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Abstract: This paper aims to provide a method for solving multi-criteria group
decision making problems with the evaluation information in the type of
intuitionistic triangular fuzzy numbers (ITFNs). To this end, a new score
function of ITFNs is proposed. In order to depict the similarity between two
intuitionistic triangular fuzzy sets (ITFSs), the cosine similarity measure of
ITFSs is defined. Based on the similarity measure, the consensus measures on
three levels are defined, and a programming model-based approach is
introduced to deal with situations where the group consensus level dose not
reach the given threshold. By transforming the reference points of classical
prospect theory (PT) into reference intervals, a method combining extended PT
and PROMETHEE is presented to obtain the ranking results of alternatives.
Then, an intuitionistic triangular fuzzy multi-criteria GDM (ITFMCGDM)
method is developed. Finally, an example is given to illustrate the feasibility
and effectiveness of the proposed method.
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1 Introduction

According to the type of decision information, fuzzy multi-criteria decision making
(FMCDM) can be divided into different types. Among them, intuitionistic triangular
FMCDM (ITFMCDM) with the decision information in the type of intuitionistic
triangular fuzzy numbers (ITFNs) can more accurately depict the uncertain preferred and
non-preferred information of decision makers (DMs). In addition, to avoid the
one-sidedness and limitation of single DM, group decision making (GDM) method is
usually adopted in practice (Wu and Zhang, 2024). Since Liu and Yuan (2007) first came
up with the definition of intuitionistic triangular fuzzy sets (ITFSs), many fruitful
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achievements about intuitionistic triangular fuzzy multi-criteria group decision making
(ITFMCGDM) have been extracted.

By taking the intuitionistic triangular fuzzy weighted geometric and intuitionistic
triangular fuzzy ordered weighted geometric operators, the comprehensive evaluation
information of all the alternatives is aggregated in (Chen et al., 2010), then the score
function and variation function based on the mean and standard deviation of triangular
fuzzy number are defined for the ranking of ITFNs. In view of the prioritisation
relationship among the DMs or the criteria, Yu (2013) proposed intuitionistic triangular
fuzzy prioritised weighted average and the intuitionistic triangular fuzzy prioritised
weighted geometric operators. By extending the Bonferroni mean operators introduced in
(Yager, 2009), Zhou et al. (2015) defined intuitionistic triangular fuzzy weighted
Bonferroni mean operator to reflect the interrelationship between the criteria. For
situations where the interaction exists among the decision makers or the criteria, the
fuzzy measure and Choquet integral are introduced by Liu et al. (2015) to develop some
aggregation operators with interactions, such as intuitionistic triangular fuzzy Choquet
geometric operator and the induced intuitionistic triangular fuzzy Choquet geometric
operators. Moreover, based on the integration of ITFNs, ITFNs compound weight
Bonferroni hybrid geometric operator and multi-attribute GDM theory, Zhang and Qi
(2021) proposed a system evaluation method to evaluate the safety input of coal
enterprises. By aggregating the heterogeneous information into ITFNs, Xu et al. (2019)
presented a method to solve heterogeneous MCGDM problems. Based on the pairwise
comparison of alternatives, Li et al. (2022) studied the GDM with intuitionistic triangular
fuzzy preference relations.

The existing ITFMCGDM methods are mainly based on aggregation operators to
obtain the comprehensive evaluation information of the alternatives, and then the ranking
results of alternatives can be obtained by the score function and the accuracy function.
However, the existing ranking methods for ITFNs still have some limitations in
discriminability. Although the ranking method proposed by Zhang et al. (2023) can
provide a total order on the ITFNs, the problem is that the ranking results lack robustness.
In addition, all the ITFMCGDM methods do not explore the group consensus, in order to
ensure the DMs to form a higher consistency level on the decision results, the consensus
analysis should be incorporated into the GDM process.

