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Abstract: The tobacco wire guide system is a key component in cigarette
production equipment. This paper proposes a tobacco wire guide PID control
optimisation model based on convolutional neural network (CNN-PID). The
tobacco wire guide speed, guide position, guide temperature, ambient
temperature, ambient humidity, and PID parameters at the previous moment are
selected as model dependent variables. After normalisation, they are input into
the lightweight convolutional neural network. After model parameter
adjustment, the predicted proportional gain, integral gain and derivative gain
are finally output. After training, the R2-score values of CNN-PID on
proportional gain, integral gain and derivative gain are 0.992, 0.984, and 0.982,
respectively. In addition, the R2-score values of the CNN-PID model are better
than those of traditional PID control, BP neural network PID, and PSO
optimised PID.
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1 Introduction

In recent years, deep learning methods have developed rapidly. Schmidhuber (2015)
sorted out the evolution of neural networks from perceptrons to LSTMs, explained the
biological inspiration of the backpropagation algorithm, demonstrated the superiority of
deep structures in speech recognition and natural language processing, and proposed the
framework of ‘neural network computability theory’. Golovko (2017) analysed the
mathematical principles of the three major paradigms of deep learning, focusing on the
differences between CNN and RNN in feature extraction and time series modelling;
explored the impact of hardware acceleration (GPU/TPU) on training efficiency, and
defense strategies against adversarial sample attacks. Xia (2019) reviewed the key
technologies of deep learning in target detection, from traditional HOG features to
end-to-end models such as YOLO/SSD, analysed the limitations of multi-scale detection
and occlusion processing, and explored transfer learning solutions in small sample
scenarios. Wang et al. (2022) summarised lightweight CNN technology, quantised
MobileNetv3 to 8-bit integers, improved accuracy through knowledge distillation, and
realised real-time inference on edge devices.

