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Abstract: This paper aims to provide a method for solving multi-criteria group 
decision making problems with the evaluation information in the type of 
intuitionistic triangular fuzzy numbers (ITFNs). To this end, a new score 
function of ITFNs is proposed. In order to depict the similarity between two 
intuitionistic triangular fuzzy sets (ITFSs), the cosine similarity measure of 
ITFSs is defined. Based on the similarity measure, the consensus measures on 
three levels are defined, and a programming model-based approach is 
introduced to deal with situations where the group consensus level dose not 
reach the given threshold. By transforming the reference points of classical 
prospect theory (PT) into reference intervals, a method combining extended PT 
and PROMETHEE is presented to obtain the ranking results of alternatives. 
Then, an intuitionistic triangular fuzzy multi-criteria GDM (ITFMCGDM) 
method is developed. Finally, an example is given to illustrate the feasibility 
and effectiveness of the proposed method. 

Keywords: multi-criteria group decision making; consensus; extended prospect 
theory; intuitionistic triangular fuzzy number; similarity measure. 
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1 Introduction 

According to the type of decision information, fuzzy multi-criteria decision making 
(FMCDM) can be divided into different types. Among them, intuitionistic triangular 
FMCDM (ITFMCDM) with the decision information in the type of intuitionistic 
triangular fuzzy numbers (ITFNs) can more accurately depict the uncertain preferred and 
non-preferred information of decision makers (DMs). In addition, to avoid the  
one-sidedness and limitation of single DM, group decision making (GDM) method is 
usually adopted in practice (Wu and Zhang, 2024). Since Liu and Yuan (2007) first came 
up with the definition of intuitionistic triangular fuzzy sets (ITFSs), many fruitful 
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achievements about intuitionistic triangular fuzzy multi-criteria group decision making 
(ITFMCGDM) have been extracted. 

By taking the intuitionistic triangular fuzzy weighted geometric and intuitionistic 
triangular fuzzy ordered weighted geometric operators, the comprehensive evaluation 
information of all the alternatives is aggregated in (Chen et al., 2010), then the score 
function and variation function based on the mean and standard deviation of triangular 
fuzzy number are defined for the ranking of ITFNs. In view of the prioritisation 
relationship among the DMs or the criteria, Yu (2013) proposed intuitionistic triangular 
fuzzy prioritised weighted average and the intuitionistic triangular fuzzy prioritised 
weighted geometric operators. By extending the Bonferroni mean operators introduced in 
(Yager, 2009), Zhou et al. (2015) defined intuitionistic triangular fuzzy weighted 
Bonferroni mean operator to reflect the interrelationship between the criteria. For 
situations where the interaction exists among the decision makers or the criteria, the 
fuzzy measure and Choquet integral are introduced by Liu et al. (2015) to develop some 
aggregation operators with interactions, such as intuitionistic triangular fuzzy Choquet 
geometric operator and the induced intuitionistic triangular fuzzy Choquet geometric 
operators. Moreover, based on the integration of ITFNs, ITFNs compound weight 
Bonferroni hybrid geometric operator and multi-attribute GDM theory, Zhang and Qi 
(2021) proposed a system evaluation method to evaluate the safety input of coal 
enterprises. By aggregating the heterogeneous information into ITFNs, Xu et al. (2019) 
presented a method to solve heterogeneous MCGDM problems. Based on the pairwise 
comparison of alternatives, Li et al. (2022) studied the GDM with intuitionistic triangular 
fuzzy preference relations. 

The existing ITFMCGDM methods are mainly based on aggregation operators to 
obtain the comprehensive evaluation information of the alternatives, and then the ranking 
results of alternatives can be obtained by the score function and the accuracy function. 
However, the existing ranking methods for ITFNs still have some limitations in 
discriminability. Although the ranking method proposed by Zhang et al. (2023) can 
provide a total order on the ITFNs, the problem is that the ranking results lack robustness. 
In addition, all the ITFMCGDM methods do not explore the group consensus, in order to 
ensure the DMs to form a higher consistency level on the decision results, the consensus 
analysis should be incorporated into the GDM process. 

Among the traditional multi-criteria decision-making methods, the preference ranking 
organisation method for enrichment evaluations (PROMETHEE) method proposed by 
Brans et al. (1986) is an outranking method, which can avoid the complete 
compensability among the criteria and has been widely used in practice (Bakshi et al., 
2025; Szaja and Ziemba, 2025). On the other hand, the prospect theory (PT) proposed by 
Kahneman and Tversky (1979) is an effective tool to reflect the influence of subjective 
psychological characteristics of DMs. In exploring the combination of PT and 
PROMETHEE method, some scholars take the prospect value function as PROMETHEE 
preference function directly (Chang and Liu, 2021). In this way, the reference points of 
PT are different under each comparison. However, in line with the principle of 
uniformity, all the alternatives should have a common reference point under a criterion. 
Based on this perspective, Chen et al. (2020) first compare the evaluation information of 
each alternative with the common reference point, and then compare the alternatives with 
PROMETHEE preference function based on the obtained prospect value matrix. 
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Classical PT is based on the comparison of each alternative with single reference 
point to calculate the prospect values. In MCDM problem, the reference point is usually 
not a crisp number, but an interval. For example, when a DM evaluates the fuel 
consumption per 100 kilometres of a family car, the expected fuel consumption 
corresponds to a range, such as 7–8 litres. When the fuel consumption of alternative 
models changes within this range, the additional attention of buyers will not be aroused. 
However, when the fuel consumption of a certain vehicle is below or above the expected 
range, a strong sense of satisfaction or dissatisfaction will be aroused. Therefore, it is 
necessary to discuss the prospect theory with the reference interval, which is called the 
extended prospect theory (EPT), and to study the corresponding decision-making method. 

Based on the analysis of the above two aspects, this paper intends to carry out 
research on ITFMCGDM method based on consensus analysis and EPT. The main 
contributions include the following aspects: 

1 a new score function for the ranking of ITFNs is defined based on the mean and 
stand deviation of triangular fuzzy numbers 

2 the cosine similarity measure of ITFSs is proposed and its properties are proved 

3 the consensus measures on three levels are defined, and a programming model-based 
method is introduced into the consensus reaching process 

4 a decision-making method combining EPT and PROMETHEE is introduced to 
obtain the ranking results of alternatives. 

The main research contents of the rest sections of this paper are arranged as follows: 
Section 2 introduces some basic concepts as the basis for the follow-up research.  
Section 3 provides a novel score function for the ranking of ITFNs. Section 4 defines the 
cosine similarity measure for ITFNs, and the corresponding properties are proved. 
Section 5 conducts the consensus analysis for ITFMCGDM, introduces the definition of 
consensus measure and the improvement method of group consensus level. Section 6 
proposes an EPT and PROMETHEE combined method to get the prioritisation of 
alternatives. Section 7 illustrates the feasibility and effectiveness of the proposed GDM 
method by taking the selection of social capital parties in pension institutions as an 
example. Section 8 completes the conclusion of this paper. 

2 Preliminaries 

In the application of fuzzy set theory, it is found that only considering the membership 
information cannot reflect the DMs’ hesitation caused by subjective uncertain cognitive. 
To overcome this problem, Atanassov (1999) proposed the concept of intuitionistic fuzzy 
sets (IFSs), which can reflect the information of membership, non-membership and 
hesitation at the same time. In order to better reflect the uncertainty of membership and 
non-membership information in IFSs, Liu and Yuan (2007) further introduced triangular 
fuzzy numbers into IFSs, and put forward the definition of ITFSs. 

Definition 2.1 (See Liu and Yuan, 2007): Let X be a universe of discourse. An ITFS A  
over X is an object having the form: 
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{ }, ( ), ( )A AA x μ x v x x X= ∈   (1) 

where ( ) ( ( ), ( ), ( )),L M U
A A A Aμ x μ x μ x μ x=  ( ) ( ( ), ( ), ( ))L M U

A A A Av x v x v x v x=  are two triangular 
fuzzy numbers in [0, 1], which correspond to the membership and non-membership 
degrees of the element x ∈ A, and 0 ( ) ( ) 1,U U

A Aμ x v x≤ + ≤  ∀x ∈ X. 
For convenience, we denote an ITFN by ( , ) (( , , ), ( , , )).L M U L M Uμ v μ μ μ v v v= = α  

Definition 2.2: Let (( , , ), ( , , ))L M U L M U
i i i i i i iμ μ μ v v v=α  (i = 1, 2, …, n) be a collection of 

ITFNs, and wi (i = 1, 2, …, n) be a weights vector such that wi ∈ [0, 1] and 
1

1.
n

ii
w

=
=  

The arithmetic intuitionistic triangular fuzzy weighted aggregation (AITFWA) operator is 
defined by 

( ) ( )(
( )

1 2 1 1 1

1 1 1

, , , , , ,

, , .

n n nL M U
n i i ii i ii i i

n n nL M U
i i ii i ii i i

AITFWA w μ w μ w μ

w v w v w v

= = =

= = =

=





  
  

  α α α
 (2) 

The PROMETHEE method was first developed by Brans et al. (1986), which can obtain 
a partial ranking (PROMETHEE I) or complete ranking (PROMETHEE II) based on the 
pairwise comparison of alternatives. It is an effective outranking method to solve MCDM 
problems. The main steps of the classical PROMETHEE method can be summarised as 
follows: 

Step 1 For the given alternatives set A = {a1, a2, …, am} and criteria set C = {c1, c2, …, 
cn}, we can calculate the preferred value Pj(ai, as) of the alternative ai over as, 

( ) ( ), ,j i s j j i sP a a f d a a =    (3) 

where fj is a preferred function with the range of [0, 1], dj(ai, as) is the difference 
between the assessments of the alternatives ai and as under the criterion cj for  
i, s = 1, 2, …, m, and j = 1, 2, …, n. 

Step 2 Calculate the weighted preferred degree Γ(ai, as) of the alternative ai over as for 
all criteria, expressed as 

( ) ( )
1

Γ , ,
n

i s j j i sj
a a w P a a

=
=  (4) 

where wj is the weight of criterion cj, i, s = 1, 2, …, m. 

Step 3 Calculate the positive outranking flow φ+(ai) and the negative outranking flow  
φ–(ai) of the alternative ai, 

( ) ( )

( ) ( )

1,

1,

1 Γ ,
1

1 Γ ,
1

m
i i ss s i

m
i s is s i

a a a
m

a a a
m

+
= ≠

−
= ≠

 = −

 =
 −




φ

φ
 (5) 

for i = 1, 2, …, m. 
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Step 4 Calculate the net flow of the alternative ai 

( ) ( ) ( )i i ia a a+ −= −φ φ φ  (6) 

for i = 1, 2, …, m. 

