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Abstract: Track and field sports skill recognition is a key technology in
intelligent sports training, but traditional methods suffer from issues such as
information redundancy and poor recognition performance. To address this,
this paper first proposes an adaptive selection mechanism for multimodal
sensor data based on mutual information, filtering out sensor combinations that
provide maximum information correlation. Then, a convolutional neural
network (CNN) is combined with a long short-term memory network (LSTM)
for multimodal sensor feature extraction, and a recurrent matrix-based
multimodal feature fusion method is proposed. Finally, the fused feature vector
is input into a fully connected layer, and the softmax function is used to
calculate the score for each category of athletics skill from the output
classification layer. The experimental results show that the Macro F1 of the
proposed method is improved by at least 4.01% compared to baseline methods,
demonstrating good recognition performance.
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1 Introduction

As competitive sports continue to flourish, track and field, as a fundamental project in the
sports domain, has consistently occupied a central position. It is not only a stage for
showcasing human speed, power, endurance, and skills, but also a key area for cultivating
outstanding sports talent (Pereira et al., 2015). From the Olympics to the World
Championships, every breakthrough on the track and field tugs at the heartstrings of
sports enthusiasts around the globe, and the level of competition directly reflects a
country’s comprehensive strength in its sports industry. Traditional assessments of track
and field skills are highly subjective, relying on features from single-sensor data, making

Copyright © The Author(s) 2026. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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it difficult to accurately capture action details and underlying patterns, and unable to
comprehensively consider multi-sensor information from track and field athletes (Zheng
and Man, 2022). Multi-modal sensor data integrates information from various types of
sensors, such as an inertial measurement unit (IMU) that can obtain data such as body
motion acceleration and angular velocity from the athlete (Gai, 2025). These multi-source
heterogeneous data complement and validate each other, enabling a comprehensive and
precise depiction of the athlete’s motion state and skill characteristics (Mekruksavanich
and Jitpattanakul, 2022). How to utilise multi-modal sensor data to achieve precise
identification of track and field skills is a very important research topic.

Traditional track and field skill recognition algorithms are mainly based on machine
learning algorithms to construct recognition models. Liu and Wang (2023) integrated the
Canny edge detection method to extract edge contour features from original track and
field technique images and used support vector machine (SVM) to output the sports skill
recognition results. Cui and Wang (2025) used 2D optimal orthogonal separable
directional filters for feature extraction in track and field motion images, and achieved
sports skill recognition through a decision tree classifier; however, there were issues of
relatively complex computation and longer time consumption. Yu and Xing (2022)
applied Gabor wavelet transformation to extract the features of track and field motions
and used principal component analysis to remove redundant features, thereby improving
recognition accuracy. Yao and Li (2022) used Fourier transformation (Fong et al., 2021)
and discrete cosine transformation (Ahmad et al., 2015) to extract frequency domain
features respectively and achieved track and field motion recognition based on extreme
learning machine technology, achieving a recognition accuracy of 78.35%. Liu and
Chang (2022) proposed a track and field motion behaviour identification system using
accelerometer data, captured statistical characteristics, used non-negative matrix
factorisation for feature reduction, and finally classified using an ensemble approach
based on rotation random forests. The application of traditional machine learning
methods in the domain of track and field skill recognition has demonstrated the
effectiveness of manual feature extraction and diverse classifiers, although they do
present limitations in handling complex data and generalisation capabilities.
Nevertheless, these methods have laid the foundation for subsequent deep learning
approaches and provided significant reference value.