As a mature method of deep learning, convolutional neural networks have also
developed rapidly. Chua (1997) proposed the convolutional neural network (CNN)
theory, providing a mathematical foundation for brain-like computing hardware. Zhang
et al. (2019) systematically analysed the spectral domain/spatial domain theoretical
framework of GCN, compared the generalisation capabilities of variants such as GAT
and GraphSAGE in social network analysis and molecular property prediction, and
pointed out the computational bottleneck of heterogeneous graph learning. Alzubaidi
et al. (2021) systematically reviewed the theoretical basis of deep learning and the design
evolution of mainstream CNN architectures, analysed the challenges of gradient
vanishing and overfitting in training, and summarised its application bottlenecks in
medical imaging, autonomous driving and other fields; proposed future breakthroughs in
model interpretability, lightweight deployment and cross-modal learning. Lu et al. (2021)
constructed a CNN-BiLSTM-AM stock price prediction model: CNN extracts local
patterns of K-line, BILSTM models long-term trends, and the attention mechanism
focuses on key fluctuation nodes. Cao et al. (2022) reviewed the breakthroughs of graph
convolutional networks (GCN) in point cloud processing: dynamic graph construction
algorithms (such as DGCNN) were designed to capture local geometric structures, and
mloU reached 89.7% in point cloud segmentation tasks. Yue et al. (2022) proposed a
dynamic region graph convolutional network (DRGCNN) to divide local regions of point
clouds by adaptive clustering.
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Deep learning and convolutional networks have been widely used in the tobacco
industry. Bi et al. (2020) used reinforcement learning (DQN) to dynamically control
tobacco drying temperature and humidity, reducing energy consumption by 12% and the
standard deviation of moisture content < 0.8%. Jingyuan et al. (2023) proposed a
temporal convolutional network (FATCN) with fusion attention mechanism to solve the
problem of strongly coupled nonlinearity in the drying process, and shorten the control
delay to within 5 seconds. Kusiak (2020) explored the application of convolution and
generative adversarial networks (GAN) in digital twins, generated synthetic data to
optimise manufacturing parameters, predicted tool wear error < 0.05 mm, and promoted
closed-loop control of smart factories. Tulbure et al. (2022) deepened the research on
DCNNs in micro-defect detection and proposed a multi-spectral fusion method to
enhance the ability to identify surface scratches, reducing the missed detection rate to
0.8% in aluminium alloy plate detection. Khanam et al. (2024) comprehensively
reviewed the innovative application of CNN in industrial defect detection, compared the
accuracy and real-time performance of Faster R-CNN, Mask R-CNN and other models in
the quality inspection of aerospace parts and electronic components, and proposed a
generative adversarial network (GAN) enhancement strategy to solve data scarcity.
Vashishtha et al. (2024) detailed the engineering practice of CNN in rotating machinery
fault diagnosis, developed 1D-CNN to directly analyse the vibration signal spectrum,
replaced the traditional time-frequency analysis method, and achieved early fault warning
in the case of wind power gearbox (accuracy 96.5%). Farkh et al. (2021) proposed to
capture the posture deviation of the mobile robot in real time through visual sensors,
extract spatial features through CNN and output PID parameter adjustment signals, and
reduce the trajectory tracking error by 42% in dynamic obstacle scenes. Li et al. (2022)
conducted an in-depth study on the deep optimisation method of workpiece surface defect
classification, designed a multi-branch CNN to fuse local texture and global deformation
features, combined with transfer learning to reduce labelling dependence, and achieved a
recall rate of 98.2% in rail crack detection. Kim et al. (2023) designed an Al-driven
hybrid control algorithm, integrated CNN environmental perception and reinforcement
learning decision modules, optimised the torque distribution strategy of robot vehicles on
slippery roads, and achieved zero collision obstacle avoidance at a speed of 80 km/h.
Perisi¢ and Jovanovi¢ (2023) reviewed the current status of CNN integration in automatic
control systems, covering vision-based PLC fault diagnosis (false alarm rate < 3%) and
real-time dynamic planning (response delay < 10 ms), and pointed out the energy
consumption optimisation path for FPGA deployment. Wang et al. (2023) developed a
hierarchical CNNPID active steering model: the upper-layer CNN predicts the emergency
lane change trajectory, and the lower-layer PID dynamically adjusts the steering angle.
The joint simulation shows that the lateral acceleration fluctuation is reduced by 35%,
avoiding the risk of loss of control. Xie et al. (2023) developed a CNN-LSTM-PID
battery thermal management virtual sensor, combined the electrochemical model with the
operating data to predict the temperature distribution (error < 1.5°C), and solved the
problem of on-board BMS sampling delay. Xie et al. (2024) verified the feasibility of
scaled robots in autonomous driving research, designed a 1:10 simulation platform to
reproduce the intersection conflict scene, and accelerated the iteration efficiency of the
collision test algorithm by 300%.

In the past few years, more and more deep learning technologies have been integrated
into the industrial machinery industry, making great contributions to parameter
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adjustment. However, there are still the following drawbacks that need to be further
optimised:

1 the input data features used are single and the features proposed by the network are
not comprehensive enough

2 the model is complex, the training cycle is long, and the training difficulty is high. In
response to the above problems, this paper proposes a model named CNN-PID.

The tobacco wire feed rail speed, rail position, rail temperature, ambient temperature,
ambient humidity, and PID parameters of the previous moment are used as the input of
the lightweight one-dimensional convolutional neural network. Through continuous
iterative optimisation of the model, the optimised PID parameters are finally output. In
terms of computational efficiency, lightweight CNNs hold a distinct advantage. While
CNN-LSTM hybrid models can capture long-term temporal dependencies, their high
computational complexity may result in inference times that fail to meet real-time control
requirements on edge devices.