Step 5 Rank alternatives ai, i = 1, 2, …, m, according to their net flows. 

3 A new score function of ITFNs 

The existing ranking of ITFNs are mainly based on the generalisation of score function 
and accuracy function for the ranking of intuitionistic fuzzy numbers (Li and Sun, 2023). 
For ITFN ( , ) (( , , ), ( , , )),L M U L M Uμ v μ μ μ v v v= = α  Wang (2008) proposed the 
following score function 1( )S α  and extended score function 1( ):H α  

( )

( )

1

1

2 2 ,
4 4

2 2 22 .
4 4 4

L M U L M U

L M U L M U L M U

μ μ μ v v vS

μ μ μ μ μ μ v v vH

+ + + += −

+ + + + + + = − − 




 









α

α
 (7) 

For ITFNs 1α  and 2 ,α  the comparison rules are as below: 

1 If 1 1 1 2( ) ( ),S S< α α  then 1 2< α α  

2 If 1 1 1 2( ) ( )S S= α α  and 1 1 1 2( ) ( ),H H= α α  then 1 2 ;= α α  if 1 1 1 2( ) ( ),S S= α α  but 
1 1 1 2( ) ( ),H H< α α  then 1 2.< α α  

However, take ITFNs 1 ((0.1, 0.3, 0.5), (0.2, 0.3, 0.4))=α  and 
2 ((0.2, 0.3, 0.4), (0.1, 0.3, 0.5))=α  for example, we have 1 1 1 2( ) ( ) 0,S S= = α α  
1 1 1 2( ) ( ) 0.42.H H= = α α  Therefore, ITFNs 1α  and 2α  are indistinguishable under these 

two functions. 
Based on the mean ( ) ( 2 )/4m γ a b c= + +  and the variance 

2 2 2( ) (3 4 3 4 2 4 )/80v γ a b c ab ac bc= + + − − −  of a triangular fuzzy variable ( , , ),γ a b c=  
Chen et al. (2010) proposed a ranking method for ITFN 

( , ) (( , , ), ( , , ))L M U L M Uα μ v μ μ μ v v v= =   by the new score function and variation 
function: 

( )

( )

1

1

2 2 ,
4 4

2 2 22 .
4 4 4

L M U L M U

L M U L M U L M U

μ μ μ v v vS

μ μ μ μ μ μ v v vH

+ + + += −

+ + + + + + = − − 




 









α

α
 (8) 

Then, two ITFNs 1α  and 2α  are compared by the rules: 

1 if 3 1 3 2( ) ( ),S S< α α  then 1 2< α α  
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2 if 3 1 3 2( ) ( )S S= α α  and 1 2( ) ( ),V V= α α  then 1 2 ;= α α  if 3 1 3 2( ) ( ),S S= α α  but 
1 2( ) ( ),V V> α α  then 1 2.< α α  

Here, we take the example as 1 ((0.2, 0.25, 0.3), (0.2, 0.25, 0.3))=α  and 
2 ((0.4, 0.45, 0.5), (0.4, 0.45, 0.5)).=α  By formula (8) we have 3 1( ) 0.0625,S =α  
3 2( ) 0.0225,S =α  which shows that 1α  is superior to 2.α  However, since the 

membership and non-membership are equal both in 1α  and 2 ,α  1α  has more hesitation 
than 2 ,α  so 2α  should be superior to 1.α  Therefore, the comparison result of this 
method is counter-intuitive. Moreover, this method still cannot distinguish ITFNs 

1 ((0.1, 0.3, 0.5), (0.2, 0.3, 0.4))=α  and 2 ((0.2, 0.3, 0.4), (0.1, 0.3, 0.5)).=α  
By taking account of the DM’s attitudinal character, Liu et al. (2015) defined an 

attitudinal expected score function of ITFNs as follows: 

( ) ( ) ( ) ( )(1 ) 2 3
,

6

U L M M U U

λ
λ μ v μ v λ μ v

AES
− − + − + − +

=α  (9) 

where λ ∈ [0, 1]. 
However, it is not easy for the DM to give an exact value for parameter λ. 
In addition, Zhang et al. (2023) constructed six quantitative indices of ITFNs based 

on credibility theory. The advantage of this method is that it can distinguish all ITFNs, 
but its limitation is the lack of robustness in ranking results. 

Since an ITFN is the fuzzy representation of intuitionistic fuzzy number with the 
preferred and non-preferred information in the type of triangular fuzzy numbers. The 
mean and standard deviation are two important indicators to depict the size of a triangular 
fuzzy number, which respectively reflect the central trend and the deviation trend. 
Therefore, for a triangular fuzzy number ( , , ),γ a b c=  by taking the mean 

2( )
4

a b cm γ + +=  and standard deviation 
2 2 2( ) 2( ) 2( )( )

80
c a b a c bσ γ − + − + −=  

proposed in Lee and Li (1988), we can introduce the quantitative value of γ  as: 

( ) ( )
( )

.
1

m γ
q γ

σ γ
=

+





 (10) 

In this way, the ITFN (( , , ), ( , , ))L M U L M Uμ μ μ v v v=α  can be transformed into 

intuitionistic fuzzy number ( ) ( ), .
1 ( ) 1 ( )

m μ m v
σ μ σ v

 ′ =  + + 




α  Since intuitionistic fuzzy number 

corresponds to interval number, that is, ′α  can be further transformed into 
( ) ( ), 1 .

1 ( ) 1 ( )
m μ m v
σ μ σ v

 − + + 




 Like the above quantisation method of triangular fuzzy number, 

we still use the mean and interval width to reflect the size of interval numbers. Based on 
the above analysis, we give a new score function for ITFNs. 

Definition 3.1: Let (( , , ), ( , , ))L M U L M Uμ μ μ v v v=α  be an ITFN. The score function 
( )S α  of α  is expressed as 
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( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1
2 1 1

,
11 1
6 1 1

m vm μ
σ μ σ v

S
m vm μ

σ μ σ v

 
+ − + + =
 

+ − − + + 








α  (11) 

where 2 2 2

2 2 2

2( )
4

2( )
4

( ) 2( ) 2( )( )
80

( ) 2( ) 2( )( )
80

.

L M U

L M U

U L M L U M

U L M L U M

μ μ μm μ

v v vm v

μ μ μ μ μ μσ μ

v v v v v vσ v

+ +=

+ +=

− + − +






 −=

− + − +







−=









 

Next, we analysis some properties of the proposed score function. 

Theorem 3.1: Let (( , , ), ( , , ))L M U L M Uμ μ μ v v v=α  be an ITFN，the score function 
( ) 1S =α  if and only if ((1, 1, 1), (0, 0, 0)).=α  

Proof: For ((1, 1, 1), (0, 0, 0)),=α  we substitute it into formula (11), and the 
corresponding score function ( ) 1.S =α  The sufficiency is proved. Here we prove the 

necessary. If ( ) 1,S =α  from formula (11), we have ( ) 1
1 ( )

m μ
σ μ

=
+



 and ( ) 0.
1 ( )

m v
σ v

=
+



 It can 

be concluded that ( ) 1,m μ =  ( ) 0,σ μ =  ( ) 0m v =  and ( ) 0,σ v =  that is, (1, 1, 1),μ =  
(0, 0, 0).v =  The proof is complete. 

Theorem 3.2: Let (( , , ), ( , , ))L M U L M Uμ μ μ v v v=α  be an ITFN，the score function 
( ) 0S =α  if and only if ((0, 0, 0), (1, 1, 1)).a =  

Proof: The proof of this theorem is like that of Theorem 3.1. 

Theorem 3.3: Let (( , , ), ( , , ))L M U L M Uμ μ μ v v v=α  be an ITFN，the score function 
( )S α  complies with 0 ( ) 1.S≤ ≤α  

Proof: From formula (11), we have 

( )
( )

( )
( )

( )
( )

( )
( )

1 11 1 1 0,
6 1 1 2 1 1

m v m vm μ m μ
σ μ σ v σ μ σ v

   
+ − − ≥ + − ≥   + + + +   

  
  

 

then it can be concluded that 0 ( ) 1.S≤ ≤α  

Theorem 3.4: For two ITFNs 1 1 1 1 1 1 1 1 1( , ) (( , , ), ( , , ))L M U L M Ua μ v μ μ μ v v v= =   and 

2 2 2 2 2 2 2 2 2( , ) (( , , ), ( , , )),L M U L M Uμ v μ μ μ v v v= = α  if 1 2 ,L Lμ μ≤  1 2 ,M Mμ μ≤  1 2 ,U Uμ μ≤  and 

1 2 ,L Lv v≥  1 2 ,M Mv v≥  1 2 ,U Uv v≥  then 1 2( ) ( ).S S≤ α α  
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Proof: Let us first prove that 1 2
1 2

1 2

( ) ( )( ) ( ) .
1 ( ) 1 ( )

m μ m μq μ q μ
σ μ σ μ

= ≤ =
+ +
  
 

 Since 1 2 ,L Lμ μ≤  

1 2 ,M Mμ μ≤  1 2 ,U Uμ μ≤  we set 2 1 1 1( , , ),L M Uμ μ x μ y μ z= + + +  x, y, z ≥ 0, and assume an 
auxiliary function that 

( )
( )

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

2 1

2 1

1 1 1

2 2 2
1 1 1 1 1 1

1 1 1

2 2 2
1 1 1 1 1 1

( , , )
1 1

2
4

2 2
1

80
2

4 .
2 2

1
80

L M U

U L M L U M

L M U

U L M L U M

m μ m μ
f x y z

σ μ σ μ

μ x μ y μ z

μ z μ x μ y μ x μ z μ y

μ μ μ

μ μ μ μ μ μ

= −
+ +

+ + + + +

=
+ − − + + − − + + − −

+

+ +

−
− + − + −

+

 
 

 

In order to prove f(x, y, z) ≥ 0, that is to prove 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2
1 1 1 1 1 1 1 1 1

2 2 2
1 1 1 1 1 1

( , , ) 2

80 2 2 2

80 2 2

0.

