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Abstract: With the continuous improvement of sports training and competitive
levels, athletes’ demands for motion recognition and motion monitoring during
training are increasing day by day. Based on a multi-node sensor platform and
the internet of things environment, this study constructed an action data
acquisition system and ensured high-quality data input through pre-processing
and feature extraction. In terms of model construction and optimisation, the
performance of LSTM, CNN, SVM and the fusion model was compared and
analysed. The results show that the fusion model is significantly superior to the
single model in terms of recognition accuracy, system delay, stability and
energy consumption, especially in the recognition of complex actions such as
rotation and bending, the accuracy exceeds 95%. Further three-dimensional
surface analysis shows that the fusion model still maintains a latency of less
than 120 milliseconds and a stability index higher than 0.85 in a high-load
environment, demonstrating good robustness.
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1 Introduction

The introduction opens with highly technical content, which may be challenging for
readers not familiar with the topic. I will introduce practical examples from the sports and
health sectors at the beginning of the introduction, such as how motion recognition
technologies are currently being used in athletic training or injury prevention, to make the
context more relatable and accessible to a wider audience. With the continuous
improvement of sports competition levels, the monitoring of movement quality and
performance during athletes’ training has become a core link in the scientific training
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system. Traditional manual observation and video analysis methods have limitations such
as strong subjectivity, low efficiency, and insufficient real-time performance, making it
difficult to meet the demands of modern training and rehabilitation for precision and
intelligence. In recent years, the development of internet of things (IoT) technology has
enabled various sensors to collect multi-dimensional data such as athletes’ acceleration,
angular velocity, and joint displacement in real-time, forming high-frequency and
high-precision motion information streams. Machine learning algorithms have
demonstrated superior performance in pattern recognition and feature extraction,
providing effective tools for the automatic recognition and classification of complex
actions. Combining machine learning with the IoT can achieve real-time recognition and
feedback of athletes’ movements, and also provide new technical paths for sports science
research and the improvement of competitive levels.

The background section mostly summarises existing studies without critically
analysing the drawbacks of current methods. It is important to discuss the limitations of
existing action recognition systems, such as issues with data quality, sensor inaccuracies,
and the constraints of single algorithm models. These shortcomings can significantly
affect the robustness and generalisation of current systems. I will add a discussion on
these gaps to highlight the need for innovation in the model development and how this
study aims to address these issues.

Although the research background section covers a significant amount of literature,
there is a lack of a comparative discussion of methods and conclusions, which affects the
systematic nature of the review. I will include a comparison of the different methods used
in the studies discussed, such as the strengths and limitations of Gaussian mixture
models, CNN, LSTM, and other machine learning techniques applied in action
recognition. Additionally, I will contrast the conclusions drawn from various studies to
highlight the advancements and gaps in the field, which will improve the coherence and
depth of the background section.

Jia (2021) through the recognition research on the kicking and stepping actions of
tackwondo athletes, proposed that the Gaussian mixture model can effectively improve
the classification accuracy of complex action patterns, offering a new idea for the
technical analysis of specific projects. Liu (2021) applied convolutional neural networks
(CNNs) in motion analysis to enhance the algorithm for human motion recognition. The
results demonstrated the strong advantage of deep learning models in processing
nonlinear motion features (Liu, 2021).

Shiffrar and Heinen (2010) highlighted that differences in motor ability can influence
an individual’s perception process of movements. This suggests that movement
recognition is not only based on the extraction of external features, but is also deeply
connected to an athlete’s own experience and perception mechanisms (Shiffrar and
Heinen, 2010).

Zong et al. (2022) explored the integration of the IoT and machine learning in sports
ethics decision support. Their findings revealed that psychological distance has a
moderating effect on the process of action recognition and judgement, adding an
interdisciplinary perspective to this field (Zong et al., 2022). Wilkerson et al. (2018)
proposed a sports injury risk monitoring method leveraging the IoT and data analysis,
showing that sensor-based predictive models could significantly reduce injury incidence
rates in athletes.

Sengchuai et al. (2022) developed a real-time knee extension monitoring and
rehabilitation system by combining surface electromyographic signals with motion
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amplitude measurement. This system synchronised motion recognition and rehabilitation
assessment, serving as a reference for clinical sports rehabilitation (Sengchuai et al.,
2022).

Zong et al. (2022) further investigated the application of IoT and machine learning in
physical education, emphasising that intelligent technology-based learning concept can
improve students’ understanding of body cognition and movement, thus expanding the
potential for movement recognition in educational contexts. Rodriguez-Rodriguez et al.
(2021) reviewed the applications of Al, machine learning, big data, and [oT in the context
of the COVID-19 pandemic, underscoring the potential of these technologies for health
monitoring and human motion recognition, while highlighting the importance of
cross-domain integration.

