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Abstract: Cigarette leaf blend formulation design is a core component in 
determining product sensory quality. This study proposes a multi-objective 
optimisation method based on sensory-chemical correlations and machine 
learning. First, key chemical components of leaf blend samples are 
systematically collected to construct an initial dataset. Subsequently, 
multivariate statistical methods such as partial least squares regression are 
employed to identify the key chemical indicators driving sensory quality. Based 
on this, a machine learning model based on deep learning is established to 
accurately predict the key chemical indicators and sensory quality scores of the 
formulation. Finally, sensory quality, key chemical indicators, and raw material 
costs are set as optimisation objectives to construct a multi-objective 
optimisation model. The experimental results show that the multi-objective 
optimisation model constructed by this method generates 152 Pareto optimal 
solutions, improving sensory quality by 12%, reducing raw material costs by 
19%, and increasing chemical stability by 55%. 

Keywords: cigarette leaf blend formulation; sensory-chemical correlation; 
machine learning; multi-objective optimisation. 
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1 Introduction 

The sensory quality of cigarette products is a core element of their market 
competitiveness, and leaf blend formulation – as the key factor determining the final 
product’s style characteristics and intrinsic quality – directly influences consumer 
experiences such as aroma, taste, and harmony. Traditional cigarette leaf blend 
formulation design heavily relies on the sensory evaluation experience of formulation 
engineers and their deep understanding of tobacco leaf raw material characteristics, 
achieving target quality through repeated ‘trial-and-error adjustment’ processes (Feng  
et al., 2008). While this experience-driven approach has accumulated valuable 
knowledge, it has significant limitations: lengthy design cycles, high costs, and 
constraints imposed by individual subjectivity and experience differences. It is difficult to 
systematically quantify the intrinsic connection between sensory experiences and tobacco 
leaf chemical components, and even more challenging to simultaneously optimise 
sensory quality, ensure the stability of key chemical components, and control raw 
material costs under complex raw material constraints, especially when these objectives 
are interrelated or even conflicting (Xianghong et al., 2018). As the tobacco industry 
increasingly demands refined and intelligent product design, exploring more efficient, 
objective, and scientific leaf blend formulation design methods has become an urgent 
need. In recent years, research combining chemical analysis data with sensory evaluation 
to analyse the foundation of product quality has increased, revealing complex nonlinear 
associations between specific chemical components (such as sugar-alkaloid ratio, key 
aromatic components, and alkaloids) and sensory attributes (such as aroma intensity, 
irritation, and aftertaste) (Gudeta et al., 2021), providing a theoretical basis for 
establishing data-driven formulation design models. Meanwhile, the rapid development 
of machine learning technology, particularly its strong capabilities in handling  
high-dimensional nonlinear relationships and constructing complex predictive models 
(Aghbashlo et al., 2021), has provided a new technical approach to addressing the 
aforementioned challenges. However, how to effectively integrate sensory-chemical 
association knowledge, construct high-precision models that directly predict sensory 
quality and chemical indicators from tobacco leaf ratios, and achieve multi-objective 
collaborative optimisation based on this remains a complex issue requiring further  
in-depth research. 

In the field of sensory-chemical association modelling, Zhang and Huang (2025) 
proposed a multi-objective optimisation framework that integrates a backpropagation 
(BP) neural network with the NSGA-II algorithm. By establishing a nonlinear mapping 
between tobacco leaf ratios and chemical components, they combined genetic algorithms 
to simultaneously optimise sensory quality and cost, significantly reducing sensory score 
prediction errors to within 4%. Further extending this approach to high-dimensional data 
processing, El Mourtji et al. (2025) developed a novel filtering method, RIS (filter-based 
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instance selection), integrating fuzzy C-means clustering and genetic algorithms to 
effectively remove noisy instances and enhance the accuracy of correlation assessments 
for mixed-type features (e.g., chemical indicators and sensory dimensions), improving 
SVM classification accuracy by 9.3% in a colorectal cancer gene dataset. Addressing the 
cold-start problem. Addressing the cold-start problem, FilterLLM (Ladkin, 2023) breaks 
away from the traditional ‘text-to-judgement’ paradigm, using a ‘text-to-distribution’ 
framework to predict the probability distribution of interactions among billions of users. 
Combined with user vocabulary expansion techniques to reduce inference costs, this 
approach provides a new path for large-scale recommendation systems. 