L M U

U L M L U M L M U

U L M L U M

f x y z μ x μ y μ z

μ μ μ μ μ μ μ μ μ

μ z μ x μ y μ x μ z μ y

 = + + + + + 
 × + − + − + − − + +  
 × + + − − + + − − + + − −  

≥

 

First, we consider 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
1 1 1 1 1 1 1 1 1

2 2 2
1 1 1 1 1 1 1 1 1

(0, 0, ) 80 2 2 2

2 2 2 .

L M U U L M L U M

L M U U L M L U M

f z z μ μ μ z μ μ μ μ μ μ

μ μ μ μ z μ μ μ μ z μ

= + + + + − + − + −

− + + + − + − + + −
 

To show that f(0, 0, z) ≥ 0, from f(0, 0, 0) = 0, we just need to prove that 

( ) ( ) ( )
( )( )

( ) ( ) ( )

2 2 2
1 1 1 1 1 1

1 1 1 1 1 1
2 2 2

1 1 1 1 1 1

80 2 2

2 3 3 2

2 2
0,

U L M L U M

L M U U L M

U L M L U M

f μ μ μ μ μ μ
z

μ μ μ μ z μ μ

μ z μ μ μ μ z μ

∂ = + − + − + −
∂

+ + + − −
−

+ − + − + + −

≥

 

By comparing 80  with 1 1 1 1 1 1
2 2 2

1 1 1 1 1 1

( 2 )(3 3 2 ) ,
( ) 2( ) 2( )

L M U U L M

U L M L U M

μ μ μ μ z μ μ
μ z μ μ μ μ z μ

+ + + − −
+ − + − + + −

 we have 
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( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 1 1 1 1 1

2 2 2
1 1 1 1 1 1

80 2 2

16 5 2 2 .

U L M L U M

U L M L U M

μ z μ μ μ μ z μ

μ z μ μ μ μ z μ

+ − + − + + −

 = + − + − + + −  

 

Since 1 1 116 2 ,L M Uμ μ μ≥ + +  and 2 2 2
1 1 1 1 1 15 ( ) 2( ) 2( )U L M L U Mμ z μ μ μ μ z μ+ − + − + + −  

1 1 13 3 2 ,U L Mμ z μ μ≥ + − −  it can be concluded that 0,f
z

∂ ≥
∂

 that is f(0, 0, z) ≥ 0. Similarly, 

we can prove that f(x, 0, 0), f(0, y, 0) ≥ 0, thus we have f(x, y, z) ≥ 0, i.e., 1 2( ) ( ).q μ q μ≤   
Similar to the above proof process, we can also derive 1 2( ) ( ).q v q v≥   
Moreover, it is not difficult to obtain from formula (11) that the score function ( )S α  

is monotonically increasing with respect to ( )( ) ,
1 ( )

m μq μ
σ μ

=
+



 and monotonically 

decreasing with respect to ( )( ) .
1 ( )

m vq v
σ v

=
+



 

Based on the above analysis, we can come to the conclusion 1 2( ) ( ).S S≤ α α  The 
proof of Theorem 3.4 is completed. 

In addition, for ITFN (( , , ), ( , , )),L M U L M Uμ μ μ v v v=α  when μL = μM = μU = μ and 
vL = vM = vU = v, then the ITFN degenerates into an intuitionistic fuzzy number 

( , ),μ v=α  and the corresponding score function is 

(1 )
2( ) .(1 )1

6

μ v

S
μ v

+ −

=
− −+

α  If further, we 

have μL = μM = μU = μ, vL = vM = vU = v, and μ = 1 – v, then the ITFN degenerates into 
usual fuzzy number, and the score function ( ) ,S μ=α  which means that we just sort the 
fuzzy number according to the membership. 

4 Cosine similarity measures of ITFSs 

The similarity measure is an important tool to reflect the relationship between fuzzy 
information. Different from the ones based on the distance measure (Xu et al., 2019), 
here we introduce a cosine similarity measure between ITFSs. 

Definition 4.1: Let A  and B  are two ITFSs defined in X = {x1, x2, …, xn}, expressed as 

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( ) ( ) ( )( ){ }

, , , , , ,

, , , , , ,
,

L M U L M U
ii i i i i i iA A A A A A

L M U L M U
i i i i i i i iB B B B B B

A x Xx μ x μ x μ x v x v x v x

B x μ x μ x μ x v x v x v x x X

= ∈

= ∈









 

then the cosine similarity measure is defined by 

( ) ( ) ( )( )
( )( ) ( )( )1

,1,
n

i i

i i i

K A x B x
SI A B

n E A x E B x=

= 
 

 
 

 (12) 
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where 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

, 4
4

1 1

4 1 1

1 1 ,

L L M M U U
i i i i i i i iB B BA A A

L L M M U U
i i i i i iB B BA A A

U U U U
i i i iB BA A

M M M M
i i i iB BA A

L L L L
i i i iB BA A

K A x B x μ x μ x μ x μ x μ x μ x
v x v x v x v x v x v x

μ x v x μ x v x

μ x v x μ x v x

μ x v x μ x v x

= + +

+ + +

+ − − − −

+ − − − −

+ − − − −

 

 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

2 2 2 2 2

2 2 2

2

4 4

1 4 1

1

L M U L M
i i i i i iA A A A A

U U U M M
i i i i iA A A A A

L L
i iA A

E A x μ x μ x μ x v x v x

v x μ x v x μ x v x

μ x v x

= + + + +

+ + − − + − −

+ − −



 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

2 2 2 2 2

2 2 2

2

4 4

1 4 1

1 .

L M U L M
i i i i i iB B B B B

U U U M M
i i i i iB B B B B

L L
i iB B

E B x μ x μ x μ x v x v x

v x μ x v x μ x v x

μ x v x

= + + + +

+ + − − + − −

+ − −



 

We can prove that the proposed cosine similarity measure satisfies the following 
properties: 

1 0 ( , ) 1SI A B≤ ≤   

2 ( , ) ( , )SI A B SI B A=    

3 ( , ) 1SI A B =   if and only if A B=   

4 if ,A B C⊆ ⊆   then ( , ) ( , ),SI A C SI A B≤     and ( , ) ( , ).SI A C SI B C≤    

Proof: 

1 By the Cauchy-Schwarz inequality and the non-negative components, we know that 
( ( ), ( ))0 1,
( ( )) ( ( ))

i i

i i

K A x B x

E A x E B x
≤ ≤

 
 

 thus 
1

10 ( , ) 1 1.
n

i
SI A B

n =
≤ ≤ =   

2 Since the similarity measure is symmetric with respect to ITFSs A  and ,B  
( , ) ( , )SI A B SI B A=    is clearly true. 

3 When ,A B=   there are ( ) ( ),L L
i iBAμ x μ x=  ( ) ( ),M M

i iBAμ x μ x=  ( ) ( ),U U
i iBAμ x μ x=  

( ) ( ),L L
i iBAv x v x=  ( ) ( )M M

i iBAv x v x=  and ( ) ( )U U
i iBAv x v x=  for i = 1, 2, …, n. This 

implies that ( , ) 1.SI A B =   

If ( , ) 1,SI A B =   we have ( ( ), ( )) 1
( ( )) ( ( ))

i i

i i

K A x B x

E A x E B x
=

 
 

 for i = 1, 2, …, n. Let 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( )( ) ( ) ( ))
, 2 , , , 2 , , 1 ,

2 1 , 1

L M U L M U U U
i i i i i i i i iA A A A A A A A

M M L L
i i iiA A A A

A μ x μ x μ x v x v x v x μ x v x

μ x v x μ v xx

= − −

− − − −
 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )( ) ( ) ( ))

, 2 , , , 2 , , 1

, 2 1 , 1 .

L M U L M U U
i i i i i i i iB B B B B B B

U M M L L
i i i i iB B B B B

B μ x μ x μ x v x v x v x μ x

v x μ x v x μ x v x

= −

− − − − −
 

By Cauchy-Schwarz inequality, we have Ai and Bi are parallel, such that there is a 
non-zero constant li with 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )( )

( ) ( )
( ) ( )

2 2
2 2

2 11
1 2 1

1 .
1

L M U L M U
i i i i i iA A A A A A

L M U L M U
i i i i i iB B B B B B

M MU U i ii i A AA A
U U M M

i i i iB B B B

L L
i iA A

iL L
i iB B

μ x μ x μ x v x v x v x
μ x μ x μ x v x v x v x

μ x v xμ x v x
μ x v x μ x v x

μ x v x l
μ x v x

= = = = =

− −− −
= =

− − − −

− −
= =

− −

 

Owing to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

2 2 1
2 1 1 4

L M U L M U U U
i i i i i i i iA A A A A A A A

M M L L
i i i iA A A A

μ x μ x μ x v x v x v x μ x v x

μ x v x μ x v x

+ + + + + + − −

+ − − + − − =
 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

2 2 1
2 1 1 4 for 1, 2, , ,

L M U L M U U U
i i i i i i i iB B B B B B B B

M M L L
i i i iB B B B

μ x μ x μ x v x v x v x μ x v x
μ x v x μ x v x i n
+ + + + + + − −

+ − − + − − = = 
 

which implies that li = 1 and Ai = Bi, for i = 1, 2, …, n. Thus .A B=   

4 From ,A B C⊆ ⊆   we set three ITFSs with the following expressions: 

( ) ( )(
( ))

( ) ( ) ( )( )
( ) ( )(

1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

, , , , , ,

1 , 1 , 1

, , , , , , 1 , 1 , 1

, , , , , ,

1

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U U U M M L L
B B B B B B B B B B B B

L M U L M U
B B B B B B

U
B

A μ x μ y μ z v t v m v n

μ v z n μ v y m μ v x t

B μ μ μ v v v μ v μ v μ v

C μ x μ y μ z v t v m v n

μ v

= − − − + + +

− − + − − − + − − − + −

= − − − − − −

= + + + − − −

− −







( ))2 2 2 2 2 2, 1 , 1U M M L L
B B B B Bn z μ v m y μ v t x+ − − − + − − −









 + −

 

where xi, yi, zi, ti, mi, ni ≥ 0, i = 1, 2. 

