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Abstract: Track and field sports skill recognition is a key technology in 
intelligent sports training, but traditional methods suffer from issues such as 
information redundancy and poor recognition performance. To address this, 
this paper first proposes an adaptive selection mechanism for multimodal 
sensor data based on mutual information, filtering out sensor combinations that 
provide maximum information correlation. Then, a convolutional neural 
network (CNN) is combined with a long short-term memory network (LSTM) 
for multimodal sensor feature extraction, and a recurrent matrix-based 
multimodal feature fusion method is proposed. Finally, the fused feature vector 
is input into a fully connected layer, and the softmax function is used to 
calculate the score for each category of athletics skill from the output 
classification layer. The experimental results show that the Macro_F1 of the 
proposed method is improved by at least 4.01% compared to baseline methods, 
demonstrating good recognition performance. 

Keywords: track and field sports skill recognition; mutual information; 
multimodal sensor; convolutional neural network; CNN; graph attention 
network. 
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1 Introduction 

As competitive sports continue to flourish, track and field, as a fundamental project in the 
sports domain, has consistently occupied a central position. It is not only a stage for 
showcasing human speed, power, endurance, and skills, but also a key area for cultivating 
outstanding sports talent (Pereira et al., 2015). From the Olympics to the World 
Championships, every breakthrough on the track and field tugs at the heartstrings of 
sports enthusiasts around the globe, and the level of competition directly reflects a 
country’s comprehensive strength in its sports industry. Traditional assessments of track 
and field skills are highly subjective, relying on features from single-sensor data, making  
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it difficult to accurately capture action details and underlying patterns, and unable to 
comprehensively consider multi-sensor information from track and field athletes (Zheng 
and Man, 2022). Multi-modal sensor data integrates information from various types of 
sensors, such as an inertial measurement unit (IMU) that can obtain data such as body 
motion acceleration and angular velocity from the athlete (Gai, 2025). These multi-source 
heterogeneous data complement and validate each other, enabling a comprehensive and 
precise depiction of the athlete’s motion state and skill characteristics (Mekruksavanich 
and Jitpattanakul, 2022). How to utilise multi-modal sensor data to achieve precise 
identification of track and field skills is a very important research topic. 

Traditional track and field skill recognition algorithms are mainly based on machine 
learning algorithms to construct recognition models. Liu and Wang (2023) integrated the 
Canny edge detection method to extract edge contour features from original track and 
field technique images and used support vector machine (SVM) to output the sports skill 
recognition results. Cui and Wang (2025) used 2D optimal orthogonal separable 
directional filters for feature extraction in track and field motion images, and achieved 
sports skill recognition through a decision tree classifier; however, there were issues of 
relatively complex computation and longer time consumption. Yu and Xing (2022) 
applied Gabor wavelet transformation to extract the features of track and field motions 
and used principal component analysis to remove redundant features, thereby improving 
recognition accuracy. Yao and Li (2022) used Fourier transformation (Fong et al., 2021) 
and discrete cosine transformation (Ahmad et al., 2015) to extract frequency domain 
features respectively and achieved track and field motion recognition based on extreme 
learning machine technology, achieving a recognition accuracy of 78.35%. Liu and 
Chang (2022) proposed a track and field motion behaviour identification system using 
accelerometer data, captured statistical characteristics, used non-negative matrix 
factorisation for feature reduction, and finally classified using an ensemble approach 
based on rotation random forests. The application of traditional machine learning 
methods in the domain of track and field skill recognition has demonstrated the 
effectiveness of manual feature extraction and diverse classifiers, although they do 
present limitations in handling complex data and generalisation capabilities. 
Nevertheless, these methods have laid the foundation for subsequent deep learning 
approaches and provided significant reference value. 