Deep learning-based recognition models can mine deep feature information from data
without relying on domain knowledge and have proven effective in image recognition
applications, achieving better results than manual feature extraction. The track and field
skills recognition model based on deep learning quantifies or prunes the model to reduce
reasoning time and meet the requirements of real-time action recognition. It also extracts
the deep features of track and field skills through deep neural networks to enhance the
recognition accuracy of the model. Li et al. (2023) proposed a multi-scale convolutional
neural network (CNN) to capture spatial and temporal characteristics from the raw
acceleration data of track and field athletes, achieving a recognition accuracy of 82.93%.
Zhang (2023) proposed a general deep neural network framework applied to a single
homogeneous sensor modality. Zhang (2021) used five wearable inertial sensor units to
record different daily activities and sports, and then performed feature extraction and
recognition using a long short-term memory network (LSTM) model, improving
recognition accuracy. Hsu et al. (2019) proposed a wavelet ensemble CNN, introducing
discrete wavelet transform into the convolution structure, combining the time-frequency
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localisation features of wavelet transform with the self-learning ability of neural networks
to realise sports skill recognition under a single sensor perception environment.

The above recognition models based on deep learning and single sensors have issues
with insufficient multi-dimensional feature extraction and unsatisfactory recognition
accuracy. Recognition models based on multimodal sensors greatly enhance recognition
performance by fusing features from multiple sensors. Mekruksavanich and Jitpattanakul
(2022) extract movement action features from accelerometer, gyroscope, magnetometer,
and barometer sensors, and input them into a CNN for action recognition, achieving an
average accuracy of 84.18% for identifying four sports skills. Dahou et al. (2023) utilise
combination data from accelerometers and gyroscopes, using CNNs with different kernel
dimensions to capture movement features at different resolutions, achieving a recognition
accuracy of 85.39%. Lee et al. (2024) propose a four-layer hybrid LSTM model that
combines data from accelerometers and gyroscopes and is effectively applied in sports
skills recognition tasks.

In summary, although existing sports skill recognition methods based on single
modalities in athletics have achieved some results, single-modality recognition can no
longer meet practical demands, making the effective fusion of heterogeneous sensor
information from multiple sources through multimodal learning increasingly important.
To address the problems of insufficient sensor feature extraction and unsatisfactory
recognition results in current research, this article suggests a sports skills recognition
approach in light of multimodal sensor data. The main work of this method is
summarised into the following four aspects.

1 Aiming at the problem of redundant information in the sports behaviour data
collected by multimodal sensors, this study proposes a multimodal sensor data
adaptive selection method based on mutual information. By calculating the mutual
information of different sensor combinations across different sports skill categories,
sensor combinations that provide maximum information correlation are selected,
thereby improving the efficiency and accuracy of data fusion.

2 Key behaviour features of multimodal sensor signals are extracted through CNN, and
the behaviour features processed by CNN are then sequentially input into LSTM
according to time order. A two-layer LSTM is used to capture temporal domain
information on the contextual relationships between different signal frames, and the
gate mechanism is employed to selectively retain the behavioural information
obtained from the features extracted by CNN, thereby obtaining spatiotemporal
features related to sports skill recognition.

3 A reasonable cross-combination of different sensor feature vectors is achieved to
realise sensor fusion at the feature level. After cyclic matrix fusion, the characteristic
vector is input into the dropout layer and fully linked level, and finally the softmax
function is used to calculate the score for each category of sports skills from the
output categorisation level, resulting in the final sports skill recognition results.

4  Experimental results show that the average recognition accuracy of the proposed
method for various types of athletic sports skills is 94.17%, which is improved by
4.72%—11.38% compared with the baseline approach. The approach is able to
effectively handle information interaction among heterogeneous features, achieve
multimodal feature complementarity, and demonstrate good recognition
performance.
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2 Relevant technologies

2.1 Introduction to multimodal sensors

Common types of sensors used for human body motion skill recognition include visual
sensors and wearable sensors. Visual sensors perform activity recognition by capturing
human visual images. They are usually installed in fixed positions, such as surveillance
cameras, which can capture human actions in a large range in real time. However, visual
sensors may be limited by lighting conditions, obstacles, and privacy protection issues
(Dang et al., 2020). Compared with visual sensors, wearable sensors have advantages in
human activity recognition. Wearable sensors are directly attached to the human body
and identify motion skills by recording motion data. Wearable sensors are not limited by
line of sight and can be widely applied in fields such as sports training and health
monitoring (Zhang et al., 2022). At the same time, their direct data collection method
effectively protects user privacy, making users more at ease when using them.

