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Abstract: With the continuous improvement of sports training and competitive 
levels, athletes’ demands for motion recognition and motion monitoring during 
training are increasing day by day. Based on a multi-node sensor platform and 
the internet of things environment, this study constructed an action data 
acquisition system and ensured high-quality data input through pre-processing 
and feature extraction. In terms of model construction and optimisation, the 
performance of LSTM, CNN, SVM and the fusion model was compared and 
analysed. The results show that the fusion model is significantly superior to the 
single model in terms of recognition accuracy, system delay, stability and 
energy consumption, especially in the recognition of complex actions such as 
rotation and bending, the accuracy exceeds 95%. Further three-dimensional 
surface analysis shows that the fusion model still maintains a latency of less 
than 120 milliseconds and a stability index higher than 0.85 in a high-load 
environment, demonstrating good robustness. 
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1 Introduction 

The introduction opens with highly technical content, which may be challenging for 
readers not familiar with the topic. I will introduce practical examples from the sports and 
health sectors at the beginning of the introduction, such as how motion recognition 
technologies are currently being used in athletic training or injury prevention, to make the 
context more relatable and accessible to a wider audience. With the continuous 
improvement of sports competition levels, the monitoring of movement quality and 
performance during athletes’ training has become a core link in the scientific training 
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system. Traditional manual observation and video analysis methods have limitations such 
as strong subjectivity, low efficiency, and insufficient real-time performance, making it 
difficult to meet the demands of modern training and rehabilitation for precision and 
intelligence. In recent years, the development of internet of things (IoT) technology has 
enabled various sensors to collect multi-dimensional data such as athletes’ acceleration, 
angular velocity, and joint displacement in real-time, forming high-frequency and  
high-precision motion information streams. Machine learning algorithms have 
demonstrated superior performance in pattern recognition and feature extraction, 
providing effective tools for the automatic recognition and classification of complex 
actions. Combining machine learning with the IoT can achieve real-time recognition and 
feedback of athletes’ movements, and also provide new technical paths for sports science 
research and the improvement of competitive levels. 

The background section mostly summarises existing studies without critically 
analysing the drawbacks of current methods. It is important to discuss the limitations of 
existing action recognition systems, such as issues with data quality, sensor inaccuracies, 
and the constraints of single algorithm models. These shortcomings can significantly 
affect the robustness and generalisation of current systems. I will add a discussion on 
these gaps to highlight the need for innovation in the model development and how this 
study aims to address these issues. 

Although the research background section covers a significant amount of literature, 
there is a lack of a comparative discussion of methods and conclusions, which affects the 
systematic nature of the review. I will include a comparison of the different methods used 
in the studies discussed, such as the strengths and limitations of Gaussian mixture 
models, CNN, LSTM, and other machine learning techniques applied in action 
recognition. Additionally, I will contrast the conclusions drawn from various studies to 
highlight the advancements and gaps in the field, which will improve the coherence and 
depth of the background section. 

Jia (2021) through the recognition research on the kicking and stepping actions of 
taekwondo athletes, proposed that the Gaussian mixture model can effectively improve 
the classification accuracy of complex action patterns, offering a new idea for the 
technical analysis of specific projects. Liu (2021) applied convolutional neural networks 
(CNNs) in motion analysis to enhance the algorithm for human motion recognition. The 
results demonstrated the strong advantage of deep learning models in processing 
nonlinear motion features (Liu, 2021). 

Shiffrar and Heinen (2010) highlighted that differences in motor ability can influence 
an individual’s perception process of movements. This suggests that movement 
recognition is not only based on the extraction of external features, but is also deeply 
connected to an athlete’s own experience and perception mechanisms (Shiffrar and 
Heinen, 2010). 

Zong et al. (2022) explored the integration of the IoT and machine learning in sports 
ethics decision support. Their findings revealed that psychological distance has a 
moderating effect on the process of action recognition and judgement, adding an 
interdisciplinary perspective to this field (Zong et al., 2022). Wilkerson et al. (2018) 
proposed a sports injury risk monitoring method leveraging the IoT and data analysis, 
showing that sensor-based predictive models could significantly reduce injury incidence 
rates in athletes. 

Sengchuai et al. (2022) developed a real-time knee extension monitoring and 
rehabilitation system by combining surface electromyographic signals with motion 
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amplitude measurement. This system synchronised motion recognition and rehabilitation 
assessment, serving as a reference for clinical sports rehabilitation (Sengchuai et al., 
2022). 

Zong et al. (2022) further investigated the application of IoT and machine learning in 
physical education, emphasising that intelligent technology-based learning concept can 
improve students’ understanding of body cognition and movement, thus expanding the 
potential for movement recognition in educational contexts. Rodríguez-Rodríguez et al. 
(2021) reviewed the applications of AI, machine learning, big data, and IoT in the context 
of the COVID-19 pandemic, underscoring the potential of these technologies for health 
monitoring and human motion recognition, while highlighting the importance of  
cross-domain integration. 

