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Abstract: To improve the success rate of collision avoidance for autonomous
vehicles and shorten response time, an intelligent obstacle avoidance control
method based on an improved SAC algorithm is proposed. This method is
based on a self-organising cluster model, integrating short-range repulsion,
medium-range velocity calibration, and obstacle avoidance rules to achieve
collision-free cluster collaboration. The conventional SAC algorithm adopts the
AC framework to maximise the expected reward and entropy value while
reducing the estimation bias of the value function through the value network
component. On this basis, the PER-SAC method is proposed, which integrates
priority experience replay (PER) and importance sampling weight strategy
while optimising network structure, reward and punishment functions,
continuous state and action space design. Additionally, transfer learning is
incorporated. The experimental results demonstrate the effectiveness of this
method, achieving a collision avoidance success rate of 97%, with a maximum
response time of just 0.54 s.
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1 Introduction

The rapid progress of science and technology has propelled autonomous vehicles, a key
link in the intelligent transportation system, to gradual transition from academic
discussion to practice (Huang et al., 2024). Autonomous vehicles integrate advanced
sensor technology, artificial intelligence algorithms, high-precision maps, and powerful
computing capabilities, aiming to achieve autonomous navigation, environmental
perception, decision-making, and execution control of vehicles, thereby greatly
improving road safety, traffic efficiency, and passenger comfort (Lv et al., 2021;
Luo et al., 2024; Liu et al., 2023). However, in real-word road environments, autonomous
vehicles face complex and ever-changing obstacle challenges, such as sudden pedestrian
crossings, vehicle breakdowns, road construction areas, etc. which require rapid and
accurate collision avoidance response to ensure vehicle safety (Gao et al., 2022).
Conventional obstacle avoidance methods often rely on pre-set rules or simple sensor
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data processing, struggle to adapt to highly dynamic and uncertain real-world road
scenes. Therefore, developing an efficient and intelligent obstacle avoidance control
method has become the key to advancing autonomous vehicle technology (De et al.,
2022).

Bai et al. (2024) proposed a vehicle lane changing and obstacle avoidance control
method based on laser point cloud. Through a specially designed laser point cloud data
capture architecture, relevant data of the vehicle operating scene was obtained. By
introducing advanced LiDAR image processing technology, the method achieved precise
surrounding environmental perception for intelligent connected vehicles. By integrating
obstacle recognition, lane recognition, and delineation of passable areas, this study deeply
explored the interaction characteristics between intelligent connected vehicles and
obstacles and lanes during lane changing manoeuvres. Through intelligent optimisation
search strategies for laser point clouds, boundary points were gradually identified until
the constructed path meets predefined standards. Based on the linear road segment model
and the fundamental principle of lane continuity, automatic lane changing and lateral
obstacle avoidance strategies for autonomous vehicles were planned and implemented.
However, the process of generating laser point cloud data remains susceptible to
environmental conditions, especially in extreme weather conditions (including rain, fog,
snow) and strong lighting, which can lead to a decrease in data collection accuracy,
thereby compromising subsequent environmental cognition, obstacle identification and
other activities, and weakening the effectiveness of path changes and obstacle avoidance
strategies. Lai et al. (2021) proposed a collision avoidance control method for unmanned
vehicles based on DDPG algorithm, clarifying the input and output parameters of the
control system, and designing a road turning trajectory planning scheme based on sine
function to significantly improve the vehicle obstacle avoidance performance. A neural
network controller was carefully designed for the given input-output parameters, with
corresponding control strategies being thoroughly explored. In order to address the issue
of scarce reward signals, a reward mechanism adjustment scheme based on logarithmic
function characteristics was proposed and implemented to optimise the learning process
and improve the system adaptability. The computational complexity of the DPG
algorithm is considerable, which imposes strict requirements on hardware computing
resources in real-world autonomous vehicle applications. Inadequate hardware
performance may result in low algorithm execution efficiency, making it difficult to
implement real-time collision prevention control strategies and adversely affecting the
safety performance of unmanned vehicles. Chen et al. (2024) proposed an obstacle
avoidance control method for unmanned vehicle formations based on graph and fluid
disturbance algorithms. To overcome the challenge of controlling multiple unmanned
vehicle clusters, the collaborative operation network of each unmanned workshop was
depicted using graph theory tools. Based on communication range constraints and
integrating backstepping theory, a cluster controller with a navigation-following
mechanism was constructed. With the help of Lyapunov stability theory, it has been
confirmed that the expected formation pattern exhibits asymptotic stability. We have
designed an innovative path planning scheme based on fluid mechanics to overcome the
challenge of obstacle avoidance in complex and changing obstacle environments. This
plan designates the leading unmanned vehicle to calculate and guide the movement
trajectory of the entire formation, thus ensuring collective obstacle avoidance safety. In
the leader follower mode, the overall effectiveness of the fleet significantly depends on
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the performance of the leading vehicle. Its navigation vehicle malfunctions (such as
sensor failure) could disrupt the formation’s path planning, compromising effective
obstacle avoidance and jeopardising the overall stability of the formation.