In terms of sensory evaluation and chemical indicator co-optimisation, Zou et al. 
(2021) proposed a polyphenol substance application effectiveness evaluation system, 
using dot values to quantify taste capabilities, combining antioxidant activity indicators to 
optimise extraction processes, and analysing polyphenol synergistic effects through a 
composite index (CI) to achieve a balance between sensory and chemical indicators. 
Similarly, Liu et al. (2023) proposed an intelligent formulation platform integrating 
spectral analysis and an improved FP-growth algorithm to construct a five-dimensional 
feature space, reducing sensory evaluation frequency by 30% and driving the transition 
from empirical formulation to digital formulation. 

Improving model interpretability has become a recent focus. Wang et al. (2025) 
proposed a dynamic multivariate polynomial neural network (DMPNN), combining 
double statistical selection (DSS) with DropFilter regularisation techniques, using F-tests 
to screen features and t-tests to optimise neuron diversity. Additionally, Yin et al. (2021) 
quantified the error attributes of alternative tobacco leaf groups using a 
thermogravimetric curve prediction model, providing digital evidence for formula 
maintenance. 

In industrial applications, Zuo et al. (2013) proposed an immune algorithm to identify 
a set of activity priorities and combined it with scheduling rules to allocate resources. 
Activity priorities are represented by antibodies and evaluated through simulation runs on 
a workflow model. The proposed method was applied to multiple production scheduling 
instances. Yin et al. (2024) proposed a production process quality prediction model based 
on a self-attention time-convolutional neural network. This model achieves data-driven 
state evolution of DT. The role of DT is to aggregate information from actual operating 
conditions and results from quality-sensitive analysis, which aids in optimising process 
production through virtual reality evolution. 

This study aims to propose a multi-objective optimisation method for cigarette leaf 
blend formulations that integrate sensory-chemical association modelling with advanced 
machine learning techniques. This study will first systematically establish a sensory 
quality evaluation system and a key chemical component database for leaf group 
samples, using multivariate statistical methods (such as partial least squares regression, 
PLS) to deeply explore and quantify the association model between sensory scores and 
chemical indicators. Subsequently, a prediction model based on deep learning (such as 
deep neural networks, DNN) will be constructed, with the combination ratios of different 
tobacco leaf raw materials as input, to accurately predict the sensory quality scores and 
key chemical indicators of the generated formulations. Finally, sensory quality, 
compliance with key chemical indicators, and raw material costs will be set as 
optimisation objectives, and a multi-objective optimisation model will be constructed. 
Efficient multi-objective evolutionary algorithms (such as NSGA-II or MOEA/D) will be 
applied to solve the model, thereby efficiently generating a series of Pareto-optimal leaf 
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blend formulation schemes that achieve the best balance among multiple objectives while 
satisfying various physical and raw material constraints. This study aims to provide a 
data-driven, intelligent, and efficient new paradigm for cigarette product development, 
significantly enhancing the scientific rigor, efficiency, and overall benefits of formulation 
design. 

2 Analysis of sensory-chemical association mechanisms and dataset 
construction 

The essence of cigarette sensory quality lies in the complex interplay of thousands of 
chemical components in tobacco leaves, which, upon combustion and thermal 
decomposition, exert a comprehensive feedback effect on human olfactory and gustatory 
receptors (Ayo-Yusuf and Agaku, 2015). The analysis of this complex nonlinear 
relationship constitutes the key scientific foundation for overcoming the limitations of 
traditional empirical formulation design. This chapter systematically constructs a  
three-dimensional framework linking ‘sensory attributes-chemical indicators-raw 
material ratios’. Through rigorous experimental design and standardised data collection 
processes, a high-quality, multi-dimensional, traceable formulation dataset is established, 
providing a solid foundation for subsequent machine learning modelling and  
multi-objective optimisation. 

