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Abstract: Cigarette leaf blend formulation design is a core component in
determining product sensory quality. This study proposes a multi-objective
optimisation method based on sensory-chemical correlations and machine
learning. First, key chemical components of leaf blend samples are
systematically collected to construct an initial dataset. Subsequently,
multivariate statistical methods such as partial least squares regression are
employed to identify the key chemical indicators driving sensory quality. Based
on this, a machine learning model based on deep learning is established to
accurately predict the key chemical indicators and sensory quality scores of the
formulation. Finally, sensory quality, key chemical indicators, and raw material
costs are set as optimisation objectives to construct a multi-objective
optimisation model. The experimental results show that the multi-objective
optimisation model constructed by this method generates 152 Pareto optimal
solutions, improving sensory quality by 12%, reducing raw material costs by
19%, and increasing chemical stability by 55%.
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1 Introduction

The sensory quality of cigarette products is a core element of their market
competitiveness, and leaf blend formulation — as the key factor determining the final
product’s style characteristics and intrinsic quality — directly influences consumer
experiences such as aroma, taste, and harmony. Traditional cigarette leaf blend
formulation design heavily relies on the sensory evaluation experience of formulation
engineers and their deep understanding of tobacco leaf raw material characteristics,
achieving target quality through repeated ‘trial-and-error adjustment’ processes (Feng
et al, 2008). While this experience-driven approach has accumulated valuable
knowledge, it has significant limitations: lengthy design cycles, high costs, and
constraints imposed by individual subjectivity and experience differences. It is difficult to
systematically quantify the intrinsic connection between sensory experiences and tobacco
leaf chemical components, and even more challenging to simultaneously optimise
sensory quality, ensure the stability of key chemical components, and control raw
material costs under complex raw material constraints, especially when these objectives
are interrelated or even conflicting (Xianghong et al., 2018). As the tobacco industry
increasingly demands refined and intelligent product design, exploring more efficient,
objective, and scientific leaf blend formulation design methods has become an urgent
need. In recent years, research combining chemical analysis data with sensory evaluation
to analyse the foundation of product quality has increased, revealing complex nonlinear
associations between specific chemical components (such as sugar-alkaloid ratio, key
aromatic components, and alkaloids) and sensory attributes (such as aroma intensity,
irritation, and aftertaste) (Gudeta et al., 2021), providing a theoretical basis for
establishing data-driven formulation design models. Meanwhile, the rapid development
of machine learning technology, particularly its strong capabilities in handling
high-dimensional nonlinear relationships and constructing complex predictive models
(Aghbashlo et al., 2021), has provided a new technical approach to addressing the
aforementioned challenges. However, how to effectively integrate sensory-chemical
association knowledge, construct high-precision models that directly predict sensory
quality and chemical indicators from tobacco leaf ratios, and achieve multi-objective
collaborative optimisation based on this remains a complex issue requiring further
in-depth research.

In the field of sensory-chemical association modelling, Zhang and Huang (2025)
proposed a multi-objective optimisation framework that integrates a backpropagation
(BP) neural network with the NSGA-II algorithm. By establishing a nonlinear mapping
between tobacco leaf ratios and chemical components, they combined genetic algorithms
to simultaneously optimise sensory quality and cost, significantly reducing sensory score
prediction errors to within 4%. Further extending this approach to high-dimensional data
processing, El Mourtji et al. (2025) developed a novel filtering method, RIS (filter-based
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instance selection), integrating fuzzy C-means clustering and genetic algorithms to
effectively remove noisy instances and enhance the accuracy of correlation assessments
for mixed-type features (e.g., chemical indicators and sensory dimensions), improving
SVM classification accuracy by 9.3% in a colorectal cancer gene dataset. Addressing the
cold-start problem. Addressing the cold-start problem, FilterLLM (Ladkin, 2023) breaks
away from the traditional ‘text-to-judgement’ paradigm, using a ‘text-to-distribution’
framework to predict the probability distribution of interactions among billions of users.
Combined with user vocabulary expansion techniques to reduce inference costs, this
approach provides a new path for large-scale recommendation systems.