In the intelligent obstacle avoidance control method for autonomous vehicles, the
main challenges include precise perception in complex environments, decision planning
in extreme scenarios, and real-time and stability of algorithms. The improved SAC
algorithm integrates priority experience replay (PER) and importance sampling weight
strategy. In addition, the introduction of transfer learning enables the algorithm to
gradually train from simple to complex environments, further improving training speed
and obstacle avoidance performance. These improvements enable the PER-SAC
algorithm to achieve more stable and accurate intelligent obstacle avoidance control for
autonomous vehicles. In address the existing problems in obstacle avoidance control
methods for unmanned vehicles, this study proposes an intelligent obstacle avoidance
control method for unmanned vehicles based on an improved SAC algorithm. The
detailed technical route of this method is as follows:

1 Based on the micro individual interaction mechanism, short-range repulsion and
medium-range velocity calibration rules are adopted, and wall avoidance and
obstacle response rules, intelligent obstacle avoidance control are incorporated for
autonomous vehicles. By constructing cluster behaviour rules and utilising a semi
spring model to achieve short-range repulsion, it ensures no collisions between
vehicles; additionally, an ideal braking curve is designed to achieve mid-range speed
calibration, ensuring synchronised vehicle movement and collision prevention.

2 To optimise the intelligent obstacle avoidance control strategy for autonomous
vehicles, this study improves the SAC algorithm and proposes the PER-SAC
method. This method integrates PER and importance sampling weight strategy to
improve the chances of selecting key samples and reduce model errors. By designing
a reasonable network structure, continuous state and action space, as well as reward
and punishment functions, the training speed and stability of the algorithm can be
improved to ensure the safe driving of autonomous vehicles in complex
environments.

3 By introducing transfer learning techniques, the inter-task correlations are explored
to initialise parameters for related tasks through parameter transfer techniques,
accelerating the learning process of autonomous vehicles’ strategies in different
contexts. Through model preloading and random initialisation training, parameters
close to the target position and obstacle scene parameters are obtained, further
refining obstacle avoidance rules and achieving intelligent obstacle avoidance
control for autonomous vehicles.

2 Intelligent obstacle avoidance control target for autonomous vehicles

Based on a design centred around microscopic individuals, achieving and maintaining
collision-free group behaviour requires only three idealised mechanisms of interaction
between individuals: short-range repulsion, medium-range velocity calibration, and long-
range attraction (Zhao et al., 2024). Within this universal principle framework, numerous
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models have been developed to explain collaborative cluster behaviour in animals,
humans, and even cell migration. These systems are collectively referred to as self-
organising systems. Recently, self-organising cluster models have gained new
applications in robotic swarm science. As the primary prerequisite for ensuring safe
operation, intelligent obstacle avoidance control strategies for autonomous vehicles have
been explored based on these interactions (Tao and Du, 2022). This study adopts the first
two of the three aforementioned interactions and additionally incorporate rules for wall
avoidance and obstacle response.
The schematic diagram of cluster behaviour rules is shown in Figure 1.