Kaliappan et al. (2023) proposed a smart medical service architecture based on
machine learning, utilising social IoT and cloud computing to achieve efficient data
distribution. This system offers a structured approach to the sharing and processing of
athlete movement data (Kaliappan et al., 2023). Li and Wang (2023) discussed the
adoption of machine learning and IoT platforms in educational institutions, noting that
intelligent platforms enhance data interaction and application efficiency, indirectly
inspiring the development of motion training and action recognition models.

The literature review section can be made more engaging by not only listing previous
studies but also emphasising the differences and trends among them. I will reorganise the
discussion to highlight key trends, such as the increasing use of machine learning in
motion recognition and the integration of IoT in sports science. I will also discuss the
varying effectiveness of different algorithms, (e.g., CNN vs. LSTM vs. fusion models)
and how these differences contribute to the evolution of the field. This will create a more
dynamic and insightful review. Although athlete motion recognition has made certain
progress with the support of machine learning and the IoT, there are still many
bottlenecks that need to be urgently broken through. Firstly, the data collected by sensors
is often affected by noise and external interference, resulting in unstable feature
extraction. Secondly, most of the existing models rely on a single algorithm, which
leads to insufficient accuracy and generalisation when dealing with complex and
multi-dimensional actions. Secondly, there are problems of uneven distribution and
scarcity of training samples, especially the difficulty in obtaining the movement data of
high-level athletes, which limits the performance of the model in actual training
environments. Finally, the real-time performance of action recognition results in the
feedback mechanism is still insufficient and has not fully met the demand for rapid and
accurate feedback in sports training (Abu Alsheikh et al., 2020).

This study constructs an athlete motion recognition model that integrates machine
learning and IoT technologies to address the shortcomings of traditional methods in terms
of accuracy, stability and real-time performance. The specific goals include: first, to build
a high-quality motion database through the collaborative collection of multiple sensors;
second, adaptable machine learning algorithms are adopted to achieve automatic
recognition and classification of complex action patterns. Third, explore real-time data
processing and feedback mechanisms to provide dynamic support for athletes’ training;
fourth, in combination with the analysis of injury risks, propose auxiliary intervention
measures. Through the above approaches, the research aims to provide reliable technical
support for the scientific training and performance optimisation of athletes.

In the introduction section, the review of international research lacks depth. To
enhance the academic scope, it is essential to expand on the latest advancements in
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motion recognition technology, especially in the field of sports and IoT applications. This
can include key studies that utilise machine learning models in action recognition,
comparing their performance in different contexts, and how these models contribute to
the optimisation of athletic training systems globally. By broadening the international
research perspective, the paper will better reflect the global trends in this field.

To achieve the research goals, this study will adopt a number of advanced
technologies and methods. At the data collection level, multiple types of IoT devices such
as accelerometers, gyroscopes, and surface electromyography sensors are utilised for
real-time collection of motion data, and noise interference is reduced through
pre-processing techniques. In terms of model construction, algorithms such as CNN,
long short-term memory networks, and support vector machines will be combined to
enhance the robustness of feature extraction and classification. Multi-source data fusion
technology will be used to integrate sensor signals and video data to achieve
multi-dimensional verification of action recognition. In the experimental stage,
hierarchical cross-validation and performance comparison analysis were adopted to
ensure the stability and generalisation value of the model.

The explanation of the significance of the research in the introduction is somewhat
vague. | will elaborate on the academic value of the intersection between sports science
and artificial intelligence. Specifically, the potential of AI to revolutionise sports
performance analysis, injury prevention, and rehabilitation will be highlighted. By
integrating machine learning and IoT, this research aims to advance the efficiency of
training, optimise personalised feedback, and provide innovative tools for real-time
motion recognition. This will demonstrate the broader impact of Al in the field of sports
science and its value in enhancing athletic performance.

While the research objectives are clear, the differences between this study and
existing research are not sufficiently emphasised. I will add a more explicit positioning at
the end of the introduction to underline the novelty of the proposed motion recognition
model, especially in terms of integrating machine learning with IoT technology to
enhance real-time performance, accuracy, and stability. I will also highlight how the
proposed fusion model addresses the shortcomings of previous models.

2 Materials and methods

2.1 Data collection and sample construction

2.1.1 Athlete motion acquisition platform design

The construction of the motion acquisition platform is centred on the IoT architecture.
Through the integration of multiple types of sensors and data transmission modules, it
realises the comprehensive collection of athletes” motion data. The platform is composed
of an inertial measurement unit, surface electromyography sensors and video acquisition
devices, capable of synchronously capturing multi-dimensional information such as
acceleration, angular velocity, muscle electrical signals and posture changes in training
and experimental environments. The sensor nodes are connected to the edge gateway
through wireless communication protocols and transmit data in real-time to the data
centre for storage and preliminary processing to ensure the continuity and stability of the
collection. The platform is also equipped with a high-precision clock synchronisation
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mechanism, enabling data from different sensors to be precisely aligned in the time
dimension, thereby enhancing the reliability of subsequent action recognition. To meet
the demands of different sports, the platform design retains expandable interfaces,
facilitating the addition of new sensor modules or interaction with external systems
(Oyeleye et al., 2022).