In terms of sensory evaluation and chemical indicator co-optimisation, Zou et al.
(2021) proposed a polyphenol substance application effectiveness evaluation system,
using dot values to quantify taste capabilities, combining antioxidant activity indicators to
optimise extraction processes, and analysing polyphenol synergistic effects through a
composite index (CI) to achieve a balance between sensory and chemical indicators.
Similarly, Liu et al. (2023) proposed an intelligent formulation platform integrating
spectral analysis and an improved FP-growth algorithm to construct a five-dimensional
feature space, reducing sensory evaluation frequency by 30% and driving the transition
from empirical formulation to digital formulation.

Improving model interpretability has become a recent focus. Wang et al. (2025)
proposed a dynamic multivariate polynomial neural network (DMPNN), combining
double statistical selection (DSS) with DropFilter regularisation techniques, using F-tests
to screen features and t-tests to optimise neuron diversity. Additionally, Yin et al. (2021)
quantified the error attributes of alternative tobacco leaf groups wusing a
thermogravimetric curve prediction model, providing digital evidence for formula
maintenance.

In industrial applications, Zuo et al. (2013) proposed an immune algorithm to identify
a set of activity priorities and combined it with scheduling rules to allocate resources.
Activity priorities are represented by antibodies and evaluated through simulation runs on
a workflow model. The proposed method was applied to multiple production scheduling
instances. Yin et al. (2024) proposed a production process quality prediction model based
on a self-attention time-convolutional neural network. This model achieves data-driven
state evolution of DT. The role of DT is to aggregate information from actual operating
conditions and results from quality-sensitive analysis, which aids in optimising process
production through virtual reality evolution.

This study aims to propose a multi-objective optimisation method for cigarette leaf
blend formulations that integrate sensory-chemical association modelling with advanced
machine learning techniques. This study will first systematically establish a sensory
quality evaluation system and a key chemical component database for leaf group
samples, using multivariate statistical methods (such as partial least squares regression,
PLS) to deeply explore and quantify the association model between sensory scores and
chemical indicators. Subsequently, a prediction model based on deep learning (such as
deep neural networks, DNN) will be constructed, with the combination ratios of different
tobacco leaf raw materials as input, to accurately predict the sensory quality scores and
key chemical indicators of the generated formulations. Finally, sensory quality,
compliance with key chemical indicators, and raw material costs will be set as
optimisation objectives, and a multi-objective optimisation model will be constructed.
Efficient multi-objective evolutionary algorithms (such as NSGA-II or MOEA/D) will be
applied to solve the model, thereby efficiently generating a series of Pareto-optimal leaf
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blend formulation schemes that achieve the best balance among multiple objectives while
satisfying various physical and raw material constraints. This study aims to provide a
data-driven, intelligent, and efficient new paradigm for cigarette product development,
significantly enhancing the scientific rigor, efficiency, and overall benefits of formulation
design.

2 Analysis of sensory-chemical association mechanisms and dataset
construction

The essence of cigarette sensory quality lies in the complex interplay of thousands of
chemical components in tobacco leaves, which, upon combustion and thermal
decomposition, exert a comprehensive feedback effect on human olfactory and gustatory
receptors (Ayo-Yusuf and Agaku, 2015). The analysis of this complex nonlinear
relationship constitutes the key scientific foundation for overcoming the limitations of
traditional empirical formulation design. This chapter systematically constructs a
three-dimensional framework linking ‘sensory attributes-chemical indicators-raw
material ratios’. Through rigorous experimental design and standardised data collection
processes, a high-quality, multi-dimensional, traceable formulation dataset is established,
providing a solid foundation for subsequent machine learning modelling and
multi-objective optimisation.