Figure 1 Schematic diagram of cluster behaviour rules: (a) short-range repulsion; (b) mid-range
speed calibration and (c) remote attraction

(b)

In Figure 1, it is observed that the process of constructing and maintaining collision-free
clusters relies on the perception of the motion states of neighbouring individuals. At
every decision-making moment, it is crucial to follow three basic principles: short-range
exclusion, medium-range velocity consistency, and clustering towards the group centre.

1 Short-range repulsion

Regarding local repulsion, a basic semi spring model is used in this study, which centres
on a central velocity component at a linear distance (Li et al., 2023). Within the set
maximum operating range 7,”, the autonomous vehicle activates a mutual exclusion
program, with the repulsion term expressed as:

V.
rep rep Lt J rep
P (”0 r;'j) p Ty <1y |
rfj - i ( )

rep
0,7, 21,

rep

In the formula, p™ represents the repulsion coefficient, and 7, represents the distance
between two autonomous vehicles.
Compared to other vehicles, the total repulsion speed of autonomous vehicle i is:

Ve = zv;."” (2)
i
2 Mid-range speed calibration

Given the interference of external or internal factors, such as lag in rejection reactions
and noise-induced self-excited oscillations, a speed matching mechanism must be
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implemented between autonomous vehicles to ensure synchronous movement in
collective action (Deng et al., 2021). Additionally, a key prerequisite must be considered:
if autonomous vehicles have limited acceleration capability, a longer following distance
should be maintained at higher speed differentials to avoid collisions.

In order to achieve the aforementioned standards, the speed calibration benchmark is
based on constructing an ideal braking curve. This curve achieves smooth attenuation of
velocity in space, and its mathematical expression can be expressed as:

0,7<0
D(r,a,p): m,0<rmp<alp 3)

J2ar—a* /I p*rp>alp

In the formula, r is the distance between the unmanned vehicle and the expected
stopping position; a represents the vehicle acceleration; and p represents the linear gain
parameter (Lee et al., 2021).

The core principle of speed calibration is to ensure that the speed difference between
two autonomous vehicles at a specific distance remains within the safe speed deviation
range defined by the ideal braking trajectory. Its mathematical expression is:

Sfrictmax __ Sfrict frict Sfrict frict
v; —max(v ,D(ry.—r0 ,a" " p )) 4

V.=V,
Sfrict _ 4, frictmax i J Sfrictmax
pia | € (V,-,- Vi ) R 5
Vi = i (5)

O v < v,friz‘tmax

Vi =V

In the formula, C"™ represents the speed error coefficient; 7" represents the distance

between the expected stop of unmanned vehicle i and vehicle j; and v, represents the

speed difference (Yan et al., 2021).
For the autonomous vehicle i, its overall speed adjustment formula relative to
surrounding vehicles can be expressed as:
Vl:fricr — v i/ﬁ‘ict (6)
JE
The functional diagram of the repulsion speed and distance between autonomous vehicles
is shown in Figure 2.

3 The interaction between obstacles

A virtual rectangular boundary with repulsive characteristics is constructed, which runs at
a speed v"" to maintain the coordinated movement of autonomous vehicles. Once
vehicles approach these virtual boundaries, they should reduce their speed towards the
boundaries. The expression for the virtual wall function is:

shillmax shill shill shill
v, :D(r —r,a™,p ) @)

is is
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is is

0 . < shillmax
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In the formula, r_ represents the distance between the virtual wall and the unmanned
vehicle, and v, represents the speed difference between the virtual wall and the

unmanned vehicle.

Figure 2 Schematic diagram of speed calibration (see online version for colours)
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4 Self-starting

In addition to the mutual influence between vehicles and between vehicles and obstacles
discussed previously, the expected speed of autonomous vehicle i also incorporates a
basic self-driving component. This component aligns with the direction of the current
velocity vector v, and has a constant value v .

