamlined main feature extraction 
structure. It replaces the ResNet101 backbone network of the original DeepLabv3+ with 
a submodule containing only four convolutions. Each module adopts a ‘3 × 3 convolution 
+ 1 × 1 shortcut connection’ structure, with input channels set to 64, 128, 256, and 512 in 
sequence. This reduces the parameter size and speeds up training. Following the main 
trunk extraction module, the model incorporates an enhanced ASPP module. This 
improves the ability to capture local and mesoscale semantic features by setting a smaller 
hole rate. This avoids the sparsity of features caused by a large hole rate. The hole rate of 
the ASPP module is adjusted from (6, 12, 18) to (3, 6, 9) to adapt to the high-frequency 
local density features of the music spectrogram structure, while adding a 1 × 1 
convolution branch for global semantic compensation. Additionally, to improve the 
spatial resolution of high-level semantic information, the network introduces a 
deconvolution structure during the decoding stage, effectively achieving FM upsampling 
and boundary restoration. The final output stage performs feature fusion via 1 × 1 
convolution to generate prediction results. The BiGRU module structure is shown in 
Figure 5 (Xu et al., 2023). 

In Figure 5, the BiGRU module adopts a two-layer bidirectional structure, with  
128 hidden units in each direction, resulting in a bidirectional output dimension of 256. xt 
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and ht are the input vector and hidden state (HS) at the current time step. ht–1is the hidden 
state of the previous time step. yt is the final HS of the output. Zt is the update gate. Rt is 
the reset gate. Ht represents the candidate HS. σ is the Sigmoid activation function. 
BiGRU enhances semantic information capture capabilities by modelling historical and 
future dependencies in parallel through two GRU submodules: forward and backward. 
Although ResNet101 alleviates the vanishing gradient problem, its deep structure 
contains redundancy, with many network layers serving only to prevent model 
degradation. Therefore, the study streamlines the backbone network of DeepLabv3+ to 
four convolutional modules and adopts a layer design from shallow to deep to enhance 
feature learning capabilities. The specific structure is shown in Figure 6 (Todjro and 
Mensah, 2023). 

Figure 5 BiGRU module structure (see online version for colours) 
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Figure 6 Internal structure of convolutional block (see online version for colours) 

 1×1 Covn,64-128

3×3,64

7×7,64

3×3,128

3×3,64-128

3×3,1283×3,64

3×3,256

3×3,128-256

3×3,512

3×3,256-512

3×3,5123×3,256

Conv1

1×1 Covn,128-256 1×1 Covn,256-512

Conv2 Conv3 Conv4  

In Figure 6, the Conv1 module first uses a 7 × 7 convolution to expand the number of 
input channels from 3 to 64, followed by a pooling operation to reduce the spatial 
dimension. The Conv2 module consists of multiple stacked 3 × 3 convolutions, with 
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channel dimensions ranging from 64 to 128, and uses a 1 × 1 convolution to align the 
dimensions, facilitating residual connections. The Conv3 and Conv4 modules have 
similar structures, expanding the number of channels from 128 to 256, and then from 256 
to 512, respectively. Each stage contains multiple 3 × 3 convolution layers and uses 1 × 1 
convolution to construct constant channel or dimension-increasing shortcut paths to form 
a residual structure. Based on the optimisation of the encoder structure, to further 
improve the accuracy of polyphonic information recovery for multiple instruments, the 
study improves the original DeepLabv3+ decoder. The original decoder uses a two-stage 
4× upsampling deconvolution module, which can easily cause the loss of high-frequency 
detail information. 

Compared to directly using high magnification upsampling, this progressive approach 
can achieve gradual reconstruction of local semantic features at each stage, which helps 
preserve high-frequency details and improve the smoothness of boundary restoration. At 
the same time, the intermediate FM size of the four-stage decoding structure matches 
more closely with the time series features generated by BiGRU, avoiding the problem of 
inconsistent feature scales that may occur in the three-stage design, thereby achieving 
efficient fusion of spatiotemporal features and improving the accuracy of note boundary 
localisation. Therefore, in order to balance the semantic information recovery ability and 
model parameter quantity in the decoding stage, the two-stage upsampling mechanism of 
the original DeepLabv3+ was optimised to a four level deconvolution structure after 
analysing the fuzzy characteristics of musical score boundaries and the time sensitivity of 
note start and end positions in multi-scale audio spectra. The structure is shown in  
Figure 7 (Xu and He, 2023). 