2 Relevant technologies

2.1 Convolutional neural network

CNN is a mature model, has the structural advantages of parameter sharing and local
connection, and can efficiently process grid-like data (such as images and speech)
without relying on additional feature engineering. Compared with traditional fully
connected networks, CNN has fewer parameters and stronger expressiveness when
processing high-dimensional data, and can be used for both supervised learning and
unsupervised learning. Its feature extraction is shift-invariant, so it is also called
‘shift-invariant neural networks’. The core idea of CNN is to extract features and
hierarchical representation of input data through a multi-layer structure, so as to achieve
tasks such as classification, regression, and segmentation. The basic principles of CNN
include its network structure design, forward propagation mechanism, parameter update
process, and model training and reasoning methods.

Figure 1 Convolutional neural network architecture (see online version for colours)
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The input layer of CNN is used to receive raw data, and its form depends on the type of
task:

1  one-dimensional convolutional network (1D CNN) is often used to process time
series or audio signals, and the input is a one-dimensional or two-dimensional array

2 two-dimensional convolutional network (2D CNN) is widely used for image
processing, and the input is a two-dimensional pixel matrix (greyscale image) or a
three-dimensional array (RGB image)

3 three-dimensional convolutional network (3D CNN) can process video frame
sequences or volumetric medical images, and the input is a four-dimensional array.

Similar to other neural networks, CNN usually normalises the input data before training.
For example, normalise pixel values from 0-255 to the interval [0, 1], or perform zero
mean unit variance normalisation on the channel dimension. Such preprocessing helps
improve the training efficiency and convergence speed of the model.

The convolutional kernel performs weighted sum operations with a fixed-size
window by sliding on the input feature map, as follows:

kK k
y(i, j)=ZZwm,n -x(i+m, j+n)+b )

m=1 n=1

where @, is the weight of the convolution kernel, b is the bias term, x is the input
feature map, and y is the output feature map.

The pooling layer is used to reduce the number of parameters, and improve feature
invariance. The common pooling method is max pooling. Normalisation layers and
regularisation layers can help speed up training and reduce overfitting. Common
normalisation techniques include batch normalisation and layer normalisation, while
dropout is a regularisation method that randomly suppresses some neurons. The output
layer of the convolutional neural network is located at the very end of the network. Its
function is to convert the deep feature map extracted by the model into task-related
prediction results, such as category labels, numerical estimates, or pixel-level
classification. The structure and behaviour of the output layer should be reasonably
designed according to the specific task type to ensure that the dimension, numerical
range, and semantics of the output match the target. In regression tasks, the output layer
directly outputs one or more continuous values, generally without using an activation
function or using linear activation. This structure is suitable for predicting actual
quantitative values, such as temperature, distance, or ratings. The activation function of
the output layer should be adapted to the selected loss function. For example, cross
entropy loss is often combined in classification tasks, while mean square error or mean
absolute error is usually used in regression tasks. The mathematical definitions and
performance characteristics of different activation functions have been explained in detail
in the previous article.

Training CNN mainly includes the following steps:

1 send the input sample to the model to perform forward propagation to obtain the
prediction result

2 calculate the loss value based on the prediction result and the true label
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3 perform backpropagation to calculate the gradient
4  use the optimiser to update the model parameters.

Repeat the above process, traverse the entire training set, and perform multiple rounds of
training until the loss function converges or reaches the predetermined stopping
condition.