Deep learning-based recognition models can mine deep feature information from data 
without relying on domain knowledge and have proven effective in image recognition 
applications, achieving better results than manual feature extraction. The track and field 
skills recognition model based on deep learning quantifies or prunes the model to reduce 
reasoning time and meet the requirements of real-time action recognition. It also extracts 
the deep features of track and field skills through deep neural networks to enhance the 
recognition accuracy of the model. Li et al. (2023) proposed a multi-scale convolutional 
neural network (CNN) to capture spatial and temporal characteristics from the raw 
acceleration data of track and field athletes, achieving a recognition accuracy of 82.93%. 
Zhang (2023) proposed a general deep neural network framework applied to a single 
homogeneous sensor modality. Zhang (2021) used five wearable inertial sensor units to 
record different daily activities and sports, and then performed feature extraction and 
recognition using a long short-term memory network (LSTM) model, improving 
recognition accuracy. Hsu et al. (2019) proposed a wavelet ensemble CNN, introducing 
discrete wavelet transform into the convolution structure, combining the time-frequency 
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localisation features of wavelet transform with the self-learning ability of neural networks 
to realise sports skill recognition under a single sensor perception environment. 

The above recognition models based on deep learning and single sensors have issues 
with insufficient multi-dimensional feature extraction and unsatisfactory recognition 
accuracy. Recognition models based on multimodal sensors greatly enhance recognition 
performance by fusing features from multiple sensors. Mekruksavanich and Jitpattanakul 
(2022) extract movement action features from accelerometer, gyroscope, magnetometer, 
and barometer sensors, and input them into a CNN for action recognition, achieving an 
average accuracy of 84.18% for identifying four sports skills. Dahou et al. (2023) utilise 
combination data from accelerometers and gyroscopes, using CNNs with different kernel 
dimensions to capture movement features at different resolutions, achieving a recognition 
accuracy of 85.39%. Lee et al. (2024) propose a four-layer hybrid LSTM model that 
combines data from accelerometers and gyroscopes and is effectively applied in sports 
skills recognition tasks. 

In summary, although existing sports skill recognition methods based on single 
modalities in athletics have achieved some results, single-modality recognition can no 
longer meet practical demands, making the effective fusion of heterogeneous sensor 
information from multiple sources through multimodal learning increasingly important. 
To address the problems of insufficient sensor feature extraction and unsatisfactory 
recognition results in current research, this article suggests a sports skills recognition 
approach in light of multimodal sensor data. The main work of this method is 
summarised into the following four aspects. 

1 Aiming at the problem of redundant information in the sports behaviour data 
collected by multimodal sensors, this study proposes a multimodal sensor data 
adaptive selection method based on mutual information. By calculating the mutual 
information of different sensor combinations across different sports skill categories, 
sensor combinations that provide maximum information correlation are selected, 
thereby improving the efficiency and accuracy of data fusion. 

2 Key behaviour features of multimodal sensor signals are extracted through CNN, and 
the behaviour features processed by CNN are then sequentially input into LSTM 
according to time order. A two-layer LSTM is used to capture temporal domain 
information on the contextual relationships between different signal frames, and the 
gate mechanism is employed to selectively retain the behavioural information 
obtained from the features extracted by CNN, thereby obtaining spatiotemporal 
features related to sports skill recognition. 

3 A reasonable cross-combination of different sensor feature vectors is achieved to 
realise sensor fusion at the feature level. After cyclic matrix fusion, the characteristic 
vector is input into the dropout layer and fully linked level, and finally the softmax 
function is used to calculate the score for each category of sports skills from the 
output categorisation level, resulting in the final sports skill recognition results. 

4 Experimental results show that the average recognition accuracy of the proposed 
method for various types of athletic sports skills is 94.17%, which is improved by 
4.72%–11.38% compared with the baseline approach. The approach is able to 
effectively handle information interaction among heterogeneous features, achieve 
multimodal feature complementarity, and demonstrate good recognition 
performance. 
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2 Relevant technologies 

2.1 Introduction to multimodal sensors 

Common types of sensors used for human body motion skill recognition include visual 
sensors and wearable sensors. Visual sensors perform activity recognition by capturing 
human visual images. They are usually installed in fixed positions, such as surveillance 
cameras, which can capture human actions in a large range in real time. However, visual 
sensors may be limited by lighting conditions, obstacles, and privacy protection issues 
(Dang et al., 2020). Compared with visual sensors, wearable sensors have advantages in 
human activity recognition. Wearable sensors are directly attached to the human body 
and identify motion skills by recording motion data. Wearable sensors are not limited by 
line of sight and can be widely applied in fields such as sports training and health 
monitoring (Zhang et al., 2022). At the same time, their direct data collection method 
effectively protects user privacy, making users more at ease when using them. 

