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Abstract: To improve the success rate of collision avoidance for autonomous 
vehicles and shorten response time, an intelligent obstacle avoidance control 
method based on an improved SAC algorithm is proposed. This method is 
based on a self-organising cluster model, integrating short-range repulsion, 
medium-range velocity calibration, and obstacle avoidance rules to achieve 
collision-free cluster collaboration. The conventional SAC algorithm adopts the 
AC framework to maximise the expected reward and entropy value while 
reducing the estimation bias of the value function through the value network 
component. On this basis, the PER-SAC method is proposed, which integrates 
priority experience replay (PER) and importance sampling weight strategy 
while optimising network structure, reward and punishment functions, 
continuous state and action space design. Additionally, transfer learning is 
incorporated. The experimental results demonstrate the effectiveness of this 
method, achieving a collision avoidance success rate of 97%, with a maximum 
response time of just 0.54 s. 

Keywords: improved SAC algorithm; autonomous vehicles; intelligent 
obstacle avoidance control; PER; priority experience replay. 
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1 Introduction 

The rapid progress of science and technology has propelled autonomous vehicles, a key 
link in the intelligent transportation system, to gradual transition from academic 
discussion to practice (Huang et al., 2024). Autonomous vehicles integrate advanced 
sensor technology, artificial intelligence algorithms, high-precision maps, and powerful 
computing capabilities, aiming to achieve autonomous navigation, environmental 
perception, decision-making, and execution control of vehicles, thereby greatly 
improving road safety, traffic efficiency, and passenger comfort (Lv et al., 2021;  
Luo et al., 2024; Liu et al., 2023). However, in real-word road environments, autonomous 
vehicles face complex and ever-changing obstacle challenges, such as sudden pedestrian 
crossings, vehicle breakdowns, road construction areas, etc. which require rapid and  
accurate collision avoidance response to ensure vehicle safety (Gao et al., 2022). 
Conventional obstacle avoidance methods often rely on pre-set rules or simple sensor  
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data processing, struggle to adapt to highly dynamic and uncertain real-world road 
scenes. Therefore, developing an efficient and intelligent obstacle avoidance control 
method has become the key to advancing autonomous vehicle technology (De et al., 
2022). 

Bai et al. (2024) proposed a vehicle lane changing and obstacle avoidance control 
method based on laser point cloud. Through a specially designed laser point cloud data 
capture architecture, relevant data of the vehicle operating scene was obtained. By 
introducing advanced LiDAR image processing technology, the method achieved precise 
surrounding environmental perception for intelligent connected vehicles. By integrating 
obstacle recognition, lane recognition, and delineation of passable areas, this study deeply 
explored the interaction characteristics between intelligent connected vehicles and 
obstacles and lanes during lane changing manoeuvres. Through intelligent optimisation 
search strategies for laser point clouds, boundary points were gradually identified until 
the constructed path meets predefined standards. Based on the linear road segment model 
and the fundamental principle of lane continuity, automatic lane changing and lateral 
obstacle avoidance strategies for autonomous vehicles were planned and implemented. 
However, the process of generating laser point cloud data remains susceptible to 
environmental conditions, especially in extreme weather conditions (including rain, fog, 
snow) and strong lighting, which can lead to a decrease in data collection accuracy, 
thereby compromising subsequent environmental cognition, obstacle identification and 
other activities, and weakening the effectiveness of path changes and obstacle avoidance 
strategies. Lai et al. (2021) proposed a collision avoidance control method for unmanned 
vehicles based on DDPG algorithm, clarifying the input and output parameters of the 
control system, and designing a road turning trajectory planning scheme based on sine 
function to significantly improve the vehicle obstacle avoidance performance. A neural 
network controller was carefully designed for the given input-output parameters, with 
corresponding control strategies being thoroughly explored. In order to address the issue 
of scarce reward signals, a reward mechanism adjustment scheme based on logarithmic 
function characteristics was proposed and implemented to optimise the learning process 
and improve the system adaptability. The computational complexity of the DPG 
algorithm is considerable, which imposes strict requirements on hardware computing 
resources in real-world autonomous vehicle applications. Inadequate hardware 
performance may result in low algorithm execution efficiency, making it difficult to 
implement real-time collision prevention control strategies and adversely affecting the 
safety performance of unmanned vehicles. Chen et al. (2024) proposed an obstacle 
avoidance control method for unmanned vehicle formations based on graph and fluid 
disturbance algorithms. To overcome the challenge of controlling multiple unmanned 
vehicle clusters, the collaborative operation network of each unmanned workshop was 
depicted using graph theory tools. Based on communication range constraints and 
integrating backstepping theory, a cluster controller with a navigation-following 
mechanism was constructed. With the help of Lyapunov stability theory, it has been 
confirmed that the expected formation pattern exhibits asymptotic stability. We have 
designed an innovative path planning scheme based on fluid mechanics to overcome the 
challenge of obstacle avoidance in complex and changing obstacle environments. This 
plan designates the leading unmanned vehicle to calculate and guide the movement 
trajectory of the entire formation, thus ensuring collective obstacle avoidance safety. In 
the leader follower mode, the overall effectiveness of the fleet significantly depends on  
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the performance of the leading vehicle. Its navigation vehicle malfunctions (such as 
sensor failure) could disrupt the formation’s path planning, compromising effective 
obstacle avoidance and jeopardising the overall stability of the formation. 