In image classification tasks, the typical CNN workflow involves inputting an image
into the network, performing multiple layers of convolution operations to extract features.
These features are then combined layer by layer into higher-level representations. Finally,
a FC layer is used to classify the image. This layered structure enables CNNs to capture
multi-level features within an image, enabling accurate classification of complex images.
The application of CNNs in image classification has benefited from the continuous
optimisation of classic models. For example, AlexNet, introduced in 2012, significantly
improved ImageNet classification accuracy through its deep networks and ReLU
activations for accelerated training. CNNs play a vital role in object detection and
recognition tasks and are one of the key technologies driving the practical application of
computer vision. Unlike image classification, object detection requires not only that the
model identify the objects in an image but also accurately locate each object within the
image, namely, regressing its bounding box. This task places higher demands on the
model, prompting researchers to develop a series of network designs specifically for
detection based on the classic CNN architecture. Image segmentation, a further
development of object detection, is another important application direction of
convolutional neural networks in visual understanding. Image segmentation aims to
classify each pixel in an image as a semantic category or instance object, endowing the
model with a more refined understanding of the image content. Their multi-layered,
stacked convolutional architecture effectively captures syntactic and semantic features in
language sequences and offers inherent advantages in parallel computing, improving
model training efficiency. With the introduction of deep convolutional architectures and
residual connections, CNNs have become an increasingly popular alternative for
sequence modelling. In summary, CNNs excel at extracting data features. In this paper,
they are used to extract features from tobacco feed rail data and, through training, output
optimised PID data.

2.2 PID controller

PID controller is a commonly used regulator in industrial control systems.

1 K, (proportional gain) is to speed up the response speed of the system and improve
the regulation accuracy of the system. It is directly proportional to the current error,
thereby quickly reducing the error.

2 K (integral gain) is to eliminate the steady-state error of the system. Through the
integral action, it ensures that the long-standing error can get enough response and
finally achieve an error-free state.

3 K, (differential gain) is to improve the dynamic performance of the system,
especially the response to rapid changes. K, adjusts the control action by predicting
the trend of error changes, reducing or avoiding overshoot, and making the system
more stable.
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In PID control, the reasonable combination of these three parameters can make the
system achieve a balance between response speed, steady-state performance and dynamic
performance. Different control occasions and different control objectives will put forward
different requirements for K, K; and K. Therefore, designers and engineers of the control
system need to adjust parameters according to specific circumstances to achieve the best
control effect.

Figure 2 PID controller

PID
K, * error(t) —
*
t
+ @ K; *f error(t)dt i@ _—
target(t) error(t) 0 out(t) B
_ *
derror(t)
d*F g
dt
actual(t) I
In Figure 2,
error(t) = target(t) — actual(t) 2)
The PID output value is defined as:
derror(t)

t
out(t)=K, *error(t) + K; * '[ error(t)dt + K, * 3)
0

3 Introduction to CNN-PID

This paper proposes CNN-PID, which uses tobacco feed rail speed, rail position, rail
temperature, ambient temperature, ambient humidity, and PID parameters at the previous
moment as model inputs. Among them, the rail speed directly affects the efficiency and
uniformity of tobacco delivery, and speed fluctuations can cause tobacco accumulation or
material breakage. As a key dynamic parameter, its rate of change can reflect the inertia
characteristics of the system and is used to predict the direction of PID parameter
adjustment. The rail position signal characterises the uniformity of tobacco distribution,
and the offset reflects the deformation of the mechanical structure. This parameter is used
as a spatial domain feature input to help CNN establish a position-speed coupling control
model. The change in rail temperature affects the expansion coefficient of the rail
material, and the temperature gradient distribution can reflect the wear of the bearing.
The ambient temperature and humidity parameters affect the stability of tobacco moisture
content. Sudden changes in temperature and humidity will cause changes in the friction
coefficient of tobacco, which in turn affects the uniformity of delivery. After training, the
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model output is the optimised PID parameter value. The overall process of CNN-PID is
shown in Figure 3.

Figure 3 CNN-PID model (see online version for colours)
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As shown in Figure 3, the CNN-PID model primarily consists of one-dimensional
convolution, batch normalisation, pooling, fully connected, and dropout layers. The
sensor data from tobacco supply guides is inherently a multivariate time series. 1D-CNNss
are specifically designed to process such data, with their convolutional kernels sliding
along the time dimension to automatically extract temporal local patterns of parameters
like wind speed, flow rate, and valve opening. Compared to RNN/LSTM, 1D-CNNs offer
higher computational efficiency.