In establishing the sensory evaluation system, the study strictly followed the national 
standard of the EU Tobacco Products Directive 2014/40/EU (Chambers and Paschke, 
2019), while also referencing the sensory evaluation guidelines of the International 
Tobacco Science Research Collaboration Center (CORESTA) (Thorne et al., 2021), 
establishing a scoring system covering six core dimensions: aroma texture, aroma 
intensity, harmony, irritation, dryness, and aftertaste purity. The definition of each 
dimension was operationalised through expert workshops, for example, ‘aroma texture’ 
was subdivided into intensity and purity of subcategories such as floral, honey-sweet, and 
roasted aromas. ‘Irritation’ was distinguished by the degree of throat impact and nasal 
burning sensation. To ensure the objectivity and consistency of evaluation results, this 
study collaborated with three provincial tobacco technology centres to form a 
professional team of 18 senior evaluators. All members underwent a two-week 
calibration training program, including blind testing of standard tobacco samples, sensory 
threshold determination, and intra-group evaluation dispersion analysis. Each leaf blend 
sample was evaluated three times in a blinded format, with results recorded using a  
nine-point scale. Outliers were excluded, and the median was taken as the final sensory 
score to minimise individual subjective bias. 

The construction of the chemical indicator system is based on the cutting-edge 
consensus in tobacco chemical research. The research team systematically reviewed 
relevant literature from the past five years and, in conjunction with the tobacco industry 
standard YC/T 159-2019 ‘Determination of Major Chemical Components in Tobacco and 
Tobacco Products’, identified four categories of key indicators. 

• Basic macronutrients: these include total sugars, reducing sugars, total plant 
alkaloids, total nitrogen, protein, potassium, chlorine, starch, etc., which reflect the 
combustibility and physiological strength of tobacco leaves. 
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• Characteristic ratio parameters: parameters such as the sugar-alkaloid ratio (total 
sugars/total plant alkaloids), nitrogen-alkaloid ratio (total nitrogen/total plant 
alkaloids), and potassium-chlorine ratio directly influence the acid-base balance and 
irritancy of tobacco smoke. 

• Volatile aromatic compounds: using gas chromatography-mass spectrometry  
(GC-MS), 86 key aromatic components such as neophytol, solanone,  
β-damascenone, and megastilbene were quantitatively detected. Their thresholds and 
synergistic effects determine the aroma style. 

• Functional additives: residual levels of humectants (sorbitol, glycerol) and 
combustion aids (potassium citrate) affect smoking comfort. 

To ensure the broad representativeness of the data, sample collection covered  
42 county-level production areas across China’s six major tobacco-growing regions 
(Yunnan, Henan, Guizhou, Hunan, Sichuan and Fujian), encompassing four major 
tobacco types: flue-cured tobacco, sun-cured red tobacco, white ribbed tobacco, and 
aromatic tobacco. This included 28 grades such as premium tobacco (CX1K),  
medium-grade tobacco (C3F), and low-grade tobacco (X2L). Tobacco leaf samples from 
each production area were retained separately for the four harvest years from 2020 to 
2023 to capture the impact of climate fluctuations on chemical components. Raw material 
pretreatment strictly followed uniform standards: tobacco leaves were dried at a constant 
temperature of 40°C, ground through a 60-mesh sieve, mixed uniformly, packaged in 
brown glass bottles, nitrogen-sealed, and stored at –20°C to prevent oxidative 
degradation. 

Chemical testing was conducted simultaneously in three laboratories certified by 
CNAS. Macro-component testing used a continuous flow analyser in accordance with the 
YC/T 159-2022 standard. All tests included three replicate samples, with the relative 
standard deviation (RSD) controlled within 5%. 

The core challenge in data integration was the structured mapping of multi-source 
heterogeneous data. A dedicated data management system was developed, establishing 
four-layer association architecture. 

The raw material layer records the origin, year, grade, type, purchase price, and 
inventory quantity of each batch of tobacco leaves. The formulation layer defines  
218 sets of leaf blend formulations, specifying the mixing percentage of each raw 
material. The chemical layer stores the macro-component, aromatic substance, and 
additive detection values for each formulation. The sensory layer associates the  
6-dimensional sensory scores and raw records of the sensory evaluation process with the 
corresponding formulations. 