To prove the following inequality: 

( )
( ) ( )

( )
( ) ( )

, ,
,

K A B K A C

E A E B E A E C
≥

  

  
 (13) 
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we assume an auxiliary function 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 2 2 2 2 2 2, , , , , , , , , , , , , .f x y z t m n x y z t m n K A B E C K A C E B= −      

Our goal is to prove that 1 1 1 1 1 1 2 2 2 2 2 2( , , , , , , , , , , , ) 0.f x y z t m n x y z t m n ≥  
First, we consider 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2
2

2 2 2
2

2 2 2 2 2
2

0, , 0,

4 4

1 4 1 1

4 4

1 4 1 1

4 4

1 1

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U U
B B B B B BB

U U
B B

f n

μ μ μ v v v

μ v μ v μ v

μ μ μ v v v n

μ v n μ v μ v

μ μ μ v v v v n

μ v μ

+ + + + +
=

+ − − + − − + − −

+ + + + + −
×

+ − − + + − − + − −

− + + + + + −

+ − − −





( ) ( ) ( )2 2
2 4 1 1 .U U M M L L

B B B B B Bv n μ v μ v − + + − − + − − 

 

To show that f(0, …, 0, n2) ≥ 0, from f(0, …, 0, 0) = 0, we just need to prove 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
2

2 2 2 2 2 2

2 2 2

0,...,0,

4 4

1 4 1 1

L M U L M U
B B B B B B

U U M M L L
B B B B B B

f n
n

μ μ μ v v v

μ v μ v μ v

∂
∂

+ + + + +
=

+ − − + − − + − −

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

2

2 2 2 2 2 2
2

2 2 2
2

1 2 2

4 4

1 4 1 1

1 2 0,

U U
B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

U U
B B

μ v n

μ μ μ v v v n

μ v n μ v μ v

μ v

− − +×
+ + + + + −

+ − − + + − − + − −

− − − ≥

 

i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
2

2 2 2
2

2 2 2 2 2 2

2 2 2 2

4 4
2 1

1 4 1 1

4 4
1 2 2

1 4 1 1
0.

L M U L M U
B B B B B BU U

B B
U U M M L L
B B B B B B

L M U L M U
B B B B B BU U

B B
U U M M L L
B B B B B B

μ μ μ v v v n
μ v

μ v n μ v μ v

μ μ μ v v v
μ v n

μ v μ v μ v

+ + + + + −
+ −

+ − − + + − − + − −

+ + + + +
+ − − +

+ − − + − − + − −

≥

 (14) 

We divide the problem into two cases: 

1 2 1 0U U
B Bμ v+ − ≤  
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2 2 1 0.U U
B Bμ v+ − >  

For case 1, we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
2

2 2 2 2

2 2 2 2 2 2 2
2

2 2 2
2

1 2 2 4 4

1 4 1 1

1 2 4 4

1 4 1 1 .

U U L M U L M
B B B B B B B

U U U M M L L
B B B B B B B

U U L M U L M U
B B B B B B B B

U U M M L L
B B B B B B

μ v n μ μ μ v v

v μ v μ v μ v

μ v μ μ μ v v v n

μ v n μ v μ v

− − + + + + +

+ + − − + − − + − −

≥ − − + + + + + −

+ − − + + − − + − −








 

Thus, it can be concluded that inequality (14) is valid. 
For case 2, inequality (14) is equivalent to 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2
2

2 2 2
2

2 1
2 1 2

4 4

1 4 1 1
.

4 4

1 4 1 1

U U
B B

U U
B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

μ v
μ v n

μ μ μ v v v

μ v μ v μ v

μ μ μ v v v n

μ v n μ v μ v

+ −

≥ + − −

+ + + + +

+ − − + − − + − −
×

+ + + + + −

+ − − + + − − + − −

 (15) 

If there is the below relationship 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2
2

2 2 2
2

4 4

1 4 1 1

4 4

1 4 1 1

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

μ μ μ v v v

μ v μ v μ v

μ μ μ v v v n

μ v n μ v μ v

+ + + + +

+ − − + − − + − −

+ + + + + −
≤

+ − − + + − − + − −

 (16) 

then we have that inequality (15) is valid. 
Since inequality (16) is equivalent to 21 2 0,U U

B Bn μ v+ − − ≥  next, we further divide it 
into two sub-cases: 22 1U U

B Bμ v n+ ≤ +  and 22 1 .U U
B Bμ v n+ > +  

If 22 1 ,U U
B Bμ v n+ > +  based on inequality (15), we define an auxiliary function: 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

2 2 2 2 2 2
2

2 2 2
2

2 2 2 2 2 2

2 2 2 2

4 4
2 1

1 4 1 1

4 4
1 2 2 .

1 4 1 1

L M U L M U
B B B B B BU U

B B
U U M M L L
B B B B B B

L M U L M U
B B B B B BU U

B B
U U M M L L
B B B B B B

T n

μ μ μ v v v n
μ v

μ v n μ v μ v

μ μ μ v v v
n μ v

μ v μ v μ v

+ + + + + −
= + −

+ − − + + − − + − −

+ + + + +
+ + − −

+ − − + − − + − −

 (17) 

To verify that T(n2) ≥ 0, we have T(0) = 0 and 
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( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
2

2 2 2 2 2 2
2

2 2 2
2

2 2 2 2 2 2

2 2 2

2 1 1 2 2

4 4

1 4 1 1

4 4
2 .

1 4 1 1

U U U U
B B B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

μ v μ v n
T n

μ μ μ v v v n

μ v n μ v μ v

μ μ μ v v v

μ v μ v μ v

+ − − − +
′ =

+ + + + + −

+ − − + + − − + − −

+ + + + +
+

+ − − + − − + − −

 (18) 

If 21 2 2 0,U U
B Bμ v n− − + ≥  it is obvious that T′(n2) ≥ 0. Then we have T(n2) ≥ 0. 

On the other hand, if 21 2 2 0,U U
B Bμ v n− − + <  the following inequality can be obtained 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )( )

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2
2

2 2 2
2

2

4 4
2

1 4 1 1

4 4

1 4 1 1

2 1 2 1 2 ,

L M U L M U
B B B B B B

U U M M L L
B B B B B B

L M U L M U
B B B B B B

U U M M L L
B B B B B B

U U U U
B B B B

μ μ μ v v v

μ v μ v μ v

μ μ μ v v v n

μ v n μ v μ v

μ v μ v n

+ + + + +

+ − − + − − + − −

+ + + + + −
×

+ − − + + − − + − −

≥ + − + − −

 

from which, we can obtain T′(n2) ≥ 0. That is to say, T(n2) ≥ is verified for the case 
21 2 2 0.U U

B Bμ v n− − + ≥  
Therefore, we can conclude that inequality (14) is valid under case 2. 
Up to now, we have shown that f(0, …, 0, n2) ≥ 0. In a similar way, we can prove that 

f is also non-negative with respect to the other variables, and thus reach the conclusion 
f(x1, y1, z1, t, m1, n1, x2, y2, z2, t2, m2, n2) ≥ 0. 

Based on the above analysis, it can be concluded that inequality (13) is valid. 

The same as the proof of (13), we can also prove ( , ) ( , ) .
( ) ( ) ( ) ( )

K B C K A C

E B E C E A E C
≥

  
  

 So, 

we have done the proof of property 4. 
Specially, the cosine similarity measure between ITFNs 1 1 1 1(( , , ),L M Uμ μ μ=α  

1 1 1( , , ))L M Uv v v  and 2 2 2 2 2 22 (( , , ), ( , , ))L M U L M Uμ μ μ v v v=α  can be calculated as: 

( ) ( )
( ) ( )

1 2
1 2

1 2

,
, ,

K
SI

E E
=










α

αα
α

α
α

 (19) 

where 

( )
( )( ) ( )( )
( )( )

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

1 1 2 2

, 4 4

1 1 4 1 1

1 1 ,

L L M M U U L L M M U U

U U U U M M M M

L L L L

K μ μ μ μ μ μ v v v v v v

μ v μ v μ v μ v

μ v μ v

= + + + + +

+ − − − − + − − − −

+ − − − −

 α α
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

2 2
1 1 1 1

4 4 1

4 1 1 ,

L M U L M U U U

M M L L

E μ μ μ v v v μ v

μ v μ v

= + + + + + + − −

+ − − + − −

α
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

2 2
2 2 2 2

4 4 1

4 1 1 .

L M U L M U U U

M M L L

E μ μ μ v v v μ v

μ v μ v

= + + + + + + − −

+ − − + − −

α
 

5 Discussion on consensus of ITFMCGDM 

For GDM problem, a key that should not be neglected is the consensus reaching process 
in the aggregation phase (Meng et al., 2024; Guo et al., 2024). To ensure that the decision 
group forms a higher level of consistency on the decision results, here we discuss the 
consensus of ITFMCGDM. 

Let A = {a1, a2, …, am} be the set of alternatives, C = {c1, c2, …, cn} be the set of 
criteria, and E = {e1, e2, …, eq} be the set of DMs. Assume that triangular fuzzy variables 

, , ,( , , )L k M k U k
ij ij ijμ μ μ  and , , ,( , , )L k M k U k

ij ij ijv v v  are the membership degree and  
non-membership degree of the alternative ai that satisfy the criterion cj given by the 
expert ek, respectively, where , , ,( , , )L k M k U k

ij ij ijμ μ μ  and , , ,( , , )L k M k U k
ij ij ijv v v  are defined on  

[0, 1] with , , 1.U k U k
ij ijμ v+ ≤  In other words, the evaluation of the alternative ai w.r.t. the 

criterion cj given by the expert ek is an ITFN , , , , , ,(( , , ), ( , , ))L k M k U k L k M k U kk
ij ij ij ij ij ij ijμ μ μ v v v=α  

(i = 1, 2, …, m; j = 1, 2, …, q). By ( ) ,k k
m nijα ×= D  we denote the intuitionistic triangular 

fuzzy matrix given by expert ek (k = 1, 2, … q) 
Based on the cosine similarity measure between ITFSs proposed in section 4, we 

analysis the consensus problem of ITFMCGDM from two aspects: consensus 
measurements and consensus adjustments. 

For each pair of DMs, the similarity measure between DMk and DMl in their 
evaluation for alternative ai concerning criterion cj is given as ( , ),kl k l

ij ij ijsm SI=  α α  (i = 1, 
2, …, m; j = 1, 2, …, n; k, l = 1, 2, …, q, k ≠ l). Then, the similarity matrix 

( )kl kl
m nijsm ×=SM  between the intuitionistic triangular fuzzy evaluation matrices Dk and 

Dl is obtained. In addition, the consensus matrix CM = (cmij)m×n can be calculated by 
aggregating all similarity matrices: 

, 1,

2
( 1)

q kl
ij ijk l k l

cm sm
q q = <

=
−   (20) 

According to the consensus matrix, we can define the consensus measures on three levels 
(Li et al., 2019): 

1 Criterion level: the consensus measure for alternative ai over criterion cj, denoted as 
ccij, can be defined by the element of consensus matrix CM as 

, 1, 2, , ; 1, 2, ,ij ijcc cm i m j n= = =   (21) 
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This measure is used to identify the positions in the evaluation matrix that have a low 
consensus level. 