In establishing the sensory evaluation system, the study strictly followed the national
standard of the EU Tobacco Products Directive 2014/40/EU (Chambers and Paschke,
2019), while also referencing the sensory evaluation guidelines of the International
Tobacco Science Research Collaboration Center (CORESTA) (Thorne et al., 2021),
establishing a scoring system covering six core dimensions: aroma texture, aroma
intensity, harmony, irritation, dryness, and aftertaste purity. The definition of each
dimension was operationalised through expert workshops, for example, ‘aroma texture’
was subdivided into intensity and purity of subcategories such as floral, honey-sweet, and
roasted aromas. ‘Irritation” was distinguished by the degree of throat impact and nasal
burning sensation. To ensure the objectivity and consistency of evaluation results, this
study collaborated with three provincial tobacco technology centres to form a
professional team of 18 senior evaluators. All members underwent a two-week
calibration training program, including blind testing of standard tobacco samples, sensory
threshold determination, and intra-group evaluation dispersion analysis. Each leaf blend
sample was evaluated three times in a blinded format, with results recorded using a
nine-point scale. Outliers were excluded, and the median was taken as the final sensory
score to minimise individual subjective bias.

The construction of the chemical indicator system is based on the cutting-edge
consensus in tobacco chemical research. The research team systematically reviewed
relevant literature from the past five years and, in conjunction with the tobacco industry
standard YC/T 159-2019 ‘Determination of Major Chemical Components in Tobacco and
Tobacco Products’, identified four categories of key indicators.

e Basic macronutrients: these include total sugars, reducing sugars, total plant
alkaloids, total nitrogen, protein, potassium, chlorine, starch, etc., which reflect the
combustibility and physiological strength of tobacco leaves.
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e Characteristic ratio parameters: parameters such as the sugar-alkaloid ratio (total
sugars/total plant alkaloids), nitrogen-alkaloid ratio (total nitrogen/total plant
alkaloids), and potassium-chlorine ratio directly influence the acid-base balance and
irritancy of tobacco smoke.

e Volatile aromatic compounds: using gas chromatography-mass spectrometry
(GC-MS), 86 key aromatic components such as neophytol, solanone,
[-damascenone, and megastilbene were quantitatively detected. Their thresholds and
synergistic effects determine the aroma style.

e  Functional additives: residual levels of humectants (sorbitol, glycerol) and
combustion aids (potassium citrate) affect smoking comfort.

To ensure the broad representativeness of the data, sample collection covered
42 county-level production areas across China’s six major tobacco-growing regions
(Yunnan, Henan, Guizhou, Hunan, Sichuan and Fujian), encompassing four major
tobacco types: flue-cured tobacco, sun-cured red tobacco, white ribbed tobacco, and
aromatic tobacco. This included 28 grades such as premium tobacco (CX1K),
medium-grade tobacco (C3F), and low-grade tobacco (X2L). Tobacco leaf samples from
each production area were retained separately for the four harvest years from 2020 to
2023 to capture the impact of climate fluctuations on chemical components. Raw material
pretreatment strictly followed uniform standards: tobacco leaves were dried at a constant
temperature of 40°C, ground through a 60-mesh sieve, mixed uniformly, packaged in
brown glass bottles, nitrogen-sealed, and stored at —20°C to prevent oxidative
degradation.

Chemical testing was conducted simultaneously in three laboratories certified by
CNAS. Macro-component testing used a continuous flow analyser in accordance with the
YC/T 159-2022 standard. All tests included three replicate samples, with the relative
standard deviation (RSD) controlled within 5%.

The core challenge in data integration was the structured mapping of multi-source
heterogeneous data. A dedicated data management system was developed, establishing
four-layer association architecture.

The raw material layer records the origin, year, grade, type, purchase price, and
inventory quantity of each batch of tobacco leaves. The formulation layer defines
218 sets of leaf blend formulations, specifying the mixing percentage of each raw
material. The chemical layer stores the macro-component, aromatic substance, and
additive detection values for each formulation. The sensory layer associates the
6-dimensional sensory scores and raw records of the sensory evaluation process with the
corresponding formulations.