5 Final expected speed

To obtain the desired velocity value, all the interaction force terms mentioned previously
need to be vector summed:

PR . , e
V[d — _zvflock + Vircp + V;/”‘t + V[:wl] + ngzh.srade (9)
|Vl~| ' i

After completing the superposition operation, a velocity limit v is added to maintain
the direction of the desired velocity. If the desired speed exceeds this limit, its size should
be adjusted to accommodate:

~d
a_ Y

vi =——min {|\7[d|,v’"“x} (10)

-]
The v/ value calculated by formula (10) represents the instantaneous operating speed
and direction of travel of the autonomous vehicle.
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3 Improved SAC algorithm for intelligent obstacle avoidance control
of autonomous vehicles

3.1 Traditional SAC algorithm

The SAC algorithm draws inspiration from the architecture of Actor Critic (AC).
Traditional reinforcement learning methods focus on maximising the expected reward
value, while SAC additionally pursues the maximisation of system entropy, striving to
achieve both objectives:

J (,[) = argmax iEs,,al)wn [r(s,,a, )+ TH(ﬂ(a|s, ))] (11)

In the formula, the £ value reflects the expected reward of the current situation, while
the r value displays the immediate reward of the current situation. The set p,
encompasses all possible state action pairings; the A value measures the level of
uncertainty (entropy) of the current action; the 7 parameter regulates the impact of
entropy; and the 7 ratio reveals the likelihood of taking action in the current situation.

The SAC algorithm introduces a value network component on top of the Actor Critic
architecture to reduce bias in value function estimation. Its composition includes an Actor
network and four Critic networks: the V' and TargetV networks are responsible for state
value estimation, marked as VCritic; The O, and O, networks are responsible for
estimating the action state value, denoted as QCritic . The network architecture of SAC
algorithm is shown in Figure 3.

Figure 3 Network architecture of SAC algorithm

Actor
a ‘ Online Strategy Network ‘ experience - -
# Pool
(Sul > rnl) ‘ Target Strategy Network ‘ Update
y weights
. \ 4
mln(q) Calculate TD error

V Critic Q Critic
‘ Online Strategy Network ‘ ‘ Online Strategy Network ‘
‘ Target Strategy Network ‘ Target Strategy Network ‘

For a specific state s, , the Actor network generates an action probability distribution map
72'(61|St) and randomly selects an action a, €a to execute based on this distribution.
Next, action ¢, is input into the environment, which returns a new state s,,, and reward

r,,, , forming an experience: (s,,a,,s,,,,7., ) , which is then stored in the experience pool.
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In QCritic network training, the experience pool data (s,,4,,s,,,,7,,) is extracted to
update the network parameters @ , where the ¢(s,,a,) value of action g, is used as the
estimated value of the s, state, and the true value estimate of the s, state is derived

through the optimal Bellman equation:

Ut(q) = ’; +7/E7r |:Rt+l St+l = S:| (12)

In the formula, E is the cumulative expected return of the current state.

The square error loss function is used as the basis for training the QCritic network,
and its mathematical expression is defined as follows:

2
Loss, :ﬁ | Z [q(st,a,;a))—Ut(")J (13)
(5121 Spmy i1 )EB

In the formula, B is used to indicate the random selection of a data batch from an
empirical database.

In the VCritic network, the data (s,,a,,s,,,,7%,,) collected by the experience pool is
used to update the network parameters €&, while the VCritic network produces the
following true estimates:

Ut(V) _ Z ,[(at'|st,¢9)[minq(st,at;a))—alnﬁ(a;|st,9)] (14)

“;EA(S:‘)

In the formula, a/ represents the subsequent set of possible actions estimated by the
Actor network based on its policy parameter 7z, while ln;z(at’|st,¢9) measures the

entropy of these actions.
The loss of VCritic network is calculated based on the true value:

Loss, = X [(si0)-U"] (15)
|B| [CRARRD:}

In the training process of Actor network, a loss function is defined, which is optimised
through gradient descent method:

ﬁ( z Ea’~p” [q(st,a;)—alnﬁ(a;|st,t9)]2 (16)