2 Alternative level: the consensus measure on alternative ai, denoted as cai, is defined 
to measure the consensus level among all the DMs for that alternative: 

1 , 1, 2, , .

n
ijj

i

cm
ca i m

n
== =


  (22) 

3 Decision matrix level: the consensus measure on the decision matrix, called cd, is 
defined to represent the global consensus level amongst the experts’ evaluation 
information 

{ }min .i
i

cd ca=  (23) 

By taking the min operator, the compromise between some alternatives with high 
consensus levels and those with low consensus levels can be avoided. 

Once the consensus measures for three levels are obtained, we can determine whether 
the consensus is reached by a comparison between the consensus degree cd and the 
predefined consensus threshold ε. If cd ≥ ε, then the consensus reaching process ends and 
the evaluation matrices can be used for subsequent decision making. 

For cases where the consensus threshold is not reached, the consensus adjustment 
process is implemented. 

First, the non-consensus alternative set IA is obtained by comparing the consensus 
measure cai with the consensus threshold ε, i.e., IA = {ai|cai < ε, i = 1, 2, …, m}. This rule 
identifies the rows of the decision matrix that should be revised. 

Second, the non-consensus criterion set ICi is obtained as ICi = {cj|ai ∈ IA ∧ ccij < ε,  
j = 1, 2, …, n} to identify the columns of the decision matrix that should be modified for 
the rows distinguished in IA. On this basis, we can locate the elements in the decision 
matrix that require consensus improvement. 

In terms of consensus reaching, it used to be through multiple feedbacks and 
adjustments. To improve the efficiency of consensus improvements, we adopt the method 
based on programming model. 

Since the consensus level of the group is judged by taking the min operator of 
consensus measure on alternative level, all the consensus measures on alternative level 
without achieving the consensus threshold need to be improved. Therefore, we focus on 
the consensus measure on alternative level. 

For the alternative ai (i = 1, 2, …, m) without achieving the consensus threshold, it is 
necessary to further identify the non-consensus criterion set ICi under that alternative. All 
the criteria can be divided into two categories according to whether meet the consensus 
threshold or not. Without loss of generality, it can be assumed that the first ni criteria 
meet the consensus threshold, and the last n – ni criteria fail to meet the consensus 
threshold. To ensure that alternative ai meets the consensus threshold with the overall 
minimum adjustment, the following programming model is constructed to adjust the 
individual evaluation information on criterion set ICi. 
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(

)

, , , , , , , ,

1 1

, , , ,

(Model 1) min
i

qn
L k L k M k M k U k U k L k L k
ij ij ij ij ij ij ij ij

j n k

M k M k U k U k
ij ij ij ij

T x y x y x y z t

z t z t
= + =

= + + + + + + +

+ + + +

   

s.t. 

1 , 1, 1 , 1,

( 1)
2

i

i

q qn n
kl kl
ij ij

j k l k l j n k l k l

q qsm sm nε
= = < = + = <

−+ ≥     

, , , , , ,L k L k L k M k M k M k
ij ij ij ij ij ijμ x y μ x y+ − ≤ + −  

, , , , , ,M k M k M k U k U k U k
ij ij ij ij ij ijμ x y μ x y+ − ≤ + −  

, , , , , ,L k L k L k M k M k M k
ij ij ij ij ij ijv z t v z t+ − ≤ + −  

, , , , , ,M k M k M k U k U k U k
ij ij ij ij ij ijv z t v z t+ − ≤ + −  

, , , , , , 1U k U k U k U k U k U k
ij ij ij ij ij ijμ x y v z t+ − + + − ≤  

, , , , , , , , , , , , 0;L k L k M k M k U k U k L k L k M k M k U k U k
ij ij ij ij ij ij ij ij ij ij ij ijx y x y x y z t z t z t= = = = = =  

, , , , , , , , , , , ,, , , , , , , , , , , 0,L k L k M k M k U k U k L k L k M k M k U k U k
ij ij ij ij ij ij ij ij ij ij ij ijx y x y x y z t z t z t ≥  

1, , ; 1, 2, ,ij n n k q= + =   

where ( , )kl k l
ij ij ijsm SI=  α α  is the similarity measure between DMk and DMl on their 

evaluation for alternative ai under criterion cj, ε is the predefined consensus threshold. 
The first constraint ensures that the consensus measure on alternative ai can reach the 
given threshold, constraints (2)–(6) can ensure that they are still ITFNs after adding the 
corresponding non-negative deviation variables: , ,L k

ijx  , ,L k
ijy  , ,M k

ijx  , ,M k
ijy  , ,U k

ijx  , ,U k
ijy  

, ,L k
ijz  , ,L k

ijt  , ,M k
ijz  , ,M k

ijt  , ,U k
ijz  , .U k

ijt  
After obtaining the individual intuitionistic triangular fuzzy matrices that all meet the 

consensus requirements, we can aggregate them to get the collective intuitionistic 
triangular fuzzy matrix ( )ij m n×= αD  and carry out the subsequent decision process. 

6 The ITFMCDM method based on extended prospect theory and 
PROMETHEE 

Two subsections are included in this part, the first one discusses the criteria weights 
determination method considering the interactions among criteria, and the second one 
introduces the PROMETHEE method based on the extended prospect theory. 
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6.1 A method to determine the weights of criteria under interaction 

The information aggregation in traditional multi-criteria decision-making method 
assumes that the criteria are independent of each other, while in practical decision making 
problems, multiple decision criteria are usually interrelated. To deal with the interactions 
among criteria, Sugeno (1974) proposed the concept of fuzzy measure. 

As the fuzzy measure is defined on the power set of the criteria, when the number of 
criteria is n, 2n parameters need to be determined. Such complexity limits its practical 
application. For this reason, Grabisch (1997) further proposed the k-additive measures, 
among them, the 2-additive measure only involves the relative importance of criteria and 
the interaction between two criteria, which can better solve the contradiction between 
complexity and expressive ability. 

Theorem 6.1 (See Grabisch, 1997): Let μ be a fuzzy measure on N = {1, 2, …, n}, then μ 
is called a 2-additive measure if and only if there exist μ(i) and μ(i, j) for all i, j ∈ N that 
satisfy the below conditions: 

1 μ(i) ≥ 0 (∀i ∈ N) 

2 
,

( , ) (| | 2) ( ) 1
i j N i N

μ i j N μ i
⊆ ∈

− − =   

3 
\

( ( , ) ( )) (| | 2) ( )( ),
ji S
μ i j μ i S μ j S N

∈
− ≥ − ∀ ⊆  subject to j ∈ S and |S| ≥ 2. 

Shapley function is an important allocation index in cooperative game theory, which 
determines the optimal income distribution scheme according to the expected value of 
each player’s marginal contribution to the alliance. 

Since the interactions exist among the criteria in MCDM, Marichal (2000) introduced 
Shapley function into fuzzy measure to reflect the weights of criteria. To facilitate the 
application, Meng and Tang (2013) further proposed the following Shapley value on  
2-additive measure: 

\

3 | | 1Φ ( , ) ( ) ( ( , ) ( )), .
2 2 j N ii

Nμ N μ i μ i j μ j i N
∈

−= + − ∀ ∈  (24) 

Based on the above analysis and in combination with the AITFWA operator defined in 
Section 2, we give the following 2-additive Shapley arithmetic intuitionistic triangular 
fuzzy aggregation (2ASAITFA) operator: 

( )

( )(
( ))

1 2

1

1 1 1

1 1 1

2 , , ,

Φ ( , )

Φ ( , ) , Φ ( , ) , Φ ( , ) ,

Φ ( , ) , Φ ( , ) , Φ ( , )

n

n
i ii

n n nL M U
i i ii i ii i i

n n nL M U
i i ii i ii i i

ASAITFA

μ N

μ N μ μ N μ μ N μ

μ N v μ N v μ N v

=

= = =

= = =

=

=


  

  

  



α α α

α
 (25) 

where Φi(μ, N) is the Shapley value shown in formula (24). 
It is easy to verify that the operator satisfies the idempotency, boundedness and 

monotony. 
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Under the condition that the weights of criteria are incompletely known, the 
following programming model can be constructed to obtain the optimal 2-additive 
measure of the criteria, aiming at minimising the similarity degree among the column 
vectors of criteria. 

( )
, 1,

min Φ ( ,Mo l 2 ,e )d
n

j j tj t t j
μ C SI D D

= ≠  

s.t. 

( ) ( )( ) ( )
\

, (| | 2) , , , | | 2,
r jc

j r r j j
c S

μ c c μ c S μ c S C c S S
∈

− ≥ − ∀ ⊆ ∀ ∈ ≥  

( ) ( )
,

, (| | 2) 1,
j r j

j r j
c c C c C

μ c c C μ c
⊆ ∈

− − =   

( ) ( ), 0, 1, 2, , .j j jμ c W μ c j n∈ ≥ =   

where φ(μ, C) is the Shapley value of the criterion cj (j = 1, 2, …, n), μ is the 2-additive 
measure defined on C, Dj is the jth column of the collective intuitionistic triangular fuzzy 
matrix ( ) ,ij m n×= αD  and SI is the similarity measure between ITFSs defined in  
Section 4. 

According to formula (24), we have 

( ) ( ) ( )( ), 1,
\

3 1min , ( ) ,
2 2

Model 3
r j

n
j t j j r

c
rj t t j

c C

nSI D D μ c μ c c μ c
= ≠

∈

− + −  
 

   

s.t. 

( ) ( )( ) ( )
\

, (| | 2) , , , | | 2,
r jc

j r r j j
c S

μ c c μ c S μ c S C c S S
∈

− ≥ − ∀ ⊆ ∀ ∈ ≥  

( ) ( )
,

, (| | 2) 1,
j r j

j r j
c c C c C

μ c c C μ c
⊆ ∈

− − =   

( ) ( ), 0, 1, 2, , .j j jμ c W μ c j n∈ ≥ =   

After the optimal 2-additive measures on criteria set are obtained by solving model 3, we 
can further use formula (24) to get the Shapley values, namely the weights, for the 
criteria. 