Common types of wearable sensors include accelerometers, gyroscopes,
magnetometers, etc., which are used to record human behavioural data. The human body
motion skill recognition process first collects data through sensors, and the data is then
transformed into multi-dimensional time series signals at a fixed frequency. Therefore,
the problem of human body motion skill recognition can be regarded as a segmentation
problem of multi-dimensional time series. The basic process of human body motion skill
recognition includes several steps: data collection, data preprocessing, feature extraction
and selection, feature fusion, and model classification.

2.2 Convolutional neural network

The key of CNN lies in the convolution operation, which extracts features from data such
as images to achieve prediction and classification of different data. It is extensively
utilised in the domain of picture recognition. Essentially, CNNs represent a specialised
type of multi-layer perceptron that employs local connectivity and shared weights. These
architectural features simultaneously reduce parameter count for more efficient
optimisation while minimising overfitting risks. The convolution operation of CNN is
essentially a linear transformation, while the activation function enables the network to
learn complex features by introducing nonlinear factors. For instance, in track and field
movement recognition, ReLU can distinguish between the force application stage of
athletes, maintaining the original value of positive input and setting the negative input to
zero during the relaxation stage, thereby capturing the dynamic changes of movements.

The basic framework of CNN consists of a convolutional level, a pooling level, and a
fully linked level. The convolutional layer performs convolution operations on input data
by sliding a convolution kernel, which can extract local features of the data (Chen et al.,
2021). The pooling layer performs dimensionality reduction on the characteristics output
by the convolutional layer, thereby simplifying the calculation. The most frequently
employed pooling operations are max pooling and average pooling. The function of the
fully linked level is to map the characteristic vector processed by the pooling layer to
category labels, thus achieving classification or recognition of input data.
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2.3 Long short-term memory network

LSTM is a special type of RNN, primarily designed to solve the problem of vanishing
gradients in long sequence training (Ullah et al., 2021). Compared to RNN having only
one transmission state 4, LSTM has two transmission states, a cell state C; and a hidden
state s, LSTM adopts gated output methods, namely the input gate, forget gate, and
output gate. Taking the memory cell at time t as an example, the input of the memory cell
at time ¢ is x, and /., passed down from the previous state. The two input
data sequentially enter the forget gate, input gate, and output gate to obtain states

z/, zi, C, z°. The two input data first enter the forget gate to obtain the information to
be discarded 2/, with the calculation equation as follows.

z/ ZO'(Wf [ht_l,xt]+b/-) (1)

Then it enters the input gate to obtain the information to be updated z/ and the current
cell state C, shown in equation (2) and equation (3) respectively, where

C’, = tanh(W,[ A1, x; ]+ b.).
z :O-(VV[ [ht—la xt]+bi) (2)

C,=z/-C+z-C (3)

Then through the output gate to determine which will be used as the current state for
output, and respectively obtain C; and 4 information. Finally perform the storage
operations in equation (4) and equation (5) and input into the next neuron.

z° =0(W0[h,_1,x,]+bo) @

h, =z° -tanh (C") Q)

In summary, this change in network structure allows LSTM to perform better in longer
sequences.