In the intelligent obstacle avoidance control method for autonomous vehicles, the 
main challenges include precise perception in complex environments, decision planning 
in extreme scenarios, and real-time and stability of algorithms. The improved SAC 
algorithm integrates priority experience replay (PER) and importance sampling weight 
strategy. In addition, the introduction of transfer learning enables the algorithm to 
gradually train from simple to complex environments, further improving training speed 
and obstacle avoidance performance. These improvements enable the PER-SAC 
algorithm to achieve more stable and accurate intelligent obstacle avoidance control for 
autonomous vehicles. In address the existing problems in obstacle avoidance control 
methods for unmanned vehicles, this study proposes an intelligent obstacle avoidance 
control method for unmanned vehicles based on an improved SAC algorithm. The 
detailed technical route of this method is as follows: 

1 Based on the micro individual interaction mechanism, short-range repulsion and 
medium-range velocity calibration rules are adopted, and wall avoidance and 
obstacle response rules, intelligent obstacle avoidance control are incorporated for 
autonomous vehicles. By constructing cluster behaviour rules and utilising a semi 
spring model to achieve short-range repulsion, it ensures no collisions between 
vehicles; additionally, an ideal braking curve is designed to achieve mid-range speed 
calibration, ensuring synchronised vehicle movement and collision prevention.  

2 To optimise the intelligent obstacle avoidance control strategy for autonomous 
vehicles, this study improves the SAC algorithm and proposes the PER-SAC 
method. This method integrates PER and importance sampling weight strategy to 
improve the chances of selecting key samples and reduce model errors. By designing 
a reasonable network structure, continuous state and action space, as well as reward 
and punishment functions, the training speed and stability of the algorithm can be 
improved to ensure the safe driving of autonomous vehicles in complex 
environments.  

3 By introducing transfer learning techniques, the inter-task correlations are explored 
to initialise parameters for related tasks through parameter transfer techniques, 
accelerating the learning process of autonomous vehicles’ strategies in different 
contexts. Through model preloading and random initialisation training, parameters 
close to the target position and obstacle scene parameters are obtained, further 
refining obstacle avoidance rules and achieving intelligent obstacle avoidance 
control for autonomous vehicles. 

2 Intelligent obstacle avoidance control target for autonomous vehicles 

Based on a design centred around microscopic individuals, achieving and maintaining 
collision-free group behaviour requires only three idealised mechanisms of interaction 
between individuals: short-range repulsion, medium-range velocity calibration, and long-
range attraction (Zhao et al., 2024). Within this universal principle framework, numerous  
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models have been developed to explain collaborative cluster behaviour in animals, 
humans, and even cell migration. These systems are collectively referred to as self-
organising systems. Recently, self-organising cluster models have gained new 
applications in robotic swarm science. As the primary prerequisite for ensuring safe 
operation, intelligent obstacle avoidance control strategies for autonomous vehicles have 
been explored based on these interactions (Tao and Du, 2022). This study adopts the first 
two of the three aforementioned interactions and additionally incorporate rules for wall 
avoidance and obstacle response. 