6.2 The PROMETHEE method based on extended prospect theory 

According to PROMETHEE method introduced in Section 2, one of the main steps is to 
compare the evaluation information of alternatives under the criteria in pairs, and put the 
comparison results into the preference function. On this basis, the preference net flow of 
each alternative compared with others is obtained to rank the alternatives. 

In the above process of comparing the evaluation information among the alternatives, 
the subjective psychological characteristics of DMs should be taken into consideration. 
Prospect theory (PT) proposed by Kahneman and Tversky (1979) is an effective tool to 
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describe human decision-making behaviour under risk. PT assumes that individuals are 
risk aversion for gains and risk pursuit for losses, which is expressed as the below value 
function 

if 0
( )

( ) if 0
x x

v x
λ x x

≥
= − − <

α

β
 (26) 

where α and β are parameters related to gains and losses, respectively, the parameter λ 
denotes the degree of loss aversion, which is usually larger than 1. Kahneman and 
Tversky (1979) experimentally determined that α = β = 0.88, and λ = 2.25. The value 
function of PT can be described by an S-shaped function as shown in Figure 1. 

Figure 1 The value function of PT 

xReference point

v(x)

 

As mentioned in Section 1, in the case of MCDM, the reference point is usually not an 
exact value, but corresponds to an interval [ , ].L Ur r r=  The DMs are not sensitive to the 
change of evaluation information within the reference interval, and the value function can 
be expressed as 

if 0
2( )

( ) if 0
2

U L
γ

L U
γ

r rx x
v x

r rx x

− ≤ ≤′ = 
−− − ≤ <

 (27) 

where γ ≥ 1. 
The value function defined on the reference interval is symmetrically distributed, and 

the slope is relatively gentle to reflect the insensitivity of DMs. However, when the 
evaluation information is lower than or higher than the reference interval, it will cause the 
DMs’ strong satisfaction or dissatisfaction, and show obvious risk aversion. Combing the 
above two cases, we can get the value function of the EPT as below: 
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if
2 2 2

if 0
2( )

( ) if 0
2

if
2 2 2

U L U L U L

U L
γ

L U
γ

γU L L U L U

r r r r r rx x

r rx x
v x

r rx x

r r r r r rλ x x

 − − −   + − >   
   
 −≤ ≤
′′ = 

−− − ≤ <


− − −   − − − <       

α

β

 (28) 

where the values of α, β and λ are the same as that in the traditional PT. The parameter γ 
complies with γ ≥ 1, and is determined by the DM. The value function can be intuitively 
expressed as the curve shown in Figure 2. 

Figure 2 The value function of extended PT 

x

Lower limit of 
reference interval

v(x)

Upper limit of 
reference interval

 

In addition, the DMs are usually accustomed to using linguistic variables to make 
qualitative judgements in the actual decision-making process (Tian, 2024). To reduce the 
difficulty of decision making and better reflect the uncertainty of subjective judgement, 
the corresponding relationship between the linguistic scale and the ITFNs is established 
as shown in Table 1. 
Table 1 Linguistic variables and their ITFN representations 

Linguistic variables ITFNs 
Extremely high (EH) ((0.80, 0.85, 0.90), (0, 0.05, 0.10)) 
Very high (VH) ((0.70, 0.75, 0.80), (0.10, 0.15, 0.20)) 
High (H) ((0.60, 0.65, 0.70), (0.20, 0.25, 0.30)) 
Medium high (MH) ((0.50, 0.55, 0.60), (0.30, 0.35, 0.40)) 
Medium (M) ((0.40, 0.45, 0.50), (0.40, 0.45, 0.50)) 
Medium low (ML) ((0.30, 0.35, 0.40), (0.50, 0.55, 0.60)) 
Low (L) ((0.20, 0.25, 0.30), (0.60, 0.65, 0.70)) 
Very low (VL) ((0.10, 0.15, 0.20), (0.70, 0.75, 0.80)) 
Extremely low (EL) ((0, 0.05, 0.10), (0.80, 0.85, 0.90)) 
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To sum up the above analysis, the steps of ITFMCGDM based on the extended prospect 
theory are given as follows: 

Step 1 The DM ek evaluates the alternative ai w.r.t. criterion cj by linguistic variable k
ijl  

(i = 1, 2, …, m; j = 1, 2, …, n; k = 1, 2, …, q) and forms the linguistic evaluation 
matrix ( ) .k k

m nijL l ×=  

Step 2 Based on the linguistic variables and their ITFN representations, the 
corresponding individual intuitionistic triangular fuzzy matrices ( )k k

m nijD ×= α  
can be obtained. 

Step 3 If all criteria cj (j = 1, 2, …, n) are benefit (i.e., the larger the value, the greater 
the preference), then there is no need to normalise the criteria values. Otherwise, 
we normalise the intuitionistic triangular fuzzy matrix ( )k k

m nija ×= D  into 

( )k k
m nij ×′ ′= αD  (k = 1, 2, …, q), where 

for benefit criterion

for cost criterion

k
jijk

ij k
jij

c

c

′ = 







α
α

α
  

(i = 1, 2, …, m; j = 1, 2, …, n), k
ijα  is the complement of k

ijα  such that 
, , , , , ,(( , , ), ( , , )).L k M k U k L k M k U kk

ij ij ij ij ij ij ijv v v μ μ μ=α  

Step 4 Calculate the similarity matrix between each pair of individual intuitionistic 
triangular fuzzy matrices, and get the consensus matrix CM = (cmij)m×n. 

Step 5 Calculate the consensus measures on criterion level, alternative level, and 
decision matrix level respectively. Compare the consensus degree cd and the 
predefined consensus threshold ε. If cd ≥ ε, go to step 6. Otherwise, for each 
alternative without achieving the consensus threshold, model 1 can be used to 
adjust the individual evaluation information. 

Step 6 Aggregate the individual evaluation matrices into collective intuitionistic 
triangular fuzzy matrix ( ) .ij m n×= αD  Determine the optimal 2-additive measure 
on criteria set C by model 3, and calculate the Shapley value of each criterion by 
formula (25). 

Step 7 By using the intuitionistic triangular fuzzy score function, the final intuitionistic 
triangular fuzzy matrix ( )ij m n×= αD  can be transformed into score matrix 

( ( )) .ij m nS ×= αS  To avoid the arbitrariness of individual preferences, the mean 
value of each column of the score matrix S is taken as the reference point under 
each criterion. For reference points rj, j = 1, 2, 3, 4, the corresponding reference 
intervals can be obtained by incorporating the parameter δ as 

[ ], (1 ), (1 ) .L U
j j jj jr r r r δ r δ= = − +    (29) 
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Step 8 By the comparison between ( )ijS α  and jr  (i = 1, 2, …, m; j = 1, 2, …, n), the 
extended prospect value matrix ( )ij m nv ×′′=V  can be obtained by formula (28). 

Step 9 Based on the value matrix ( )ij m nv ×′′=V  and the given preferred function, the 
weighted preferred value Γ(ai, as) of the alternative ai over as for all criteria can 
be calculated by formula (4). 

Step 10 The positive outranking flow φ+(ai) and the negative outranking flow φ–(ai) of 
alternative ai can be obtained by formula (5). 

Step 11 Calculate the net flow of the alternative ai as φ(ai) = φ+(ai) – φ–(ai)  
(i = 1, 2, …, m), and get the ranking result of the alternatives. 

7 Application of the proposed ITFMCGDM method 

To illustrate the application of the proposed algorithm and compare the new method with 
previous ones, the following example on the selection of social parties of pension 
institutions is introduced. 

Aging of population is a global problem. As the most populous country in the world, 
China is facing a rapidly growing trend of population aging. According to the latest 
census data, by the end of 2020, the elderly population aged 65 or above was 190.64 
million in China, accounting for 13.5% of the total population, which is approaching the 
level of deep aging. It is expected that by the middle of this century, the proportion will 
be close to 30%. To improve the utilisation efficiency of pension resources and 
effectively deal with the increasing social pension pressure, China is accelerating the 
market-oriented reform in the pension service field and encouraging social capital to 
enter the pension service industry. One of the important ways is to hand over the public 
pension institutions to social capital parties to operate and manage. To ensure the 
operation effect of the new pension institutions, the key lies in the selection of 
appropriate social capital parties. 

There is a public pension service project is open to public bidding. After preliminary 
screening, eight social capital parties are shortlisted, that is, the alternative set, denoted as 
A = {a1, a2, a3, a4, a5, a6, a7, a8} The competent authorities appoint three experts  
E = {e1, e2, e3} to carry out a further review from four aspects, including social credit 
status, elderly service ability, operation and management level, and sustainable 
development ability, shown as C = {c1, c2, c3, c4}. Next, we use the GDM method 
proposed in section 6 to solve this problem. 

Step 1 The individual linguistic decision matrices offered by three experts are listed in 
Tables 2–4. 

Step 2 By the linguistic variables and their ITFN representations shown in Table 1, we 
can get the individual intuitionistic triangular fuzzy decision matrices as listed in 
Tables 5–7. 

Step 3 Since all criteria are benefit, there is no need to modify the intuitionistic 
triangular fuzzy decision matrices. 
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Table 2 Linguistic decision matrix L1 offered by the expert e1 

e1 c1 c2 c3 c4 
a1 MH H VH H 
a2 M H M MH 
a3 EH VH MH M 
a4 M M H EH 
a5 MH MH EH H 
a6 H EH H VH 
a7 VH M H ML 
a8 H H VH VH 

Table 3 Linguistic decision matrix L2 offered by the expert e2 

e1 c1 c2 c3 c4 
a1 MH MH H MH 
a2 M MH H MH 
a3 H MH VH VH 
a4 MH M VH H 
a5 VH EH M ML 
a6 MH H H MH 
a7 M VH EH H 
a8 MH M MH H 

Table 4 Linguistic decision matrix L3 offered by the expert e3 

e1 c1 c2 c3 c4 
a1 M MH MH H 
a2 M H VH H 
a3 MH ML M ML 
a4 M H M H 
a5 ML VH MH M 
a6 M M ML ML 
a7 MH MH M VH 
a8 MH M H MH 