3 Design of an adaptive selection mechanism for multi-modal sensor data
based on mutual information

Multi-modal sensors can capture various information of track and field athletes during
their movement, including acceleration, angular velocity, physiological signals, etc.,
providing a rich data source for movement skill recognition. These data sources are not
only numerous but also diverse in types, jointly forming a multi-dimensional information
space for track and field movement skill recognition. However, due to the complexity and
redundancy of multi-modal data, how to effectively extract sensor data useful for
classification tasks from the data has become a hotspot and challenge in current research.
The complexity of multi-modal data is reflected in aspects such as large information
dimensions and complex correlations, while redundancy means that the data contains
information with little contribution to classification tasks. Therefore, how to perform
reasonable sensor data selection to extract the most representative sensor data subset is a
problem to be solved in current research.
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Current research neglects the correlations between different recognition tasks, which
to some extent limits the efficiency and accuracy of sensor data selection. To address the
above issues, this chapter suggests an adaptive selection approach for multi-modal sensor
data based on mutual information (Hoque et al., 2014). By calculating the mutual
information of different sensor combinations under different movement skill categories,
sensor combinations providing maximum information correlation are selected to improve
the efficiency and accuracy of data fusion. In addition, by statistically selecting the sensor
combinations with the highest occurrence frequency, more reliable and effective
combinations are further selected to provide a more reliable basis for track and field
movement skill recognition.

Traditional research uses all sensor combinations as input for movement skill
recognition. However, not all sensor modalities provide beneficial information; they may
even interfere with each other, affecting the final recognition performance. Specifically,
each sensor modality has its unique operating principle and range of application. For
example, accelerometers are good at capturing dynamic motion information, while
gyroscopes are more sensitive to body rotation and tilt. However, when all sensor data are
simultaneously input into the recognition system, inconsistencies and redundancies
between the data may lead to a decline in recognition performance. In addition, excessive
input data can also increase the system’s computational load, reduce real-time
performance, and even introduce noise and interference signals. Therefore, to avoid data
redundancy and excessive complexity, it is necessary to select sensor data combinations
that are highly related to track and field movement skill types. At the same time, by
adopting data selection and fusion strategies, the effective utilisation rate of sensor data
can be improved, thus increasing recognition accuracy and efficiency.

Assume there are multiple sensor data Xj, X2, ..., X, and track and field movement
skill recognition target variables C. C has M possible values Ci, Cs, ..., Cy. It is
necessary to calculate the marginal probability of features belonging to the target
variable, and also determine the joint probability between sensor data. This can provide
key information about the association between sensor data and the target variable, as well
as the interdependencies among the sensor data. Conditional mutual information is used
to quantify the correlation between multiple sensor data under the track and field
movement skill recognition target variable as shown below.

I(X1, Xayoy Xy | C=Chy )= D00 p(, 30,00 2, | €= Cir)
xeXixneXy xeX,
p(x1, X2, .0 X, |[C=Cly)
(x| C=Cy)x.Xp(xy|C=Cy)x..Xp(x, |C=Cy)

(6)

xlog

where I(Xi, X2, ..., Xu | C = Cy) represents the joint conditional mutual information
between sensor data Xi, Xz, ..., X, under a given category; p(xi, x2, ..., X, | C = Cnm)
represents the joint probability that sensor data xi, x», ..., x, takes the value Cy, under the
category Xi, Xa, ..., Xu; p(x, | C = Cy) represents the marginal probability that sensor data
X takes the value x, under the category Cy,.

For a multimodal sensor data set and a movement skill recognition target variable, it
is typically necessary to calculate the mutual information between sensor data to assess
their correlation. The magnitude of mutual information directly reflects the degree of
correlation between data. When the mutual information value is larger, it indicates a
tighter correlation between the data and a stronger information dependency between
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them. In short, the size of mutual information can serve as an important indicator to
measure the strength of correlation among sensor data.

omv)=—" ™

vi(n—v)!

where n is the total amount of sensors, and v is the amount of sensor variables included in
each combination.

D(S)={{X\},..{ X, }.{X1, Xo . {X0, X3}, o { X0y Xa ), s S} (8)

where {X;} is a single-sensor subset, and {X;, X;} is a dual-sensor feature combination
subset, S represents the set containing all sensors themselves. Pairwise conditional
mutual information measures the amount of information shared between any two sensor
variables under a given category; correspondingly, it measures the amount of information
shared between all sensor data under a given category.

To find the maximum value among these combination conditional mutual
information, it is necessary to calculate the mutual information between all possible pairs
of sensor data and select the largest value to determine the most informative combination.