The description of the methods is generally complete, but there is insufficient
explanation of parameter selection and training details, which affects the replicability of
the study. I will expand on the choices made for key parameters such as the learning rate,
batch size, and optimiser used in the model. Additionally, I will include a more detailed
discussion of the training process, including the number of epochs, validation strategies,
and the handling of overfitting through techniques such as dropout and early stopping.
These details will improve the transparency and reproducibility of the research.

2.1.2 Sensor nodes and loT data acquisition

Sensor nodes undertake the key function of motion information collection, and their
deployment positions directly affect the completeness and accuracy of the data. The
inertial measurement unit is fixed at the main joint areas of the upper and lower limbs to
capture the acceleration and angular velocity signals in real-time during the motion
process. The surface electromyography sensor is attached to the core muscle group and
can reflect the electrical activity of the muscle during contraction and relaxation. High
frame rate cameras record the overall posture and movement trajectory, forming a visual
(Sundas et al., 2022). Different types of sensors transmit data to the edge gateway via
low-power Bluetooth, Wi-Fi or ZigBee protocols, and rely on the time synchronisation
module to ensure signal alignment. To reduce data transmission latency, the platform has
designed a local caching and compression strategy. It first completes the initial storage at
the node end and then uplinks it uniformly to the server. Through this hierarchical
collection and transmission mechanism, the system can maintain stable operation in
complex environments and provide high-quality data input for subsequent processing
steps.

2.1.3 Data pre-processing and feature extraction

Raw data is often accompanied by problems such as noise, missing data and inconsistent
scales, so it must go through systematic pre-processing steps. The collected signals are
denoised by wusing filtering methods and wavelet analysis to eliminate the
pseudo-aberrations caused by environmental interference and equipment jitter. The
interpolation algorithm is adopted to repair the missing segments, and through
normalisation and standardisation processing, the data from different sources are adjusted
to a unified dimension. After the cleaning is completed, the feature extraction stage
begins. Time-domain indicators such as mean, standard deviation and extreme values
describe the stability of the movement; frequency-domain features such as main
frequency and power spectral density reveal the rhythm and intensity of the movement,
while spatial features such as joint Angle and posture change rate reflect the coordination
and complexity of the movement. After multi-dimensional feature fusion, the constructed
feature set can more comprehensively represent the motion process, providing a solid
foundation for the training and classification of machine learning models (Liu et al.,
2022).
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2.2 Model construction and optimisation

2.2.1 Model selection and principle analysis

In action recognition research, CNNs and long short-term memory networks (LSTM) are
often combined to handle both spatial and temporal features simultaneously. The input
sensor signal can be expressed as a time series matrix, as shown in equation (1).

X ={x,x2,...,xr}, x, € R? 1

Here, d represents the sensor feature dimension and 7 represents the time step. The
convolutional layer extracts local features through filters, as shown in equation (2).

k
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k
wj is the convolution kernel weight, b is the bias term, and f ZWj Xy Tb | is the
j=1
activation function. To maintain the stability of training, cross-entropy is introduced as
the loss function as shown in equation (3).

C
L=-)"y.log(j.) (3)
c=1

Here, y. represents the true label and J. is the predicted probability. In this way, the

model can continuously optimise parameters in classification tasks and ultimately achieve
accurate recognition of complex motion patterns.

2.2.2 Model architecture and parameter configuration

In the construction of the model architecture, CNNs are used to extract the spatial
features of multi-source data, and then the long short-term memory network is used to
model the time series of action sequences. The calculation of the convolutional layer is
shown in equation (4).

k
o S o) @
=1

Here, 4" represents the convolution result of layer /, w(,-l) is the weight of the

convolution kernel, x,(f/l,)l is the input fragment, b is the bias term, and f(*) is the

activation function. This process can capture the combined pattern of acceleration and
angular velocity within a local range, thereby effectively identifying the movement
characteristics of athletes (Kim et al., 2024).

In the time series modelling stage, the LSTM structure is introduced to alleviate the
vanishing gradient problem of traditional recurrent neural networks in the processing of
long sequences. The cell state update equation of LSTM is shown in equation (5).



54 H. Liu

Ct :ﬁ OCt—1+itOét (5)

Among them, C; represents the memory state at the current moment, f; is the forgetting
gate, i, is the input gate, and C, is the candidate state. Through this mechanism, the

model can filter and forget irrelevant information while maintaining long-term
dependencies.