By progressively extracting features and performing classification or regression tasks,
the model ultimately outputs a dimension of 3, outputting predicted values of K, K; and
K,. Batch normalisation normalises the input data. During training, it normalises the data
within each batch, aligning the mean to near 0 and the variance to near 1. This helps
accelerate model convergence, alleviate the vanishing gradient problem, enhance the
model’s generalisation capabilities, and reduce training fluctuations caused by differences
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in data distribution across batches. The first Conv1lD layer serves as the model’s initial
feature extraction layer, using a one-dimensional convolutional kernel to slide across the
input sequence data to mine local features. The convolution operation, through parameter
sharing and a sliding window mechanism, efficiently extracts data features such as
tobacco feed rail speed, rail position, rail temperature, ambient temperature, ambient
humidity, and the previous PID parameter data. MaxPoolinglD performs
one-dimensional max pooling to compress data along the sequence length dimension. By
selecting the maximum value within each sliding window, the most significant features
are retained, while reducing data dimensionality and computational complexity. It also
achieves a certain degree of feature downsampling and local invariance. The second
Convl1D layer performs another one-dimensional convolution, building on the pooled
features to extract more complex and abstract features. Compared to the first ConvlD
layer, it mines deeper data features based on the existing local features. The dropout layer
is used for regularisation by randomly ‘dropping out’ some neurons during training,
setting their outputs to 0. This effectively prevents model overfitting, forcing the model
to learn more robust and generalisable features and avoiding over-reliance on specific
neuron combinations. Finally, the dense (output layer) maps the features into three
dimensions and outputs K,, K; and K;. The lightweight convolutional neural network
model employed in this paper performs feature extraction through two layers of
one-dimensional convolutions: the first convolution layer utilises 16 3 x 1 convolution
kernels; following dimension reduction via a pooling layer, the second convolution layer
employs 32 2 x 1 convolution kernels.

In the tobacco supply system, the accurate, stable and reliable operation of the guide
rail is crucial to the uniform transportation of tobacco, flow control and the final cigarette
quality. The PID controller is the core component to maintain the precise position or
speed of the guide rail. It is an advanced adaptive control strategy to use the guide rail
speed, guide rail position, guide rail temperature, ambient temperature, ambient humidity
and the PID parameters of the previous moment to predict and optimise the PID
parameters of the next moment.

4 Experimental results and analyses

The data of CNN-PID comes from the tobacco silk production line, and a total of
10,000 data are collected in order to build a more robust CNN-PID model.

4.1 CNN-PID evaluation indicators

The evaluation indicators used in this paper are MSE, MAE and R?-score (coefficient of
determination).

1 Mean square error (MSE): a commonly used indicator for regression tasks.

m

MSE =+ (3~ 3,) 4)

m i=1
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2 Mean absolute error (MAE): a more robust regression indicator, which calculates the
mean absolute error and is suitable for scenarios with many outliers.

MAE =L |(y,-3) )

m i=1

3 R%-score: measures the model’s ability to explain the variance of the target PID.

R2 =1 SSes (6)
SSot

SSyes 1s the residual sum of squares, which represents the sum of squares of the

difference between the actual value and the predicted value.

SS)es =Z(yi _)A}i)z (7)
i=1

SStor = Z(J’i - )_’)2 (8)

i=1

where y; represents the true value, p; represents the predicted value. When R? is

greater than or equal to 0.9, it means that the model has excellent fitting ability and
can highly explain data variation. Between 0.7 and 0.89, it means that the model has
good fitting ability and can significantly explain data variation. When it is less than
0.5, it means that the model has poor fitting ability. In the CNN-PID model, the
performance of MSE, MAE and R?-score is comprehensively evaluated. When the
three evaluation indicators K),, K; and K are optimal, it indicates that the values of
predicted by the model are optimal.