The schematic diagram of cluster behaviour rules is shown in Figure 1. 

Figure 1 Schematic diagram of cluster behaviour rules: (a) short-range repulsion; (b) mid-range 
speed calibration and (c) remote attraction 

 

v
v
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In Figure 1, it is observed that the process of constructing and maintaining collision-free 
clusters relies on the perception of the motion states of neighbouring individuals. At 
every decision-making moment, it is crucial to follow three basic principles: short-range 
exclusion, medium-range velocity consistency, and clustering towards the group centre. 

1 Short-range repulsion 

Regarding local repulsion, a basic semi spring model is used in this study, which centres 
on a central velocity component at a linear distance (Li et al., 2023). Within the set 
maximum operating range 0

repr , the autonomous vehicle activates a mutual exclusion 
program, with the repulsion term expressed as: 

( )0 0

0

,

0,

i jrep rep rep
ij ijrep

ijij
rep

ij

r r
p r r r r

rr
r r

−
⋅ − ⋅ <

= 
 ≥

 (1) 

In the formula, repp  represents the repulsion coefficient, and ijr  represents the distance 
between two autonomous vehicles. 

Compared to other vehicles, the total repulsion speed of autonomous vehicle i  is: 
rep rep
i ij

i j

v v
≠

= ∑  (2) 

2 Mid-range speed calibration 

Given the interference of external or internal factors, such as lag in rejection reactions 
and noise-induced self-excited oscillations, a speed matching mechanism must be 
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implemented between autonomous vehicles to ensure synchronous movement in 
collective action (Deng et al., 2021). Additionally, a key prerequisite must be considered: 
if autonomous vehicles have limited acceleration capability, a longer following distance 
should be maintained at higher speed differentials to avoid collisions. 

In order to achieve the aforementioned standards, the speed calibration benchmark is 
based on constructing an ideal braking curve. This curve achieves smooth attenuation of 
velocity in space, and its mathematical expression can be expressed as: 

( )
2 2

0, 0
, , ,0 /

2 / , /

r
D r a p rp rp a p

ar a p rp a p

 ≤
= < <


− ≥

 (3) 

In the formula, r  is the distance between the unmanned vehicle and the expected 
stopping position; a  represents the vehicle acceleration; and p  represents the linear gain 
parameter (Lee et al., 2021). 

The core principle of speed calibration is to ensure that the speed difference between 
two autonomous vehicles at a specific distance remains within the safe speed deviation 
range defined by the ideal braking trajectory. Its mathematical expression is: 

( )( )0, , ,frictmax frict frict frict frict
ij ijv max v D r r a p= −  (4) 

( ) ,

0,

i jfrict frictmax frictmax
ij ij ij ijfrict

ijij
frictmax

ij ij

v v
C v v v v

vv
v v

−
− >

= 
 ≤

 (5) 

In the formula, frictC  represents the speed error coefficient; 0
frictr  represents the distance 

between the expected stop of unmanned vehicle i  and vehicle j ; and ijv  represents the 
speed difference (Yan et al., 2021). 

For the autonomous vehicle i , its overall speed adjustment formula relative to 
surrounding vehicles can be expressed as: 

frict frict
i ij

j i

v v
≠

= ∑  (6) 

The functional diagram of the repulsion speed and distance between autonomous vehicles 
is shown in Figure 2. 

3 The interaction between obstacles 

A virtual rectangular boundary with repulsive characteristics is constructed, which runs at 
a speed shillv  to maintain the coordinated movement of autonomous vehicles. Once 
vehicles approach these virtual boundaries, they should reduce their speed towards the 
boundaries. The expression for the virtual wall function is: 

( )0 , ,shillmax shill shill shill
is isv D r r a p= −  (7) 
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( ) ,

0,

shillmax shillmaxi s
is is is iswall

isis
shillmax

is is

v v
v v v v

vv
v v

− − ⋅ >= 
 ≤

 (8) 

In the formula, isr  represents the distance between the virtual wall and the unmanned 
vehicle, and isv  represents the speed difference between the virtual wall and the 
unmanned vehicle. 