Kaliappan et al. (2023) proposed a smart medical service architecture based on 
machine learning, utilising social IoT and cloud computing to achieve efficient data 
distribution. This system offers a structured approach to the sharing and processing of 
athlete movement data (Kaliappan et al., 2023). Li and Wang (2023) discussed the 
adoption of machine learning and IoT platforms in educational institutions, noting that 
intelligent platforms enhance data interaction and application efficiency, indirectly 
inspiring the development of motion training and action recognition models. 

The literature review section can be made more engaging by not only listing previous 
studies but also emphasising the differences and trends among them. I will reorganise the 
discussion to highlight key trends, such as the increasing use of machine learning in 
motion recognition and the integration of IoT in sports science. I will also discuss the 
varying effectiveness of different algorithms, (e.g., CNN vs. LSTM vs. fusion models) 
and how these differences contribute to the evolution of the field. This will create a more 
dynamic and insightful review. Although athlete motion recognition has made certain 
progress with the support of machine learning and the IoT, there are still many 
bottlenecks that need to be urgently broken through. Firstly, the data collected by sensors 
is often affected by noise and external interference, resulting in unstable feature 
extraction. Secondly, most of the existing models rely on a single algorithm, which  
leads to insufficient accuracy and generalisation when dealing with complex and  
multi-dimensional actions. Secondly, there are problems of uneven distribution and 
scarcity of training samples, especially the difficulty in obtaining the movement data of 
high-level athletes, which limits the performance of the model in actual training 
environments. Finally, the real-time performance of action recognition results in the 
feedback mechanism is still insufficient and has not fully met the demand for rapid and 
accurate feedback in sports training (Abu Alsheikh et al., 2020). 

This study constructs an athlete motion recognition model that integrates machine 
learning and IoT technologies to address the shortcomings of traditional methods in terms 
of accuracy, stability and real-time performance. The specific goals include: first, to build 
a high-quality motion database through the collaborative collection of multiple sensors; 
second, adaptable machine learning algorithms are adopted to achieve automatic 
recognition and classification of complex action patterns. Third, explore real-time data 
processing and feedback mechanisms to provide dynamic support for athletes’ training; 
fourth, in combination with the analysis of injury risks, propose auxiliary intervention 
measures. Through the above approaches, the research aims to provide reliable technical 
support for the scientific training and performance optimisation of athletes. 

In the introduction section, the review of international research lacks depth. To 
enhance the academic scope, it is essential to expand on the latest advancements in 
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motion recognition technology, especially in the field of sports and IoT applications. This 
can include key studies that utilise machine learning models in action recognition, 
comparing their performance in different contexts, and how these models contribute to 
the optimisation of athletic training systems globally. By broadening the international 
research perspective, the paper will better reflect the global trends in this field. 

To achieve the research goals, this study will adopt a number of advanced 
technologies and methods. At the data collection level, multiple types of IoT devices such 
as accelerometers, gyroscopes, and surface electromyography sensors are utilised for 
real-time collection of motion data, and noise interference is reduced through  
pre-processing techniques. In terms of model construction, algorithms such as CNNs, 
long short-term memory networks, and support vector machines will be combined to 
enhance the robustness of feature extraction and classification. Multi-source data fusion 
technology will be used to integrate sensor signals and video data to achieve  
multi-dimensional verification of action recognition. In the experimental stage, 
hierarchical cross-validation and performance comparison analysis were adopted to 
ensure the stability and generalisation value of the model. 

The explanation of the significance of the research in the introduction is somewhat 
vague. I will elaborate on the academic value of the intersection between sports science 
and artificial intelligence. Specifically, the potential of AI to revolutionise sports 
performance analysis, injury prevention, and rehabilitation will be highlighted. By 
integrating machine learning and IoT, this research aims to advance the efficiency of 
training, optimise personalised feedback, and provide innovative tools for real-time 
motion recognition. This will demonstrate the broader impact of AI in the field of sports 
science and its value in enhancing athletic performance. 

While the research objectives are clear, the differences between this study and 
existing research are not sufficiently emphasised. I will add a more explicit positioning at 
the end of the introduction to underline the novelty of the proposed motion recognition 
model, especially in terms of integrating machine learning with IoT technology to 
enhance real-time performance, accuracy, and stability. I will also highlight how the 
proposed fusion model addresses the shortcomings of previous models. 

2 Materials and methods 

2.1 Data collection and sample construction 

2.1.1 Athlete motion acquisition platform design 
The construction of the motion acquisition platform is centred on the IoT architecture. 
Through the integration of multiple types of sensors and data transmission modules, it 
realises the comprehensive collection of athletes’ motion data. The platform is composed 
of an inertial measurement unit, surface electromyography sensors and video acquisition 
devices, capable of synchronously capturing multi-dimensional information such as 
acceleration, angular velocity, muscle electrical signals and posture changes in training 
and experimental environments. The sensor nodes are connected to the edge gateway 
through wireless communication protocols and transmit data in real-time to the data 
centre for storage and preliminary processing to ensure the continuity and stability of the 
collection. The platform is also equipped with a high-precision clock synchronisation 
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mechanism, enabling data from different sensors to be precisely aligned in the time 
dimension, thereby enhancing the reliability of subsequent action recognition. To meet 
the demands of different sports, the platform design retains expandable interfaces, 
facilitating the addition of new sensor modules or interaction with external systems 
(Oyeleye et al., 2022). 