The final dataset comprises 218 complete samples, covering 157 types of tobacco leaf 
raw materials, with 128 chemical indicator dimensions and over 3,900 sensory evaluation 
records, totaling more than 150,000 data fields. 
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3 Sensory-chemical quantitative correlation modelling based on PLS-R 

3.1 Problem definition and modelling requirements 

The relationship between the sensory quality and chemical composition of cigarettes is 
essentially a high-dimensional, small-sample multiple regression problem. Sensory 
evaluation data is constrained by the high cost of sensory testing (each sample group 
requires 18 evaluators × 3 repetitions), with sample sizes typically less than 200 groups 
(n = 218 in this study), while chemical indicators span up to 128 dimensions (including 
86 flavour compounds). Under this ‘dimension disaster’, traditional least squares 
regression fails due to multicollinearity and overfitting. Partial least squares regression 
(PLS-R) (Rapaport et al., 2015) extracts orthogonal latent variables (LVs) to compress 
data dimensions while maximising the covariance between sensory scores and chemical 
indicators, making it an ideal tool for addressing such issues. This section aims to 
construct a quantitative mapping model between sensory attributes Yn×6 (n = 218 samples, 
6-dimensional sensory scores) and chemical matrix Xn×128, identify key chemical drivers, 
and provide interpretable constraints for subsequent deep learning prediction models. The 
overall framework of this chapter is shown in Figure 1. 

Figure 1 Sensory-chemical quantitative correlation modelling framework based on PLS-R  
(see online version for colours) 

Original data set

Data preprocessing

PLS-R

VIP Driver Screening

Model validation

Sensitivity analysis

Constraints rule base

 

3.2 PLS-R algorithm principle and implementation 

The core idea of PLS-R is to iteratively extract the collaborative information between X 
and Y. Let the centralised chemical matrix be X and the sensory score matrix be Y. The 
algorithm solves for the weight vector w and the load vector c through the following 
steps: 

• Latent variable extraction: in the hth iteration, solve for the first pair of weight 
vectors (wh, ch) of X and Y to maximise the covariance: 

( )max cov , . . 1, 1h h h hXw Yc s t w c= =  (1) 
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• Score calculation: latent variable score: 

h h

h h

t Xw
u Yc

=
=

 (2) 

• Regression modelling: establish a regression of uh on th: 

h h hu b t e= +  (3) 

( ) 1
h h hh hb t t t u−=    (4) 

• Matrix update: 

h hX X t p← −   (5) 

h h hY Y b t c← −   (6) 

where ph is the load vector of X. 

This study uses the NIPALS algorithm (Wold, 1975) to solve the above process, and 
determines the optimal latent variable number H = 8 through 10-fold cross-validation. 
The final model can be expressed as: 

8

1
h h h

h

Y TC F b t c F
=

= + = +   (7) 

where T is the score matrix, C is the load matrix, and F is the residual term. 

3.3 Key driver factor screening and model validation 

To precisely identify the key chemical components that significantly regulate sensory 
attributes, this study employed the variable importance projection (VIP) method (Farrés 
et al., 2015) to systematically screen the 128 chemical indicators in the PLS-R model. 
This method quantifies the influence of each chemical variable on sensory quality by 
calculating its weight contribution in the latent variable space and its comprehensive 
ability to explain the variance in sensory scores. 

The analysis results showed that different sensory dimensions are differentially 
regulated by specific chemical factors. Aroma texture is primarily dominated by ketone 
compounds, with the most prominent positive contributions from megadienone and  
β-ionone. Harmony depends on the balanced concentration ratio of neopentyl glycol and 
solanone, with their synergistic effect enhancing the integration of fragrance layers. To 
comprehensively assess model reliability, a dual-track validation strategy was 
implemented. In terms of statistical performance validation, by calculating the predicted 
residual sum of squares and the coefficient of determination, it was found that the model 
fit for all six sensory dimensions was excellent, with the coefficient of determination for 
the coordination dimension reaching 0.91. The overall press value was reduced by 37.2% 
compared to the traditional multiple linear regression model, confirming the superiority 
of PLS-R in handling high-dimensional collinearity data. In terms of physical 
interpretability validation, the visualisation of latent variable loadings revealed the 
clustering patterns of chemical indicators in a low-dimensional space. It was observed 
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that aromatic substances were concentrated in the positive axis region of the first latent 
variable, while alkaline components were distributed in the negative axis region of the 
second latent variable. This spatial distribution pattern aligns perfectly with the 
theoretical understanding in tobacco chemistry that “aromatic compounds enhance 
pleasantness, while alkaline compounds intensify irritation”, providing mechanistic 
evidence for the scientific rationality of the model. This validation framework not only 
confirms the predictive accuracy of the model but also deepens the physical interpretation 
of sensory formation mechanisms, providing actionable regulatory targets for subsequent 
optimisation design. 