Figure 2 Schematic diagram of speed calibration (see online version for colours) 
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4 Self-starting 

In addition to the mutual influence between vehicles and between vehicles and obstacles 
discussed previously, the expected speed of autonomous vehicle i  also incorporates a 
basic self-driving component. This component aligns with the direction of the current 
velocity vector iv  and has a constant value flockv . 

5 Final expected speed 

To obtain the desired velocity value, all the interaction force terms mentioned previously 
need to be vector summed: 

d flock rep frict wall obstaclei
i i i is is

s si

v
v v v v v v

v
= + + + +∑ ∑  (9) 

After completing the superposition operation, a velocity limit maxv  is added to maintain 
the direction of the desired velocity. If the desired speed exceeds this limit, its size should 
be adjusted to accommodate: 

{ },
d

d d maxi
i id

i

v
v min v v

v
=





 (10) 

The d
iv  value calculated by formula (10) represents the instantaneous operating speed 

and direction of travel of the autonomous vehicle. 
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3 Improved SAC algorithm for intelligent obstacle avoidance control  
of autonomous vehicles 

3.1 Traditional SAC algorithm 

The SAC algorithm draws inspiration from the architecture of Actor Critic (AC). 
Traditional reinforcement learning methods focus on maximising the expected reward 
value, while SAC additionally pursues the maximisation of system entropy, striving to 
achieve both objectives: 

( ) ( ) ( ) ( )( )*
, ~

0

argmax ,
t t

T

t t ts a
t

J E r s a H a s
πρπ

π τ π
=

 = + ∑  (11) 

In the formula, the E  value reflects the expected reward of the current situation, while 
the r  value displays the immediate reward of the current situation. The set πρ  
encompasses all possible state action pairings; the H  value measures the level of 
uncertainty (entropy) of the current action; the τ  parameter regulates the impact of 
entropy; and the π  ratio reveals the likelihood of taking action in the current situation. 

The SAC algorithm introduces a value network component on top of the Actor Critic 
architecture to reduce bias in value function estimation. Its composition includes an Actor 
network and four Critic networks: the V  and TargetV  networks are responsible for state 
value estimation, marked as VCritic ; The 0Q  and 1Q  networks are responsible for 
estimating the action state value, denoted as QCritic . The network architecture of SAC 
algorithm is shown in Figure 3. 

Figure 3 Network architecture of SAC algorithm 
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For a specific state ts , the Actor network generates an action probability distribution map 
( )ta sπ  and randomly selects an action ta a∈  to execute based on this distribution. 

Next, action ta  is input into the environment, which returns a new state 1ts +  and reward 
1tr + , forming an experience: ( )1 1, , ,t t t ts a s r+ + , which is then stored in the experience pool. 
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In QCritic  network training, the experience pool data ( )1 1, , ,t t t ts a s r+ +  is extracted to 
update the network parameters ω , where the ( ),t tq s a  value of action ta  is used as the 
estimated value of the ts  state, and the true value estimate of the ts  state is derived 
through the optimal Bellman equation: 

( )
1 1

q
t t t tU r E R s sπγ + += +  =    (12) 

In the formula, Eπ  is the cumulative expected return of the current state. 
The square error loss function is used as the basis for training the QCritic  network, 

and its mathematical expression is defined as follows: 

( )
( ) ( )

1 1

2

, , ,

1 , ;
t t t t

q
Q t t t

s a s r B

Loss q s a U
B

ω
+ + ∈

 = − ∑  (13) 

In the formula, B  is used to indicate the random selection of a data batch from an 
empirical database. 

In the VCritic  network, the data ( )1 1, , ,t t t ts a s r+ +  collected by the experience pool is 
used to update the network parameters θ , while the VCritic  network produces the 
following true estimates: 

( )

( )
( ) ( ) ( )

'

' '| , , ; | ,
t t

v
t t t t t t t

a A s

U a s minq s a ln a sπ θ ω α π θ
∈

 = − ∑  (14) 

In the formula, ta′  represents the subsequent set of possible actions estimated by the 
Actor network based on its policy parameter π , while ( )| ,t tln a sπ θ′  measures the 
entropy of these actions. 