The description of the methods is generally complete, but there is insufficient 
explanation of parameter selection and training details, which affects the replicability of 
the study. I will expand on the choices made for key parameters such as the learning rate, 
batch size, and optimiser used in the model. Additionally, I will include a more detailed 
discussion of the training process, including the number of epochs, validation strategies, 
and the handling of overfitting through techniques such as dropout and early stopping. 
These details will improve the transparency and reproducibility of the research. 

2.1.2 Sensor nodes and IoT data acquisition 
Sensor nodes undertake the key function of motion information collection, and their 
deployment positions directly affect the completeness and accuracy of the data. The 
inertial measurement unit is fixed at the main joint areas of the upper and lower limbs to 
capture the acceleration and angular velocity signals in real-time during the motion 
process. The surface electromyography sensor is attached to the core muscle group and 
can reflect the electrical activity of the muscle during contraction and relaxation. High 
frame rate cameras record the overall posture and movement trajectory, forming a visual 
(Sundas et al., 2022). Different types of sensors transmit data to the edge gateway via 
low-power Bluetooth, Wi-Fi or ZigBee protocols, and rely on the time synchronisation 
module to ensure signal alignment. To reduce data transmission latency, the platform has 
designed a local caching and compression strategy. It first completes the initial storage at 
the node end and then uplinks it uniformly to the server. Through this hierarchical 
collection and transmission mechanism, the system can maintain stable operation in 
complex environments and provide high-quality data input for subsequent processing 
steps. 

2.1.3 Data pre-processing and feature extraction 
Raw data is often accompanied by problems such as noise, missing data and inconsistent 
scales, so it must go through systematic pre-processing steps. The collected signals are 
denoised by using filtering methods and wavelet analysis to eliminate the  
pseudo-aberrations caused by environmental interference and equipment jitter. The 
interpolation algorithm is adopted to repair the missing segments, and through 
normalisation and standardisation processing, the data from different sources are adjusted 
to a unified dimension. After the cleaning is completed, the feature extraction stage 
begins. Time-domain indicators such as mean, standard deviation and extreme values 
describe the stability of the movement; frequency-domain features such as main 
frequency and power spectral density reveal the rhythm and intensity of the movement, 
while spatial features such as joint Angle and posture change rate reflect the coordination 
and complexity of the movement. After multi-dimensional feature fusion, the constructed 
feature set can more comprehensively represent the motion process, providing a solid 
foundation for the training and classification of machine learning models (Liu et al., 
2022). 
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2.2 Model construction and optimisation 

2.2.1 Model selection and principle analysis 
In action recognition research, CNNs and long short-term memory networks (LSTM) are 
often combined to handle both spatial and temporal features simultaneously. The input 
sensor signal can be expressed as a time series matrix, as shown in equation (1). 

{ }1 2, , , , d
T tX x x x x= ∈   (1) 

Here, d represents the sensor feature dimension and T represents the time step. The 
convolutional layer extracts local features through filters, as shown in equation (2). 
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activation function. To maintain the stability of training, cross-entropy is introduced as 
the loss function as shown in equation (3). 

( )
1

ˆlog
C

c c
c

L y y
=

= −  (3) 

Here, yc represents the true label and ˆcy  is the predicted probability. In this way, the 
model can continuously optimise parameters in classification tasks and ultimately achieve 
accurate recognition of complex motion patterns. 

2.2.2 Model architecture and parameter configuration 
In the construction of the model architecture, CNNs are used to extract the spatial 
features of multi-source data, and then the long short-term memory network is used to 
model the time series of action sequences. The calculation of the convolutional layer is 
shown in equation (4). 

( ) ( ) ( 1) ( )
+ 1

1

+
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l l l l
i j i j

j

h f w x b−
−

=

 
= ⋅  

 
  (4) 

Here, ( )l
ih  represents the convolution result of layer l, ( )l

jw  is the weight of the 

convolution kernel, ( 1)
+ 1
l

i jx −
−  is the input fragment, b(l) is the bias term, and f(·) is the 

activation function. This process can capture the combined pattern of acceleration and 
angular velocity within a local range, thereby effectively identifying the movement 
characteristics of athletes (Kim et al., 2024). 

In the time series modelling stage, the LSTM structure is introduced to alleviate the 
vanishing gradient problem of traditional recurrent neural networks in the processing of 
long sequences. The cell state update equation of LSTM is shown in equation (5). 
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1 +t t t t tC f C i C−=    (5) 

Among them, Ct represents the memory state at the current moment, ft is the forgetting 
gate, it is the input gate, and tC  is the candidate state. Through this mechanism, the 
model can filter and forget irrelevant information while maintaining long-term 
dependencies. 

In terms of parameter configuration, the convolutional layer is set with 3×3 
convolutional kernels and max pooling is adopted to reduce the feature dimension. The 
LSTM layer contains 128 hidden units, and the output is classified by the fully connected 
layer and the softmax function. During the training phase, the Adam optimiser is used, 
with the learning rate set at 0.001, and a dropout mechanism is introduced in the fully 
connected layer to reduce the risk of overfitting. Through this architecture and parameter 
combination, the model forms an effective connection between spatial feature extraction 
and time-dependent modelling, thereby enhancing the accuracy and stability of action 
recognition. 