(i*,...,j*)=argn?3,?<l(Xz~;...;Xj |C=Cy) ®

where I(X;; ...; Xj | C = Cu) denotes the combination mutual information between sensor
data under the given category Cy. This is the combination index of the maximum feature
under the given category, which is determined by traversing all combinations of sensor
data pairs and comparing their mutual information values.

After computing the maximum mutual information between sensor data and the
corresponding feature indices for each category, the most representative sensor data
combination for each category is obtained. A simplified sensor data combination will
more efficiently process data, improve recognition accuracy, and enhance recognition
performance.

4 Track and field sports skill recognition based on multimodal sensing
data

4.1 Multi-modal sensor feature extraction based on ConvLSTM

Based on the selection of key multimodal sensor data in the previous chapter, this paper
proposes a athletics skill recognition method based on multimodal sensor data according
to the characteristics of acceleration, angular velocity, electromyography signals, and
other multimodal sensors. The overall framework consists of five parts: the input level,
characteristic extraction level, feature fusion layer, and athletics skill recognition layer, as
indicated in Figure 1. First, a ConvLSTM method is designed to extract spatiotemporal
behaviour features from multimodal sensors, divided into the CNN and LSTM parts to
extract spatial and temporal features from multimodal sensors. Then, a reasonable
cross-combination of different sensor feature vectors is achieved, avoiding the enormous
computational load generated by tensor fusion methods (Borsoi et al., 2024) by utilising
the interaction of multimodal feature vectors, thereby achieving sensor fusion at the
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feature level to generate a consistent explanation for overall recognition. The feature
vector after cyclic matrix fusion is input into the dropout level and the fully linked level,
and finally, the softmax function is adopted to calculate the score for each category of
athletic skills in the output classification layer. The action with the highest score is
recognised as the acknowledged athletic skill.

Common CNN and LSTM-based methods can automatically extract behavioural
features from multimodal sensors, then perform self-learning and optimisation of model
parameters via neural network gradient descent and backpropagation techniques,
achieving good recognition performance. However, CNN does not further process the
hidden temporal information, neglecting the continuity of human behaviour. LSTM lacks
integration of sensor data, leading to relatively slow algorithm operation speed. To
address the above issues, a ConvLSTM-based feature extraction method using deep
learning is designed. The ConvLSTM method combines CNN and LSTM, leveraging the
advantages of CNN in handling behavioural features and LSTM in managing temporal
dependencies.

First, a one-dimensional convolution operation captures the temporal signal structures
within the convolution kernel window, and CNN obtains the key behavioural features of
multimodal sensor signals. The convolutional arithmetic is as follows.

D N
C = f(ZZxd (i+n)ky (n)] (10)

d=1 n=1

where N is the length of the convolution kernel, D is the depth of multimodal sensor data
and convolution kernel, k4(n) is the n"™ weight in the d" depth of one-dimensional
convolution kernel, x4(i) is the i element of multimodal sensor signals at depth d, C; is
the it feature obtained through convolution of multimodal sensor data, and f{-) represents
the activation function. The feature size after going through the pooling layer to reduce
the tensor dimension in the network is as follows.

L —N+2P
=" 4

L
S

1 (11)
where L; is the feature length of the current i layer, P is the padding size, and S is the
stride. Through three convolution and pooling operations, low-dimensional high-level
features with temporal characteristics are generated, and then the behavioural features
processed by CNN are input to LSTM in temporal order.

Two-layer LSTM captures temporal domain information on contextual associations
between different signal frames. Through the gating mechanism, behavioural information
is selectively preserved from the CNN-extracted features in accordance with equation (1)
to equation (5), to achieve better temporal activation of the multi-modal sensor signal
features and obtain spatio-temporal features relevant for motor skill recognition, thus
achieving spatio-temporal feature learning.