In terms of parameter configuration, the convolutional layer is set with 3x3
convolutional kernels and max pooling is adopted to reduce the feature dimension. The
LSTM layer contains 128 hidden units, and the output is classified by the fully connected
layer and the softmax function. During the training phase, the Adam optimiser is used,
with the learning rate set at 0.001, and a dropout mechanism is introduced in the fully
connected layer to reduce the risk of overfitting. Through this architecture and parameter
combination, the model forms an effective connection between spatial feature extraction
and time-dependent modelling, thereby enhancing the accuracy and stability of action
recognition.

2.2.3 Multi-source data fusion implementation

Multi-source data fusion aims to uniformly process the action information collected by
different types of sensors to enhance the accuracy and stability of the recognition results.
The acceleration and angular velocity data provided by the inertial measurement unit
can reflect the dynamic characteristics of the motion trajectory, while surface
electromyographic signals characterise the muscle activity patterns. The data collected
from high frame rate videos are used to verify the posture and overall motion trajectory.
Due to the differences in sampling frequency, scale and noise characteristics among
various types of data, the study first conducts synchronous correction in the time
dimension to ensure that different signals correspond consistently on the same time axis.
Subsequently, through the fusion method of the feature layer, the time-domain,
frequency-domain and spatial features are combined, enabling the model to
simultaneously learn the complementary relationship of different modal information
during the training process. To avoid excessive interference from a certain data source on
the overall judgement, the system introduces weight distribution and redundant
control in the fusion strategy, thereby enhancing the generalisation ability of the model
(Aitcheson-Huehn et al., 2024).

2.2.4 Training and optimisation mechanism

The model training process follows an end-to-end flow design. The pre-processed
multi-source feature data is input into the network in small batches, and the prediction
results are generated through forward propagation. Then, the loss values are calculated
using real labels. The cross-entropy is selected as the loss function to measure the
difference between the classification output and the true category. In terms of
optimisation methods, the Adam optimiser is introduced to achieve adaptive adjustment
of the learning rate, thereby ensuring the convergence speed while enhancing the training
stability. To prevent the model from overfitting on complex action data, a dropout layer is
set in the network structure, and an L2 regularisation term is added in the weight update
to limit the parameter’s excessive reliance on a single feature. An early stop mechanism
is adopted in the training scheduling. When the accuracy of the validation set no longer
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improves within several rounds of iterations, the training is automatically terminated to
reduce computational overhead. The evaluation of model performance is accomplished
through hierarchical cross-validation. The evaluation metrics include accuracy rate, recall
rate and F1 value to ensure that the results of action recognition not only have overall
reliability but also take into account the sensitivity to key action categories (Krupitzer
et al., 2022).

2.3 System implementation and experimental design

2.3.1 Hardware deployment and network configuration

During the system implementation stage, hardware deployment and network
configuration are the foundation for ensuring the stable operation of the action
recognition model (Liu et al., 2022). To meet the requirements of high-frequency data
collection and real-time transmission, a three-layer hardware system composed of sensor
nodes, edge gateways and servers was studied and built. Combined with the wireless
network environment, efficient transmission and processing of multi-source data were
achieved, as shown in Table 1.

In the system configuration analysis, the sampling frequency of the sensor nodes is
calibrated according to the experimental requirements to ensure that detailed changes can
still be fully captured during high-intensity movements. The data volume of the
electromyography sensor is large, so high-bandwidth Wi-Fi transmission is adopted,
while the inertial measurement unit utilises low-power Bluetooth to reduce energy
consumption. Video data has the highest bandwidth requirements, and a gigabit wired
network is configured to avoid latency and frame loss. The edge computing gateway
completes the initial pre-processing and caching locally, reducing the delay of data
during transmission, while the cloud server undertakes the centralised training and
storage functions. The overall deployment not only strikes a balance between energy
consumption and transmission efficiency, but also realises a hierarchical computing
architecture, ensuring real-time and stable motion recognition in actual motion scenarios.

Table 1 Hardware deployment and network configuration parameters

Module Device model Function description Netwo;fk Sampling
connection frequency (Hz)

Inertial MPU-9250 Collects tri-axial Bluetooth 5.0 200
measurement acceleration and
unit angular velocity
Surface EMG Delsys Trigno Monitors muscle Wi-Fi 2.4 GHz 1,000
sensor electrical activity
Video capture Basler Captures motion Gigabit 120 fps
device acA640-120uc posture images Ethernet
Edge NVIDIA Jetson  Performs preliminary ~ Wired/wireless —
computing Nano processing and hybrid
gateway caching
Cloud server Dell PowerEdge Centralised storage Gigabit —

R740 and model training Ethernet
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2.3.2 Experimental scheme and validation process

The objective of the experimental scheme design is to comprehensively evaluate the
model’s performance in different scenarios and ensure that the results are representative
and stable. The experimental subjects were 60 athletes, and the movement categories
covered six types: running, squats, sit-ups, bending over, stepping and turning (Burdack
et al,, 2020). During the data acquisition stage, each action is recorded in triple
synchronisation through an inertial measurement unit, a surface electromyography
sensor, and a video module, ultimately forming a multimodal sample library. To ensure
the richness and complexity of the data, the sample size of a single type of action is
maintained at over 4,000, and the total data scale exceeds 26,000. Stratified sampling was
adopted for training and testing to avoid sample distribution bias. In the verification
process, the model first receives the pre-processed multi-source data, then performs
feature extraction and time series modelling through the convolutional layer and LSTM
layer, and finally outputs the classification results. The performance evaluation metrics
include action recognition accuracy, system average delay, energy consumption per unit
of data processing, and training convergence rounds, in order to verify the robustness and
efficiency of the model from different perspectives, as shown in Table 2.