Figure 7 Internal structure of decoder (see online version for colours) 
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In Figure 7, the improved decoder uses a 2× upsampling deconvolution module to 
gradually restore the FM size. After each module, a batch normalisation (BN) layer is 
added, combined with convolutional BN ReLU lightweight mapping to achieve feature 
compression and spatial alignment, replacing the standard 4× interpolation method and 
reducing boundary blurring caused by high magnification upsampling (Peng et al., 2023). 
By combining the compressed features from the encoder with the reconstructed features 
from the decoder and applying two-dimensional convolution processing, the feature 
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interaction capability is effectively enhanced. The polyphonic transcription output of the 
BiGRU-DeepLabv3+ network includes instrument categories, note pitches, and timing 
information. For noisy multi-instrument audio, a preprocessing module based on 
convolutional time-frequency spectrum separation network is first used for noise 
reduction processing. This module adopts the MultiConv TPsnet sound source separation 
scheme, and its core structure consists of depthwise separable convolution and  
time-frequency domain attention mechanism. By performing multi-scale convolution 
scanning on the STFT converted spectrogram, it achieves adaptive separation of the main 
voice and background noise. Separating the network to output a filtering matrix in the 
form of a spectral mask, multiplying it with the original audio to restore the target sound 
source spectrum, can improve the signal-to-noise ratio (SNR) in the harmonic region. 
Afterwards, transcription is carried out through the BiGRU-DeepLabv3+ network. First, 
this process extracts combined frequency and periodicity (CFP) features and analyses the 
fundamental frequency and harmonic relationships to obtain the harmonic structure. 
Then, it performs instrument identification and note transcription based on the unique 
timbre characteristics of different instruments (Talwar et al., 2023). CFP features 
combine the advantages of STFT and periodic spectra, obtaining spectra through STFT as 
shown in equation (5) (Luo et al., 2022). 

1
2

0

( ) ( ) ( ),
nN fj π

NSTFT
n

X t f x n w n t e
−

−

=

= ⋅ − ⋅  (5) 

In equation (5), XSTFT(t, f) represents the spectral coefficient at time frame t and frequency 
f. w(n – f) represents the window function used to extract the local signal segment centred 
at t. Equation (6) provides the calculation of the periodic spectrum. 

( ) 2
( ) log ( ), ,C t q IFFT X t f=  (6) 

In equation (6), q represents the sampling point on the cycle axis. C(t, q) represents  
the intensity of the periodic component in the signal. CFP feature fusion is shown in 
equation (7). 

( ) ( ) ( ), , ,CFP fF t f X t f C t τ= ⋅  (7) 

In equation (7), FCFP(t, f) is the CFP fusion feature. τf represents the period position 
corresponding to the frequency, which is used to remap the period information to the 
frequency domain. The total loss function (LF) is a multi-task weighted combination 
form, as shown in equation (8). 

1 2 3 4onset offset pitch instL λ L λ L λ L λ L= + + +  (8) 

In equation (8), L is the total LF. Lonset is the note onset detection loss. Loffset represents the 
note offset detection loss. Lpitch represents the pitch classification loss. Linst represents the 
instrument recognition loss. λ1, λ2, λ3, and λ4 are the corresponding weight coefficients for 
each sub-loss. 



   

 

   

   
 

   

   

 

   

    Multi-instrument polyphonic automatic transcription method 79    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 Results 

3.1 BiGRU-DeepLabv3+ performance testing 

To validate the overall performance of the proposed BiGRU-DeepLabv3+ model in 
multi-instrument polyphonic transcription tasks, the study is based on an Ubuntu 20.04 
system, NVIDIA RTX 3090 GPU, Intel i9-12900K processor, and 32 GB of memory. All 
model modules are implemented using the Python 3.10 and PyTorch 2.0 deep learning 
frameworks, and the Slakh2100 multi-instrument synthesis dataset is selected as the 
primary test dataset. Slakh2100 covers a variety of instruments, including piano, guitar, 
strings, and percussion, and supports note-level annotation and instrument labeling, 
making it suitable for comprehensive evaluation of polyphonic transcription tasks. First, a 
systematic ablation experiment is designed to validate the contribution of each module to 
the overall model performance. This experiment primarily analyses the effectiveness of 
the BiGRU temporal modelling structure, the ASPP module in DeepLabv3+, the 
deconvolution structure in the decoder, and the pre-source separation module. Onset 
detection F1-score (Onset-F1), Offset Detection F1-score (Offset-F1) and pitch 
recognition F1-score (Pitch-F1) are used. Table 1 displays the findings.  
Table 1 Results of ablation experiment 