8130, 8411111 )€B

Loss, =

In reinforcement learning uses, the temporal difference (TD) error serves as the basis for
adjusting the update amplitude, and the effect of the slight action a, is evaluated by
calculating the TD error:

é‘t=r;+7Q(St+l’at+l)_Q(St’at) (17)

In the formula, Q represents the state value of Critic evaluation, while y represents the

discount rate of future rewards.
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3.2 Improve SAC algorithm

This study proposes a novel PER-SAC strategy to accelerate training efficiency and
ensure smoothness in the optimisation process. This strategy creatively embeds the
principle of PER into the SAC algorithm, achieving a transition from obtaining samples
from the experience pool based on sample priority rather than pure randomness. This
modification greatly increases the selection probability of important samples,
significantly improving learning performance. To address the bias introduced by priority
replay, importance sampling weighting technique was introduced, and the loss function
was accordingly revised to more effectively reduce model prediction error. The PER-
SAC algorithm integrates network architecture design, reward system construction, and
planning for continuous states and action domains.

1 Network structure

The neural architecture relied upon by the PER-SAC algorithm consists of 14 inputs and
2 outputs, as shown in Figure 4.

Figure 4 Input and output of the network

Radar reading

Linear velocity

w| Linear
output velocity

input

Angular velocity P Network

w| Angular
velocity

Distance from the target point

Angle from the target point

In Figure 4, the input data received by the network includes the measurement values x,
of the radar in 10 directions, the linear velocity v,_, and angular velocity w,_, of the
autonomous vehicle, as well as the straight-line distance d, and directional angle 6, of
the vehicle relative to the target. The output of the network is the linear velocity v, and
angular velocity w, of the autonomous vehicle.

The SAC architecture consists of three core components: the policy network (Actor),
the Q network (Q Critic), and the value evaluation value network (V Critic). The
schematic diagram of the structure is shown in Figure 5.

2 Replay based on priority experience

The priority allocation mechanism in experience replay sets different importance levels
for each sample. During sampling, the probability of selecting high-priority samples is
increased according to their assigned importance levels, thereby accelerating training.
The priority values of these samples are stored and managed using a SumTree data
structure.
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Figure 5 Schematic diagram of SAC network structure: (a) strategic network; (b) O network and

(c) V network

output(V)

‘ Input(s,) ‘ ‘ Input(s,) ‘ ‘ Input(a,) ‘

512[ReLU 512[ReLU
512[ReLU 512[ReLU

512[ReLU 512[ReLU
output(a,)|Tanh output(Q)

(a) (b) (©

The sample priority is determined based on the magnitude of the time difference (TD)
error, where a larger TD error corresponds to a higher sample priority. Formula (17) can
be referred for the specific calculation method of TD error. The probability of sample
extraction is obtained according to the following formula:

P(i)=—2— (18)
P

In the formula, a represents the priority adjustment parameter, and p, represents the

priority of the sample.

When calculating TD error, three networks (Q network, value network and policy
network) in SAC algorithm should be taken into account. Since the output values of
Q network and value network are significantly greater than those of policy network,
direct accumulation of their respective errors would correspondingly weak the
contribution of the policy network’ errors to the overall error. In order to achieve the
above purpose, the adjustment factors 7, and 7, are used to implement appropriate

correction on the output values of Q network and value network:
8, =|T,-TD(Q)|+|T, -TD (V)| +|TD() (19)

Priority experience replay has changed the sample extraction mode, so importance
sampling weights are used to correct the errors introduced by this mode, while calculating
the loss function in gradient training to reduce model errors. The mathematical
expression for the importance sampling weight is as follows:

(N'pkf)iﬂ

ISWeight =w, = ﬁ (20)
T max, (w,

In the formula, the weight of sample ; is represented by w,; max, (wl.) represents the
sample with the highest weight; N represents the total number of sample sets; and /3 is
the coefficient for weight adjustment.
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In the final stage, by applying importance sampling weights, the loss functions of
both the Q network and the value network were updated accordingly. The update rules
are detailed in formulas (13) and (15):

o o (21)