Among the traditional multi-criteria decision-making methods, the preference ranking
organisation method for enrichment evaluations (PROMETHEE) method proposed by
Brans et al. (1986) is an outranking method, which can avoid the complete
compensability among the criteria and has been widely used in practice (Bakshi et al.,
2025; Szaja and Ziemba, 2025). On the other hand, the prospect theory (PT) proposed by
Kahneman and Tversky (1979) is an effective tool to reflect the influence of subjective
psychological characteristics of DMs. In exploring the combination of PT and
PROMETHEE method, some scholars take the prospect value function as PROMETHEE
preference function directly (Chang and Liu, 2021). In this way, the reference points of
PT are different under each comparison. However, in line with the principle of
uniformity, all the alternatives should have a common reference point under a criterion.
Based on this perspective, Chen et al. (2020) first compare the evaluation information of
each alternative with the common reference point, and then compare the alternatives with
PROMETHEE preference function based on the obtained prospect value matrix.
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Classical PT is based on the comparison of each alternative with single reference
point to calculate the prospect values. In MCDM problem, the reference point is usually
not a crisp number, but an interval. For example, when a DM evaluates the fuel
consumption per 100 kilometres of a family car, the expected fuel consumption
corresponds to a range, such as 7-8 litres. When the fuel consumption of alternative
models changes within this range, the additional attention of buyers will not be aroused.
However, when the fuel consumption of a certain vehicle is below or above the expected
range, a strong sense of satisfaction or dissatisfaction will be aroused. Therefore, it is
necessary to discuss the prospect theory with the reference interval, which is called the
extended prospect theory (EPT), and to study the corresponding decision-making method.

Based on the analysis of the above two aspects, this paper intends to carry out
research on ITFMCGDM method based on consensus analysis and EPT. The main
contributions include the following aspects:

1 anew score function for the ranking of ITFNs is defined based on the mean and
stand deviation of triangular fuzzy numbers

2 the cosine similarity measure of ITFSs is proposed and its properties are proved

3 the consensus measures on three levels are defined, and a programming model-based
method is introduced into the consensus reaching process

4  adecision-making method combining EPT and PROMETHEE is introduced to
obtain the ranking results of alternatives.

The main research contents of the rest sections of this paper are arranged as follows:
Section 2 introduces some basic concepts as the basis for the follow-up research.
Section 3 provides a novel score function for the ranking of ITFNs. Section 4 defines the
cosine similarity measure for ITFNs, and the corresponding properties are proved.
Section 5 conducts the consensus analysis for ITFMCGDM, introduces the definition of
consensus measure and the improvement method of group consensus level. Section 6
proposes an EPT and PROMETHEE combined method to get the prioritisation of
alternatives. Section 7 illustrates the feasibility and effectiveness of the proposed GDM
method by taking the selection of social capital parties in pension institutions as an
example. Section 8 completes the conclusion of this paper.

2 Preliminaries

In the application of fuzzy set theory, it is found that only considering the membership
information cannot reflect the DMs’ hesitation caused by subjective uncertain cognitive.
To overcome this problem, Atanassov (1999) proposed the concept of intuitionistic fuzzy
sets (IFSs), which can reflect the information of membership, non-membership and
hesitation at the same time. In order to better reflect the uncertainty of membership and
non-membership information in IFSs, Liu and Yuan (2007) further introduced triangular
fuzzy numbers into IFSs, and put forward the definition of ITFSs.

Definition 2.1 (See Liu and Yuan, 2007): Let X be a universe of discourse. An ITFS A
over X is an object having the form:
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A={(x, fua(x), 74(x))|xe X} 1)

where ji4(x) = (5 (x), 1 (x), 14 (x)), V4(x)=(5(x), v¥ (x),VY{(x)) are two triangular
fuzzy numbers in [0, 1], which correspond to the membership and non-membership
degrees of the element x € 4, and 0 < Y (x)+v{ (x) <1, Vxe X.

For convenience, we denote an ITFN by & = (i1, v) = ((u*, u™, u¥), E, vM ,vV)).
Definition 2.2: Let & = ((uf, uM, u¥), vF,vM,v7)) (i=1,2, ..., n) be a collection of
ITFNs, and w; (i = 1, 2, ..., n) be a weights vector such that w; € [0, 1] and Z: w; =1.