In summary, the ConvLSTM feature extraction method avoids the missing temporal
characteristics of CNN and the problems of LSTM under long-term sequences. It can
shorten the spatio-temporal feature extraction time and can also be separately applied to
feature extraction of multi-modal sensors.
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Figure 1 Track and field skills recognition process based on multimodal sensor data
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4.2 Multi-modal sensor feature fusion based on circular matrices

The spatio-temporal feature vectors extracted from multi-modal sensors by the
ConvLSTM method require further feature-level fusion (Piechocki et al., 2023). In deep
learning-based feature-level fusion, how to integrate multiple signal features to obtain
appropriate feature maps has become a key research issue. To fully utilise the mutual
influence between elements of multi-modal sensor features, a circulant matrix method is
proposed to handle feature interaction. The fusion method based on circulant matrices
conducts in-depth analysis of multi-modal sensor fusion information and can further
improve performance compared to other methods.

To enable feature interaction among multi-modal sensor feature vectors to obtain all
reasonable correlations, and at the same time address the problem of overly large fusion
vectors in traditional tensor fusion methods which are difficult to train, and thereby
achieve more robust and accurate behaviour recognition results. Through the feature
vectors and matrix multiplication method, a circulant matrix-based fusion method is
designed to extract useful feature interaction terms from motion information, achieving
multi-sensor feature fusion.

Assume that the dimension of multi-modal sensor feature vectors is N. Following
reference (Wu et al., 2024) a feature right circulant matrix is built. The single-modal
sensor feature vector « is shifted by one element each time to generate multiple vectors,
and these vectors are combined into a circulant feature matrix 4 (in the same way,
another modal sensor feature vector g can be used to construct G). The behavioural
information included in the circulant matrix is determined by a. Introducing A allows the
elements in the feature vectors a and g to interact with each other in all possible ways.

ap ay as ... ay
ay a; a; ... dyn-1

A=Circul(a)=|ay., ay a .. ay_,|€RY (12)
75 as as ... a;

Each row of the N-order circulant matrix 4 is the result of sequentially shifting the
acceleration feature vector a to the right by one element, thereby ensuring that
matrix multiplication can obtain all of the feature interactions of sensors across
different-modalities to fully fuse the multi-modal feature vectors.

After reshaping the feature vector into a circulant matrix, multiplying the multi-modal
feature vector g with matrix 4 can explore the relationship among the multi-modal sensor
features. To ensure that the feature interaction f'and the multi-modal sensor features play
the same role in behaviour recognition and avoid the influence of different numerical
ranges, the fused feature interaction fneeds to be normalised, as shown below.

a8 t+ayg: +an-183 t- a2 8n

| Mg t+tagr tangs +--azgn
=—ATg=—| mg+amg+ag:+-a 13
S N g N 381t a2 82 :1g3 48N (13)

ayg tay-182 tan283 + gy
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Each feature crossover item of ¢ and g is contained in f. Finally, the one-dimensional
behaviour features of the multi-modal sensors are introduced into the fused features. The
three feature vectors a, g, and fare concatenated to obtain the final fused feature vector
fusion.

a
fusion = Concat(a, g, f)=| g |€ R*V (14)
S

As shown in the above equation, the dimension of the final fused feature fusion is
reduced from (N + 1)’ in the two-dimensional tensor fusion method to 3N, thus
maintaining control over the feature dimensions. Since no new parameters are introduced
in the circulant matrix multiplication operation, the parameters of the fusion model are
effectively controlled, reducing the difficulty of training.

4.3 Motor skill recognition and loss function

Following characteristic extraction, a classification module projects the high-dimensional
action features into a low-dimensional space for athletic movement recognition. The
multidimensional features are vectorised and subsequently transformed through a stacked
neural network structure. The output of the /' neuron in the neural network is as follows,
where fusion; represents the i input, w; is the weight of the i output of the j® neuron,
and 6 is the bias.