Common types of wearable sensors include accelerometers, gyroscopes, 
magnetometers, etc., which are used to record human behavioural data. The human body 
motion skill recognition process first collects data through sensors, and the data is then 
transformed into multi-dimensional time series signals at a fixed frequency. Therefore, 
the problem of human body motion skill recognition can be regarded as a segmentation 
problem of multi-dimensional time series. The basic process of human body motion skill 
recognition includes several steps: data collection, data preprocessing, feature extraction 
and selection, feature fusion, and model classification. 

2.2 Convolutional neural network 

The key of CNN lies in the convolution operation, which extracts features from data such 
as images to achieve prediction and classification of different data. It is extensively 
utilised in the domain of picture recognition. Essentially, CNNs represent a specialised 
type of multi-layer perceptron that employs local connectivity and shared weights. These 
architectural features simultaneously reduce parameter count for more efficient 
optimisation while minimising overfitting risks. The convolution operation of CNN is 
essentially a linear transformation, while the activation function enables the network to 
learn complex features by introducing nonlinear factors. For instance, in track and field 
movement recognition, ReLU can distinguish between the force application stage of 
athletes, maintaining the original value of positive input and setting the negative input to 
zero during the relaxation stage, thereby capturing the dynamic changes of movements. 

The basic framework of CNN consists of a convolutional level, a pooling level, and a 
fully linked level. The convolutional layer performs convolution operations on input data 
by sliding a convolution kernel, which can extract local features of the data (Chen et al., 
2021). The pooling layer performs dimensionality reduction on the characteristics output 
by the convolutional layer, thereby simplifying the calculation. The most frequently 
employed pooling operations are max pooling and average pooling. The function of the 
fully linked level is to map the characteristic vector processed by the pooling layer to 
category labels, thus achieving classification or recognition of input data. 
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2.3 Long short-term memory network 

LSTM is a special type of RNN, primarily designed to solve the problem of vanishing 
gradients in long sequence training (Ullah et al., 2021). Compared to RNN having only 
one transmission state ht LSTM has two transmission states, a cell state Ct and a hidden 
state ht. LSTM adopts gated output methods, namely the input gate, forget gate, and 
output gate. Taking the memory cell at time t as an example, the input of the memory cell 
at time t is xt and ht–1 passed down from the previous state. The two input  
data sequentially enter the forget gate, input gate, and output gate to obtain states 

,  ,  ,  .f i o
tz z C z  The two input data first enter the forget gate to obtain the information to 

be discarded zf, with the calculation equation as follows. 

[ ]( )1,f
f t t fz σ W h x b−= +  (1) 

Then it enters the input gate to obtain the information to be updated zi and the current  
cell state Ct, shown in equation (2) and equation (3) respectively, where 

1tanh( [ , ] ).t c t t cC W h x b−= +  

[ ]( )1,i
i t t iz σ W h x b−= +  (2) 

1
f i

t t tC z C z C−= ⋅ + ⋅   (3) 

Then through the output gate to determine which will be used as the current state for 
output, and respectively obtain Ct and ht information. Finally perform the storage 
operations in equation (4) and equation (5) and input into the next neuron. 

[ ]( )1,o
o t t oz σ W h x b−= +  (4) 

( )tanho t
th z C= ⋅  (5) 

In summary, this change in network structure allows LSTM to perform better in longer 
sequences. 