The final dataset comprises 218 complete samples, covering 157 types of tobacco leaf
raw materials, with 128 chemical indicator dimensions and over 3,900 sensory evaluation
records, totaling more than 150,000 data fields.
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3 Sensory-chemical quantitative correlation modelling based on PLS-R

3.1 Problem definition and modelling requirements

The relationship between the sensory quality and chemical composition of cigarettes is
essentially a high-dimensional, small-sample multiple regression problem. Sensory
evaluation data is constrained by the high cost of sensory testing (each sample group
requires 18 evaluators x 3 repetitions), with sample sizes typically less than 200 groups
(n = 218 in this study), while chemical indicators span up to 128 dimensions (including
86 flavour compounds). Under this ‘dimension disaster’, traditional least squares
regression fails due to multicollinearity and overfitting. Partial least squares regression
(PLS-R) (Rapaport et al., 2015) extracts orthogonal latent variables (LVs) to compress
data dimensions while maximising the covariance between sensory scores and chemical
indicators, making it an ideal tool for addressing such issues. This section aims to
construct a quantitative mapping model between sensory attributes Y,x¢ (n = 218 samples,
6-dimensional sensory scores) and chemical matrix X,x12s, identify key chemical drivers,
and provide interpretable constraints for subsequent deep learning prediction models. The
overall framework of this chapter is shown in Figure 1.

Figure 1 Sensory-chemical quantitative correlation modelling framework based on PLS-R
(see online version for colours)

Original data set

Data preprocessing

Model validation

Constraints rule base

VIP Driver Screening

Sensitivity analysis

3.2 PLS-R algorithm principle and implementation

The core idea of PLS-R is to iteratively extract the collaborative information between X
and Y. Let the centralised chemical matrix be X and the sensory score matrix be Y. The
algorithm solves for the weight vector w and the load vector ¢ through the following
steps:

e Latent variable extraction: in the 4™ iteration, solve for the first pair of weight
vectors (wy, cn) of X and Y to maximise the covariance:

maxcov(Xws,Ye,)  st|wil|=1,]enl|=1 (D)
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e Score calculation: latent variable score:

t, = Xw, @
u, =Yey
e Regression modelling: establish a regression of u; on #:
uy =byty +e 3
by =(t7tn) " £ )
e  Matrix update:
X« X-tp] (5)
Y « Y —bytyc] (6)

where pj, is the load vector of X.

This study uses the NIPALS algorithm (Wold, 1975) to solve the above process, and
determines the optimal latent variable number H = 8 through 10-fold cross-validation.
The final model can be expressed as:

8
Y=TCT+F =) byc| +F 7

h=1

where T is the score matrix, C is the load matrix, and F is the residual term.

3.3 Key driver factor screening and model validation

To precisely identify the key chemical components that significantly regulate sensory
attributes, this study employed the variable importance projection (VIP) method (Farrés
et al., 2015) to systematically screen the 128 chemical indicators in the PLS-R model.
This method quantifies the influence of each chemical variable on sensory quality by
calculating its weight contribution in the latent variable space and its comprehensive
ability to explain the variance in sensory scores.

The analysis results showed that different sensory dimensions are differentially
regulated by specific chemical factors. Aroma texture is primarily dominated by ketone
compounds, with the most prominent positive contributions from megadienone and
B-ionone. Harmony depends on the balanced concentration ratio of neopentyl glycol and
solanone, with their synergistic effect enhancing the integration of fragrance layers. To
comprehensively assess model reliability, a dual-track validation strategy was
implemented. In terms of statistical performance validation, by calculating the predicted
residual sum of squares and the coefficient of determination, it was found that the model
fit for all six sensory dimensions was excellent, with the coefficient of determination for
the coordination dimension reaching 0.91. The overall press value was reduced by 37.2%
compared to the traditional multiple linear regression model, confirming the superiority
of PLS-R in handling high-dimensional collinearity data. In terms of physical
interpretability validation, the visualisation of latent variable loadings revealed the
clustering patterns of chemical indicators in a low-dimensional space. It was observed
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that aromatic substances were concentrated in the positive axis region of the first latent
variable, while alkaline components were distributed in the negative axis region of the
second latent variable. This spatial distribution pattern aligns perfectly with the
theoretical understanding in tobacco chemistry that “aromatic compounds enhance
pleasantness, while alkaline compounds intensify irritation”, providing mechanistic
evidence for the scientific rationality of the model. This validation framework not only
confirms the predictive accuracy of the model but also deepens the physical interpretation
of sensory formation mechanisms, providing actionable regulatory targets for subsequent
optimisation design.