Model Onset-F1 (%) Offset-F1 (%) Pitch-F1 (%) 
BiGRU-DeepLabv3+ 89.15 86.45 82.71 
Remove BiGRU module 84.25 81.07 77.66 
Remove ASPP structure 85.62 82.36 78.14 
Remove the decoder deconvolution structure 86.13 83.58 79.48 
Remove MultiConv-Tpsnet preprocessing 83.78 80.54 76.36 

In Table 1, the complete BiGRU-DeepLabv3+ model achieves the highest performance 
across all three metrics. Specifically, the note onset detection accuracy reaches 89.15%, 
the note offset detection accuracy is 86.45%, and the pitch recognition accuracy is 
82.71%, demonstrating excellent overall recognition capabilities. When the GRU module 
is removed, the note onset detection accuracy and note offset detection accuracy decrease 
to 84.25% and 81.07%. This indicates that BiGRU plays a crucial role in modelling note 
time series contexts, particularly in note boundary detection. After removing the ASPP 
structure, the pitch recognition accuracy decreases from 82.71% to 78.14%, indicating 
that ASPP plays a key role in extracting multi-scale frequency features, which helps 
improve pitch recognition accuracy. Removing the deconvolution structure from the 
decoder results in a relatively small decline in various indicators, but still shows a certain 
degree of performance degradation. This indicates that deconvolution positively affects 
spatial feature restoration and boundary refinement. In addition, when the pre-processing 
step of separating the pre-source module is removed, the overall performance of the 
model declines most significantly, with the three metrics decreasing by approximately  
5 percentage points each. This validates the important supporting role of the  
pre-processing stage in complex multi-instrument mixed scenarios for noise reduction 
and source separation in subsequent transcription tasks. 

To further evaluate the performance of the proposed BiGRU-DeepLabv3+, the study 
divides the Slakh2100 dataset into training and test sets at a ratio of 8:2. It selects a 
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transcription algorithm based on convolutional recurrent neural network (CRNN)  
(Guo and Zhu, 2025), shift-invariant probabilistic latent component analysis multi-pitch 
estimation (SI-PLCA-MPE) method (Li et al., 2023), and BiGRU-DeepLabv3+ for 
comparison. Among them, CRNN represents the widely used convolution and temporal 
joint modelling strategy in the field of audio transcription, which can reflect the basic 
performance of convolution feature extraction and cyclic temporal modelling in  
multi-track scenes. The SI-PLCA-MPE method relies on probability graph models to 
analyse pitch structures, which is representative in dealing with multi-source frequency 
overlap and stability modelling. Therefore, it can verify the advantages of the proposed 
method in deep spatiotemporal structure modelling from the perspective of classical 
statistical modelling. To ensure experimental fairness, the CRNN model adopts a  
three-layer convolution and single-layer GRU structure, and adjusts the number of hidden 
units to 128 to maintain consistency with the main network in terms of temporal 
modelling scale. The SI-PLCA-MPE method is implemented based on the parameter 
configuration in the original paper, and the number of iterations for spectral 
decomposition is set to 100 rounds. All models run on a unified hardware platform and 
the same training set partitioning strategy. When comparing, comprehensive evaluation is 
conducted using LF, recognition accuracy, precision, recall, and F1-score indicators. The 
training loss curves for the three methods are shown in Figure 8. 