The loss of VCritic  network is calculated based on the true value: 

( )
( ) ( )

1 1

2

, , ,

1 ;
t t t t

v
V t t

s a s r B

Loss v s U
B

ω
+ + ∈

 = − ∑  (15) 

In the training process of Actor network, a loss function is defined, which is optimised 
through gradient descent method: 

( )
( ) ( )

1 1

2' '
~

, , ,

1 , | ,
t

t t t t

A a t t t t
s a s r B

Loss E q s a ln a s
B πρ

α π θ
+ + ∈

 = − ∑  (16) 

In reinforcement learning uses, the temporal difference (TD) error serves as the basis for 
adjusting the update amplitude, and the effect of the slight action ta  is evaluated by 
calculating the TD error: 

( ) ( )1 1, ,t t t t t tr Q s a Q s aδ γ + += + −  (17) 

In the formula, Q  represents the state value of Critic evaluation, while γ  represents the 
discount rate of future rewards. 
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3.2 Improve SAC algorithm 

This study proposes a novel PER-SAC strategy to accelerate training efficiency and 
ensure smoothness in the optimisation process. This strategy creatively embeds the 
principle of PER into the SAC algorithm, achieving a transition from obtaining samples 
from the experience pool based on sample priority rather than pure randomness. This 
modification greatly increases the selection probability of important samples, 
significantly improving learning performance. To address the bias introduced by priority 
replay, importance sampling weighting technique was introduced, and the loss function 
was accordingly revised to more effectively reduce model prediction error. The PER-
SAC algorithm integrates network architecture design, reward system construction, and 
planning for continuous states and action domains. 

1 Network structure 

The neural architecture relied upon by the PER-SAC algorithm consists of 14 inputs and 
2 outputs, as shown in Figure 4. 

Figure 4 Input and output of the network 

 Radar reading

Linear velocity

Angular velocity

Distance from the target point

Angle from the target point

Network

Linear 
velocity

Angular 
velocity

input output

 

In Figure 4, the input data received by the network includes the measurement values ix  
of the radar in 10 directions, the linear velocity 1tv −  and angular velocity 1tw −  of the 
autonomous vehicle, as well as the straight-line distance td  and directional angle tθ  of 
the vehicle relative to the target. The output of the network is the linear velocity tv  and 
angular velocity tw  of the autonomous vehicle. 

The SAC architecture consists of three core components: the policy network (Actor), 
the Q network (Q Critic), and the value evaluation value network (V Critic). The 
schematic diagram of the structure is shown in Figure 5. 

2 Replay based on priority experience 

The priority allocation mechanism in experience replay sets different importance levels 
for each sample. During sampling, the probability of selecting high-priority samples is 
increased according to their assigned importance levels, thereby accelerating training. 
The priority values of these samples are stored and managed using a SumTree data 
structure. 
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Figure 5 Schematic diagram of SAC network structure: (a) strategic network; (b) Q network and 
(c) V network 

 Input(st) Input(st) Input(at) Input(st)

512|ReLU

512|ReLU

512|ReLU

output(at)|Tanh output(Q) output(V)

512|ReLU

512|ReLU

512|ReLU
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512|ReLU

512|ReLU

(a) Strategic Network (b) Q Network (c) V Network
 

 (a) (b) (c) 

The sample priority is determined based on the magnitude of the time difference (TD) 
error, where a larger TD error corresponds to a higher sample priority. Formula (17) can 
be referred for the specific calculation method of TD error. The probability of sample 
extraction is obtained according to the following formula: 

( )
1

a
i

k
ii

p
P i

pα
=

=
∑

 (18) 

In the formula, a  represents the priority adjustment parameter, and ip  represents the 
priority of the sample. 

When calculating TD error, three networks (Q network, value network and policy 
network) in SAC algorithm should be taken into account. Since the output values of  
Q network and value network are significantly greater than those of policy network, 
direct accumulation of their respective errors would correspondingly weak the 
contribution of the policy network’ errors to the overall error. In order to achieve the 
above purpose, the adjustment factors Tα  and Tβ  are used to implement appropriate 
correction on the output values of Q network and value network: 

( ) ( ) ( )i T TD Q T TD V TDα βδ π= ⋅ + ⋅ +  (19) 