Table 5 Intuitionistic triangular fuzzy decision matrix D1 offered by the expert e1 

e1 c1 c2 c3 c4 
a1 ((0.50, 0.55, 0.60), 

(0.30, 0.35, 0.40)) 
((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

a2 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

a3 ((0.80, 0.85, 0.90), 
(0, 0.05, 0.10)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

a4 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.80, 0.85, 0.90), 
(0, 0.05, 0.10)) 

a5 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.80, 0.85, 0.90), 
(0, 0.05, 0.10)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 
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Table 5 Intuitionistic triangular fuzzy decision matrix D1 offered by the expert e1 (continued) 

e1 c1 c2 c3 c4 
a6 ((0.60, 0.65, 0.70), 

(0.20, 0.25, 0.30)) 
((0.80, 0.85, 0.90), 

(0, 0.05, 0.10)) 
((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

a7 ((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

a8 ((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

Table 6 Intuitionistic triangular fuzzy decision matrix D2 offered by the expert e2  

e1 c1 c2 c3 c4 
a1 ((0.50, 0.55, 0.60), 

(0.30, 0.35, 0.40)) 
((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

a2 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

a3 ((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

a4 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

a5 ((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.80, 0.85, 0.90), 
(0, 0.05, 0.10)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

a6 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

a7 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.80, 0.85, 0.90), 
(0, 0.05, 0.10)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

a8 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

Table 7  Intuitionistic triangular fuzzy decision matrix D3 offered by the expert e3 

e1 c1 c2 c3 c4 
a1 ((0.40, 0.45, 0.50), 

(0.40, 0.45, 0.50)) 
((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

a2 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

a3 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

a4 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

a5 ((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

a6 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

((0.30, 0.35, 0.40), 
(0.50, 0.55, 0.60)) 

a7 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.70, 0.75, 0.80), 
(0.10, 0.15, 0.20)) 

a8 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 
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Step 4 Calculate the similarity matrix between each pair of individual intuitionistic 
triangular fuzzy matrices, 

12

1 0.837 0.986 0.981
1 0.981 0.917 1

0.954 0.934 0.934 0.810
0.977 1 0.986 0.954

,
0.934 0.876 0.753 0.98
0.981 0.954 1 0.934
0.837 0.977 0.954 0.810
0.981 0.917 0.934 0.986

SM

 
 
 
 
 
 =  
 
 
 
  
 

 

13

0.977 0.977 0.934 1
1 1 0.837 0.981

0.876 0.701 0.977 0.986
1 0.917 0.917 0.954

,
0.909 0.934 0.876 0.810
0.917 0.753 0.810 0.934
0.934 0.977 0.917 0.701
0.981 0.917 0.986 0.943

SM

 
 
 
 
 
 =  
 
 
 
  
 

 

23

0.977 1 0.981 0.981
1 0.986 0.986 0.981

0.981 0.909 0.837 0.701
0.977 0.917 0.837 1

,
0.701 0.991 0.977 0.909
0.977 0.917 0.810 1
0.977 1 0.753 0.986

1 1 0.981 0.981

SM

 
 
 
 
 
 =  
 
 
 
  
 

 

and get the consensus matrix 

0.985 0.938 0.967 0.987
1 0.989 0.913 0.987

0.937 0.848 0.916 0.832
0.985 0.944 0.913 0.969

.
0.848 0.934 0.869 0.900
0.958 0.874 0.873 0.956
0.916 0.985 0.874 0.832
0.987 0.944 0.967 0.970

CM

 
 
 
 
 
 =  
 
 
 
  
 
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Step 5 Based on the consensus matrix, we can get the consensus measure on the 
alternative level as below: 

1 2 3 4

5 6 7 8

0.969, 0.972, 0.883, 0.953,
0.888, 0.916, 0.902, 0.967.

ca ca ca ca
ca ca ca ca

= = = =
= = = =

 

Furthermore, we can get the consensus measure on the decision matrix level 
min 0.883.i

i
cd ca= =  Compared with the given threshold ε = 0.9, the group 

consensus level is not reached. To ensure that the group consensus level meets 
the threshold requirements, all the alternatives without achieving the consensus 
threshold need to be improved by model 1. Take alternative a3 as an example, 
the following programming model is constructed to adjust the individual 
evaluation of this alternative under the criteria without meeting the consensus 
threshold. 

(

) (
)

3
, , , , , , , , ,

32 32 32 32 32 32 32 32 32
1

, , , , , , , , , ,
32 32 32 34 34 34 34 34 34 34

, , , , ,
34 34 34 34 34

min L k L k M k M k U k U k L k L k M k

k

M k U k U k L k L k M k M k U k U k L k

L k M k M k U k U k

T x y x y x y z t z

t z t x y x y x y z

t z t z t

=

= + + + + + + + +

+ + + + + + + + + +

+ + + + + 


 

s.t. 

( ) ( ) ( ) ( )( )
3

31 31 32 32 33 33 34 34
, 1,

, , , , 12k l k l k l k l

k l k l

SI SI SI SI ε
= <

+ + + ≥        α α α α α α α α  

( )(
( ))

, , , , , , , , ,
3 3 3 3 3 3 3 3 3 3

, , , , , , , , ,
3 3 3 3 3 3 3 3 3

, , ,

, ,

L k L k L k M k M k M k U k U k U kk
j j j j j j j j j j

L k L k L k M k M k M k U k U k U k
j j j j j j j j j

μ x y μ x y μ x y

μ x y μ x y μ x y

= + − + − + −

+ − + − + −

α
 

, , , , , ,
3 3 3 3 3 3
L k L k L k M k M k M k

j j j j j jμ x y μ x y+ − ≤ + −  

, , , , , ,
3 3 3 3 3 3
M k M k M k U k U k U k

j j j j j jμ x y μ x y+ − ≤ + −  

, , , , , ,
3 3 3 3 3 3
L k L k L k M k M k M k

j j j j j jv z t v z t+ − ≤ + −  

, , , , , ,
3 3 3 3 3 3
M k M k M k U k U k U k

j j j j j jv z t v z t+ − ≤ + −  

, , , , , ,
3 3 3 3 3 3 1U k U k U k U k U k U k

j j j j j jμ x y v z t+ − + + − ≤  

, , , , , , , , , , , ,
3 3 3 3 3 3 3 3 3 3 3 3 0L k L k M k M k U k U k L k L k M k M k U k U k

j j j j j j j j j j j jx y x y x y z t z t z t= = = = = =  

, , , , , , , , , , , ,
3 3 3 3 3 3 3 3 3 3 3 3, , , , , , , , , , , 0L k L k M k M k U k U k L k L k M k M k U k U k

j j j j j j j j j j j jx y x y x y z t z t z t ≥  

2, 4, 1, 2, 3j k= =  
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By using LINGO software to solve the programming model, the adjusted 
individual evaluation information about alternative a3 can be obtained as 
follows: 

1 2
32 34((0.7, 0.75, 0.8), (0.1, 0.2, 0.2)), ((0.7, 0.75, 0.8), (0.1, 0.2, 0.2)),= = α α  

3 3
32 34((0.3, 0.4, 0.4), (0.5, 0.51, 0.6)), ((0.3, 0.4, 0.4), (0.5, 0.54, 0.6)).= = α α  

Similarly, we can obtain the adjusted individual evaluation information about 
alternative a5 under the criteria without meeting the consensus threshold as 

1 2
53 51((0.8, 0.85, 0.9), (0, 0.1, 0.1)), ((0.7, 0.75, 0.8), (0.1, 0.2, 0.2)),= = α α  

2 3
53 51((0.4, 0.47, 0.5), (0.4, 0.44, 0.5)), ((0.3, 0.4, 0.4), (0.5, 0.52, 0.6)).= = α α  

Step 6 Without loss of generality, it is assumed that the weights of the experts are 
equal. The collective intuitionistic triangular fuzzy decision matrix ( )ij m n×= αD  
is obtained by aggregating the individual evaluation matrices that meet the 
consensus requirement. 

Considering the interactions among the criteria, the following programming 
model is constructed to determine the optimal 2-additive measure on criteria 
with partial weight information. 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4 1 2 1 3

1 4 2 3 2 4 3 4

min 5.873 2.93 , 2.941 ,
2.929 , 2.944 , 2.933 , 2.943 ,

μ c μ c μ c μ c μ c c μ c c

μ c c μ c c μ c c μ c c

− + + + + +

+ + + +
 

s.t. 

( ) ( )( ) ( )
\

, (| | 2) , , , | | 2,
r jc

j r r j j
c S

μ c c μ c S μ c S C c S S
∈

− ≥ − ∀ ⊆ ∀ ∈ ≥  

( ) ( )
,

, (| | 2) 1,
j r j

j r j
c c C c C

μ c c C μ c
⊆ ∈

− − =   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 3 1 3 1 4 1 4, , , , , ,μ c μ c μ c c μ c μ c μ c c μ c μ c μ c c+ ≤ + ≤ + ≤  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 2 3 2 4 2 4 3 4 3 4, , , , , ,μ c μ c μ c c μ c μ c μ c c μ c μ c μ c c+ ≤ + ≤ + ≥  

Solving this model, we can get the optimal 2-additive measures on the criteria: 

( ) ( ) ( ) ( )1 2 3 40.25, 0.3, 0.15, 0.25μ c μ c μ c μ c= = = =  

( ) ( ) ( )1 2 1 3 1 3, 0.55, , 0.4, , 0.7,μ c c μ c c μ c c= = =  

( ) ( ) ( )2 3 2 4 3 4, 0.45, , 0.55, , 0.25.μ c c μ c c μ c c= = =  

Following this, we can further calculate the corresponding Shapley value, 
namely the criteria weights as below: 

1 2 3 4Φ ( , ) 0.35, Φ ( , ) 0.3, Φ ( , ) 0.075, Φ ( , ) 0.275.μ C μ C μ C μ C= = = =  
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Table 8 The collective intuitionistic triangular fuzzy decision matrix D 

e1 c1 c2 c3 c4 

a1 ((0.47, 0.52, 0.57), 
(0.33, 0.38, 0.43)) 

((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.57, 0.62, 0.67), 
(0.23, 0.28, 0.33)) 

a2 ((0.40, 0.45, 0.50), 
(0.40, 0.45, 0.50)) 

((0.57, 0.62, 0.67), 
(0.23, 0.28, 0.33)) 

((0.57, 0.62, 0.67), 
(0.23, 0.28, 0.33)) 

((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

a3 ((0.63, 0.68, 0.73), 
(0.17, 0.22, 0.27)) 

((0.50, 0.57, 0.60), 
(0.30, 0.35, 0.40)) 

((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

((0.47, 0.53, 0.57), 
(0.33, 0.40, 0.43)) 

a4 ((0.43, 0.48, 0.53), 
(0.37, 0.42, 0.47)) 

((0.47, 0.52, 0.57), 
(0.33, 0.38, 0.43)) 

((0.57, 0.62, 0.67), 
(0.23, 0.28, 0.33)) 