Figure 8 Training loss curve, (a) training set (b) test set (see online version for colours) 
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Figures 8(a) and 8(b) show the loss values of the three models on the training set  
and test set as the quantity of iterations changes. Among them, BiGRU-DeepLabv3+ 
exhibits better convergence speed and stability. In Figure 8(a), the initial loss of  
BiGRU-DeepLabv3+ decreases rapidly, stabilises after the 150th iteration, and ultimately 
reaches the minimum loss value of 0.04 at the 300th iteration, which is significantly 
lower than CRNN and SI-PLCA-MPE. This indicates that the proposed model has 
stronger fitting capabilities, smaller training process fluctuations, and a smoother 
convergence process. In Figure 8(b), the final loss of BiGRU-DeepLabv3+ is 0.03,  
which is significantly lower than that of CRNN and SI-PLCA-MPE. In conclusion, 
BiGRU-DeepLabv3+ exhibits a reduced final error during training and a faster rate of 
convergence. In multi-instrument polyphonic transcription tasks, it also exhibits great 
stability and robustness during testing, demonstrating its capacity for learning and 
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generalisation. Figure 9 displays the results of several approaches’ time frame level 
recognition accuracy. 

Figure 9 Time frame level recognition accuracy results, (a) training set (b) test set (see online 
version for colours) 
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The trends in the three models’ time frame level recognition accuracy on the training and 
test sets, respectively, as the number of iterations rises are displayed in Figure 9(a) and 
Figure 9(b). The BiGRU-DeepLabv3+ model consistently leads during training, as shown 
in Figure 9(a), and by the 300th iteration, its accuracy has increased to 92%. In contrast, 
the SI-PLCA-MPE model achieves a final accuracy of 88%, while the CRNN model 
reaches only 72%. This suggests that the BiGRU-DeepLabv3+ model fits the training  
set better than other models, especially when it comes to simulating the structural  
features of note activation frames. Figure 9(b) shows that BiGRU-DeepLabv3+ achieved 
a frame-level accuracy of 93% on the test set, which is also higher than SI-PLCA-MPE 
and CRNN. Notably, BiGRU-DeepLabv3+ shows a smoother improvement in accuracy 
throughout the testing process and consistently outperforms the other two methods. This 
suggests that while working with unseen samples, the model has superior stability and 
generalisation skills. The combined data from the two figures further demonstrates the 
efficacy of BiGRU-DeepLabv3+ in multi-instrument polyphonic transcription tasks by 
demonstrating both a significant frame-level recognition advantage in the testing stage 
and a superior learning efficiency in the training stage. Metrics including as accuracy, 
recall, and F1-score are used in the evaluation. Table 2 displays the findings. 
Table 2 Classification performance evaluation 

Dataset Model Precision (%) Recall (%) F1-score (%) 
Training 
set 

CRNN 82.7 81.9 82.3 
SI-PLCA-MPE 86.4 85.1 85.7 

GRU-DeepLabv3+ 92.8 91.5 92.1 
Test set CRNN 80.6 79.2 79.9 

SI-PLCA-MPE 84.5 81.4 82.9 
GRU-DeepLabv3+ 91.2 88.7 89.9 
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In Table 2, BiGRU-DeepLabv3+ significantly outperforms the comparison models in 
terms of precision, recall, and F1-score on both the training and test sets, demonstrating 
stronger note recognition capabilities and generalisation performance. When compared 
against SI-PLCA-MPE and CRNN, BiGRU-DeepLabv3+ maintains its lead on the test 
set with an F1-score, accuracy rate, and recall rate of 89.9%, 91.2%, and 88.7%. When 
processing unseen data, the model’s recognition performance is more consistent, and its 
false positive and false negative rates are lower. BiGRU-DeepLabv3+ outperforms  
SI-PLCA-MPE and CRNN on the training set, achieving an F1-score, precision, and 
recall rates of 92.1%, 92.8%, and 91.5%, respectively. This illustrates its better  
modelling benefits and fitting capacity for intricate spectral structures. In conclusion, 
BiGRU-DeepLabv3+ outperforms probabilistic modelling techniques and conventional 
convolutional recurrent networks in terms of model stability and note and border 
recognition accuracy. This makes it a superior option for applications involving  
multi-instrument polyphonic automated transcription and complicated music signal 
processing. 

3.2 Analysis of multi-instrument transcription effects 

The study performs transcription simulation experiments on polyphonic segments of 
several instruments to confirm the versatility and applicability of BiGRU-DeepLabv3+ in 
real complicated musical contexts. The experiment constructs four sets of combined 
audio data covering typical instruments such as piano, violin, electric guitar, percussion 
instruments, and flute. Based on the Slakh2100 dataset, mixed audio samples with 
reverberation, overlap, and style differences are extracted to simulate a real music 
environment. The recognition accuracy results for multi-instrument mixed segments are 
shown in Figure 10. 