Priority experience replay has changed the sample extraction mode, so importance 
sampling weights are used to correct the errors introduced by this mode, while calculating 
the loss function in gradient training to reduce model errors. The mathematical 
expression for the importance sampling weight is as follows: 

( )
( )
j

j
i i

N p
ISWeight w

max w

β−
⋅

= =  (20) 

In the formula, the weight of sample j  is represented by jw ; ( )i imax w  represents the 
sample with the highest weight; N  represents the total number of sample sets; and β  is 
the coefficient for weight adjustment. 
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In the final stage, by applying importance sampling weights, the loss functions of 
both the Q network and the value network were updated accordingly. The update rules 
are detailed in formulas (13) and (15): 

*

*
Q Q j

V V j

Loss Loss w
Loss Loss w

 = ⋅
 = ⋅

 (21) 

3 Continuous mobile space and state space design 

A reasonable continuous state domain and action space are designed as the input and 
output interface of the neural network. With sensors, detailed information about the 
surrounding environment is captured. This state domain reflects the current 
environmental conditions of autonomous vehicles and is the basis of their decision-
making action space. The laser radar equipped on autonomous vehicles has a 360 ° 
scanning range and a maximum detection distance of 35 meters. Considering the lack of 
vehicles’ reverse operation, the large amount of radar data, and the high computational 
requirements, only the detection results within a 180 ° field of view in front of the vehicle 
are used, and 10 specific directions of radar data are selected for processing. The data 
acquisition structure of LiDAR is shown in Figure 6. 

Figure 6 Data acquisition structure of LiDAR 
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For autonomous vehicles, their motion status information integrates the nearest obstacle 
distance data id  from 10 directional radars, as well as the straight-line distance gD  and 
angular deviation gθ  from the current position of the vehicle to the target location. Based 
on this information, the state space of autonomous vehicles can be defined as follows: 

( )1 10~ , ,j g gs d d D θ=  (22) 

4 Design of reward and punishment function 

The design of the reward and punishment mechanism is a standard for measuring the 
quality of the next driving action selected by autonomous vehicles in a specific state. In 
order to cope with the scarcity of reward signals, a continuous reward and punishment 
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function design scheme is adopted. The mathematical expression of the reward and 
punishment function is as follows: 

( ) ( ) ( )
( )

1 1 1

2 1
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, 0
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collide x o
t t

r t t t t

r t t

r d c
r min c

r s a
c d d d d

c d d
− −

−

<
 <=  − − >
 − ≤

 (23) 

In the formula, arriver  represents the forward establishment of reaching the target point; td  
represents the distance between the unmanned vehicle and the target position at the 
current time; and dc  represents the distance threshold. When encountering obstacles, 

collider  represents the negative reward received; xmin  is the minimum distance value 
measured by the LiDAR; oc  represents the safe distance required to avoid collision; and 

1rc  and 2rc  are the two parameter factors in reward calculation. 

5 Transfer learning 

When autonomous vehicle implement intelligent obstacle avoidance control, correlations 
exist among multiple tasks. By applying parameter transfer techniques in different 
environments and setting initial parameters for related tasks, the learning process of 
autonomous vehicles’ strategies in different contexts can be effectively accelerated. 

In the model preloading stage, all parameter sets of the model are firstly acquired. By 
utilising the random initialisation method for training, the parameter sω  close to the 
target position and the parameter tω  of the obstacle scene are obtained, further refining 
the obstacle avoidance rules sv  and tv  to realise intelligent obstacle avoidance control. 
The transfer learning framework is shown in Figure 7. 

Figure 7 Transfer learning framework 
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The convergence curves of the SAC algorithm before and after improvement are shown 
in Figure 8. 

Figure 8 clearly shows that compared to the conventional SAC algorithm, the 
improved SAC algorithm has delivered significantly improved accuracy and more precise 
pre-decision results. At the same time, the convergence curve of the algorithm also shows 
greater stability, with significantly reduced fluctuation amplitude, demonstrating its 
superior performance and stronger robustness. 
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Figure 8 Convergence curves of SAC algorithm before and after improvement (see online 
version for colours) 
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4 Test experiment 

4.1 Experimental environment 

The initial simulation parameters of the autonomous vehicle were set as follows: a 3.75 m 
central lane width with 3.5 m adjacent lane spacing, LiDAR configured for 10 Hz 
scanning frequency, with ±2 cm ranging accuracy, 270° horizontal field of view angle, 
and 120 maximum detection distance; wheel speed sensor operating at 100 Hz sampling 
frequency with ±0.1 m/s measurement error of linear velocity; IMU featuring ±300°/s 
angular velocity range; high-precision map with <10 cm positioning error, and 5 Hz 
target point coordinate update frequency. The initial speed was set to 60 km/h, with 
4 m/s2 maximum braking deceleration and 15 m minimum safe following distance. 