*

Loss, = Loss, W,
p

Loss, = Loss, -w;,

3 Continuous mobile space and state space design

A reasonable continuous state domain and action space are designed as the input and
output interface of the neural network. With sensors, detailed information about the
surrounding environment is captured. This state domain reflects the current
environmental conditions of autonomous vehicles and is the basis of their decision-
making action space. The laser radar equipped on autonomous vehicles has a 360 °
scanning range and a maximum detection distance of 35 meters. Considering the lack of
vehicles’ reverse operation, the large amount of radar data, and the high computational
requirements, only the detection results within a 180 © field of view in front of the vehicle
are used, and 10 specific directions of radar data are selected for processing. The data
acquisition structure of LiDAR is shown in Figure 6.

Figure 6 Data acquisition structure of LIDAR

d5 d6

d>

d,

— g
+90° \_/ -90°

For autonomous vehicles, their motion status information integrates the nearest obstacle
distance data d;, from 10 directional radars, as well as the straight-line distance D, and
angular deviation @, from the current position of the vehicle to the target location. Based
on this information, the state space of autonomous vehicles can be defined as follows:

s, =(d, ~dy,.D,.6,) (22)

4 Design of reward and punishment function

The design of the reward and punishment mechanism is a standard for measuring the
quality of the next driving action selected by autonomous vehicles in a specific state. In
order to cope with the scarcity of reward signals, a continuous reward and punishment
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function design scheme is adopted. The mathematical expression of the reward and
punishment function is as follows:

Trives @, <€y

arrive > "t
rL‘oHide 4 mlnx < Co

r(s”al): crl(dt—l _dt)7(dt—l _dt) >0
Cr2’(dt—1 _dt)S 0

(23)

In the formula, 7, . represents the forward establishment of reaching the target point; d,
represents the distance between the unmanned vehicle and the target position at the
current time; and c, represents the distance threshold. When encountering obstacles,
T..a Tepresents the negative reward received; min, is the minimum distance value

measured by the LIDAR; ¢, represents the safe distance required to avoid collision; and
¢,, and c,, are the two parameter factors in reward calculation.

5  Transfer learning

When autonomous vehicle implement intelligent obstacle avoidance control, correlations
exist among multiple tasks. By applying parameter transfer techniques in different
environments and setting initial parameters for related tasks, the learning process of
autonomous vehicles’ strategies in different contexts can be effectively accelerated.

In the model preloading stage, all parameter sets of the model are firstly acquired. By
utilising the random initialisation method for training, the parameter @, close to the
target position and the parameter @, of the obstacle scene are obtained, further refining
the obstacle avoidance rules v, and v, to realise intelligent obstacle avoidance control.
The transfer learning framework is shown in Figure 7.

Figure 7 Transfer learning framework

Approach the target point v Obstacle avoidance in
in an obstacle free > discrete obstacle
environment &, environments @,
A
Approach the target point Obstacle avoidance in .
PP getp Vs . Obstacle avoidance
in an obstacle free > special obstacle > .
. . planning and control
environment @, environments @

The convergence curves of the SAC algorithm before and after improvement are shown
in Figure 8.

Figure 8 clearly shows that compared to the conventional SAC algorithm, the
improved SAC algorithm has delivered significantly improved accuracy and more precise
pre-decision results. At the same time, the convergence curve of the algorithm also shows
greater stability, with significantly reduced fluctuation amplitude, demonstrating its
superior performance and stronger robustness.



14 Y. Ma et al.

Figure 8 Convergence curves of SAC algorithm before and after improvement (see online
version for colours)

0.8

0.7+ VN — NN~ — A~ — — — —

77

0.6
0.5+
0.4+

0.3 — — —Improved

Model accuracy

02 Before improvement

0.1

0 20 40 60 80 100
Number of iterations

4 Test experiment

4.1 Experimental environment

The initial simulation parameters of the autonomous vehicle were set as follows: a 3.75 m
central lane width with 3.5 m adjacent lane spacing, LiDAR configured for 10 Hz
scanning frequency, with £2 cm ranging accuracy, 270° horizontal field of view angle,
and 120 maximum detection distance; wheel speed sensor operating at 100 Hz sampling
frequency with +0.1 m/s measurement error of linear velocity; IMU featuring £300°/s
angular velocity range; high-precision map with <10 cm positioning error, and 5 Hz
target point coordinate update frequency. The initial speed was set to 60 km/h, with
4 m/s? maximum braking deceleration and 15 m minimum safe following distance.