2.2.3 Multi-source data fusion implementation 
Multi-source data fusion aims to uniformly process the action information collected by 
different types of sensors to enhance the accuracy and stability of the recognition results. 
The acceleration and angular velocity data provided by the inertial measurement unit  
can reflect the dynamic characteristics of the motion trajectory, while surface 
electromyographic signals characterise the muscle activity patterns. The data collected 
from high frame rate videos are used to verify the posture and overall motion trajectory. 
Due to the differences in sampling frequency, scale and noise characteristics among 
various types of data, the study first conducts synchronous correction in the time 
dimension to ensure that different signals correspond consistently on the same time axis. 
Subsequently, through the fusion method of the feature layer, the time-domain, 
frequency-domain and spatial features are combined, enabling the model to 
simultaneously learn the complementary relationship of different modal information 
during the training process. To avoid excessive interference from a certain data source on 
the overall judgement, the system introduces weight distribution and redundant  
control in the fusion strategy, thereby enhancing the generalisation ability of the model  
(Aitcheson-Huehn et al., 2024). 

2.2.4 Training and optimisation mechanism 
The model training process follows an end-to-end flow design. The pre-processed  
multi-source feature data is input into the network in small batches, and the prediction 
results are generated through forward propagation. Then, the loss values are calculated 
using real labels. The cross-entropy is selected as the loss function to measure the 
difference between the classification output and the true category. In terms of 
optimisation methods, the Adam optimiser is introduced to achieve adaptive adjustment 
of the learning rate, thereby ensuring the convergence speed while enhancing the training 
stability. To prevent the model from overfitting on complex action data, a dropout layer is 
set in the network structure, and an L2 regularisation term is added in the weight update 
to limit the parameter’s excessive reliance on a single feature. An early stop mechanism 
is adopted in the training scheduling. When the accuracy of the validation set no longer 



   

 

   

   
 

   

   

 

   

    An athlete motion recognition model based on machine learning 55    
 

    
 
 

   

   
 

   

   

 

   

       
 

improves within several rounds of iterations, the training is automatically terminated to 
reduce computational overhead. The evaluation of model performance is accomplished 
through hierarchical cross-validation. The evaluation metrics include accuracy rate, recall 
rate and F1 value to ensure that the results of action recognition not only have overall 
reliability but also take into account the sensitivity to key action categories (Krupitzer  
et al., 2022). 

2.3 System implementation and experimental design 

2.3.1 Hardware deployment and network configuration 
During the system implementation stage, hardware deployment and network 
configuration are the foundation for ensuring the stable operation of the action 
recognition model (Liu et al., 2022). To meet the requirements of high-frequency data 
collection and real-time transmission, a three-layer hardware system composed of sensor 
nodes, edge gateways and servers was studied and built. Combined with the wireless 
network environment, efficient transmission and processing of multi-source data were 
achieved, as shown in Table 1. 

In the system configuration analysis, the sampling frequency of the sensor nodes is 
calibrated according to the experimental requirements to ensure that detailed changes can 
still be fully captured during high-intensity movements. The data volume of the 
electromyography sensor is large, so high-bandwidth Wi-Fi transmission is adopted, 
while the inertial measurement unit utilises low-power Bluetooth to reduce energy 
consumption. Video data has the highest bandwidth requirements, and a gigabit wired 
network is configured to avoid latency and frame loss. The edge computing gateway 
completes the initial pre-processing and caching locally, reducing the delay of data 
during transmission, while the cloud server undertakes the centralised training and 
storage functions. The overall deployment not only strikes a balance between energy 
consumption and transmission efficiency, but also realises a hierarchical computing 
architecture, ensuring real-time and stable motion recognition in actual motion scenarios. 
Table 1 Hardware deployment and network configuration parameters 

Module Device model Function description Network 
connection 

Sampling 
frequency (Hz) 

Inertial 
measurement 
unit 

MPU-9250 Collects tri-axial 
acceleration and 
angular velocity 

Bluetooth 5.0 200 

Surface EMG 
sensor 

Delsys Trigno Monitors muscle 
electrical activity 

Wi-Fi 2.4 GHz 1,000 

Video capture 
device 

Basler  
acA640-120uc 

Captures motion 
posture images 

Gigabit 
Ethernet 

120 fps 

Edge 
computing 
gateway 

NVIDIA Jetson 
Nano 

Performs preliminary 
processing and 

caching 

Wired/wireless 
hybrid 

— 

Cloud server Dell PowerEdge 
R740 

Centralised storage 
and model training 

Gigabit 
Ethernet 

— 
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2.3.2 Experimental scheme and validation process 
The objective of the experimental scheme design is to comprehensively evaluate the 
model’s performance in different scenarios and ensure that the results are representative 
and stable. The experimental subjects were 60 athletes, and the movement categories 
covered six types: running, squats, sit-ups, bending over, stepping and turning (Burdack 
et al., 2020). During the data acquisition stage, each action is recorded in triple 
synchronisation through an inertial measurement unit, a surface electromyography 
sensor, and a video module, ultimately forming a multimodal sample library. To ensure 
the richness and complexity of the data, the sample size of a single type of action is 
maintained at over 4,000, and the total data scale exceeds 26,000. Stratified sampling was 
adopted for training and testing to avoid sample distribution bias. In the verification 
process, the model first receives the pre-processed multi-source data, then performs 
feature extraction and time series modelling through the convolutional layer and LSTM 
layer, and finally outputs the classification results. The performance evaluation metrics 
include action recognition accuracy, system average delay, energy consumption per unit 
of data processing, and training convergence rounds, in order to verify the robustness and 
efficiency of the model from different perspectives, as shown in Table 2. 