During operation, an autonomous vehicle will encounter obstacles from the left front, 
left rear, right front, right rear, front and rear directions. In order to pursue the rigour of 
experimental results, a test scenario was designed in a three lane environment where 
obstacle vehicles appeared simultaneously in all directions. The schematic diagram of 
three lanes is shown in Figure 9. 

Figure 9 Schematic diagram of three lanes 

 

The autonomous vehicle demonstrates symmetrical upward and downward lane-changing 
behaviour for obstacle avoidance when positioned in the central lane. At this time, the 
model can be reduced to a two lane obstacle avoidance model. If autonomous vehicles 
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need to change lanes from the upper or lower lane, they must all face the central lane for 
lane change. At this point, the model can also be simplified as a two lane change to avoid 
obstacles. The two lane changing model is shown in Figure 10. 

Figure 10 Schematic diagram of two lane changing 

 

In the obstacle avoidance control process of autonomous vehicles, the collection of 
LiDAR data is achieved through the LiDAR installed on the vehicle. LiDAR 
continuously emits laser signals, which are reflected back when encountering 
surrounding objects. Based on the round-trip time of the signals, the distance to the object 
can be calculated. Through continuous scanning, a point cloud data can be accumulated, 
which contains multiple types of environmental information and is the key to identifying 
obstacles. The accurate acquisition of linear velocity depends on the wheel speed sensors 
equipped on the wheels. When the wheels rotate, the sensors immediately start, 
accurately recording the wheel speed. Combined with key parameters such as wheel size, 
the vehicle’s straight-line travel speed can be calculated through professional algorithms. 
This speed indicator intuitively reflects the speed characteristics of the vehicle’s straight-
line travel. As for angular velocity, it needs to be measured by an inertial measurement 
unit (IMU). The IMU is installed on the car and can sense the rotation of the car, 
accurately measuring angular velocity, which is very helpful for understanding the 
steering of the car. Target point location collection utilises pre-loaded high-precision map 
information such as target location, combined with the ability of cameras to recognise 
road signs, environmental features, and laser radar to detect object positions. Then, 
through the vehicle positioning system, the position of the target point relative to the 
vehicle is comprehensively determined, providing navigation basis for obstacle avoidance 
control. 

4.2 Experimental scheme 

Using obstacle avoidance success rate and obstacle avoidance response time as 
indicators, this method was compared and tested with the methods in Lai et al. (2021) and 
Chen et al. (2024). 

Collision avoidance success rate: Collision avoidance success rate is a key indicator for 
measuring the effectiveness of intelligent obstacle avoidance control methods for 
autonomous vehicles. It refers to the probability of autonomous vehicles in successfully 
avoiding collisions with obstacles during driving, reflecting the effectiveness of 
intelligent obstacle avoidance control methods in preventing vehicle collisions. 

Obstacle avoidance response time: Obstacle avoidance response time refers to the time 
interval between an unmanned vehicle’s sensor detection of an obstacle and its initiation 
of avoidance manoeuvres. A shorter obstacle avoidance response time enables vehicles to 
respond more quickly to potential collision hazards, thereby improving driving safety. 
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4.3 Experimental results 

1 Collision avoidance success rate 

The success rate of collision avoidance is the core indicator for measuring the 
effectiveness of intelligent obstacle avoidance control methods. In actual traffic 
scenarios, there are various types and complex obstacles, such as sudden pedestrian 
crossings and emergency braking of vehicles. The success rate of collision avoidance 
intuitively reflects the ability of autonomous vehicles to cope with these potential 
collision hazards. The test results of collision avoidance success rates for the three 
methods are shown in Figure 11. 