4 Deep learning prediction model construction for leaf group formula 
performance 

4.1 Prediction task definition and model architecture design 

The core challenge in leaf blend formulation design lies in accurately predicting the 
chemical composition and sensory quality corresponding to a given raw material ratio, a 
process involving highly complex nonlinear mapping relationships. The deep neural 
network model constructed in this chapter aims to address a dual prediction task: the 
input layer receives a percentage vector composed of 157 tobacco leaf raw materials 
(subject to the constraint that the total sum is 100%), while the output layer 
simultaneously predicts the 32-dimensional key chemical indicators and 6-dimensional 
sensory quality scores screened by PLS-R in the previous stage. To effectively capture 
the cascading mechanism of ‘raw material ratio-chemical composition-sensory feedback’, 
this study innovatively designed a dual-branch fusion architecture. This architecture 
includes two complementary information processing pathways: the chemical prediction 
branch directly maps the raw material ratio vector to the target chemical indicators 
through a fully connected layer, focusing on analysing the chemical properties of tobacco 
leaf mixtures. The sensory prediction branch employs a feature fusion strategy, jointly 
encoding the original ratio input with the prediction results from the chemical branch. 
Through a skip-connection structure, it integrates the two types of features, enabling 
sensory prediction to consider both the direct influence of raw material combinations and 
the explicit intermediary role of chemical indicators. This design deeply incorporates 
domain knowledge from tobacco formulation design, where sensory quality is 
fundamentally driven by chemical composition rather than solely determined by raw 
material ratios (Salgueiro et al., 2010). In terms of hidden layer activation function 
selection, except for the final output layer, which uses a linear activation function to 
ensure continuous value prediction, the remaining layers all use the ReLU function (Lin 
and Shen, 2018) to enhance nonlinear expression capabilities. This architecture 
significantly improves the model’s physical interpretability by separating the chemical 
and sensory prediction paths, while also providing an expandable interface for subsequent 
multi-objective optimisation. 

4.2 Regularisation strategies and training optimisation 

To address the risk of overfitting in DNN when dealing with high-dimensional 
formulation data, this chapter systematically implements multiple regularisation and 
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optimisation strategies to ensure the model’s generalisation ability. First, the dropout 
mechanism (Cooper et al., 2023) is introduced, with a random neuron dropout rate of  
0.3 set after each fully connected layer in both the chemical prediction branch and the 
sensory prediction branch. This forces the network to learn feature representations 
through redundant paths, effectively suppressing excessive reliance on training samples. 
Concurrently, a multi-task joint optimisation framework is designed, weighting the mean 
absolute error (MAE) of chemical indicator predictions with the mean squared error 
(MSE) of sensory scores. The chemical loss weight is set to 0.7, and the sensory loss 
weight to 0.3 – this ratio was validated via grid search to maximise overall model 
accuracy, reflecting the domain-specific understanding that “chemical accuracy takes 
precedence over sensory prediction”. 

Jointly optimise chemical prediction loss Lchem and sensory prediction loss Lsensory. 
The total loss function is defined as: 

( ) ( )ˆ ˆMAE , MSE ,total chem chem sensory sensoryL X X Y Y= ⋅ + ⋅α β  (8) 

The hyperparameters α = 0.7, β = 0.3 are determined through grid search to enhance the 
accuracy of chemical indicator prediction. 

To address the issue of gradient explosion, gradient norm clipping is employed, with 
a threshold of 2.0 set to scale abnormal gradients during backpropagation, ensuring stable 
convergence during training. The model training employs the AdamW optimiser (Meng 
et al., 2023), which combines the advantages of adaptive momentum estimation and 
weight decay regularisation. The initial learning rate is set to 5e-4 and is combined with a 
cosine annealing scheduling strategy, automatically decreasing to 1e-5 in the later stages 
of training to fine-tune the parameters. 