4 Deep learning prediction model construction for leaf group formula
performance

4.1 Prediction task definition and model architecture design

The core challenge in leaf blend formulation design lies in accurately predicting the
chemical composition and sensory quality corresponding to a given raw material ratio, a
process involving highly complex nonlinear mapping relationships. The deep neural
network model constructed in this chapter aims to address a dual prediction task: the
input layer receives a percentage vector composed of 157 tobacco leaf raw materials
(subject to the constraint that the total sum is 100%), while the output layer
simultaneously predicts the 32-dimensional key chemical indicators and 6-dimensional
sensory quality scores screened by PLS-R in the previous stage. To effectively capture
the cascading mechanism of ‘raw material ratio-chemical composition-sensory feedback’,
this study innovatively designed a dual-branch fusion architecture. This architecture
includes two complementary information processing pathways: the chemical prediction
branch directly maps the raw material ratio vector to the target chemical indicators
through a fully connected layer, focusing on analysing the chemical properties of tobacco
leaf mixtures. The sensory prediction branch employs a feature fusion strategy, jointly
encoding the original ratio input with the prediction results from the chemical branch.
Through a skip-connection structure, it integrates the two types of features, enabling
sensory prediction to consider both the direct influence of raw material combinations and
the explicit intermediary role of chemical indicators. This design deeply incorporates
domain knowledge from tobacco formulation design, where sensory quality is
fundamentally driven by chemical composition rather than solely determined by raw
material ratios (Salgueiro et al., 2010). In terms of hidden layer activation function
selection, except for the final output layer, which uses a linear activation function to
ensure continuous value prediction, the remaining layers all use the ReLU function (Lin
and Shen, 2018) to enhance nonlinear expression capabilities. This architecture
significantly improves the model’s physical interpretability by separating the chemical
and sensory prediction paths, while also providing an expandable interface for subsequent
multi-objective optimisation.

4.2 Regularisation strategies and training optimisation

To address the risk of overfitting in DNN when dealing with high-dimensional
formulation data, this chapter systematically implements multiple regularisation and
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optimisation strategies to ensure the model’s generalisation ability. First, the dropout
mechanism (Cooper et al., 2023) is introduced, with a random neuron dropout rate of
0.3 set after each fully connected layer in both the chemical prediction branch and the
sensory prediction branch. This forces the network to learn feature representations
through redundant paths, effectively suppressing excessive reliance on training samples.
Concurrently, a multi-task joint optimisation framework is designed, weighting the mean
absolute error (MAE) of chemical indicator predictions with the mean squared error
(MSE) of sensory scores. The chemical loss weight is set to 0.7, and the sensory loss
weight to 0.3 — this ratio was validated via grid search to maximise overall model
accuracy, reflecting the domain-specific understanding that “chemical accuracy takes
precedence over sensory prediction”.

Jointly optimise chemical prediction 1oss Lesen and sensory prediction 10ss Lyensory-
The total loss function is defined as:

A

Ltota/ =a-MAE (Xchem s Xchem ) + ﬁ -MSE ( Ysensory s )}sensory ) (8)

The hyperparameters = 0.7, = 0.3 are determined through grid search to enhance the
accuracy of chemical indicator prediction.

To address the issue of gradient explosion, gradient norm clipping is employed, with
a threshold of 2.0 set to scale abnormal gradients during backpropagation, ensuring stable
convergence during training. The model training employs the AdamW optimiser (Meng
et al., 2023), which combines the advantages of adaptive momentum estimation and
weight decay regularisation. The initial learning rate is set to Se-4 and is combined with a
cosine annealing scheduling strategy, automatically decreasing to le-5 in the later stages
of training to fine-tune the parameters.