((0.67, 0.72, 0.77), 
(0.13, 0.18, 0.23)) 

a5 ((0.50, 0.57, 0.60), 
(0.30, 0.36, 0.40)) 

((0.67, 0.72, 0.77), 
(0.13, 0.18, 0.23)) 

((0.57, 0.62, 0.67), 
(0.23, 0.30, 0.33)) 

((0.43, 0.48, 0.53), 
(0.37, 0.42, 0.47)) 

a6 ((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

((0.50, 0.55, 0.60), 
(0.30, 0.35, 0.40)) 

a7 ((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

a8 ((0.53, 0.58, 0.63), 
(0.27, 0.32, 0.37)) 

((0.47, 0.52, 0.57), 
(0.33, 0.38, 0.43)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

((0.60, 0.65, 0.70), 
(0.20, 0.25, 0.30)) 

Step 7 By using the intuitionistic triangular fuzzy score function, the final intuitionistic 
triangular fuzzy matrix can be transformed into the score matrix 

0.55 0.619 0.684 0.652
0.491 0.652 0.652 0.619
0.716 0.591 0.619 0.557
0.523 0.555 0.652 0.748

.
0.591 0.748 0.651 0.523
0.587 0.684 0.587 0.587
0.619 0.619 0.684 0.619
0.619 0.555 0.684 0.684

S

 
 
 
 
 
 =  
 
 
 
  
 

 

Let δ = 0.05, then the reference interval under each criterion can be obtained by 
formula (29) as follows: 

1 2 3 4[0.558, 0.617], [0.596, 0.659], [0.619, 0.684], [0.592, 0.655].r r r r= = = =  

Step 8 Except for α = β = 0.88, and λ = 2.25, which are experimentally determined in 
(Kahneman and Tversky, 1979), we set γ = 1.5. By formula (28), the extended 
prospect value matrix can be obtained 
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0.0196 0.0008 0.0058 0.0048
0.2142 0.0037 0 0.0003

0.1357 0.0286 0.0059 0.1246
0.1235 0.1423 0 0.1294

0.0002 0.1242 0 0.2207
0 0.0441 0.1148 0.0284

0.0092 0.0008 0.0058 0.0003
0.0092 0.1423 0.0058 0.0501

V

− −
− −
 − − −


− −=  −


− −
 − −

−

.












  


 

Step 9 Based on the value matrix V, and the following linear preference function 
proposed in Brans et al. (1986) 

( )
( ) ( )

( )

,
, if 0 ,

, .
1, if ,

j i s
j i s

j i s

j i s

d a a
d a a p

P a a p
d a a p


≤ ≤= 

 >

 

Let the preference threshold p = 0.3, we can get the weighted preferred relations 
among the alternatives by formula (4) 

0 0.2332 0.1493 0.2642 0.2081 0.0606 0.0047 0.1415
0.0046 0 0.1477 0.1460 0.2020 0.0545 0.0046 0.1460
0.1811 0.3500 0 0.4161 0.2462 0.1856 0.1475 0.2612
0.1142 0.2247 0.2343 0 0.2762 0.1856 0.1475 0.2612

Π
0.1481 0.3706 0.1543 0.4108 0 0

=
.1091 0.1251 0.2665

0.0677 0.2903 0.1609 0.3305 0.1763 0 0.0450 0.1864
0.0366 0.2622 0.1446 0.2978 0.2140 0.0667 0 0.1415
0.0752 0.3084 0.1631 0.1563 0.2603 0.1129 0.0462 0

 
 
 
 
 
 
 
 
 
 
  
 

 

Step 10 According to the formula (5), the positive outranking flow φ+(ai) and the 
negative outranking flow φ–(ai) of each alternative can be calculated. 

( ) ( ) ( ) ( )1 2 3 40.1517, 0.1008, 0.2554, 0.1733,a a a a+ + + += = = =φ φ φ φ  

( ) ( ) ( ) ( )5 6 7 80.2264, 0.17967, 0.1658, 0.1603.a a a a+ + + += = = =φ φ φ φ  

( ) ( ) ( ) ( )1 2 3 40.0892, 0.2913, 0.1649, 0.2888,a a a a− − − −= = = =φ φ φ φ  

( ) ( ) ( ) ( )5 6 7 80.2260, 0.1090, 0.0703, 0.1737.a a a a− − − −= = = =φ φ φ φ  

Step 11 Then, we can get the net flow of each alternative as 

( ) ( ) ( ) ( )1 2 3 40.0624, 0.1906, 0.0905, 0.1155,a a a a= = − = = −φ φ φ φ  

( ) ( ) ( ) ( )5 6 7 80.0004, 0.0706, 0.0955, 0.0134.a a a a= = = = −φ φ φ φ  

Following this, the ranking result of the alternatives can be obtained as: 
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7 3 6 1 5 8 4 2 .a a a a a a a a        

To illustrate the rationality of the proposed method, we further use some other methods to 
deal with the above example. 

1 Based on the score matrix S obtained above, a simple method is to directly carry out 
weighted average of the score values of the alternatives under each criterion. By 
comparing the comprehensive score values of the alternatives S(a1) = 0.6106,  
S(a2) = 0.5866, S(a3) = 0.6275, S(a4) = 0.6042, S(a5) = 0.6239, S(a6) = 0.6161,  
S(a7) = 0.6238, S(a8) = 0.6226, we can get the alternatives ranked as: 

3 5 7 8 6 1 4 2.a a a a a a a a        

Compared with the ranking results obtained by the method in this paper, the 
difference between them is obvious. In particular, the optimal alternative obtained 
from the two methods are different, one is alternative a3, while the other is a7. The 
main reason is that the method proposed in this paper considers the influence of the 
decision makers’ subjective psychological characteristics. 

2 If we carry out comprehensive evaluation information aggregation of the alternatives 
on the basis of the extended prospect value matrix V, the comprehensive extended 
prospect values of the alternatives can be obtained V(a1) = –0.0053, V(a2) = –0.0739, 
V(a3) = 0.0042, V(a4) = –0.0503, V(a5) = –0.0234, V(a6) = –0.0032, V(a7) = 0.0033, 
V(a8) = –0.0252. Thus, the ranking result of the alternatives is 

3 7 6 1 5 8 4 2 .a a a a a a a a        

The difference between this ranking result and that obtained by the proposed method 
lies only in the order relationship between alternatives a3 and a7. The main reason for 
this difference is that the proposed method not only considers the influence of 
decision makers’ subjective psychology, but also avoids the complete 
compensability among criteria by introducing the PROMETHEE method. 

3 On the basis of the score matrix S, the reference points of classic PT can be used to 
get the prospect value matrix 

0.1107 0.0352 0.0489 0.0435
0.2878 0.0377 0.0010 0.0198

0.1642 0.1233 0.1107 0.2075
0.2020 0.2245 0.0010 0.1597

0.0067 0.1549 0.0034 0.2982
0.0034 0.0793 0.2020 0.1225

0.0475 0.0352 0.0489 0.0198
0.0475 0.2245

V

− −
− −

− − −
− −

′ =
− −

− − −
− −
−

.

0.0489 0.0846

 
 
 
 
 
 
 
 
 
 
  
 

 

Similar to the proposed method, the net flow of each alternative can be obtained by 
PROMETHEE method φ(a1) = 0.0313, φ(a2) = –0.1589, φ(a3) = –0.0334,  
φ(a4) = –0.1998, φ(a5) = 0.0519, φ(a6) = 0.0639, φ(a7) = 0.1755, φ(a8) = 0.0695. 
Thus, the ranking result of the alternatives can be obtained as: 
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7 8 6 5 1 3 2 4.a a a a a a a a        

Although the optimal alternative is the same, the ranking results obtained by this 
method and the one proposed in this paper are obviously different. The main reason 
is that the reference intervals-based EPT is adopted in this paper, while the reference 
points-based PT is adopted in above method. 

4 Based on the score matrix S, similar to some existing methods (Kahneman and 
Tversky, 1979), we further take the value function of PT as the preference function 
of PROMETHEE, and the net flow of each alternative can be obtained as  
φ(a1) = –0.0685, φ(a2) = –0.1284, φ(a3) = –0.0514, φ(a4) = –0.1049,\ φ(a5) = –0.0546, 
φ(a6) = –0.0537, φ(a7) = –0.0235, φ(a8) = –0.0398. From this, all the alternatives can 
be ranked as: 

7 8 3 6 5 1 4 2 .a a a a a a a a        

The ranking results obtained from the two methods also have obvious differences. In 
contrast to the method proposed in this paper, this method introduces PT in the 
pairwise comparison of the evaluation information, that is, the reference points of 
each comparison are different. However, in line with the principle of uniformity, all 
the alternatives should have a common reference point under one criterion. 

Through the above analysis, the advantages of the proposed method are not only the 
combination of PT and PROMETHEE method, but also the extension of the reference 
point of traditional PT to the reference interval, which can more objectively reflect the 
actual decision situation, so as to get more reasonable decision results. 

8 Conclusions 

For the ranking of ITFNs, a novel score function of ITFNs is defined in this paper. 
Compared with some existing ranking method, it has better distinguishing effect and 
robustness. In order to depict the similarity relationship between two ITFSs, the cosine 
similarity measure of ITFSs is defined, and the properties are proved. Aiming at the lack 
of consensus analysis in the existing ITFMCGDM methods, this paper defines the 
consensus measure on three levels based on the defined similarity measure. For the group 
consensus level unachieved the threshold, a programming model is constructed to assure 
that the amount of adjustment is minimal. Considering the interactions among the criteria, 
the optimal 2-additive measures of the criteria are obtained by the programming model, 
and the corresponding Shapley values are further obtained as the weight of the criteria. In 
addition, to reflect the influence of decision makers’ subjective psychological 
characteristics, the EPT is introduced, which is characterised by changing the reference 
points of the classical PT into the reference intervals, so as to be more consistent with the 
actual decision situation. On the basis of the extended prospect value matrix, the ranking 
results of the alternatives are obtained by PROMETHEE method. Finally, the application 
of the proposed method is illustrated by an example of social capital parties’ selection in 
the reform of public pension institutions, and the comparison with some other methods is 
introduced. The limitation of the proposed method lies in that some parameters involved 
in the determinations of the reference intervals and the value function within the 
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reference intervals are given by DMs. In order to further popularise the application of the 
method, it is necessary to combine the theory of psychology and behavioural science to 
determine the parameters experimentally. 
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