The model maintains a relatively high accuracy overall in the recognition of multiple 
types of actions. Among them, the recognition rates of bending over and running actions 
reach 94.1% and 93.7% respectively, showing the most stable performance. This 
indicates that the model has a strong recognition ability for actions with significant 
amplitude and obvious rhythmic patterns. However, the accuracy of straddling and squats 
is relatively low, which may be affected by the difference in movement amplitude and 
fluctuations in electromyographic signals. In terms of latency, all actions are maintained 
within 115 to 123 milliseconds, indicating that the system basically meets the real-time 
requirements of the training scenarios. The energy consumption level fluctuates between 
3.7 and 4.7 joules, indicating that the system’s energy efficiency is guaranteed under the 
support of multi-source data fusion and edge computing. The convergence rounds were 
all between 35 and 43, and no overtraining or slow convergence occurred, which proved 
that the parameter settings were reasonable. This scheme effectively verified the accuracy 
and robustness of the model in complex action recognition, and the distribution and 
multi-dimensional performance of the data provided sufficient basis for subsequent 3D 
visualisation and spider graph analysis. 

2.4 Motion recognition path and application exploration 

2.4.1 Optimisation suggestions for athletic training 
The construction of the training path for motor skills is based on the multi-dimensional 
output results of the action recognition model. Through a comprehensive analysis of the 
recognition accuracy, feedback speed, energy consumption level, and the extent of skill 
improvement during the training process, a phased advanced training mode is gradually 
formed (Taha et al., 2018). This path emphasises the continuous improvement of athletes’ 
specialised abilities from the stability of basic movements to the coordination of complex 
movements, as shown in Table 3. 

The focus of the basic training stage is on enhancing the stability and standardisation 
of movements. The recognition accuracy of running and squats reached 94.3% and 91.6% 
respectively, and the improvement in skills was controlled within 12%, indicating that the 



   

 

   

   
 

   

   

 

   

    An athlete motion recognition model based on machine learning 57    
 

    
 
 

   

   
 

   

   

 

   

       
 

main role of the model in the initial stage is to correct movement deviations. After 
entering the advanced stage, the skill improvement rates of sit-ups and bending 
movements reached 13.6% and 14.1% respectively, indicating that with the support of the 
feedback mechanism, the model can help athletes enhance the details of their movements. 
The improvement rate of step and turn in the comprehensive stage rose to over 15%, and 
the satisfaction score was generally higher than 8.5 points, indicating that the action 
recognition path was recognised by the athletes in terms of the overall training effect. The 
feedback delay is always maintained between 116 and 123 milliseconds, ensuring the 
real-time execution of the path. Meanwhile, the energy consumption level fluctuates 
between 3.7 and 4.5 joules, indicating that the system has a good energy efficiency 
performance. 
Table 2 Experimental validation indicators 

Action 
category 

Sample 
size 

Accuracy 
(%) 

Avg. latency 
(ms) 

Energy consumption 
(J/sample) 

Convergence 
epochs 

Running 4,371 93.7 117 3.9 37 
Squat 4,283 91.4 123 4.7 41 
Sit-up 4,467 92.6 119 4.3 39 
Bending 4,319 94.1 115 3.7 35 
Stride 4,397 90.8 121 4.5 43 
Body rotation 4,451 92.9 118 4.1 38 

2.4.2 Performance monitoring and feedback mechanism 
The key to sports performance monitoring lies in continuously tracking the dynamic 
changes of athletes during the training process through the combination of model 
recognition results and feedback mechanisms (Alzahrani and Ullah, 2024). The system 
not only provides recognition accuracy and delay indicators, but also combines  
multi-dimensional data such as heart rate, movement stability, and feedback response 
timeliness to form a quantifiable monitoring matrix, as shown in Table 4. 