In Figures 10 (a), 10(b), and 10(c) show the confusion matrix results of the three 
methods in the multi-instrument classification task. In Figure 10(a), the overall 
recognition accuracy of the CRNN method is relatively low, especially in distinguishing 
between electric guitars, percussion instruments, and other instruments. The classification 
accuracy rates for piano and violin are 0.86 and 0.87, respectively. The flute has the 
highest recognition accuracy value among instruments other than the piano and  
violin at 0.86, but there is still some degree of confusion. Figure 10(b) shows that  
the SI-PLCA-MPE method achieves high recognition accuracy for melodic instruments, 
such as the piano, violin, and electric guitar. Accuracy rates are 0.90, 0.91, and 0.92, 
respectively, demonstrating the method’s advantages in pitch probability modelling.  
The accuracy rates for percussion instruments and flutes are 0.91 and 0.89,  
respectively. However, their confusion rates are slightly higher, particularly with minor 
cross-misclassification between the violin and the electric guitar. This is manifested as 
mutual interference probabilities of 0.11 and 0.09, respectively. 

In Figure 10(c), the overall accuracy of the BiGRU-DeepLabv3+ model is 
significantly better than the other two methods. The recognition accuracy for piano, 
violin, and flute is 0.95, 0.94, and 0.94, respectively. The accuracy for electric guitar and 
percussion instruments reaches 0.97 and 0.96, respectively, which is much higher than 
CRNN and SI-PLCA-MPE. This indicates that BiGRU-DeepLabv3+ not only 
demonstrates powerful modelling capabilities in the recognition of melodic instruments, 
but also exhibits high robustness in the analysis of rhythmic instruments. The study 
divides five instruments into distinct test groups in order to better assess the model’s 
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generalisation abilities in complex instrument combinations.  The metrics used to 
compare the transcription performance of the three approaches in each group are the 
signal-to-distortion ratio (SDR) and the SNR. Among them, SDR is used to measure the 
accuracy of the model in reconstructing the target instrument signal during the sound 
source separation process. The higher the value, the more sufficient the suppression of 
non target sound sources and noise components, and the transcription results are closer to 
the real signal. SNR is used to reflect the ratio between the effective instrument signal 
and background noise in the reconstructed audio, with a high value indicating that the 
model has stronger anti-interference ability in complex reverberation environments. 
Table 3 displays the findings. 

Figure 10 Identification accuracy results, (a) CRNN (b) SI-PLCA-MPE (c) BiGRU-DeepLabv3+ 
(see online version for colours) 
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In Table 3, BiGRU-DeepLabv3+ model outperforms the CRNN and SI-PLCA-MPE 
methods in both SDR and SNR metrics, indicating its stronger spectral line separation 
and fidelity characteristics under complex multi-source audio conditions; At the same 
time, the improvement of F1 score validates the advantages of the model in note structure 
recovery and time boundary detection, demonstrating high recognition stability and 
generalisation ability. In the first piano and violin combination, the SDR and SNR of 
BiGRU-DeepLabv3+ are 12.8 dB and 13.7 dB, respectively, and the F1-score also 
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reaches 88.3%, which is significantly better than that of CRNN and SI-PLCA-MPE. This 
suggests that the method possesses a good capability of feature recognition in the  
co-transcription of harmonic instruments. 
Table 3 Comparison of transcriptional performance among different test groups 

Test group  
number 

Instrument  
combination Model SDR 

(dB) 
SNR 
(dB) 

F1-score  
(%) 