The dataset is divided into training, validation, and test sets in a 7:2:1 ratio, with a
fixed batch size of 16 to ensure memory efficiency and gradient estimation stability.
Early stopping monitoring is implemented during the training process, automatically
terminating training when the validation set loss does not improve for 50 consecutive
rounds, with a maximum iteration limit of 300 rounds.

5 Multi-objective optimisation model construction and solution

5.1 Definition of multi-objective optimisation problems

The core contradiction in the formulation design of cigarette leaf blends lies in the
simultaneous pursuit of three objectives: the optimisation of sensory quality, the
stabilisation of chemical indicators, and the minimisation of raw material costs. These
objectives are interrelated yet inherently conflicting. This chapter formalises this complex
decision-making problem as a Pareto optimisation model under multiple constraints,
where the decision variables are the ratio vectors of 157 tobacco leaf raw materials,
which must strictly satisfy the total ratio of 100% and each raw material ratio must be
within the upper and lower limit ranges set by the available inventory. The optimisation
objective system is composed of three key dimensions: the primary objective is to
maximise the comprehensive sensory score, which is predicted by the deep neural
network model trained in Section 4 and calculated by weighting six sensory attributes
such as aroma intensity (weight 0.35), harmony (weight 0.25), and irritating
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(weight 0.20). The secondary objective is to minimise the overall deviation of key
chemical indicators. Based on prior sensory-chemical correlation studies, 32 core driver
factors are selected, with the sum of the absolute deviations between predicted chemical
values and the midpoint of the predefined optimal range serving as the quantitative
standard. The third objective focuses on optimising economic benefits by minimising the
unit formula cost through the sum of each raw material’s unit price multiplied by its
proportion. In addition to basic ratio constraints, the model incorporates three types of
industrial-level constraints: raw material availability boundaries ensure that the
formulation aligns with actual inventory levels. Physical property requirements (e.g., bulk
density no less than 4.5 cm’/g, moisture content controlled within the 11-13% range)
ensure processing feasibility, and tobacco leaf type ratio restrictions maintain product
style consistency. This mathematical framework precisely captures the dynamic balance
of multi-dimensional objectives in formula design, laying the foundation for subsequent
intelligent solution algorithms.

5.2 Improvements to the NSGA-III algorithm design

Given the characteristics of high target dimension (three dimensions) and complex
constraints (157 boundaries), the improved NSGA-III algorithm was used to solve the
problem.

An adaptive reference point generation method was designed to dynamically adjust
the reference point density based on the historical solution distribution in the target space:

o (.80
N {so (1+100j—l ©)

Initial low density (50 points) accelerates convergence, while later high density
(200 points) improves frontier resolution.

Constraint-driven crossover mutation: design a hybrid crossover operator, using SBX
crossover for feasible solutions and differential evolution-guided constraint satisfaction
for infeasible solutions.

Elite retention strategy: each generation retains non-dominated solutions with
chemical prediction errors less than 1.2 to ensure the feasibility of the solution.

5.3 Industrial constraint handling and real-time optimisation

In response to the complex engineering constraints and dynamic decision-making
requirements in cigarette production, this chapter develops an integrated constraint
handling framework and real-time optimisation engine. First, key physical metric
constraints are converted into computable penalty mechanisms. When the predicted
filling volume of the formulation falls below 4.5 cm?/g or the moisture content exceeds
the 11-13% process window, a quadratic penalty term based on deviation magnitude is
automatically triggered. This penalty term dynamically adjusts the suppression intensity
of infeasible solutions through adaptive weighting coefficients, ensuring that the
optimisation process converges prioritises the producible region.

g(p)=1-max(0,]¢(p) — do| ) (10)
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At the same time, a dynamic monitoring interface for raw material inventory is
established to obtain real-time data on the upper and lower limits of available quantities
in tobacco warehouses and map them to ratio boundary constraints. For example, when
the inventory of Yunnan C3F tobacco leaves falls below 500 kilograms, the upper limit
of the ratio is automatically adjusted downward to 70% of the preset threshold to avoid
generating unfeasible formula schemes. To address the computational load issues
associated with multi-objective optimisation, a cloud-edge collaborative architecture is
designed, with lightweight DNN prediction models deployed on the edge side and an
improved NSGA-III optimisation algorithm executed on the cloud cluster, leveraging
distributed computing resources to parallelly evaluate thousands of blending schemes.