The model maintains a relatively high accuracy overall in the recognition of multiple
types of actions. Among them, the recognition rates of bending over and running actions
reach 94.1% and 93.7% respectively, showing the most stable performance. This
indicates that the model has a strong recognition ability for actions with significant
amplitude and obvious rhythmic patterns. However, the accuracy of straddling and squats
is relatively low, which may be affected by the difference in movement amplitude and
fluctuations in electromyographic signals. In terms of latency, all actions are maintained
within 115 to 123 milliseconds, indicating that the system basically meets the real-time
requirements of the training scenarios. The energy consumption level fluctuates between
3.7 and 4.7 joules, indicating that the system’s energy efficiency is guaranteed under the
support of multi-source data fusion and edge computing. The convergence rounds were
all between 35 and 43, and no overtraining or slow convergence occurred, which proved
that the parameter settings were reasonable. This scheme effectively verified the accuracy
and robustness of the model in complex action recognition, and the distribution and
multi-dimensional performance of the data provided sufficient basis for subsequent 3D
visualisation and spider graph analysis.

2.4 Motion recognition path and application exploration

2.4.1 Optimisation suggestions for athletic training

The construction of the training path for motor skills is based on the multi-dimensional
output results of the action recognition model. Through a comprehensive analysis of the
recognition accuracy, feedback speed, energy consumption level, and the extent of skill
improvement during the training process, a phased advanced training mode is gradually
formed (Taha et al., 2018). This path emphasises the continuous improvement of athletes’
specialised abilities from the stability of basic movements to the coordination of complex
movements, as shown in Table 3.

The focus of the basic training stage is on enhancing the stability and standardisation
of movements. The recognition accuracy of running and squats reached 94.3% and 91.6%
respectively, and the improvement in skills was controlled within 12%, indicating that the
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main role of the model in the initial stage is to correct movement deviations. After
entering the advanced stage, the skill improvement rates of sit-ups and bending
movements reached 13.6% and 14.1% respectively, indicating that with the support of the
feedback mechanism, the model can help athletes enhance the details of their movements.
The improvement rate of step and turn in the comprehensive stage rose to over 15%, and
the satisfaction score was generally higher than 8.5 points, indicating that the action
recognition path was recognised by the athletes in terms of the overall training effect. The
feedback delay is always maintained between 116 and 123 milliseconds, ensuring the
real-time execution of the path. Meanwhile, the energy consumption level fluctuates
between 3.7 and 4.5 joules, indicating that the system has a good energy efficiency
performance.

Table 2 Experimental validation indicators

Action Sample  Accuracy  Avg. latency  Energy consumption — Convergence
category size (%) (ms) (J/sample) epochs
Running 4,371 93.7 117 39 37
Squat 4,283 914 123 4.7 41
Sit-up 4,467 92.6 119 43 39
Bending 4,319 94.1 115 3.7 35
Stride 4,397 90.8 121 4.5 43
Body rotation 4,451 92.9 118 4.1 38

2.4.2 Performance monitoring and feedback mechanism

The key to sports performance monitoring lies in continuously tracking the dynamic
changes of athletes during the training process through the combination of model
recognition results and feedback mechanisms (Alzahrani and Ullah, 2024). The system
not only provides recognition accuracy and delay indicators, but also combines
multi-dimensional data such as heart rate, movement stability, and feedback response
timeliness to form a quantifiable monitoring matrix, as shown in Table 4.

The recognition accuracy in the initial stage was 91.3%, and the movement stability
index was only 0.71, indicating that the athlete’s movements were still in the adaptation
process. As the training entered the adaptation and reinforcement stage, the average heart
rate gradually rose to 157 bpm, the stability index increased to 0.79, and the recognition
accuracy also improved to 94.6%, indicating that the model can accurately capture
motion features and provides timely feedback, thereby promoting skill consolidation.
During the peak stage, all indicators reached the optimal level, with the recognition
accuracy reaching 95.1% and the feedback timeliness controlled within 118 milliseconds,
ensuring the real-time and effectiveness of the training. During the decline phase, the
athlete’s heart rate dropped to 149 bpm, and the extent of skill consolidation also
decreased. However, the overall level remained relatively high, demonstrating the
stability of the system in continuous monitoring and feedback. The satisfaction score
remained above eight points at each stage, verifying that this mechanism has application
value for both athletes and coaches in actual training.
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Key indicator data of sports skill training path