3 Design of an adaptive selection mechanism for multi-modal sensor data 
based on mutual information 

Multi-modal sensors can capture various information of track and field athletes during 
their movement, including acceleration, angular velocity, physiological signals, etc., 
providing a rich data source for movement skill recognition. These data sources are not 
only numerous but also diverse in types, jointly forming a multi-dimensional information 
space for track and field movement skill recognition. However, due to the complexity and 
redundancy of multi-modal data, how to effectively extract sensor data useful for 
classification tasks from the data has become a hotspot and challenge in current research. 
The complexity of multi-modal data is reflected in aspects such as large information 
dimensions and complex correlations, while redundancy means that the data contains 
information with little contribution to classification tasks. Therefore, how to perform 
reasonable sensor data selection to extract the most representative sensor data subset is a 
problem to be solved in current research. 
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Current research neglects the correlations between different recognition tasks, which 
to some extent limits the efficiency and accuracy of sensor data selection. To address the 
above issues, this chapter suggests an adaptive selection approach for multi-modal sensor 
data based on mutual information (Hoque et al., 2014). By calculating the mutual 
information of different sensor combinations under different movement skill categories, 
sensor combinations providing maximum information correlation are selected to improve 
the efficiency and accuracy of data fusion. In addition, by statistically selecting the sensor 
combinations with the highest occurrence frequency, more reliable and effective 
combinations are further selected to provide a more reliable basis for track and field 
movement skill recognition. 

Traditional research uses all sensor combinations as input for movement skill 
recognition. However, not all sensor modalities provide beneficial information; they may 
even interfere with each other, affecting the final recognition performance. Specifically, 
each sensor modality has its unique operating principle and range of application. For 
example, accelerometers are good at capturing dynamic motion information, while 
gyroscopes are more sensitive to body rotation and tilt. However, when all sensor data are 
simultaneously input into the recognition system, inconsistencies and redundancies 
between the data may lead to a decline in recognition performance. In addition, excessive 
input data can also increase the system’s computational load, reduce real-time 
performance, and even introduce noise and interference signals. Therefore, to avoid data 
redundancy and excessive complexity, it is necessary to select sensor data combinations 
that are highly related to track and field movement skill types. At the same time, by 
adopting data selection and fusion strategies, the effective utilisation rate of sensor data 
can be improved, thus increasing recognition accuracy and efficiency. 

Assume there are multiple sensor data X1, X2, …, Xn and track and field movement 
skill recognition target variables C. C has M possible values C1, C2, …, CM. It is 
necessary to calculate the marginal probability of features belonging to the target 
variable, and also determine the joint probability between sensor data. This can provide 
key information about the association between sensor data and the target variable, as well 
as the interdependencies among the sensor data. Conditional mutual information is used 
to quantify the correlation between multiple sensor data under the track and field 
movement skill recognition target variable as shown below. 

( ) ( )

( )
( ) ( ) ( )

1 1 2 2

1 2 1 2

1 2

1 2

, , ..., | ... , , ..., |

, , ..., |
log

| ... | ... |

n n

n M n M
x X x X x X

n M

M M n M

I X X X C C p x x x C C

p x x x C C
p x C C p x C C p x C C

∈ ∈ ∈

= = =

=
×

= × × = × × =

  
 (6) 

where I(X1, X2, …, Xn | C = CM) represents the joint conditional mutual information 
between sensor data X1, X2, …, Xn under a given category; p(x1, x2, …, xn | C = CM) 
represents the joint probability that sensor data x1, x2, …, xn takes the value CM under the 
category X1, X2, …, Xn; p(xn | C = CM) represents the marginal probability that sensor data 
X takes the value xn under the category CM. 

For a multimodal sensor data set and a movement skill recognition target variable, it 
is typically necessary to calculate the mutual information between sensor data to assess 
their correlation. The magnitude of mutual information directly reflects the degree of 
correlation between data. When the mutual information value is larger, it indicates a 
tighter correlation between the data and a stronger information dependency between 
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them. In short, the size of mutual information can serve as an important indicator to 
measure the strength of correlation among sensor data. 

!( , )
!( )!

nQ n v
v n v

=
−

 (7) 

where n is the total amount of sensors, and v is the amount of sensor variables included in 
each combination. 

{ } { } { } { } { }{ }1 1 2 1 3 1( ) , ..., , , , , , ..., , , ...,n n nD S X X X X X X X X S−=  (8) 

where {Xi} is a single-sensor subset, and {Xi, Xj} is a dual-sensor feature combination 
subset, S represents the set containing all sensors themselves. Pairwise conditional 
mutual information measures the amount of information shared between any two sensor 
variables under a given category; correspondingly, it measures the amount of information 
shared between all sensor data under a given category. 

To find the maximum value among these combination conditional mutual 
information, it is necessary to calculate the mutual information between all possible pairs 
of sensor data and select the largest value to determine the most informative combination. 