V= f[@-kia)[jfusionij (15)
i=1

The final motion skill recognition output unit requires a softmax function for numerical
processing. The softmax output represents the relative probability between different
categories, and motion skill recognition is obtained in light of the output scores produced
by the softmax level. The softmax score for the it action is as follows.

e}’i
n

E e’
J=1

Identifying motion skills from different track and field actions is a binary classification
problem. The cross-entropy loss function is selected as the classification loss function, as
shown below.

softmax(y;) = (16)

Loss ==~ 3" (vlog()+(1- )+ 21:(9) an

Jj=1 i=l

where y is the real label of the input sample, y is the predicted label of the model, v is

the size of the sample in the batch, z is the number of categories, /(@) is the regularisation
term, and y is its coefficient. The cross-entropy loss operation can directly assess the
difference among model predictions and real labels, effectively solve the gradient
vanishing problem, and performs well in classification problems.
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5 Experimental results and analyses

This article uses the 5,397 track and field motion dataset collected in Zhang (2023). This
dataset integrates multiple sensors such as IMU, pressure sensor, heart rate belt, and so
on. The dataset is classified into the training set, validation set, and test set at a ratio of
8:1:1. The track and field motion skill categories include running, jumping, throwing, and
race walking. The method was deployed on an Ubuntu 18.04 operating system with an
NVIDIA GTX 1080Ti for experimentation, with a GPU memory size of 12 GB. The CPU
used is an Intel Core 17-9700K, with a CPU memory size of 32 GB. The neural network
model is built using the PyTorch deep learning framework, the compilation environment
is PyCharm, the programming language is Python, and the dependencies include numpy,
opencv, torchvision, etc. The batch sample size for the experiment is 100, and the number
of iterations is set to 200, and it is reduced to half of the current value every 50 iterations.
During the training process, the learning rate of the optimiser is set to 0.0016, the
momentum value is set to 0.9, and the weight decay is set to 104,

Figure 2 Comparison curve of recognition accuracy and loss function (see online version
for colours)
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The identification accuracy and loss function comparison curve of the proposed method
MConvLSTM for four track and field motion skill types are shown in Figure 2. As can be
seen from Figure 2, jumping motion skill types have better recognition capability than
throwing motion skill types. This is because the characteristics of jumping motion are
easier to identify. The recognition accuracy of various methods for throwing motion skill
types is relatively low, as the action amplitude of throwing is smaller compared to
jumping. Additionally, MConvLSTM can better distinguish between various track and
field motion skill types, with a more stable model training process and faster convergence
of the loss function.

For ease of analysis, this article selects WSA-DCNN (Hsu et al., 2019), MLCNNwav
(Dahou et al., 2023), MFLSTM (Lee et al., 2024) as comparative methods, and the
evaluation metrics selected are recognition accuracy (A), Macro Precision (Macro P),
Macro_Recall (Macro_R), Macro_F1 (Zhang, 2022). The comparison of recognition
accuracy for various track and field motion skill types among different methods is shown
in Table 1. The average recognition accuracy of MConvLSTM for various track and field
motion skill types is 94.17%, while the average recognition accuracy of WSA-DCNN,
MLCNNwav, and MFLSTM are 82.79%, 84.13%, and 89.45%, respectively. The average
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recognition accuracy of MConvLSTM is 4.72%—11.38% higher than that of the baseline
methods, indicating higher recognition accuracy.

Table 1 Accuracy rate of identifying various types of track and field skills

Method WSA-DCNN MLCNNwav MFLSTM MConvLSTM
Running 81.93 87.31 89.55 93.72
Jumping 84.61 82.54 91.68 96.59
Throwing 80.94 82.27 88.34 91.36
Race walking 83.66 84.39 88.23 95.02