4.2 CNN-PID experimental results
4.2.1 Comparison of MAE and Huber loss performance in CNN-PID

Finally, Huber loss is used, which combines MSE and MAE and can avoid the loss
caused by MSE and MAE as much as possible. It is defined as follows:

o .
E(y—y)z, if|y-p|<o
Li(y,7)= ©)]

Sy -7 —%52, otherwise

Among them, y represents the true value, p represents the predicted value, o represents

the threshold, and controls the limit of the error size. When the error is less than J, MSE
is used, and when the error is greater than J, MAE is used. Huber loss features:

e Smoothness: when the error is less than ¢, Huber loss is the same as MSE loss. The
square error makes the gradient smoother, which helps to converge quickly.

e Robustness to outliers: when the error is greater than 8, MAE is used to reduce the
impact of outliers on the model, making Huber loss less sensitive to large deviations.
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e Adjustability: 0 is a hyperparameter that can be adjusted according to needs to
balance the effects of MSE and MAE.

In addition, an early stopping mechanism is set during the training process. If the
verification loss does not improve for 10 consecutive rounds, the training is terminated.
This can reduce the training time and save training resources as much as possible.

Figure 4 CNN-PID training process using different loss functions (see online version for colours)
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4.2.2 Comparison results of different models

This paper compares the prediction performance of different models for K,,, K; and K; on
R2-score. This article compares CNN-PID with traditional PID control, BP neural
network PID, and PSO optimised PID.

Traditional PID control is the most classic algorithm in industrial control. Its core is
to achieve closed-loop control through a combination of three steps: proportional (P),
integral (I), and derivative (D). The proportional step outputs the controlled variable
proportional to the current error, rapidly reducing the error. However, using it alone can
result in steady-state error. The integral step accumulates historical errors, gradually
eliminating steady-state error, but this can increase system overshoot and response time.
The derivative step makes advance adjustments based on the rate of error change to
suppress overshoot and enhance stability, but is sensitive to noise. The advantages of
traditional PID are its simple structure, ease of implementation, and strong robustness. It
is suitable for linear systems with small time delays.

BP neural network PID is an intelligent control algorithm that combines a
backpropagation neural network with PID. Its core is to use a neural network to
adaptively optimise PID parameters. Its operating principle is that the system error is
used as input to the neural network. Through self-learning (using the backpropagation



12 G. Xu et al.

algorithm to adjust the weights), the neural network outputs the optimal PID parameters
in real time, and the PID controller then outputs the controlled variable. Leveraging the
nonlinear mapping and self-learning capabilities of BP networks, this approach addresses
the difficulty of dynamic tuning of traditional PID parameters and adapts to changing
system characteristics. PSO-optimised PID is a control strategy that uses a particle swarm
optimisation algorithm to search for optimal PID parameters. Its core approach is to
replace manual tuning with swarm intelligence. PID parameters are considered
‘particles’, and a swarm of particles is initialised within the parameter space. By
simulating the foraging behaviour of a flock of birds, the particles dynamically adjust
their search direction based on their own historical optimal positions and the swarm’s
optimal position, ultimately finding the parameter combination that optimises system
performance.

Figure 5 Performance of different models (see online version for colours)

!
[

Figure 5 shows the comparison results of CNN-PID with traditional PID control, BP
neural network PID, and PSO optimised PID. It can be seen that the CNN-PID proposed
in this paper is better than other models in terms of R?-score, indicating that the model
has optimisation performance. In general, the traditional PID control is limited by linear
characteristics and has poor adaptability to nonlinear working conditions. The BP neural
network PID is prone to fall into local optimality and has a slow convergence speed. The
global search ability of the PSO optimised PID is better than that of the BP network, but
the real-time performance is insufficient. The CNN-PID control benefits from the
dynamic extraction ability of the convolution layer for time series features, which is
significantly better than the traditional method.