The recognition accuracy in the initial stage was 91.3%, and the movement stability 
index was only 0.71, indicating that the athlete’s movements were still in the adaptation 
process. As the training entered the adaptation and reinforcement stage, the average heart 
rate gradually rose to 157 bpm, the stability index increased to 0.79, and the recognition 
accuracy also improved to 94.6%, indicating that the model can accurately capture 
motion features and provides timely feedback, thereby promoting skill consolidation. 
During the peak stage, all indicators reached the optimal level, with the recognition 
accuracy reaching 95.1% and the feedback timeliness controlled within 118 milliseconds, 
ensuring the real-time and effectiveness of the training. During the decline phase, the 
athlete’s heart rate dropped to 149 bpm, and the extent of skill consolidation also 
decreased. However, the overall level remained relatively high, demonstrating the 
stability of the system in continuous monitoring and feedback. The satisfaction score 
remained above eight points at each stage, verifying that this mechanism has application 
value for both athletes and coaches in actual training. 
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Table 3 Key indicator data of sports skill training path 
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Table 4 Indicator data of sports performance monitoring and feedback mechanism 

Stage 

Avg. 
heart 
rate 

(bpm) 

Motion 
stability 

index 
(0–1) 

Feedback 
timeliness 

(ms) 

Recognition 
accuracy 

(%) 

Skill 
consolidation 

(%) 

Satisfaction 
score (/10) 

Initial 143 0.71 117 91.3 10.9 8.1 
Adaptation 151 0.76 119 93.4 12.8 8.4 
Enhancement 157 0.79 116 94.6 14.2 8.7 
Peak 161 0.82 118 95.1 15.1 8.9 
Decline 149 0.74 121 92.7 11.7 8.3 

2.4.3 Injury prevention and rehabilitation assistance 
The prevention and rehabilitation of sports injuries rely on motion recognition models to 
continuously track the movement process and provide risk warnings. This study 
monitored the performance of athletes at different rehabilitation and training stages 
through multi-source data, and combined indicators such as mean heart rate, stability 
index, feedback timeliness and recognition accuracy to form a dynamic evaluation 
mechanism, as shown in Table 5. 

The risk prediction accuracy rate of the system in the high-risk stage reached 92.7%, 
but the movement stability index was only 0.68, and the recognition accuracy was 90.9%. 
This indicates that the model can identify potential injury risks and alert athletes that 
there are unstable factors in their training at this stage. After entering the intervention 
stage, the average heart rate dropped to 157 bpm, the stability index rose to 0.74, and the 
recognition accuracy improved to 93.2%, demonstrating the role of training adjustment 
and external intervention in reducing risks. From the early to the middle stage of 
rehabilitation, the recognition accuracy increased to 94.6% and 95.4% respectively, and 
the feedback timeliness remained at 118–117 milliseconds, which could meet the  
real-time monitoring requirements. Meanwhile, the rehabilitation compliance score 
gradually rose, indicating that athletes could better complete rehabilitation training with 
the assistance of the system. In the later stage of rehabilitation, the recognition accuracy 
was improved to 96.1%, and the movement stability index reached 0.83, indicating that 
the athlete’s movement recovery was close to the normal level and the risk was 
significantly reduced. 
Table 5 Key indicator data of sports injury prevention and rehabilitation assistance 

Stage 

Risk 
prediction 
accuracy 

(%) 

Avg. 
heart 
rate 

(bpm) 

Motion 
stability 

index 
(0–1) 

Feedback 
timeliness 

(ms) 

Recognition 
accuracy 

(%) 

Rehabilitation 
compliance 

(/10) 

High-risk 92.7 163 0.68 123 90.9 7.9 
Intervention 94.1 157 0.74 119 93.2 8.3 
Early recovery 93.5 151 0.77 118 94.6 8.6 
Mid-recovery 95.3 147 0.81 117 95.4 8.8 
Late recovery 94.7 144 0.83 116 96.1 9 
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3 Results and discussion 

3.1 Experimental results 

3.1.1 Recognition accuracy and comparative analysis 
During the iterative training process, the recognition accuracy of multiple models all 
showed a gradually increasing trend. Different algorithms differed in the improvement 
speed and the final convergence value. Among them, the fusion model demonstrated 
more stable and significant advantages (Yazbeck et al., 2025). As the number of training 
samples and iterations increases, the model can continuously optimise its ability to 
extract and discriminate action features, as shown in Figure 1. 

The final accuracy rate of the fusion model in all action categories is higher than that 
of other single models. Its recognition performance is particularly advantageous in 
dynamic actions such as running, stepping, and spinning, with an average accuracy rate 
exceeding 95%. In contrast, LSTM maintains a high level when dealing with actions with 
strong continuity, while CNN and SVM have deficiencies in the recognition of complex 
actions. The multi-model fusion strategy can effectively make up for the limitations of a 
single algorithm, achieve a comprehensive improvement in recognition accuracy, and 
maintain high robustness in different types of actions at the same time. This indicates that 
the fusion model has stronger practical value and promotion potential in the field of 
athlete motion recognition. 

3.1.2 System response speed and stability 
In the complex process of action recognition, the real-time response speed and overall 
operational stability of the system are the key indicators for evaluating performance. 
Different motion categories and operating environments can have a significant impact on 
latency and stability. The variation patterns of performance under multi-dimensional 
conditions can be visually presented through three-dimensional surface diagrams, 
providing a reference for system optimisation. 