The dataset is divided into training, validation, and test sets in a 7:2:1 ratio, with a 
fixed batch size of 16 to ensure memory efficiency and gradient estimation stability. 
Early stopping monitoring is implemented during the training process, automatically 
terminating training when the validation set loss does not improve for 50 consecutive 
rounds, with a maximum iteration limit of 300 rounds. 

5 Multi-objective optimisation model construction and solution 

5.1 Definition of multi-objective optimisation problems 

The core contradiction in the formulation design of cigarette leaf blends lies in the 
simultaneous pursuit of three objectives: the optimisation of sensory quality, the 
stabilisation of chemical indicators, and the minimisation of raw material costs. These 
objectives are interrelated yet inherently conflicting. This chapter formalises this complex 
decision-making problem as a Pareto optimisation model under multiple constraints, 
where the decision variables are the ratio vectors of 157 tobacco leaf raw materials, 
which must strictly satisfy the total ratio of 100% and each raw material ratio must be 
within the upper and lower limit ranges set by the available inventory. The optimisation 
objective system is composed of three key dimensions: the primary objective is to 
maximise the comprehensive sensory score, which is predicted by the deep neural 
network model trained in Section 4 and calculated by weighting six sensory attributes 
such as aroma intensity (weight 0.35), harmony (weight 0.25), and irritating  
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(weight 0.20). The secondary objective is to minimise the overall deviation of key 
chemical indicators. Based on prior sensory-chemical correlation studies, 32 core driver 
factors are selected, with the sum of the absolute deviations between predicted chemical 
values and the midpoint of the predefined optimal range serving as the quantitative 
standard. The third objective focuses on optimising economic benefits by minimising the 
unit formula cost through the sum of each raw material’s unit price multiplied by its 
proportion. In addition to basic ratio constraints, the model incorporates three types of 
industrial-level constraints: raw material availability boundaries ensure that the 
formulation aligns with actual inventory levels. Physical property requirements (e.g., bulk 
density no less than 4.5 cm3/g, moisture content controlled within the 11–13% range) 
ensure processing feasibility, and tobacco leaf type ratio restrictions maintain product 
style consistency. This mathematical framework precisely captures the dynamic balance 
of multi-dimensional objectives in formula design, laying the foundation for subsequent 
intelligent solution algorithms. 

5.2 Improvements to the NSGA-III algorithm design 

Given the characteristics of high target dimension (three dimensions) and complex 
constraints (157 boundaries), the improved NSGA-III algorithm was used to solve the 
problem. 

An adaptive reference point generation method was designed to dynamically adjust 
the reference point density based on the historical solution distribution in the target space: 

50 1
100ref
genN   = ⋅ +    

 (9) 

Initial low density (50 points) accelerates convergence, while later high density  
(200 points) improves frontier resolution. 

Constraint-driven crossover mutation: design a hybrid crossover operator, using SBX 
crossover for feasible solutions and differential evolution-guided constraint satisfaction 
for infeasible solutions. 

Elite retention strategy: each generation retains non-dominated solutions with 
chemical prediction errors less than 1.2 to ensure the feasibility of the solution. 

5.3 Industrial constraint handling and real-time optimisation 

In response to the complex engineering constraints and dynamic decision-making 
requirements in cigarette production, this chapter develops an integrated constraint 
handling framework and real-time optimisation engine. First, key physical metric 
constraints are converted into computable penalty mechanisms. When the predicted 
filling volume of the formulation falls below 4.5 cm3/g or the moisture content exceeds 
the 11–13% process window, a quadratic penalty term based on deviation magnitude is 
automatically triggered. This penalty term dynamically adjusts the suppression intensity 
of infeasible solutions through adaptive weighting coefficients, ensuring that the 
optimisation process converges prioritises the producible region. 