( ) ( ), ..., arg max ; ...; |i j M
i j

i j I X X C C∗ ∗
≠

= =  (9) 

where I(Xi; …; Xj | C = CM) denotes the combination mutual information between sensor 
data under the given category CM. This is the combination index of the maximum feature 
under the given category, which is determined by traversing all combinations of sensor 
data pairs and comparing their mutual information values. 

After computing the maximum mutual information between sensor data and the 
corresponding feature indices for each category, the most representative sensor data 
combination for each category is obtained. A simplified sensor data combination will 
more efficiently process data, improve recognition accuracy, and enhance recognition 
performance. 

4 Track and field sports skill recognition based on multimodal sensing 
data 

4.1 Multi-modal sensor feature extraction based on ConvLSTM 

Based on the selection of key multimodal sensor data in the previous chapter, this paper 
proposes a athletics skill recognition method based on multimodal sensor data according 
to the characteristics of acceleration, angular velocity, electromyography signals, and 
other multimodal sensors. The overall framework consists of five parts: the input level, 
characteristic extraction level, feature fusion layer, and athletics skill recognition layer, as 
indicated in Figure 1. First, a ConvLSTM method is designed to extract spatiotemporal 
behaviour features from multimodal sensors, divided into the CNN and LSTM parts to 
extract spatial and temporal features from multimodal sensors. Then, a reasonable  
cross-combination of different sensor feature vectors is achieved, avoiding the enormous 
computational load generated by tensor fusion methods (Borsoi et al., 2024) by utilising 
the interaction of multimodal feature vectors, thereby achieving sensor fusion at the 
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feature level to generate a consistent explanation for overall recognition. The feature 
vector after cyclic matrix fusion is input into the dropout level and the fully linked level, 
and finally, the softmax function is adopted to calculate the score for each category of 
athletic skills in the output classification layer. The action with the highest score is 
recognised as the acknowledged athletic skill. 

Common CNN and LSTM-based methods can automatically extract behavioural 
features from multimodal sensors, then perform self-learning and optimisation of model 
parameters via neural network gradient descent and backpropagation techniques, 
achieving good recognition performance. However, CNN does not further process the 
hidden temporal information, neglecting the continuity of human behaviour. LSTM lacks 
integration of sensor data, leading to relatively slow algorithm operation speed. To 
address the above issues, a ConvLSTM-based feature extraction method using deep 
learning is designed. The ConvLSTM method combines CNN and LSTM, leveraging the 
advantages of CNN in handling behavioural features and LSTM in managing temporal 
dependencies. 

First, a one-dimensional convolution operation captures the temporal signal structures 
within the convolution kernel window, and CNN obtains the key behavioural features of 
multimodal sensor signals. The convolutional arithmetic is as follows. 

1 1

( ) ( )
D N

i d d
d n

C f x i n k n
= =

 
= +  

 
  (10) 

where N is the length of the convolution kernel, D is the depth of multimodal sensor data 
and convolution kernel, kd(n) is the nth weight in the dth depth of one-dimensional 
convolution kernel, xd(i) is the ith element of multimodal sensor signals at depth d, Ci is 
the ith feature obtained through convolution of multimodal sensor data, and f(∙) represents 
the activation function. The feature size after going through the pooling layer to reduce 
the tensor dimension in the network is as follows. 

1 2 1i
i

L N PL
S

− − += +  (11) 

where Li is the feature length of the current ith layer, P is the padding size, and S is the 
stride. Through three convolution and pooling operations, low-dimensional high-level 
features with temporal characteristics are generated, and then the behavioural features 
processed by CNN are input to LSTM in temporal order. 

Two-layer LSTM captures temporal domain information on contextual associations 
between different signal frames. Through the gating mechanism, behavioural information 
is selectively preserved from the CNN-extracted features in accordance with equation (1) 
to equation (5), to achieve better temporal activation of the multi-modal sensor signal 
features and obtain spatio-temporal features relevant for motor skill recognition, thus 
achieving spatio-temporal feature learning. 