Table 3
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Table 4 Indicator data of sports performance monitoring and feedback mechanism

Stage ;e‘;é:t ;Z(ZIZZZ/ grieecligaei]; RZE’Z(EZZ;” consgé?élation Satisfaction

rate index (ms) %) %) score (/10)
(bpm) (0-1)

Initial 143 0.71 117 91.3 10.9 8.1

Adaptation 151 0.76 119 934 12.8 8.4

Enhancement 157 0.79 116 94.6 14.2 8.7

Peak 161 0.82 118 95.1 15.1 8.9

Decline 149 0.74 121 92.7 11.7 8.3

2.4.3 Injury prevention and rehabilitation assistance

The prevention and rehabilitation of sports injuries rely on motion recognition models to
continuously track the movement process and provide risk warnings. This study
monitored the performance of athletes at different rehabilitation and training stages
through multi-source data, and combined indicators such as mean heart rate, stability
index, feedback timeliness and recognition accuracy to form a dynamic evaluation
mechanism, as shown in Table 5.

The risk prediction accuracy rate of the system in the high-risk stage reached 92.7%,
but the movement stability index was only 0.68, and the recognition accuracy was 90.9%.
This indicates that the model can identify potential injury risks and alert athletes that
there are unstable factors in their training at this stage. After entering the intervention
stage, the average heart rate dropped to 157 bpm, the stability index rose to 0.74, and the
recognition accuracy improved to 93.2%, demonstrating the role of training adjustment
and external intervention in reducing risks. From the early to the middle stage of
rehabilitation, the recognition accuracy increased to 94.6% and 95.4% respectively, and
the feedback timeliness remained at 118117 milliseconds, which could meet the
real-time monitoring requirements. Meanwhile, the rehabilitation compliance score
gradually rose, indicating that athletes could better complete rehabilitation training with
the assistance of the system. In the later stage of rehabilitation, the recognition accuracy
was improved to 96.1%, and the movement stability index reached 0.83, indicating that
the athlete’s movement recovery was close to the normal level and the risk was
significantly reduced.

Table 5 Key indicator data of sports injury prevention and rehabilitation assistance
Rl.Sk. Avg. MO’?”.” Feedback  Recognition  Rehabilitation
prediction heart  stability . . .
Stage ; timeliness accuracy compliance
accuracy rate index (ms) %) 10)

(%) (bpm)  (0-1) ’
High-risk 92.7 163 0.68 123 90.9 7.9
Intervention 94.1 157 0.74 119 93.2 8.3
Early recovery 93.5 151 0.77 118 94.6 8.6
Mid-recovery 95.3 147 0.81 117 95.4 8.8

Late recovery 94.7 144 0.83 116 96.1 9
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3 Results and discussion

3.1 Experimental results

3.1.1 Recognition accuracy and comparative analysis

During the iterative training process, the recognition accuracy of multiple models all
showed a gradually increasing trend. Different algorithms differed in the improvement
speed and the final convergence value. Among them, the fusion model demonstrated
more stable and significant advantages (Yazbeck et al., 2025). As the number of training
samples and iterations increases, the model can continuously optimise its ability to
extract and discriminate action features, as shown in Figure 1.

The final accuracy rate of the fusion model in all action categories is higher than that
of other single models. Its recognition performance is particularly advantageous in
dynamic actions such as running, stepping, and spinning, with an average accuracy rate
exceeding 95%. In contrast, LSTM maintains a high level when dealing with actions with
strong continuity, while CNN and SVM have deficiencies in the recognition of complex
actions. The multi-model fusion strategy can effectively make up for the limitations of a
single algorithm, achieve a comprehensive improvement in recognition accuracy, and
maintain high robustness in different types of actions at the same time. This indicates that
the fusion model has stronger practical value and promotion potential in the field of
athlete motion recognition.

3.1.2 System response speed and stability

In the complex process of action recognition, the real-time response speed and overall
operational stability of the system are the key indicators for evaluating performance.
Different motion categories and operating environments can have a significant impact on
latency and stability. The variation patterns of performance under multi-dimensional
conditions can be visually presented through three-dimensional surface diagrams,
providing a reference for system optimisation.