The arithmetic intuitionistic triangular fuzzy weighted aggregation (AITFWA) operator is
defined by

AITFWA(&, &, .., Gy ((Z ok, D" i ,Z;wiﬂf’),
DIRTDIRED IRT])!

The PROMETHEE method was first developed by Brans et al. (1986), which can obtain
a partial ranking (PROMETHEE 1) or complete ranking (PROMETHEE II) based on the
pairwise comparison of alternatives. It is an effective outranking method to solve MCDM
problems. The main steps of the classical PROMETHEE method can be summarised as
follows:

(@)

Step 1 For the given alternatives set 4 = {ai, a», ..., an} and criteria set C = {c, ¢, ...,
cn}, we can calculate the preferred value Pj(a;, as) of the alternative a; over a,
Pi(aa,)=f;[d;(a a,)] 3)

where f; is a preferred function with the range of [0, 1], di(a;, ay) is the difference
between the assessments of the alternatives a; and a, under the criterion c; for
s=1,2,...,myandj=1,2,...,n

Step 2 Calculate the weighted preferred degree I'(a;, ay) of the alternative a; over a; for
all criteria, expressed as

I'(a;,ay) Z wiPi (i, ay) 4)

where wj is the weight of criterion ¢j, i, s =1, 2, ..., m

Step 3  Calculate the positive outranking flow ¢'(a;) and the negative outranking flow
¢ (a;) of the alternative a;,

o (a)=—-" T(a.a)

m _1 s=1,s#i

¢’(az-)=Lzm T(as, a)

m —1 s=1,s#i

®)

fori=1,2,...,m.
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Step 4 Calculate the net flow of the alternative a;

¢(a;)=0"(a;)- ¢ (a;) (6)
fori=1,2,...,m.
Step 5 Rank alternatives a;, i = 1, 2, ..., m, according to their net flows.

3 A new score function of ITFNs

The existing ranking of ITFNs are mainly based on the generalisation of score function
and accuracy function for the ranking of intuitionistic fuzzy numbers (Li and Sun, 2023).
For ITFN @=(a, v)=((u*, u™, uv), vE,vM WW)), Wang (2008) proposed the

following score function S;(&) and extended score function H;(&):

opEA2uM Y v 20M 1Y

Si(a)= )
(@) 1 1 o
L M U L M U L M U
H1(07)='u +2uM +pu (2_/1 F2u s v 4y J
4 4 4
For ITFNs ¢ and ¢,, the comparison rules are as below:
1 If S1(0~(1) < Sl(&z), then o<
2 If S1(0~!1) = Sl(&z) and Hl(dl) = Hl(dz), then 07] = 5(2; lf Sl(dl) = S](dz), but
Hl(&l) < H1(0~(2), then o <.
However, take ITFNs &1 =((0.1,0.3,0.5), (0.2, 0.3, 0.4)) and

0> =((0.2,0.3,0.4),(0.1,0.3,0.5)) for example, we have Sj(&)=35(x)=0,
H\(6q) = H(¢,) =0.42. Therefore, ITFNs & and &, are indistinguishable under these

two functions.
Based on the mean m(y)=(a+2b+c)/4 and the variance

v(§) = (Ba® +4b% +3c¢? —4ab —2ac —4bc)/80 of a triangular fuzzy variable 7 = (a, b, ¢),
Chen et al (2010)  proposed a  ranking  method for ITFN
a=(i,v)=((ut, g™, 1), v, v, W) by the new score function and variation

function:
- La2uM + 4V yL 429M U
Sl(a):,u U n ’
4 4 )
L M4 U L MU L M U
Hl(d):,u +2,¢jl + 1 (2_/1 +2/; +ul v +2\; +v )

Then, two ITFNs & and &, are compared by the rules:

1 if S3 (d]) <$; (5(2), then 6’?1 < dz
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2 if S3 (0?1) = S3 (dz) and V(d] ) = V(dz ), then 5!1 = &2; if S3 (5(]) = S3 (0?2 ), but
V(@) >V(é), then @& < &,

Here, we take the example as & =((0.2,0.25,0.3),(0.2,0.25,0.3)) and
0, =((0.4,0.45,0.5),(0.4,0.45,0.5)). By formula (8) we have S3(&)=0.0625,
S3(¢,)=0.0225, which shows that & is superior to &. However, since the
membership and non-membership are equal both in & and ¢&,, & has more hesitation
than &,, so &, should be superior to &. Therefore, the comparison result of this
method is counter-intuitive. Moreover, this method still cannot distinguish ITFNs
&1 =((0.1,0.3,0.5),(0.2,0.3,0.4)) and &, =((0.2,0.3,0.4),(0.1,0.3,0.5)).

By taking account of the DM’s attitudinal character, Liu et al. (2015) defined an
attitudinal expected score function of ITFNs as follows:

_ A=) (pY —vE)+2(uM v )+ 2(pY —v)+3

AES; (@)= : , ©))

where 4 € [0, 1].

However, it is not easy for the DM to give an exact value for parameter /.

In addition, Zhang et al. (2023) constructed six quantitative indices of ITFNs based
on credibility theory. The advantage of this method is that it can distinguish all ITFNs,
but its limitation is the lack of robustness in ranking results.

Since an ITFN is the fuzzy representation of intuitionistic fuzzy number with the
preferred and non-preferred information in the type of triangular fuzzy numbers. The
mean and standard deviation are two important indicators to depict the size of a triangular
fuzzy number, which respectively reflect the central trend and the deviation trend.
Therefore, for a triangular fuzzy number y=(a,b,c), by taking the mean

_ 2 _ 2
n(5) +2(b 8oa) +2(c—b)

proposed in Lee and Li (1988), we can introduce the quantitative value of j as:

_a+2b+c

— 2
and standard deviation o(j)= \/ (c—a)

q(7)= miy()) (10)

1+o(y

In this way, the ITFN &= ((ut, u™, u¥), (5, v¥,vW)) can be transformed into
m(p)  m(v)
1+o(i1) 1+0(¥)
corresponds to interval number, that is, & can be further transformed into

m@ | me)
l+0(i)’  1+0(¥)
we still use the mean and interval width to reflect the size of interval numbers. Based on
the above analysis, we give a new score function for ITFNs.

intuitionistic fuzzy number & :( j Since intuitionistic fuzzy number

}. Like the above quantisation method of triangular fuzzy number,

Definition 3.1: Let @ = ((u*, u™, u¥), (v*,v™,vW)) be an ITFN. The score function
S(&) of & is expressed as
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) an

) LyoyM 4 U
(="K
4
. v U
m(v) =
" 4
where .
o) = W B+ 20 — ) + 2 — )
80
0(‘7)_\/(\/“ —vE2 +2(vM —vL)2 4 2(0Y =M )2
80

Next, we analysis some properties of the proposed score function.

Theorem 3.1: Let &= ((u*, u™, u¥), v*,v™,vW)) be an ITFN, the score function
S(@) =1 ifand only if &= ((1,1,1), (0, 0, 0)).

Proof: For a=((1,1,1),(0,0,0)), we substitute it into formula (11), and the
corresponding score function S(&)=1. The sufficiency is proved. Here we prove the
m@)__, o m)
+o(it) 1+0(¥)
be concluded that m(i)=1, o(i)=0, m(v)=0 and o(v)=0, that is, g=(11,1),
v=1(0,0,0). The proof is complete.

necessary. If S(&) =1, from formula (11), we have =0. It can

Theorem 3.2: Let @=((ut, u™, u¥), ", vM,vW)) be an ITFN, the score function
S(@) =0 ifand only if &= ((0, 0, 0), (1, 1, 1)).

Proof: The proof of this theorem is like that of Theorem 3.1.