1 Piano + Violin CRNN 9.6 9.2 83.5 
SI-PLCA-MPE 8.1 10.4 80.7 

GRU-DeepLabv3+ 12.8 13.7 88.3 
2 Electric guitar +  

percussion instrument 
CRNN 8.7 8.2 77.3 

SI-PLCA-MPE 7.4 9.6 74.2 
GRU-DeepLabv3+ 11.9 12.8 84.5 

3 Violin and flute CRNN 8.2 7.9 71.8 
SI-PLCA-MPE 7.1 8.6 69.1 

GRU-DeepLabv3+ 10.4 11.3 79.2 
4 Piano + electric guitar +  

percussion instrument 
CRNN 9.1 9.1 75.1 

SI-PLCA-MPE 8.3 10.2 71.4 
GRU-DeepLabv3+ 12.1 13.3 82.6 

In the second group of electric guitar and percussion instruments, the traditional model is 
prone to miss or confuse the short-time energy peaks due to the strong rhythmic and 
transient characteristics of this type of instruments. BiGRU-DeepLabv3+, however, is 
able to maintain a high accuracy rate with an F1-score of 84.5%. The third group is the 
combination of violin and flute, and the two instruments have close frequency bands, soft 
timbre and high structural overlap. Among them, the F1-score of BiGRU-DeepLabv3+ is 
79.2%, which is significantly better than that of CRNN and SI-PLCA-MPE. This 
demonstrates the model’s good modelling ability for fine-grained spectral features. The 
fourth group combines three types of instruments with large differences in timbre, piano, 
electric guitar and percussion, to form a complex polyphonic background. The F1-score 
of BiGRU-DeepLabv3+ in this scenario is 82.6%, which is an improvement of  
7.5 percentage points compared to CRNN. This demonstrates that the model has equally 
good robustness in the highly diverse mixed-instrument condition. 

The study classifies complexity based on the number of instruments that produce 
sound simultaneously, the density of notes, and the degree of spectral line overlap. 
Complexity level 1 indicates dominance of a single instrument, with large intervals 
between notes and no significant overlap; Level 2 represents the simultaneous production 
of melodic or rhythmic combinations by two instruments, with mild frequency aliasing; 
Level 3 involves the simultaneous production of three or more instruments, accompanied 
by continuous notes or rapid rhythm switching, resulting in moderate spectral line 
crossing; Level 4 corresponds to multi-instrument and multi-segment stacking with 
obvious harmonic structures, short rhythm intervals, or strong reverberation conditions, 
making it the most complex scene. The musical instrument digital interface (MIDI), 
matching reconstruction rate (MMRR) and note accuracy rate are used as indicators. The 
higher the MMRR, the closer the MIDI structure reconstructed by the model is to the real 
track, and the more complete the note structure, instrumental hierarchy, and rhythmic 
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reproduction will be; whereas note accuracy is used to measure the overall correctness of 
the system in terms of note detection. The results are shown in Figure 11. 

Figure 11 Multi-instrument polyphonic transcription accuracy results, (a) MMRR (b) note 
accuracy (see online version for colours) 
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Figures 11(a) and 11(b) show the trends in MMRR and note accuracy for the three 
models at different audio complexity levels. Figure 11(a) shows that as the audio 
complexity gradually increases from level 1 to level 4, the MMRR of the CRNN and  
SI-PLCA-MPE methods exhibit a gradual increase, reaching 88% and 89%, respectively. 
However, there are significant overall fluctuations and limited increases. In contrast, 
BiGRU-DeepLabv3+ demonstrates greater stability and robustness, with MMRR 
consistently maintaining above 90% and reaching 96.4% in high-complexity scenarios. 
This indicates that the model has stronger temporal alignment and note boundary 
reconstruction capabilities when processing complex audio segments with multiple 
tracks, harmonic overlaps, or intertwined rhythms. Figure 11(b) shows that the  
overall trend is basically consistent with MMRR, but the data is more distinctive. 
BiGRU-DeepLabv3+ achieves a note accuracy rate of over 93% at all levels of 
complexity, reaching 97.6% at the highest level of complexity. The traditional CRNN 
method achieves a recognition accuracy of 86% at low complexity, while SI-PLCA-MPE 
performs slightly better than CRNN, maintaining a lead of approximately 1.5%–2% 
across all levels. However, it still lags behind BiGRU-DeepLabv3+ by more than 5% in 
terms of performance. In summary, BiGRU-DeepLabv3+ outperforms other models in 
terms of structural capture and time series modelling. It effectively enhances the overall 
stability and recognition accuracy of multi-instrument transcription systems when faced 
with challenges such as high-frequency signal overlap, increased instrument variety, and 
complex rhythmic changes. The audio duration represents the continuous duration of the 
input audio segment, ranging from 10 s to 60 s, reflecting the changes in computational 
efficiency of the model at different audio lengths. A comparison of resource consumption 
among different methods during the transcription task is shown in Figure 12. 