Figure 11 Collision avoidance success rate (see online version for colours) 
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From the comparison of collision avoidance success rates shown in Figure 11, it can be 
clearly observed that the autonomous vehicle controlled by the method proposed in this 
paper exhibits excellent performance in collision avoidance. Specifically, the highest 
collision avoidance success rate of this method reached 97%, which fully demonstrates 
its high reliability and stability in complex road environments. At the same time, 
although the methods proposed in Lai et al. (2021) and Chen et al. (2024) also show a 
continuous upward trend in collision avoidance success rate, their highest collision 
avoidance success rate is only maintained at around 75%. This comparative result not 
only highlights the significant advantages of our method in collision avoidance 
performance, but also further verifies the effectiveness and reliability of this method in 
improving the safety of autonomous vehicles. Further analysis reveals that the excellent 
collision avoidance success rate achieved by the method proposed in this paper is mainly 
due to its innovative algorithm design and real-time data processing capabilities. This 
method adopts multi-sensor fusion technology, which can obtain accurate information 
about the surrounding environment of the vehicle in real time and make quick decisions 
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through deep learning models. In contrast, although the methods in Lai et al. (2021) and 
Chen et al. (2024) are progressiveness in theory, they are limited by computational 
efficiency and environmental adaptability in practical applications, resulting in a 
relatively low success rate of collision avoidance. 

2 Obstacle avoidance response time 

It is necessary to conduct obstacle avoidance response time testing for autonomous 
vehicles. It is directly related to the safety of vehicles, and a shorter obstacle avoidance 
response time allows vehicles to avoid obstacles in a timely manner, reduce collision 
risks, and ensure the safety of passengers, pedestrians, and other road users. This test 
helps evaluate the performance of the intelligent obstacle avoidance control system, and 
provides a quick and accurate response that reflects the system’s efficiency. If the 
response time is too long, it may indicate problems in the perception, decision-making, or 
execution stages of the system. The test results of obstacle avoidance response time for 
the three methods are shown in Table 1. 

Table 1 Obstacle avoidance response time 

Number of tests 
Obstacle avoidance response time/s 

Proposed method Lai et al. (2021) method Chen et al. (2024) method 
1 0.45 3.38 2.29 
2 0.52 3.41 2.31 
3 0.49 3.39 2.28 
4 0.51 3.43 2.30 
5 0.47 3.37 2.27 
6 0.53 3.42 2.32 
7 0.46 3.36 2.26 
8 0.50 3.40 2.29 
9 0.54 3.44 2.33 
10 0.48 3.38 2.28 

From the obstacle avoidance response time data in Table 1, it can be clearly seen that this 
method has significant advantages. Across 10 repeated tests, the obstacle avoidance 
response time of the proposed method is always kept within the optimal range of  
0.45–0.54 s, exhibiting both stability and reliability. This represents an order of 
magnitude improvement compared with the existing methods. Specifically, the response 
time of the method in Lai et al. (2021) is up to 3.36–3.44 s. Although the method in Chen 
et al. (2024) is improved, it still takes 2.26–2.33 s to complete the obstacle avoidance 
response. This significant performance gap fully proves the innovative breakthrough of 
this method in algorithm design and system implementation. From the perspective of 
technical implementation, the superior speed of this method mainly attributes to the 
optimisation of the decision algorithm, which simplifies the traditional multi-level 
decision-making process into an end-to-end rapid response mechanism. In contrast, the 
reference method still uses the traditional serial processing architecture, which has 
obvious delay accumulation in data acquisition, feature extraction and decision execution. 
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5 Conclusion 

This study has effectively improved the intelligent obstacle avoidance control method for 
autonomous vehicles by introducing an improved SAC algorithm, namely the PER-SAC 
method. Compared to traditional SAC algorithms, the PER-SAC method exhibits 
significant advantages in both collision avoidance success rate and obstacle avoidance 
response time. This method optimises the algorithm structure to reduce value function 
estimation bias, while improving the learning efficiency and performance of the 
algorithm through innovative means such as PER mechanism and importance sampling 
weight strategy. Experimental verification shows that this method has excellent obstacle 
avoidance ability and high safety in practical applications, providing new solutions and 
ideas for intelligent obstacle avoidance control of unmanned vehicles. 
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