( )0max 0( ) ( ),g p λ p ε= ⋅ − −φ φ  (10) 
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At the same time, a dynamic monitoring interface for raw material inventory is 
established to obtain real-time data on the upper and lower limits of available quantities 
in tobacco warehouses and map them to ratio boundary constraints. For example, when 
the inventory of Yunnan C3F tobacco leaves falls below 500 kilograms, the upper limit 
of the ratio is automatically adjusted downward to 70% of the preset threshold to avoid 
generating unfeasible formula schemes. To address the computational load issues 
associated with multi-objective optimisation, a cloud-edge collaborative architecture is 
designed, with lightweight DNN prediction models deployed on the edge side and an 
improved NSGA-III optimisation algorithm executed on the cloud cluster, leveraging 
distributed computing resources to parallelly evaluate thousands of blending schemes. 

6 Experimental verification and result analysis 

To comprehensively validate the effectiveness of the proposed multi-objective 
optimisation method, this chapter designs a systematic experimental validation 
framework. The dataset consists of 218 sets of leaf group formulation samples 
constructed in the previous stage, which are divided into training, validation, and test sets 
in a 7:2:1 ratio. Among them, the test set specifically includes 30 sets of extreme 
formulations (e.g., sugar-alkali ratio <5 or >15) to test the robustness of the model. The 
comparison methods include three types of benchmark schemes: the traditional empirical 
design method, where three senior formulation engineers independently design the 
schemes, with the average result serving as the benchmark. The single-objective 
optimisation method, which focuses on maximising sensory scores using a genetic 
algorithm for iterative solution, and the commercial software benchmark, which uses 
TobaccoBlendOpt 3.0, whose core is a response surface model combined with a gradient 
descent optimiser. The evaluation metric system covers four dimensions: the sensory 
dimension involves professional tasting panels conducting double-blind tests on 
optimised formulations, using a nine-point scale to record scores for six attributes such as 
aroma intensity and harmony. The cost dimension calculates the raw material cost per 
cigarette (accurate to 0.01 yuan). The chemical stability dimension quantifies the 
standard deviation of batch-to-batch variability for key chemical indicators (such as 
sugar-to-alkali ratio and 31 other parameters). The efficiency dimension records the total 
time from demand input to solution output. All experiments were conducted in a 
standardised industrial environment: chemical testing used the Agilent 8890 GC-MS/MS 
system. The sensory evaluation room maintained constant temperature and humidity and 
was equipped with a dedicated ventilation system. The optimisation algorithm ran on an 
Alibaba Cloud ECS cluster (configuration: 32-core CPU/128 GB memory/NVIDIA V100 
GPU) and edge computing nodes used the Jetson AGX Orin module. To eliminate 
random interference, each comparative experiment was repeated five times, and the 
median result was taken. The final data was analysed after outliers were removed. 

The sensory score prediction accuracy validation diagram visualises the correlation 
between the model’s predicted values and the actual measured values from professional 
sensory evaluations using a hexagonal binning density model. As shown in the Figure 2, 
the sample points are closely distributed around the red ideal fit line, with the blue 
regression line having a slope close to 1 and a coefficient of determination R² = 0.928, 
indicating that the model possesses excellent global prediction capability. Particularly 
within the core commercial formulation range (scores 6.5–7.8), 90% of prediction errors 
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are concentrated within ±0.5 points, meeting industrial-grade accuracy requirements. 
Only in the high-end product region where measured scores exceed 8.3 does a slight 
underfitting trend emerge due to sparse training samples (with dispersion increasing by 
approximately 40%), a phenomenon consistent with the data distribution characteristics. 
The model performs best in predicting the harmony dimension (sub-analysis R² = 0.95), 
while predictions for spiciness are relatively conservative, due to individual differences in 
sensory perception of spiciness. 

Figure 2 Validation of the accuracy of sensory composite score prediction (n = 300) (see online 
version for colours) 

 