The Macro P, Macro R, and Macro F1 indicators for different methods are compared in
Table 2. The Macro P and Macro R of MConvLSTM are 94.18% and 92.63%,
respectively, which are improved by 12.23% and 12.32% compared to WSA-DCNN, and
by 7.69% and 9.07% compared to MLCNNwav, and by 5.76% and 2.25% compared to
MFLSTM. Comparing Macro F1, MConvLSTM is improved by 12.28%, 8.41%, and
4.01% compared to WSA-DCNN, MLCNNwav, and MFLSTM, respectively.
WSA-DCNN requires multi-scale decomposition of the number of motion sensors
through wavelet transform, generating subbands of different frequencies. This process
significantly increases the data dimension, causing CNN to process more feature maps
and exponential growth in computational workload, hence the recognition efficiency is
lower than that of the other three methods. MLCNNwav is a recognition model based on
multi-scale CNN. Although it considers multi-modal sensor features, it does not consider
their temporal features, so the recognition accuracy is lower than that of MConvLSTM.
MFLSTM proposes a four-layer hybrid LSTM recognition model. Although it considers
the temporal features of multi-modal sensors, its ability to process original sensor signals
is poor, so the recognition performance is lower than that of MConvLSTM. Compared to
the CNN and LSTM methods, MConvLSTM can better handle the spatiotemporal
behaviour information in sensor data. It uses convolution to extract features from raw
signals and then further processes temporal features using an LSTM model, thereby
enhancing the recognition effects.

Table 2 Recognition performance indicators of different methods
Method WSA-DCNN MLCNNwav MFLSTM MConvLSTM
Macro_P (%) 81.95 86.49 88.42 94.18
Macro_R (%) 80.31 83.56 90.38 92.63
Macro_F1 (%) 81.12 84.99 89.39 93.40

The comparison of identification times for different methods is shown in Figure 3.
MConvLSTM demonstrates significant advantages in the recognition of athletics
movement skills. The shortest recognition time for MConvLSTM is 4.37 ms, while the
shortest recognition times for WSA-DCNN, MLCNNwav, and MFLSTM are 6.05 s and
7.42 s, respectively. Compared to two literature methods, the shortest recognition times
for athletics foul action recognition are 10.19 ms, 7.47 ms, and 6.05 ms, respectively.
This indicates that MConvLSTM has a higher computational efficiency and recognition
speed when handling athletics movement skill recognition tasks. MConvLSTM can
significantly shorten the time required for the recognition process while maintaining high
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recognition accuracy, thus improving the real-time and application efficiency of the
proposed method.

Figure 3 Comparison of recognition times for different methods (see online version for colours)
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6 Conclusions

Accurate recognition of athletics movement skills is a core part of scientific training and
performance improvement. To address issues such as information redundancy,
inadequate feature extraction from sensors, and low recognition accuracy in current
research, this paper proposes an athletics movement skill recognition method based on
multimodal sensor data. First, a multimodal sensor data adaptive selection mechanism
based on mutual information is proposed. By calculating the mutual information of
different sensor combinations under different movement skill categories, the sensor
combinations that provide the maximum information correlation are selected, thereby
improving the efficiency and accuracy of data fusion. Then, CNN is combined with
LSTM for multimodal sensor feature extraction, and a multi-sensor feature fusion method
based on a recurrent matrix is proposed, achieving effective fusion of behaviour features
from multimodal sensors. Finally, the integrated characteristic vector is input into a fully
connected layer, and the softmax function is used to compute the scores for each category
of athletics movement skills from the output classification layer. Experimental outcome
implied that the suggested approach achieves an average recognition accuracy of 94.17%
for various athletics movement skill types, with the shortest recognition time of 4.37 ms,
enabling accurate and real-time recognition of athletics movement skills.

In summary, the proposed method in this paper demonstrates good recognition
performance. However, due to the limited knowledge and time available, the analysis of
many situations is not thorough enough, and further research is needed.
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1 For redundant information in multimodal heterogeneous sensor data, adaptive
selection based solely on mutual information is insufficient. An attention mechanism
could be introduced to focus on the main behavioural features of multimodal data,
thereby ignoring unnecessary information redundancy.

2 This paper only utilises multimodal sensor data. In the future, more heterogeneous
information, such as depth images and skeletal data, could be incorporated to further
improve the accuracy of athletics movement skill recognition.
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