As shown in Figure 2, the response time of the system varies in different 
environments and action categories. The overall delay level is distributed between 100 
and 125 milliseconds. Among them, in high-load and extreme load environments, the 
response time of some actions such as bending over and taking a step increases 
significantly and the delay value approaches the upper limit. This indicates that when the 
computational pressure is relatively high, the extraction and discrimination of action 
features require more computing resources. In contrast, in a low-load environment, the 
delay of action recognition remains in a relatively low range, especially the average 
response time for running and rotating actions is less than 110 milliseconds, 
demonstrating good real-time performance. This result reveals that the delay of action 
recognition is not only affected by the degree of model optimisation, but also constrained 
by the external operating environment, which provides a practical basis for the 
subsequent improvement of system robustness. 
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Figure 1 Comparison the process of model accuracy improvement with the final result of action 
recognition (see online version for colours) 
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Figure 2 The three-dimensional surface diagram of the system’s response delay under different 
action and operating environments (see online version for colours) 

 

Figure 3 The three-dimensional surface diagram of the system’s stability under different action 
and operating environments (see online version for colours) 

 

As shown in Figure 3, the stability analysis indicates that the stability index of the system 
under most conditions is distributed within the range of 0.82 to 0.90, and the overall 
performance is relatively reliable. Under low-load and medium-load conditions, the 



   

 

   

   
 

   

   

 

   

    An athlete motion recognition model based on machine learning 63    
 

    
 
 

   

   
 

   

   

 

   

       
 

stability surface is relatively smooth, indicating that the system can maintain consistent 
recognition capabilities when resources are abundant. As the load increases, the stability 
of some movements such as sit-ups and squats shows slight fluctuations, indicating that 
complex movements are prone to noise interference and feature extraction bias under 
high computational pressure. However, even in extreme environments, the stability index 
of the system has not been lower than 0.82, demonstrating the robustness of the model in 
data fusion and optimisation strategies. This result indicates that  
multi-source data fusion and parameter optimisation can effectively alleviate the 
instability caused by high-load environments, providing technical support for long-term 
deployment in practical applications. 

3.1.3 Data visualisation and application presentation 
Based on the experimental results of action recognition, the multi-dimensional 
visualisation method can visually display the comprehensive performance of different 
models under multiple indicators, as well as the recognition effects of various actions 
under different models (Chen and Kwak, 2023). By combining radar charts with heat 
maps, not only can the overall performance differences among models be revealed, but 
also the recognition patterns at the fine-grained level can be captured, providing reliable 
references for the optimisation and practical application of action recognition models. 

As shown in Figure 4, the fusion model performs exceptionally well in multiple 
dimensions such as accuracy, stability, and convergence efficiency, demonstrating a 
stronger comprehensive performance advantage. LSTM performs particularly well in 
continuous actions such as running and stepping, with both accuracy and convergence 
speed remaining at a relatively high level. CNN has a slightly higher latency metric than 
other models, indicating that the computational cost of its feature extraction is relatively 
high. SVM performs relatively poorly in terms of stability and energy consumption, and 
its overall performance curve has relatively contracted. Overall, the comparison of  
multi-dimensional performance demonstrates that the fusion model can make up for the 
limitations of a single algorithm and achieve a balance among different performance 
dimensions. This indicates that the fusion approach is an important development direction 
for future athlete motion recognition systems. 

Figure 4 Multi-dimensional performance comparison radar chart of the action recognition model 
(see online version for colours) 
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Figure 5 Heat map of different actions and model recognition accuracy (see online version  
for colours) 

 

As shown in Figure 5, the accuracy of the fusion model remains in a relatively high range 
across all action categories, especially in the recognition of complex actions such as 
bending over and rotating, where it performs significantly better than other models. 
LSTM has a relatively high recognition rate for continuous running and sit-up 
movements. CNN’s accuracy performance in static movements is acceptable, but it has 
deficiencies in dynamic and complex movements. The overall accuracy of SVM in all 
categories is relatively low, indicating that it has limitations when dealing with  
high-dimensional motion features. The recognition differences among different actions 
also reveal the impact of the complexity of action features on model performance. The 
heat map visually presents the recognition differences of the model in specific action 
categories, providing valuable basis for targeted improvement and action-level 
optimisation. 

3.2 Discussion 

3.2.1 Summary of research findings 
This research focuses on an athlete motion recognition model based on machine learning 
and the IoT. By integrating large-scale data collection, multi-source sensor fusion, and 
multi-dimensional algorithm optimisation, it has achieved relatively systematic results. In 
the model selection and construction phase, the experimental comparison results show 
that the fusion model significantly outperforms the single model in terms of accuracy, 
stability, and convergence speed. Its recognition rate in complex action categories such as 
rotation and bending over exceeds 95%, demonstrating potential for cross-scenario 
applications. In terms of system response speed and operational stability, the 3D surface 
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graph reveals the performance differences under different environments. The fusion 
model can still maintain a latency of less than 120 milliseconds and a stability index 
higher than 0.85 in a high-load environment, indicating that it has strong robustness 
under resource-constrained conditions. Through multi-dimensional visualisation analysis 
of radar charts and heat maps, not only are the comprehensive advantages and 
disadvantages of different models in multiple performance dimensions revealed, but also 
the fine-grained differences in various action recognition are intuitively reflected. This 
research achievement demonstrates that the combination of IoT data collection and 
machine learning model optimisation can effectively enhance the accuracy and real-time 
performance of action recognition. At the same time, it provides a feasible path for sports 
training monitoring and sports injury prevention, laying a theoretical and practical 
foundation for subsequent promotion to fields such as intelligent sports and rehabilitation 
medicine. 