Figure 12(a) and Figure 12(b) show the changes in CPU usage and bandwidth 
utilisation of the three methods at different audio durations. In Figure 12(a), as the audio 
duration increases, the CPU usage of the three methods first rises rapidly and then 
stabilises. The CRNN method has the highest resource consumption. When the audio 
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length reaches 20 seconds, its CPU usage stabilises at around 75%, while SI-PLCA-MPE 
remains slightly below this value, stabilising at around 70%. In contrast, BiGRU-
DeepLabv3+ has more controllable resource consumption, with CPU usage stabilising at 
around 60%, demonstrating its excellent computational efficiency and lightweight 
advantages. 

Figure 12 Comparison of resource consumption, (a) CPU usage rate (b) bandwidth utilisation 
rate (see online version for colours) 
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In Figure 12(b), the bandwidth utilisation rates of all three methods gradually decrease as 
the audio length increases. Among them, the bandwidth utilisation of CRNN and SI-
PLCA-MPE exceeds 80% and 75%, respectively, at the initial stage, and after the audio 
duration reaches 40s, the bandwidth utilisation of both models drops rapidly to below 
35%. In contrast, BiGRU-DeepLabv3+ maintains a much smoother decreasing trend 
throughout the process, indicating that the model’s bandwidth consumption is more stable 
in long-duration audio processing. In addition, the model is still able to maintain 35% 
bandwidth utilisation at 50s, which is significantly better than the other two methods. It 
shows that the model is suitable for deployment in real-world scenarios with limited 
bandwidth or high transmission stability requirements. 
Table 4 Comparison of transcriptional performance of models under different noise conditions 

SNR Model F1-score 
(%) 

Pitch 
deviation 

(semitones) 

Rhythm 
deviation 

(ms) 

F1-score 
decrease (vs. 

25 dB, %) 

Inference 
delay 

(ms/frame) 
25 dB CRNN 85.2 ±0.29 22 / 50 

SI-PLCA-MPE 82.6 ±0.34 27 / 48 
GRU-DeepLabv3+ 90.4 ±0.16 10 / 35 

15 dB CRNN 79.1 ±0.41 31 −7.2% 52 
SI-PLCA-MPE 76.8 ±0.45 36 −7.0% 50 

GRU-DeepLabv3+ 89.1 ±0.24 16 −1.3% 38 
5 dB CRNN 71.6 ±0.58 47 −13.6% 55 

SI-PLCA-MPE 69.2 ±0.61 51 −13.5% 53 
GRU-DeepLabv3+ 86.4 ±0.32 19 −4.0% 40 
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In order to further evaluate the robustness and generalisation ability of the proposed 
BiGRU-DeepLabv3+ transcription network in real acoustic environments, additional 
experiments were conducted using audio samples with different levels of background 
noise. Specifically, three SNR conditions were tested, namely 25 dB, 15 dB, and 5 dB, 
while keeping all other settings consistent. In addition to the F1 score indicator, pitch 
deviation and rhythm deviation were also introduced to quantify the accuracy of note 
frequency estimation and time alignment, and the degradation of F1 score relative to high 
SNR was calculated to evaluate noise sensitivity. Pitch deviation measures the degree of 
deviation between the output note frequency of the model and the true pitch. Rhythm 
deviation reflects the time deviation between the start and end times of the notes 
recognised by the model and the true annotations. The smaller the value, the more 
accurate the rhythm positioning. The results are shown in Table 4. 

In Table 4, under the condition of 25 dB, the F1 score of GRU-DeepLabv3+ is 
90.4%, which is 5.2% and 7.8% higher than CRNN and SI-PLCA-MPE, respectively. At 
the same time, the pitch deviation is controlled within ±0.16 semitones, and the rhythm 
deviation is only 10 ms, indicating that it has strong ability to recover musical score 
structures in high-quality audio. As the SNR decreases to 15 dB, the recognition 
performance of traditional models shows a significant decline. The F1 score of CRNN 
drops to 79.1%, the rhythm deviation increases to 31 ms, and the pitch deviation also 
expands to ±0.41 semitone. SI-PLCA-MPE also showed a similar trend. However, GRU-
DeepLabv3+ only decreased by 1.3%, still maintaining an F1 score of 89.1%. The pitch 
deviation and rhythm deviation were ±0.24 semitones and 16 ms, respectively, indicating 
that the model can still effectively capture note boundaries and spectral structures under 
moderate noise interference. Under the condition of 5 dB, the recognition performance of 
CRNN and SI-PLCA-MPE decreased to 71.6% and 69.2%, respectively. Compared with 
clear scenes, F1 score decreased by more than 13%, pitch deviation reached ±0.58 to  
±0.61 semitones, and rhythm error exceeded 47 ms, indicating severe noise interference 
in spectral feature extraction. However, the F1 score of GRU-DeepLabv3+ remained at 
86.4%, only decreasing by 4.0%, with a pitch deviation of ±0.32 semitones and a rhythm 
deviation of 19 ms, demonstrating strong noise resistance and structural recovery ability. 
In addition, the inference delay of GRU-DeepLabv3+ remained at 35–40 ms/frame at all 
noise levels, significantly lower than that of CRNN and SI-PLCA-MPE, verifying its 
engineering adaptability in real-time automatic transcription tasks. 