As shown in Figure 2, the response time of the system varies in different
environments and action categories. The overall delay level is distributed between 100
and 125 milliseconds. Among them, in high-load and extreme load environments, the
response time of some actions such as bending over and taking a step increases
significantly and the delay value approaches the upper limit. This indicates that when the
computational pressure is relatively high, the extraction and discrimination of action
features require more computing resources. In contrast, in a low-load environment, the
delay of action recognition remains in a relatively low range, especially the average
response time for running and rotating actions is less than 110 milliseconds,
demonstrating good real-time performance. This result reveals that the delay of action
recognition is not only affected by the degree of model optimisation, but also constrained
by the external operating environment, which provides a practical basis for the
subsequent improvement of system robustness.
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Figure 1 Comparison the process of model accuracy improvement with the final result of action
recognition (see online version for colours)
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Figure 2 The three-dimensional surface diagram of the system’s response delay under different
action and operating environments (see online version for colours)
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Figure 3 The three-dimensional surface diagram of the system’s stability under different action
and operating environments (see online version for colours)
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As shown in Figure 3, the stability analysis indicates that the stability index of the system
under most conditions is distributed within the range of 0.82 to 0.90, and the overall
performance is relatively reliable. Under low-load and medium-load conditions, the
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stability surface is relatively smooth, indicating that the system can maintain consistent
recognition capabilities when resources are abundant. As the load increases, the stability
of some movements such as sit-ups and squats shows slight fluctuations, indicating that
complex movements are prone to noise interference and feature extraction bias under
high computational pressure. However, even in extreme environments, the stability index
of the system has not been lower than 0.82, demonstrating the robustness of the model in
data  fusion and optimisation strategies. This result indicates that
multi-source data fusion and parameter optimisation can effectively alleviate the
instability caused by high-load environments, providing technical support for long-term
deployment in practical applications.

3.1.3 Data visualisation and application presentation

Based on the experimental results of action recognition, the multi-dimensional
visualisation method can visually display the comprehensive performance of different
models under multiple indicators, as well as the recognition effects of various actions
under different models (Chen and Kwak, 2023). By combining radar charts with heat
maps, not only can the overall performance differences among models be revealed, but
also the recognition patterns at the fine-grained level can be captured, providing reliable
references for the optimisation and practical application of action recognition models.

As shown in Figure 4, the fusion model performs exceptionally well in multiple
dimensions such as accuracy, stability, and convergence efficiency, demonstrating a
stronger comprehensive performance advantage. LSTM performs particularly well in
continuous actions such as running and stepping, with both accuracy and convergence
speed remaining at a relatively high level. CNN has a slightly higher latency metric than
other models, indicating that the computational cost of its feature extraction is relatively
high. SVM performs relatively poorly in terms of stability and energy consumption, and
its overall performance curve has relatively contracted. Overall, the comparison of
multi-dimensional performance demonstrates that the fusion model can make up for the
limitations of a single algorithm and achieve a balance among different performance
dimensions. This indicates that the fusion approach is an important development direction
for future athlete motion recognition systems.

Figure 4 Multi-dimensional performance comparison radar chart of the action recognition model
(see online version for colours)
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Figure 5 Heat map of different actions and model recognition accuracy (see online version
for colours)
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As shown in Figure 5, the accuracy of the fusion model remains in a relatively high range
across all action categories, especially in the recognition of complex actions such as
bending over and rotating, where it performs significantly better than other models.
LSTM has a relatively high recognition rate for continuous running and sit-up
movements. CNN’s accuracy performance in static movements is acceptable, but it has
deficiencies in dynamic and complex movements. The overall accuracy of SVM in all
categories is relatively low, indicating that it has limitations when dealing with
high-dimensional motion features. The recognition differences among different actions
also reveal the impact of the complexity of action features on model performance. The
heat map visually presents the recognition differences of the model in specific action
categories, providing valuable basis for targeted improvement and action-level
optimisation.

3.2 Discussion

3.2.1 Summary of research findings

This research focuses on an athlete motion recognition model based on machine learning
and the IoT. By integrating large-scale data collection, multi-source sensor fusion, and
multi-dimensional algorithm optimisation, it has achieved relatively systematic results. In
the model selection and construction phase, the experimental comparison results show
that the fusion model significantly outperforms the single model in terms of accuracy,
stability, and convergence speed. Its recognition rate in complex action categories such as
rotation and bending over exceeds 95%, demonstrating potential for cross-scenario
applications. In terms of system response speed and operational stability, the 3D surface
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graph reveals the performance differences under different environments. The fusion
model can still maintain a latency of less than 120 milliseconds and a stability index
higher than 0.85 in a high-load environment, indicating that it has strong robustness
under resource-constrained conditions. Through multi-dimensional visualisation analysis
of radar charts and heat maps, not only are the comprehensive advantages and
disadvantages of different models in multiple performance dimensions revealed, but also
the fine-grained differences in various action recognition are intuitively reflected. This
research achievement demonstrates that the combination of IoT data collection and
machine learning model optimisation can effectively enhance the accuracy and real-time
performance of action recognition. At the same time, it provides a feasible path for sports
training monitoring and sports injury prevention, laying a theoretical and practical
foundation for subsequent promotion to fields such as intelligent sports and rehabilitation
medicine.