In summary, the ConvLSTM feature extraction method avoids the missing temporal 
characteristics of CNN and the problems of LSTM under long-term sequences. It can 
shorten the spatio-temporal feature extraction time and can also be separately applied to 
feature extraction of multi-modal sensors. 
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Figure 1 Track and field skills recognition process based on multimodal sensor data 
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4.2 Multi-modal sensor feature fusion based on circular matrices 

The spatio-temporal feature vectors extracted from multi-modal sensors by the 
ConvLSTM method require further feature-level fusion (Piechocki et al., 2023). In deep 
learning-based feature-level fusion, how to integrate multiple signal features to obtain 
appropriate feature maps has become a key research issue. To fully utilise the mutual 
influence between elements of multi-modal sensor features, a circulant matrix method is 
proposed to handle feature interaction. The fusion method based on circulant matrices 
conducts in-depth analysis of multi-modal sensor fusion information and can further 
improve performance compared to other methods. 

To enable feature interaction among multi-modal sensor feature vectors to obtain all 
reasonable correlations, and at the same time address the problem of overly large fusion 
vectors in traditional tensor fusion methods which are difficult to train, and thereby 
achieve more robust and accurate behaviour recognition results. Through the feature 
vectors and matrix multiplication method, a circulant matrix-based fusion method is 
designed to extract useful feature interaction terms from motion information, achieving 
multi-sensor feature fusion. 

Assume that the dimension of multi-modal sensor feature vectors is N. Following 
reference (Wu et al., 2024) a feature right circulant matrix is built. The single-modal 
sensor feature vector a is shifted by one element each time to generate multiple vectors, 
and these vectors are combined into a circulant feature matrix A (in the same way, 
another modal sensor feature vector g can be used to construct G). The behavioural 
information included in the circulant matrix is determined by a. Introducing A allows the 
elements in the feature vectors a and g to interact with each other in all possible ways. 

1 2 3

1 2 1

1 1 2

2 3 4 1

...
( ) ...

...

N

N N
N

N N N

a a a a
a a a a

A Circul a Ra a a a

a a a a

−

− −

… 
 
 
 = = ∈
 
 
  

    
 (12) 

Each row of the N-order circulant matrix A is the result of sequentially shifting the 
acceleration feature vector a to the right by one element, thereby ensuring that  
matrix multiplication can obtain all of the feature interactions of sensors across  
different-modalities to fully fuse the multi-modal feature vectors. 

After reshaping the feature vector into a circulant matrix, multiplying the multi-modal 
feature vector g with matrix A can explore the relationship among the multi-modal sensor 
features. To ensure that the feature interaction f and the multi-modal sensor features play 
the same role in behaviour recognition and avoid the influence of different numerical 
ranges, the fused feature interaction f needs to be normalised, as shown below. 

1 1 2 1 3 2

2 1 1 2 3 3

3 1 2 2 1 3 4

1 1 2 2 3 1

1 1

N N N

N N
T

N

N N N N

a g a g a g a g
a g a g a g a g

f A g a g a g a g a g
N N

a g a g a g a g

−

− −

+ + + 
 + + + 
 = = + + +
 
 
 + + + ⋅⋅⋅ 






 (13) 
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Each feature crossover item of a and g is contained in f. Finally, the one-dimensional 
behaviour features of the multi-modal sensors are introduced into the fused features. The 
three feature vectors a, g, and f are concatenated to obtain the final fused feature vector 
fusion. 

3( , , ) N

a
fusion Concat a g f g R

f

 
 = = ∈ 
  

 (14) 

As shown in the above equation, the dimension of the final fused feature fusion is 
reduced from (N + 1)2 in the two-dimensional tensor fusion method to 3N, thus 
maintaining control over the feature dimensions. Since no new parameters are introduced 
in the circulant matrix multiplication operation, the parameters of the fusion model are 
effectively controlled, reducing the difficulty of training. 

4.3 Motor skill recognition and loss function 

Following characteristic extraction, a classification module projects the high-dimensional 
action features into a low-dimensional space for athletic movement recognition. The 
multidimensional features are vectorised and subsequently transformed through a stacked 
neural network structure. The output of the jth neuron in the neural network is as follows, 
where fusioni represents the ith input, ωij is the weight of the ith output of the jth neuron, 
and θ is the bias. 