Theorem 3.3: Let a=((ut, u™, u¥), @E,v™,vW)) be an ITFN, the score function
S(&) complies with 0 < S(&) <1.
Proof: From formula (11), we have

1+1[1_ m(R) m(ﬁ))} z[“ (ﬁ)~ m(

6 l+o(@) 1+0(v

V) .
<v>J‘°’

Theorem 3.4: For two ITFNs a = (i, n)=(ut, i, ), v, v, vwW)) and
&2=(ﬂ2,§2)=((/l2L”u§/[,,Ug),(sz,Véw,Vg)), if /ulLSluZL! :ulMsluéw7 /’tIUSlug7 and
vl vk v 2 v 20V then S(ér) < S(dn).

then it can be concluded that 0 < S(&) <1.
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M) i)
+olin) I+o(f)

wM < oul <y, we set fip = (b +x, 4 +y, 1Y +2), x, ¥, z> 0, and assume an

Proof: Let us first prove that 6](!71)— . Since puf < ut,

auxiliary function that

_ om(i)  m(@)
T2 +o(iz) 1+o(f)
pt+x+2(uM +y)+ul +z
4

1+\/(,u1U +z—,ulL—x)2+2(,ulM +y—,u1L—x)2+2(,u1U+z—,ulM—y)2
80

w2 +
4 .
1+\/(m”—uf)2+2(ulM—uf)2+2(uf’—uf”)2
80

In order to prove f{x, y, z) > 0, that is to prove
ey )= ut +x+2(u +y)+uf +z]
X[@ﬂ/(ﬂf’—ﬂf)zﬂ(ﬂ —ut ) +2(nf —MM)Z}—(ML +2u + )

X|:\/%+\/(/11U tz—pt —x) + 2+ y—pf —x) +2(u +z— —y)z]
>0.

First, we consider

£(0,0,2) =80z +(uf +2p" +ﬂf’+2)\/(ﬂf’—#f)2+2(ﬂf‘—ﬂf)2+2(ﬂ1U—ﬂ1M)2

—(uf +2u +ﬂ1U)\/(ﬂ1U tzpl Y 42—l 2l vz )

To show that f{0, 0, z) > 0, from 0, 0, 0) = 0, we just need to prove that

3
L S0+ (st =tV 4200 =tV 420 =)’
(b +2u + 1 )Bul +3z— b —2u)

S 2= Vo 2( =l Y+ 2 4z )
>0,

(i +2u" +pu? )Gt +3z—pf =2u")
VGl 2= P 20" = )? + 20 +2 = )2

By comparing V80 with , we have
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RO (uf + 2=tV +2( i) +2(uf +z- )

=«/R[~5\/(ﬂf” +z—uf)2+2(ﬂ1M—ﬂf)2+2(ﬂf’+z—ﬂf”ﬂ'

Since V16 2 uf +2p + . and NS\(u¥ +z -t +20u" — b Y +2(u +z— ")

Jf

oz

we can prove that f{x, 0, 0), f{0, y, 0) > 0, thus we have fix, y, z) > 0, i.e., q(ii) < q({).
Similar to the above proof process, we can also derive g() = g(,).

23uY +3z—puf —2u4M, it can be concluded that = >0, that is {0, 0, z) > 0. Similarly,

Moreover, it is not difficult to obtain from formula (11) that the score function S(&)

is monotonically increasing with respect to g¢(it)= 1m(/z )~) , and monotonically
+ao(it
. . - m(V)
decreasing with respect to g(v) = ———.
I+0(¥)

Based on the above analysis, we can come to the conclusion S(&)<S(&,). The

proof of Theorem 3.4 is completed.

In addition, for ITFN & = ((u*, u™, u¥), F, v, vY)), when put = M = uV = y and
vl = yM = yU =y  then the ITFN degenerates into an intuitionistic fuzzy number

(+u-v)
-2
14 d=u=v)
6

have ut = M= pV =y, vt =vM=yU =1y and u = 1 — v, then the ITFN degenerates into
usual fuzzy number, and the score function S(&)= x, which means that we just sort the

& =(u,v), and the corresponding score function is S(&) = . If further, we

fuzzy number according to the membership.