During operation, an autonomous vehicle will encounter obstacles from the left front,
left rear, right front, right rear, front and rear directions. In order to pursue the rigour of
experimental results, a test scenario was designed in a three lane environment where
obstacle vehicles appeared simultaneously in all directions. The schematic diagram of
three lanes is shown in Figure 9.

Figure 9 Schematic diagram of three lanes

=T T e
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The autonomous vehicle demonstrates symmetrical upward and downward lane-changing
behaviour for obstacle avoidance when positioned in the central lane. At this time, the
model can be reduced to a two lane obstacle avoidance model. If autonomous vehicles
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need to change lanes from the upper or lower lane, they must all face the central lane for
lane change. At this point, the model can also be simplified as a two lane change to avoid
obstacles. The two lane changing model is shown in Figure 10.

Figure 10 Schematic diagram of two lane changing

In the obstacle avoidance control process of autonomous vehicles, the collection of
LiDAR data is achieved through the LiDAR installed on the vehicle. LiDAR
continuously emits laser signals, which are reflected back when encountering
surrounding objects. Based on the round-trip time of the signals, the distance to the object
can be calculated. Through continuous scanning, a point cloud data can be accumulated,
which contains multiple types of environmental information and is the key to identifying
obstacles. The accurate acquisition of linear velocity depends on the wheel speed sensors
equipped on the wheels. When the wheels rotate, the sensors immediately start,
accurately recording the wheel speed. Combined with key parameters such as wheel size,
the vehicle’s straight-line travel speed can be calculated through professional algorithms.
This speed indicator intuitively reflects the speed characteristics of the vehicle’s straight-
line travel. As for angular velocity, it needs to be measured by an inertial measurement
unit (IMU). The IMU is installed on the car and can sense the rotation of the car,
accurately measuring angular velocity, which is very helpful for understanding the
steering of the car. Target point location collection utilises pre-loaded high-precision map
information such as target location, combined with the ability of cameras to recognise
road signs, environmental features, and laser radar to detect object positions. Then,
through the vehicle positioning system, the position of the target point relative to the
vehicle is comprehensively determined, providing navigation basis for obstacle avoidance
control.

4.2 Experimental scheme

Using obstacle avoidance success rate and obstacle avoidance response time as
indicators, this method was compared and tested with the methods in Lai et al. (2021) and
Chen et al. (2024).

Collision avoidance success rate: Collision avoidance success rate is a key indicator for
measuring the effectiveness of intelligent obstacle avoidance control methods for
autonomous vehicles. It refers to the probability of autonomous vehicles in successfully
avoiding collisions with obstacles during driving, reflecting the effectiveness of
intelligent obstacle avoidance control methods in preventing vehicle collisions.

Obstacle avoidance response time: Obstacle avoidance response time refers to the time
interval between an unmanned vehicle’s sensor detection of an obstacle and its initiation
of avoidance manoeuvres. A shorter obstacle avoidance response time enables vehicles to
respond more quickly to potential collision hazards, thereby improving driving safety.
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4.3  Experimental results

1 Collision avoidance success rate

The success rate of collision avoidance is the core indicator for measuring the
effectiveness of intelligent obstacle avoidance control methods. In actual traffic
scenarios, there are various types and complex obstacles, such as sudden pedestrian
crossings and emergency braking of vehicles. The success rate of collision avoidance
intuitively reflects the ability of autonomous vehicles to cope with these potential
collision hazards. The test results of collision avoidance success rates for the three
methods are shown in Figure 11.