1

n

j ij i
i

y f θ ω fusion
=

 
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 
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The final motion skill recognition output unit requires a softmax function for numerical 
processing. The softmax output represents the relative probability between different 
categories, and motion skill recognition is obtained in light of the output scores produced 
by the softmax level. The softmax score for the ith action is as follows. 
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 (16) 

Identifying motion skills from different track and field actions is a binary classification 
problem. The cross-entropy loss function is selected as the classification loss function, as 
shown below. 

( )2
1 1

1 log( ) )1 () (
z

j

v

i

Loss y y y χl
v = =

= − + − +   φ  (17) 

where y is the real label of the input sample, y  is the predicted label of the model, v is 
the size of the sample in the batch, z is the number of categories, l2(φ) is the regularisation 
term, and χ is its coefficient. The cross-entropy loss operation can directly assess the 
difference among model predictions and real labels, effectively solve the gradient 
vanishing problem, and performs well in classification problems. 
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5 Experimental results and analyses  

This article uses the 5,397 track and field motion dataset collected in Zhang (2023). This 
dataset integrates multiple sensors such as IMU, pressure sensor, heart rate belt, and so 
on. The dataset is classified into the training set, validation set, and test set at a ratio of 
8:1:1. The track and field motion skill categories include running, jumping, throwing, and 
race walking. The method was deployed on an Ubuntu 18.04 operating system with an 
NVIDIA GTX 1080Ti for experimentation, with a GPU memory size of 12 GB. The CPU 
used is an Intel Core i7-9700K, with a CPU memory size of 32 GB. The neural network 
model is built using the PyTorch deep learning framework, the compilation environment 
is PyCharm, the programming language is Python, and the dependencies include numpy, 
opencv, torchvision, etc. The batch sample size for the experiment is 100, and the number 
of iterations is set to 200, and it is reduced to half of the current value every 50 iterations. 
During the training process, the learning rate of the optimiser is set to 0.0016, the 
momentum value is set to 0.9, and the weight decay is set to 10–4. 

Figure 2 Comparison curve of recognition accuracy and loss function (see online version  
for colours) 
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The identification accuracy and loss function comparison curve of the proposed method 
MConvLSTM for four track and field motion skill types are shown in Figure 2. As can be 
seen from Figure 2, jumping motion skill types have better recognition capability than 
throwing motion skill types. This is because the characteristics of jumping motion are 
easier to identify. The recognition accuracy of various methods for throwing motion skill 
types is relatively low, as the action amplitude of throwing is smaller compared to 
jumping. Additionally, MConvLSTM can better distinguish between various track and 
field motion skill types, with a more stable model training process and faster convergence 
of the loss function. 

For ease of analysis, this article selects WSA-DCNN (Hsu et al., 2019), MLCNNwav 
(Dahou et al., 2023), MFLSTM (Lee et al., 2024) as comparative methods, and the 
evaluation metrics selected are recognition accuracy (A), Macro_Precision (Macro_P), 
Macro_Recall (Macro_R), Macro_F1 (Zhang, 2022). The comparison of recognition 
accuracy for various track and field motion skill types among different methods is shown 
in Table 1. The average recognition accuracy of MConvLSTM for various track and field 
motion skill types is 94.17%, while the average recognition accuracy of WSA-DCNN, 
MLCNNwav, and MFLSTM are 82.79%, 84.13%, and 89.45%, respectively. The average 
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recognition accuracy of MConvLSTM is 4.72%–11.38% higher than that of the baseline 
methods, indicating higher recognition accuracy. 
Table 1 Accuracy rate of identifying various types of track and field skills 

Method WSA-DCNN MLCNNwav MFLSTM MConvLSTM 
Running 81.93 87.31 89.55 93.72 
Jumping 84.61 82.54 91.68 96.59 
Throwing 80.94 82.27 88.34 91.36 
Race walking 83.66 84.39 88.23 95.02 