6 Experimental verification and result analysis

To comprehensively validate the effectiveness of the proposed multi-objective
optimisation method, this chapter designs a systematic experimental validation
framework. The dataset consists of 218 sets of leaf group formulation samples
constructed in the previous stage, which are divided into training, validation, and test sets
in a 7:2:1 ratio. Among them, the test set specifically includes 30 sets of extreme
formulations (e.g., sugar-alkali ratio <5 or >15) to test the robustness of the model. The
comparison methods include three types of benchmark schemes: the traditional empirical
design method, where three senior formulation engineers independently design the
schemes, with the average result serving as the benchmark. The single-objective
optimisation method, which focuses on maximising sensory scores using a genetic
algorithm for iterative solution, and the commercial software benchmark, which uses
TobaccoBlendOpt 3.0, whose core is a response surface model combined with a gradient
descent optimiser. The evaluation metric system covers four dimensions: the sensory
dimension involves professional tasting panels conducting double-blind tests on
optimised formulations, using a nine-point scale to record scores for six attributes such as
aroma intensity and harmony. The cost dimension calculates the raw material cost per
cigarette (accurate to 0.01 yuan). The chemical stability dimension quantifies the
standard deviation of batch-to-batch variability for key chemical indicators (such as
sugar-to-alkali ratio and 31 other parameters). The efficiency dimension records the total
time from demand input to solution output. All experiments were conducted in a
standardised industrial environment: chemical testing used the Agilent 8890 GC-MS/MS
system. The sensory evaluation room maintained constant temperature and humidity and
was equipped with a dedicated ventilation system. The optimisation algorithm ran on an
Alibaba Cloud ECS cluster (configuration: 32-core CPU/128 GB memory/NVIDIA V100
GPU) and edge computing nodes used the Jetson AGX Orin module. To eliminate
random interference, each comparative experiment was repeated five times, and the
median result was taken. The final data was analysed after outliers were removed.

The sensory score prediction accuracy validation diagram visualises the correlation
between the model’s predicted values and the actual measured values from professional
sensory evaluations using a hexagonal binning density model. As shown in the Figure 2,
the sample points are closely distributed around the red ideal fit line, with the blue
regression line having a slope close to 1 and a coefficient of determination R? = 0.928,
indicating that the model possesses excellent global prediction capability. Particularly
within the core commercial formulation range (scores 6.5-7.8), 90% of prediction errors
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are concentrated within £0.5 points, meeting industrial-grade accuracy requirements.
Only in the high-end product region where measured scores exceed 8.3 does a slight
underfitting trend emerge due to sparse training samples (with dispersion increasing by
approximately 40%), a phenomenon consistent with the data distribution characteristics.
The model performs best in predicting the harmony dimension (sub-analysis R? = 0.95),
while predictions for spiciness are relatively conservative, due to individual differences in
sensory perception of spiciness.

Figure 2 Validation of the accuracy of sensory composite score prediction (n = 300) (see online
version for colours)