Figure 11 Collision avoidance success rate (see online version for colours)
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From the comparison of collision avoidance success rates shown in Figure 11, it can be
clearly observed that the autonomous vehicle controlled by the method proposed in this
paper exhibits excellent performance in collision avoidance. Specifically, the highest
collision avoidance success rate of this method reached 97%, which fully demonstrates
its high reliability and stability in complex road environments. At the same time,
although the methods proposed in Lai et al. (2021) and Chen et al. (2024) also show a
continuous upward trend in collision avoidance success rate, their highest collision
avoidance success rate is only maintained at around 75%. This comparative result not
only highlights the significant advantages of our method in collision avoidance
performance, but also further verifies the effectiveness and reliability of this method in
improving the safety of autonomous vehicles. Further analysis reveals that the excellent
collision avoidance success rate achieved by the method proposed in this paper is mainly
due to its innovative algorithm design and real-time data processing capabilities. This
method adopts multi-sensor fusion technology, which can obtain accurate information
about the surrounding environment of the vehicle in real time and make quick decisions
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through deep learning models. In contrast, although the methods in Lai et al. (2021) and
Chen et al. (2024) are progressiveness in theory, they are limited by computational
efficiency and environmental adaptability in practical applications, resulting in a
relatively low success rate of collision avoidance.

2 Obstacle avoidance response time

It is necessary to conduct obstacle avoidance response time testing for autonomous
vehicles. It is directly related to the safety of vehicles, and a shorter obstacle avoidance
response time allows vehicles to avoid obstacles in a timely manner, reduce collision
risks, and ensure the safety of passengers, pedestrians, and other road users. This test
helps evaluate the performance of the intelligent obstacle avoidance control system, and
provides a quick and accurate response that reflects the system’s efficiency. If the
response time is too long, it may indicate problems in the perception, decision-making, or
execution stages of the system. The test results of obstacle avoidance response time for
the three methods are shown in Table 1.

Table 1 Obstacle avoidance response time

Obstacle avoidance response time/s
Number of tests ~ Proposed method — Lai et al. (2021) method ~ Chen et al. (2024) method

1 0.45 3.38 2.29
2 0.52 3.41 231
3 0.49 3.39 2.28
4 0.51 343 2.30
5 0.47 3.37 2.27
6 0.53 3.42 232
7 0.46 3.36 2.26
8 0.50 3.40 2.29
9 0.54 3.44 2.33
10 0.48 3.38 2.28

From the obstacle avoidance response time data in Table 1, it can be clearly seen that this
method has significant advantages. Across 10 repeated tests, the obstacle avoidance
response time of the proposed method is always kept within the optimal range of
0.45-0.54 s, exhibiting both stability and reliability. This represents an order of
magnitude improvement compared with the existing methods. Specifically, the response
time of the method in Lai et al. (2021) is up to 3.36-3.44 s. Although the method in Chen
et al. (2024) is improved, it still takes 2.26-2.33 s to complete the obstacle avoidance
response. This significant performance gap fully proves the innovative breakthrough of
this method in algorithm design and system implementation. From the perspective of
technical implementation, the superior speed of this method mainly attributes to the
optimisation of the decision algorithm, which simplifies the traditional multi-level
decision-making process into an end-to-end rapid response mechanism. In contrast, the
reference method still uses the traditional serial processing architecture, which has
obvious delay accumulation in data acquisition, feature extraction and decision execution.
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5 Conclusion

This study has effectively improved the intelligent obstacle avoidance control method for
autonomous vehicles by introducing an improved SAC algorithm, namely the PER-SAC
method. Compared to traditional SAC algorithms, the PER-SAC method exhibits
significant advantages in both collision avoidance success rate and obstacle avoidance
response time. This method optimises the algorithm structure to reduce value function
estimation bias, while improving the learning efficiency and performance of the
algorithm through innovative means such as PER mechanism and importance sampling
weight strategy. Experimental verification shows that this method has excellent obstacle
avoidance ability and high safety in practical applications, providing new solutions and
ideas for intelligent obstacle avoidance control of unmanned vehicles.
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