4 Discussion and interpretation 

Aiming at the problems of low accuracy and sensitivity to noise interference of  
multi-instrument polyphony automatic transcription, a multi-instrument polyphony 
automatic transcription method based on BiGRU-DeepLabv3+ network was proposed. 
The time series modelling capability was enhanced by introducing the BiGRU module, 
while the network structure was lightened and the structural design of the null 
convolution and decoder was optimised. In addition, the audio was pre-processed using 
the front source separation module, which effectively enhanced the source separation and 
denoising capability. The experimental results indicated that the F1-score of the proposed 
method was 92.1% and 89.9% on the training and test sets, respectively, which was 
significantly better than the other two comparison models. In addition, the average note 
F1-score of the proposed model reached 83.65% and the average note accuracy was 
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85.4% in the four test sets with different instrument combinations. Significant 
improvement over the comparative approach was demonstrated by the improvement in 
SDR and SNR to 12.8 dB and 13.7 dB, respectively. 

The model’s great generalisation capacity for multi-source complicated instrument 
structures was demonstrated by the F1-score, which reached 84.5%, particularly when 
electric guitar and percussion instruments were combined. Compared with the automatic 
percussion transcription model based on the CNN-LSTM structure proposed by 
Cahyaningtyas et al. (2023), the BiGRU structure used in the study has more advantages 
in dealing with long-term dependencies and effectively reduces the possible gradient 
explosion problem. Park et al. (2023) constructed a transformer melody transcription 
model that performed well in modelling long sequences. However, its model parameters 
were large and inference time was long, making it unsuitable for deployment on  
resource-constrained devices. In contrast, the method proposed by the research achieved 
structural compression and computational optimisation while maintaining high 
transcription performance, demonstrating strong practicality. 

In addition, the model also performed well in terms of MMRR and note accuracy, 
achieving 96.4% and 97.6% at the highest complexity level, respectively. Resource 
utilisation analysis indicated that BiGRU-DeepLabv3+ had good system overhead control 
capabilities while maintaining high accuracy. However, the study still has certain 
limitations. For example, the model still exhibits some performance fluctuations under 
extreme reverberation or low SNR audio conditions, and it has high requirements for 
training resources. Future work will explore lightweight structures further to improve 
real-time performance. Additionally, attention mechanisms will be introduced to enhance 
the model’s ability to distinguish between different instrument features. These efforts will 
drive the development of multi-instrument automatic transcription systems toward higher 
accuracy and broader adaptability. 

5 Conclusions 

The study proposed a multi-instrument polyphonic transcription model that integrated 
BiGRU with an improved DeepLabv3+ structure, innovatively introducing semantic 
segmentation ideas into the note recognition task of audio spectrograms. By enhancing 
the model’s temporal modelling capabilities through BiGRU and combining it with the 
ASPP structure to achieve multi-scale semantic decoding, the accuracy of note 
recognition in polyphonic environments was significantly improved. The experiments 
showed that the proposed model outperformed the comparison model in key accuracy, 
precision, and average precision indexes, particularly in accuracy and recognition recall 
rates. There was a significant 6.8% improvement in note-level precision compared to the 
traditional model and a more than 23.5% improvement in inference efficiency. 
Meanwhile, the model also had better resource utilisation and reasoning efficiency, 
showing good engineering practicability and scalability. The research provides new ideas 
in the field of music information processing and theoretical and methodological support 
for the practical deployment of real-time, multi-instrument transcription systems. This 
lays the foundation for subsequent applications, such as intelligent music creation, music 
analysis, and human-computer interaction. 
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