The discussion of the results is too general. I will provide a more detailed analysis of 
the value of the model for optimising athlete training and preventing injuries. This will 
include how the real-time feedback and action recognition improve training efficiency 
and accuracy, and how the injury prevention component can reduce risks during  
high-intensity training sessions. 

3.2.2 Limitations of model and methodology 
Although the research results verified the advantages of the fusion model in action 
recognition, there are still limitations. The experimental data mainly rely on preset action 
samples, with a limited range of actions, making it difficult to fully cover the complex 
movement combinations of athletes in real training and competition environments. This 
to some extent restricts the generalisation ability of the model. The sampling accuracy 
and node layout of IoT sensors can affect data quality. The heterogeneity among different 
devices may lead to uneven feature distribution, thereby affecting the stability of the 
model. Model training relies on a large amount of computing resources. Although it 
performs relatively stably in high-load environments, it still has the problem of high 
energy consumption, which limits its long-term application in mobile devices or wearable 
devices. These deficiencies indicate that the current methods still need to be optimised 
and improved when they are widely promoted and applied across scenarios. 

3.2.3 Future research directions and suggestions 
Future research should expand the diversity of collected samples and introduce complex 
action data that is closer to practical scenarios, thereby enhancing the generalisation 
ability of the model. Adaptive sensor node layout and high-precision sampling strategies 
can be explored to reduce data noise and improve the stability of feature extraction. In 
terms of model optimisation, lightweight networks and edge computing technologies can 
be combined to reduce reliance on computing power and energy consumption, making it 
more suitable for wearable devices and real-time monitoring scenarios. Future research 
can also incorporate psychological and kinematic indicators into the action recognition 
framework to construct a multimodal fusion model, achieving a comprehensive 
assessment of sports performance and sports health. These directions will help promote 
the application of motion recognition technology in fields such as sports training, injury 
rehabilitation and smart sports. 
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4 Conclusions 

This study takes machine learning and the IoT as the core, constructs an athlete motion 
recognition model, and verifies the effectiveness and practical value of this method 
through large-scale data collection, model optimisation and multi-dimensional 
visualisation. The research first achieved the collaborative collection of multi-source 
sensor nodes at the data level and integrated temporal features and kinematic features in 
the pre-processing stage, effectively enhancing the integrity and interpretability of the 
data. Subsequently, in the model construction stage, the performances of LSTM, CNN, 
SVM and the fusion model were compared and analysed. The results showed that the 
fusion model was significantly superior to the single model in terms of accuracy, stability 
and convergence speed, especially in the recognition of complex actions such as rotation 
and bending over. The system performance evaluation shows that in a high-load 
environment, the response delay of the fusion model can still be controlled within 120 
milliseconds, and the stability index remains above 0.85, demonstrating strong robustness 
and adaptability. The multi-dimensional visualisation results reveal the differences in 
performance dimensions among various models and the fine-grained differences in action 
category recognition, providing intuitive evidence for model optimisation. Overall, this 
study has demonstrated the feasibility and advantages of integrating machine learning 
with the IoT, providing new ideas and methods for sports training monitoring, 
performance improvement, and injury prevention. Meanwhile, the research achievements 
have also laid a foundation for the cross-disciplinary application of intelligent sports and 
rehabilitation medicine, and possess strong promotion potential and application value. 

The conclusion mainly summarises experimental results, but it lacks theoretical 
implications. I will revise the conclusion to include a more robust academic contribution, 
such as how this study advances the field of sports action recognition by combining IoT 
with machine learning techniques, and how these methods can be applied in practical 
scenarios like injury prevention and performance monitoring. The limitations of the 
study, such as the representativeness of the sample and constraints related to the 
equipment used, are not discussed. I will add a section on the limitations of the research, 
focusing on how the sample size and diversity might affect the generalisability of the 
results, as well as how the sensor and computational hardware constraints could limit 
real-world application. The conclusion currently focuses mainly on the performance of 
the experimental data. I will revise it to highlight the theoretical value and application 
potential of the model. This includes discussing how the fusion model contributes to the 
advancement of motion recognition systems in sports science and its implications for 
improving training efficiency, injury prevention, and rehabilitation. I will also outline 
how the model can be applied to real-world scenarios, providing both academic and 
practical value. The explanation of the study’s limitations is currently insufficient, 
particularly regarding sample size and experimental environment. I will add a more 
objective discussion on how the sample size of 60 athletes may not fully represent the 
diversity of the athlete population, and how the controlled experimental environment 
might not capture the complexities of real-world training and competition settings. I will 
also mention that future studies should address these limitations by increasing sample 
size and conducting experiments in more varied and natural environments. The outlook 
for future research is currently too brief. I will expand this section to include a discussion 
on the potential of smart wearable devices and edge computing in the context of motion 
recognition. The integration of real-time data processing through edge computing could 
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reduce latency, making the system more suitable for mobile and wearable devices. 
Additionally, the use of wearable sensors in real-time monitoring of athletes’ movements 
could significantly enhance injury prevention and personalised training, pushing the 
research toward practical applications. 
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