4 Cosine similarity measures of ITFSs

The similarity measure is an important tool to reflect the relationship between fuzzy
information. Different from the ones based on the distance measure (Xu et al., 2019),
here we introduce a cosine similarity measure between ITFSs.

Definition 4.1: Let A and B are two ITFSs defined in X = {x1, xa, ..., x.}, expressed as
A={( (et Gt () s (), (V5 ) vl () v ()] € X
B ={<x,-, (/11% (x:), uy (x;), 1 (xt)), (vng (x:), vy (x:),VY (x,-))>‘x,- € X}

then the cosine similarity measure is defined by

Sl(;l,l;’):l N K(;I(xi)aé(xf)) (12)

oo \/E(;l(x,))E(é(xz))
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where

i) gy () + 4l () g () + 1 (x) e ()
xi)v () +vY (6 )vi (x:)

(
(1= o) =l () (1= () =i ()

(vg %) )2 (1- —vg () +4(1=pf (x)=vl (x))’
+(1- s (x) = v (x,-))z.

We can prove that the proposed cosine similarity measure satisfies the following
properties:

1 0<SI(4,B)<1

2 SI(4, B)=SI(B, A)

3 SI(4,B)=1 ifand only if A=B

4 if AcBcC, then SI(4,C)< SI(A, B), and SI(4, C)< SI(B, C).

Proof:

1 By the Cauchy-Schwarz inequality and the non-negative components, we know that
o< KQ). Bn)
VEA()EB(x)

U (e
<1, thus 0< SI(4, B)S;Zizllzl.

2 Since the similarity measure is symmetric with respect to ITFSs A and B,
SI(A4, By=SI(B, A) is clearly true.

3 When A= B, thereare uf(x;)=ph(x;), plf (x))=pd (x), w4 (x)=pf (x),
vE(x)=vh(x), vM(x)=v¥(x;) and v§ (x;) =V (x;) fori=1,2, ..., n. This

implies that SI(4, B)=1.

K(A(x), B(x)

If SI(4, B) =1, we have - -
JEC(x)E(B(x;))

=1fori=1,2,...,n Let
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A= (e O ), 2ulf (), ] (), v (), 20 (), vy () 1=l () =0 (),
), 1= () = v (3)

B; :(#zL; (xi),zﬂ% (xi)a#g (x,-),vé( i) 2vyf ( ,-),Vfg] (xi):l_:ug (x:)
vy (x,-),Z(l—yg/’(x,-)—vg(x,«)),l—,uB (xi)_vé(xi))-

By Cauchy-Schwarz inequality, we have 4; and B; are parallel, such that there is a
non-zero constant /; with

ﬂﬁ(xi) Zﬂy(xi) ,uﬂ{(x,»)=vj(x,«)=2vﬁl(x,«)=v§’(x,)
ﬂzL;(xi) 2ug (1) ﬂg(xz‘) Vth(xi) 2"?34(3@) Vg(xi)
= ()= () _ 200 () = vl ()
Sl ()= () 21—l () —vl ()
o))
b () -vE(n)

Owing to

ﬂﬁ(xt)"‘z#% (%‘)‘H&E{ (M‘)"‘Vﬁ(xi)‘*zv% (xi)"‘V% (x,-)+1—/zﬁf (xi)_quj (x;)
+2(1_/J§4 (Xi)—Vﬁl (xz‘))+1_ﬂﬁ (xi)_V,Lq(xi)=4

and

g () + 20y () + i (x) +v5 () +2v () +v (x) +1=uff () —v ()
+2(1—/1§4 (x;)—v¥ (xi))+l—,u§(x,-)—v§(x,-)=4f0ri=l,2,...,n,

which implies that ;= 1 and 4;=B;, fori =1, 2, ..., n. Thus A=B.