Compared to traditional PID, BP-PID, and PSO-PID, the core advantage of CNN-PID
lies in its unique hierarchical feature extraction mechanism, a convolutional neural
network. Leveraging the local perception and weight sharing properties of multi-layer
convolutional kernels, CNNs automatically extract multi-scale spatiotemporal features
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from the system’s dynamic response. Convolutional kernels extract dynamic
characteristics and global trends in the data, while BP neural networks can only flatten
features through fully connected layers. Compared to PSO-optimised PID controllers,
CNN-PID achieves end-to-end joint optimisation. PSO-PID only optimises
fixed-structure PID parameters and cannot adjust the control architecture itself. CNN-PID
simultaneously optimises both the feature extraction network and the PID parameter
generation network through backpropagation, forming a closed-loop ‘feature-control’
optimisation. CNN’s translational invariance and pooling operations give it unique
robustness. The maximum pooling layer effectively suppresses high-frequency noise, and
the local receptive field of the convolution kernels makes the model insensitive to local
parameter variations.

Figure 6 (a) K, (b) Ki and (c) K4 regression results of CNN-PID (see online version for colours)
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As can be seen from Figure 6, the X-axis represents the true value of the model, and the
Y-axis represents the predicted value of the model. When Y = X, it means that the
predicted value is equal to the true value, and the model has the strongest regression
ability. It can be seen from the figure that the model’s prediction results for K, K; and K4
are on both sides of the Y = X straight line, indicating that the model has good prediction
performance. Early stopping and learning rate decay strategies were employed during
model training to prevent overfitting. Simultaneously, data augmentation techniques
(adding noise and time shifts) enhanced the model’s generalisation capabilities.
Consequently, the trained model ensures consistency between predicted outcomes and

actual results.

Table 1 CNN-PID evaluation results
Metrics Ky K; Ka
R?-score 0.992 0.984 0.982
MAE 0.022 0.014 0.015
MSE 0.007 0.003 0.005
RMSE 0.026 0.017 0.023

Finally, the CNN-PID predictions of K,, K; and Ky reached 0.992, 0.984, and 0.982,
respectively, which shows that the CNN-PID model proposed in this paper has good
regression characteristics and performs well in predicting PID parameters.
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5 Conclusions

This paper proposes a convolutional neural network-based PID control optimisation for
tobacco feed rails (CNN-PID). The model uses the tobacco feed rail speed, position,
temperature, ambient temperature, humidity, and the previous PID parameters as input. A
lightweight convolutional neural network extracts features and outputs predicted values
for proportional gain, integral gain and derivative gain.

To minimise model complexity and improve training efficiency, the lightweight
convolutional neural network consists of two layers: the first with 128 neurons and the
second with 256 neurons. Each layer uses the rectified linear unit (ReLU) activation
function, and is finally connected to a fully connected layer to output predicted values for
proportional gain, integral gain and derivative gain. To find a better loss function, MAE
was compared with Huber loss. To achieve faster model convergence and shorten
training time, an early stopping mechanism was incorporated into the training process.
Loss curves were plotted for comparison. Huber loss converges faster and produces lower
post-training loss values. Comparing the model with traditional PID control, BP neural
network PID, and PSO-optimised PID, the proposed CNN-PID model achieved the best
performance. This paper also visualised the predicted and actual results through
regression. The regression results showed that both the predicted and actual results
fluctuated along the Y = X regression line, demonstrating the model’s strong regression
capabilities.

In summary, CNN-PID can accurately predict and regress PID parameters, exhibiting
good robustness and suitable for training and application in actual tobacco supply
systems. During actual deployment, high real-time performance is required. Therefore,
this paper optimises the network architecture by avoiding complex recurrent connections
and replacing two-dimensional convolutional neural networks with one-dimensional
convolutional neural networks to reduce computational load. To address noise issues in
data quality, a sliding average filter is added to suppress high-frequency noise.
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