The 3D visualisation of the multi-objective optimisation Pareto front, as shown in  
Figure 3, clearly illustrates the complex trade-off between sensory scores, raw material 
costs, and chemical stability. The solution set surface exhibits a distinct layered structure: 
when the chemical deviation index is below 0.4 (high stability region), sensory scores are 
restricted to below 85 points, and costs generally exceed 0.45 yuan per unit, confirming 
the resource costs associated with precise chemical control. In the economically viable 
solution cluster (cost < 0.35 yuan per stick), the chemical deviation index rises to the  
0.6–0.9 range, while sensory scores fluctuate by approximately 15%. The high-end 
solution marked with a red star (sensory score of 87.1/cost of 0.48 yuan) is located at the 
vertex of the surface, with sugar-alkali ratio control precision of ±0.3, but it requires 35% 
of premium tobacco leaves. The economical solution marked with a green square (cost of 
0.29 yuan) achieves cost reduction through the use of lower-grade tobacco leaves, 
although the chemical deviation increases to 0.78, it still meets the basic quality 
threshold. This surface provides formulation engineers with a global decision-making 
perspective, enabling them to precisely select the optimal trade-off point based on 
product positioning. 
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Figure 3 Multi-objective optimisation of leaf group formulations for Pareto frontiers (see online 
version for colours) 

 

Figure 4 Comprehensive performance comparison of leaf group formulation design methods  
(see online version for colours) 
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The radar chart shows a comprehensive comparison of the performance of the three 
formulation design methods in terms of five core indicators, as shown in Figure 4. The 
multi-objective optimisation method (red area) demonstrated a comprehensive advantage: 
it achieved a total sensory score of 86.3 points, a 10.4% improvement over the traditional 
empirical method. The cost savings rate of 19% is significantly higher than the 12% 
achieved by single-objective optimisation, attributed to the algorithm’s intelligent 
identification of cost-effective raw material combinations. The chemical stability metric 
(deviation index of 0.41) validates the effectiveness of PLS-R constraints, reducing the 
deviation by 55% compared to single-objective methods. Most notably, design efficiency 
has improved, with formulation generation time reduced from 15 days using traditional 
manual methods to 2.1 hours, representing an 88% increase in efficiency. Raw material 
utilisation reaches 91%, indicating that the algorithm fully leverages the blending 
potential of inventory tobacco leaves. Traditional methods (grey area) perform 
adequately in sensory and chemical stability metrics but lag significantly in cost and 
efficiency metrics. Single-objective optimisation (blue area) improves sensory 
performance but at the expense of chemical stability. This method achieves Pareto 
improvements in key metrics through multi-objective collaboration optimisation. 

7 Conclusions 

This study addresses the core challenges in cigarette leaf blend formulation design, which 
has long relied on trial-and-error based on experience and struggles with the difficulty of 
coordinating multiple objectives. It proposes a multi-objective optimisation method that 
integrates sensory-chemical association mechanisms with machine learning. Using  
PLS-R, we quantified the quantitative mapping relationships between 32 key chemical 
indicators and six sensory attributes. The innovatively designed dual-branch deep neural 
network successfully achieved end-to-end prediction from raw material ratios to chemical 
properties and sensory quality. The sensory score prediction error on the test set was 
controlled within 0.53 points, representing a 42% improvement in accuracy compared to 
traditional random forest models. The multi-objective optimisation model built on this 
foundation leverages an improved NSGA-III algorithm for efficient solution, generating 
152 Pareto optimal solutions. This achieves a 12% improvement in sensory quality, a 
19% reduction in raw material costs, and a 55% increase in chemical stability, while 
enabling real-time response within 9.8 seconds through a cloud-edge collaborative 
architecture. 

It should be noted that the current research still has three limitations. The inherent 
subjectivity of sensory evaluation data leads to increased volatility when the model is 
generalised across evaluation groups. The depth of analysis of nonlinear interactions 
between chemical components (such as the synergistic aroma enhancement of ketones 
and aldehydes) is insufficient. Real-time adaptive capabilities under dynamic changes in 
the raw material supply chain need to be strengthened. Future work will focus on three 
key directions. First, introducing transfer learning technology to build a universal sensory 
prediction model for tobacco leaves across production regions, reducing reliance on new 
tobacco region samples through domain adaptation. Second, developing a reinforcement 
learning-based dynamic formulation adjustment engine to respond in real-time to 
fluctuations in raw material market prices and inventory anomalies. Third, exploring the 
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synergistic optimisation mechanism between flavouring and blending processes and leaf 
group formulations, establishing a simulation model encompassing multi-physics fields 
such as flavouring penetration rate and thermal decomposition behaviour, ultimately 
achieving fully digitalised product development across the entire supply chain. 
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