4  From A cBc C, we set three ITFSs with the following expressions:

‘Z:((ﬂé_xla ,ulj;/l =), ﬂg_zl)’(vlLi—i_tl’Vgl +m1=v113/+n1)’

—_

1=uy =V +z—m, L= —v¥ + 1 —my, 1 — —v’§+x1—t1))

é ((,uBa,uB nuB) (Vg,vgf"}g) (l_#g_vgal_ﬂg] _vg]’l_#lé_vé))

C= ((MB +x0, gy + Yo, 1y +22) (Vé—fzavf;”—mz,vg—"z)’

(l—yg =W tny —zp, 1=l —v¥ +m2—y2,1—,u§—v,§+t2—x2))

where x;, Viy Ziy iy miy 1; > 0,1=1, 2.

To prove the following inequality:

, (13)
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we assume an auxiliary function

13

F (6, vzt mym, Xay v2, 20, by my, my) = K (A, B)E(C) - K (4, C){E(B).

Our goal is to prove that f(xi, yi, z1, &, 1, ny, X2, y2, 22, b, My, 1) 2 0.
First, we consider

f(0,...,0,n)
_ J(yg)z+4<ﬂy)2+(ﬂg)2+(v§>z+4(vf;4>2+(vg>2

(1 =) ) 40—l vt )+ (1= —vh)’

(b)) () + () + A+ 0 =)’
(1l =V ) w41 vyt (1= —vj )

(k) (V4 (g )+ (h ) + a0 +0Y (W —n2)

(= =) (1= =Y +m )+ 4 (1= =l Y +(1- b —vE)’ .

To show that f{0, ..., 0, n2) > 0, from f{0, ..., 0, 0) = 0, we just need to prove

d
—1(0,...,0,n,)
an2

) J(us)z+4<ﬂy)2+<ﬂg)2+<v;>2+4(v;z>2+<vg>2

(= =Y ) (=l — ) (1= sk —vh)’

1—uy =2V +2n,
L)? M)? U)? )2 M2 U 2
J%) 4 P+ (g ) + () + a0l +(0 —m)

(1= =Y +m) +4(1= =¥ )+ (1= gl —vi )’

1.e.,

(/hlg/ +2v%/_1)\](ﬂ1§)2+4(1u§/[)2+(lug)2+(V§)2+4(V§4)2+(vg_n2)2

(1= =Y +m) +4(1= il =i+ (1= g — v )’

() + 40l )+ () + () +4( ) +(04)’

+(1—ﬂg—2vg+2n2)\/ ) ,
(1= =V ) +4(1-plf —vif ) + (1= —v§)

=>0.
We divide the problem into two cases:

1 +2%-1<0
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2 Ay +20Y -1>0.

For case 1, we have
(1= = 20§ +2m )" [ (b 4 )"+ (1 + (04 440yt )
05 + (1= = +4(1-gf vy P + (-5 —v5)']

> (1=pf =24 ) [ (b + 40l )+ (s ) + () 40 ) +04 =)
(1 = +m ) a1 v )+ (1=sf =)’ |

Thus, it can be concluded that inequality (14) is valid.
For case 2, inequality (14) is equivalent to

uy +2vy -1
> (1l +2v§ —1-2m,) (15)

J(mwﬂy)z+<ﬂg)2+<v§>2+4(vgl>2+<vg>

2

(1= =Y )Y +4 (1= = ) + (1= b vk )’

J(ﬂ B +a(lt ) + () + (k) 40V + (0 —m)”

+(1 My —Vvg +n2)2+4( —uy —vy )2"'(1_:“1%_"1%)2

If there is the below relationship

J( bV + 4l )+ () <v§)2+4<vg4)2+<vg)

2

(=g =V ) +4(1—pf =l ) +(1=ph —v§)

_ \/(Mé) wa(ul ) +<ﬂg) +(h) +4( )+ (0§ -

U =l ) 40l =)+ (1= pth =)

(16)

then we have that inequality (15) is valid.
Since inequality (16) is equivalent to 1+n, —uY§ —2v§ >0, next, we further divide it

into two sub-cases: x4 +2v§ <1+n, and 1Y +2v§ >1+n,.
If u§ +2vY >1+n,, based on inequality (15), we define an auxiliary function:

T(l’lz)
1\2 M2 U2 )2 _ 2
(4 -1) Jm) A ) )+ () a0+ b
(1= gl =V +m) +4 (1= —vi ) +(1-pf —v§)

(b ) + 40t ) +(1y ) +(vh) +4(vlf )2 +(v)

+(1+2n2—,ug—2vg)\/ )2.