The Macro_P, Macro_R, and Macro_F1 indicators for different methods are compared in 
Table 2. The Macro_P and Macro_R of MConvLSTM are 94.18% and 92.63%, 
respectively, which are improved by 12.23% and 12.32% compared to WSA-DCNN, and 
by 7.69% and 9.07% compared to MLCNNwav, and by 5.76% and 2.25% compared to 
MFLSTM. Comparing Macro_F1, MConvLSTM is improved by 12.28%, 8.41%, and 
4.01% compared to WSA-DCNN, MLCNNwav, and MFLSTM, respectively.  
WSA-DCNN requires multi-scale decomposition of the number of motion sensors 
through wavelet transform, generating subbands of different frequencies. This process 
significantly increases the data dimension, causing CNN to process more feature maps 
and exponential growth in computational workload, hence the recognition efficiency is 
lower than that of the other three methods. MLCNNwav is a recognition model based on 
multi-scale CNN. Although it considers multi-modal sensor features, it does not consider 
their temporal features, so the recognition accuracy is lower than that of MConvLSTM. 
MFLSTM proposes a four-layer hybrid LSTM recognition model. Although it considers 
the temporal features of multi-modal sensors, its ability to process original sensor signals 
is poor, so the recognition performance is lower than that of MConvLSTM. Compared to 
the CNN and LSTM methods, MConvLSTM can better handle the spatiotemporal 
behaviour information in sensor data. It uses convolution to extract features from raw 
signals and then further processes temporal features using an LSTM model, thereby 
enhancing the recognition effects. 
Table 2 Recognition performance indicators of different methods 

Method WSA-DCNN MLCNNwav MFLSTM MConvLSTM 
Macro_P (%) 81.95 86.49 88.42 94.18 
Macro_R (%) 80.31 83.56 90.38 92.63 
Macro_F1 (%) 81.12 84.99 89.39 93.40 

The comparison of identification times for different methods is shown in Figure 3. 
MConvLSTM demonstrates significant advantages in the recognition of athletics 
movement skills. The shortest recognition time for MConvLSTM is 4.37 ms, while the 
shortest recognition times for WSA-DCNN, MLCNNwav, and MFLSTM are 6.05 s and 
7.42 s, respectively. Compared to two literature methods, the shortest recognition times 
for athletics foul action recognition are 10.19 ms, 7.47 ms, and 6.05 ms, respectively. 
This indicates that MConvLSTM has a higher computational efficiency and recognition 
speed when handling athletics movement skill recognition tasks. MConvLSTM can 
significantly shorten the time required for the recognition process while maintaining high 
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recognition accuracy, thus improving the real-time and application efficiency of the 
proposed method. 

Figure 3 Comparison of recognition times for different methods (see online version for colours) 
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6 Conclusions 

Accurate recognition of athletics movement skills is a core part of scientific training and 
performance improvement. To address issues such as information redundancy, 
inadequate feature extraction from sensors, and low recognition accuracy in current 
research, this paper proposes an athletics movement skill recognition method based on 
multimodal sensor data. First, a multimodal sensor data adaptive selection mechanism 
based on mutual information is proposed. By calculating the mutual information of 
different sensor combinations under different movement skill categories, the sensor 
combinations that provide the maximum information correlation are selected, thereby 
improving the efficiency and accuracy of data fusion. Then, CNN is combined with 
LSTM for multimodal sensor feature extraction, and a multi-sensor feature fusion method 
based on a recurrent matrix is proposed, achieving effective fusion of behaviour features 
from multimodal sensors. Finally, the integrated characteristic vector is input into a fully 
connected layer, and the softmax function is used to compute the scores for each category 
of athletics movement skills from the output classification layer. Experimental outcome 
implied that the suggested approach achieves an average recognition accuracy of 94.17% 
for various athletics movement skill types, with the shortest recognition time of 4.37 ms, 
enabling accurate and real-time recognition of athletics movement skills. 

In summary, the proposed method in this paper demonstrates good recognition 
performance. However, due to the limited knowledge and time available, the analysis of 
many situations is not thorough enough, and further research is needed. 
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1 For redundant information in multimodal heterogeneous sensor data, adaptive 
selection based solely on mutual information is insufficient. An attention mechanism 
could be introduced to focus on the main behavioural features of multimodal data, 
thereby ignoring unnecessary information redundancy. 

2 This paper only utilises multimodal sensor data. In the future, more heterogeneous 
information, such as depth images and skeletal data, could be incorporated to further 
improve the accuracy of athletics movement skill recognition. 
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