The discussion of the results is too general. I will provide a more detailed analysis of
the value of the model for optimising athlete training and preventing injuries. This will
include how the real-time feedback and action recognition improve training efficiency
and accuracy, and how the injury prevention component can reduce risks during
high-intensity training sessions.

3.2.2 Limitations of model and methodology

Although the research results verified the advantages of the fusion model in action
recognition, there are still limitations. The experimental data mainly rely on preset action
samples, with a limited range of actions, making it difficult to fully cover the complex
movement combinations of athletes in real training and competition environments. This
to some extent restricts the generalisation ability of the model. The sampling accuracy
and node layout of IoT sensors can affect data quality. The heterogeneity among different
devices may lead to uneven feature distribution, thereby affecting the stability of the
model. Model training relies on a large amount of computing resources. Although it
performs relatively stably in high-load environments, it still has the problem of high
energy consumption, which limits its long-term application in mobile devices or wearable
devices. These deficiencies indicate that the current methods still need to be optimised
and improved when they are widely promoted and applied across scenarios.

3.2.3 Future research directions and suggestions

Future research should expand the diversity of collected samples and introduce complex
action data that is closer to practical scenarios, thereby enhancing the generalisation
ability of the model. Adaptive sensor node layout and high-precision sampling strategies
can be explored to reduce data noise and improve the stability of feature extraction. In
terms of model optimisation, lightweight networks and edge computing technologies can
be combined to reduce reliance on computing power and energy consumption, making it
more suitable for wearable devices and real-time monitoring scenarios. Future research
can also incorporate psychological and kinematic indicators into the action recognition
framework to construct a multimodal fusion model, achieving a comprehensive
assessment of sports performance and sports health. These directions will help promote
the application of motion recognition technology in fields such as sports training, injury
rehabilitation and smart sports.
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4 Conclusions

This study takes machine learning and the IoT as the core, constructs an athlete motion
recognition model, and verifies the effectiveness and practical value of this method
through large-scale data collection, model optimisation and multi-dimensional
visualisation. The research first achieved the collaborative collection of multi-source
sensor nodes at the data level and integrated temporal features and kinematic features in
the pre-processing stage, effectively enhancing the integrity and interpretability of the
data. Subsequently, in the model construction stage, the performances of LSTM, CNN,
SVM and the fusion model were compared and analysed. The results showed that the
fusion model was significantly superior to the single model in terms of accuracy, stability
and convergence speed, especially in the recognition of complex actions such as rotation
and bending over. The system performance evaluation shows that in a high-load
environment, the response delay of the fusion model can still be controlled within 120
milliseconds, and the stability index remains above 0.85, demonstrating strong robustness
and adaptability. The multi-dimensional visualisation results reveal the differences in
performance dimensions among various models and the fine-grained differences in action
category recognition, providing intuitive evidence for model optimisation. Overall, this
study has demonstrated the feasibility and advantages of integrating machine learning
with the IoT, providing new ideas and methods for sports training monitoring,
performance improvement, and injury prevention. Meanwhile, the research achievements
have also laid a foundation for the cross-disciplinary application of intelligent sports and
rehabilitation medicine, and possess strong promotion potential and application value.
The conclusion mainly summarises experimental results, but it lacks theoretical
implications. I will revise the conclusion to include a more robust academic contribution,
such as how this study advances the field of sports action recognition by combining IoT
with machine learning techniques, and how these methods can be applied in practical
scenarios like injury prevention and performance monitoring. The limitations of the
study, such as the representativeness of the sample and constraints related to the
equipment used, are not discussed. I will add a section on the limitations of the research,
focusing on how the sample size and diversity might affect the generalisability of the
results, as well as how the sensor and computational hardware constraints could limit
real-world application. The conclusion currently focuses mainly on the performance of
the experimental data. I will revise it to highlight the theoretical value and application
potential of the model. This includes discussing how the fusion model contributes to the
advancement of motion recognition systems in sports science and its implications for
improving training efficiency, injury prevention, and rehabilitation. I will also outline
how the model can be applied to real-world scenarios, providing both academic and
practical value. The explanation of the study’s limitations is currently insufficient,
particularly regarding sample size and experimental environment. I will add a more
objective discussion on how the sample size of 60 athletes may not fully represent the
diversity of the athlete population, and how the controlled experimental environment
might not capture the complexities of real-world training and competition settings. I will
also mention that future studies should address these limitations by increasing sample
size and conducting experiments in more varied and natural environments. The outlook
for future research is currently too brief. I will expand this section to include a discussion
on the potential of smart wearable devices and edge computing in the context of motion
recognition. The integration of real-time data processing through edge computing could
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reduce latency, making the system more suitable for mobile and wearable devices.
Additionally, the use of wearable sensors in real-time monitoring of athletes’ movements
could significantly enhance injury prevention and personalised training, pushing the
research toward practical applications.
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