The 3D visualisation of the multi-objective optimisation Pareto front, as shown in
Figure 3, clearly illustrates the complex trade-off between sensory scores, raw material
costs, and chemical stability. The solution set surface exhibits a distinct layered structure:
when the chemical deviation index is below 0.4 (high stability region), sensory scores are
restricted to below 85 points, and costs generally exceed 0.45 yuan per unit, confirming
the resource costs associated with precise chemical control. In the economically viable
solution cluster (cost < 0.35 yuan per stick), the chemical deviation index rises to the
0.6-0.9 range, while sensory scores fluctuate by approximately 15%. The high-end
solution marked with a red star (sensory score of 87.1/cost of 0.48 yuan) is located at the
vertex of the surface, with sugar-alkali ratio control precision of +0.3, but it requires 35%
of premium tobacco leaves. The economical solution marked with a green square (cost of
0.29 yuan) achieves cost reduction through the use of lower-grade tobacco leaves,
although the chemical deviation increases to 0.78, it still meets the basic quality
threshold. This surface provides formulation engineers with a global decision-making
perspective, enabling them to precisely select the optimal trade-off point based on
product positioning.
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Figure 3 Multi-objective optimisation of leaf group formulations for Pareto frontiers (see online
version for colours)

o

Figure 4 Comprehensive performance comparison of leaf group formulation design methods
(see online version for colours)

4
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The radar chart shows a comprehensive comparison of the performance of the three
formulation design methods in terms of five core indicators, as shown in Figure 4. The
multi-objective optimisation method (red area) demonstrated a comprehensive advantage:
it achieved a total sensory score of 86.3 points, a 10.4% improvement over the traditional
empirical method. The cost savings rate of 19% is significantly higher than the 12%
achieved by single-objective optimisation, attributed to the algorithm’s intelligent
identification of cost-effective raw material combinations. The chemical stability metric
(deviation index of 0.41) validates the effectiveness of PLS-R constraints, reducing the
deviation by 55% compared to single-objective methods. Most notably, design efficiency
has improved, with formulation generation time reduced from 15 days using traditional
manual methods to 2.1 hours, representing an 88% increase in efficiency. Raw material
utilisation reaches 91%, indicating that the algorithm fully leverages the blending
potential of inventory tobacco leaves. Traditional methods (grey area) perform
adequately in sensory and chemical stability metrics but lag significantly in cost and
efficiency metrics. Single-objective optimisation (blue area) improves sensory
performance but at the expense of chemical stability. This method achieves Pareto
improvements in key metrics through multi-objective collaboration optimisation.

7 Conclusions

This study addresses the core challenges in cigarette leaf blend formulation design, which
has long relied on trial-and-error based on experience and struggles with the difficulty of
coordinating multiple objectives. It proposes a multi-objective optimisation method that
integrates sensory-chemical association mechanisms with machine learning. Using
PLS-R, we quantified the quantitative mapping relationships between 32 key chemical
indicators and six sensory attributes. The innovatively designed dual-branch deep neural
network successfully achieved end-to-end prediction from raw material ratios to chemical
properties and sensory quality. The sensory score prediction error on the test set was
controlled within 0.53 points, representing a 42% improvement in accuracy compared to
traditional random forest models. The multi-objective optimisation model built on this
foundation leverages an improved NSGA-III algorithm for efficient solution, generating
152 Pareto optimal solutions. This achieves a 12% improvement in sensory quality, a
19% reduction in raw material costs, and a 55% increase in chemical stability, while
enabling real-time response within 9.8 seconds through a cloud-edge collaborative
architecture.

It should be noted that the current research still has three limitations. The inherent
subjectivity of sensory evaluation data leads to increased volatility when the model is
generalised across evaluation groups. The depth of analysis of nonlinear interactions
between chemical components (such as the synergistic aroma enhancement of ketones
and aldehydes) is insufficient. Real-time adaptive capabilities under dynamic changes in
the raw material supply chain need to be strengthened. Future work will focus on three
key directions. First, introducing transfer learning technology to build a universal sensory
prediction model for tobacco leaves across production regions, reducing reliance on new
tobacco region samples through domain adaptation. Second, developing a reinforcement
learning-based dynamic formulation adjustment engine to respond in real-time to
fluctuations in raw material market prices and inventory anomalies. Third, exploring the
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synergistic optimisation mechanism between flavouring and blending processes and leaf
group formulations, establishing a simulation model encompassing multi-physics fields
such as flavouring penetration rate and thermal decomposition behaviour, ultimately
achieving fully digitalised product development across the entire supply chain.
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