(1= =g ) +a(1-plf =l ) +(1- -

To verify that 7(n,) > 0, we have 7(0) = 0 and
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, 3 (,uB +2V§ — )( —uy =2y +2n2)
T'(m)= 2 2 2
() + 40y Y +(ng Y + (o) +4(0f ) +(0Y —m2)
(1=l = +m) +4(1—plf =) ) + (1 —vh) (18)
5 (b)) +4(u V' + () +(vf) + a0l ) +(§ )
+

F(mgdf =y Y+ (- =l + (- b k)

If 1— 44 =2v§ +2n, 20, it is obvious that 7'(n2) > 0. Then we have T(n2) > 0.
On the other hand, if 1— x4 —2vY +2n, <0, the following inequality can be obtained

2 2

5 () +4 (et ) +(1y ) +(v5) +4(n ) + ()
(1= vy )+ a(1=pf =l V' + (1=l =)
() +4(ulf ) + () +(vh) +4(0 ) + (v —m)

(1= v +my ) + 4 (1=l = ) + (1=l —vk)’
> (uf + 204 —1) (1Y +2v§ —1-2m,),

from which, we can obtain 7"(n) > 0. That is to say, 7(n2) > is verified for the case
1—uf —2V4 +2n, 20.

Therefore, we can conclude that inequality (14) is valid under case 2.

Up to now, we have shown that f{0, ..., 0, n,) > 0. In a similar way, we can prove that
fis also non-negative with respect to the other variables, and thus reach the conclusion
f(xls Y1, 21, t, my, ni, X2, Y2, 22, t, ma, n2) >0.

Based on the above analysis, it can be concluded that inequality (13) is valid.

K(B,C) . K(1,0)
JEBEC) EAEC)

The same as the proof of (13), we can also prove . So,

we have done the proof of property 4.
Specially, the cosine similarity measure between ITFNs & = ((uf, uM, ut),

E v v)) and @ = ((uf, 113!, 1Y), (vE, v ,VY)) can be calculated as:
K (o, )

E(&)E(6) 1)

S](&l,&2)=

where
K (6,00 ) = pfud + 4! 1" + pf 1 +vivk +4vMoll vV
+(1—ﬂ1 -V )(1_ﬂz -V )"'4(1_:“1 i )(1_:“2 _Véw)
(=gt =) (1= —vi),



16 S. Zhang et al.

E(@)=(ut ) +4(u" ) + () + 0V 4400 ) + (00 ) + (1= -0

E(@)=(pb) +4(dt ) +(1d ) + () +4(m ) + () +(1-f %)’

5 Discussion on consensus of ITFMCGDM

For GDM problem, a key that should not be neglected is the consensus reaching process
in the aggregation phase (Meng et al., 2024; Guo et al., 2024). To ensure that the decision
group forms a higher level of consistency on the decision results, here we discuss the
consensus of ITFMCGDM.

Let 4 = {ai, aa, ..., an} be the set of alternatives, C = {ci, ¢, ..., c,} be the set of
criteria, and E = {ey, ey, ..., ¢4} be the set of DMs. Assume that triangular fuzzy variables

(i, W, wl*y  and - (vFF,vif v %) are  the membership degree  and

non-membership degree of the alternative a; that satisfy the criterion ¢;j given by the

Mk

Vi ,/ *Y) are defined on

expert e, respectively, where (u*, ", ") and (v*
[0, 1] with z* +v{* <1. In other words, the evaluation of the alternative a; w.r.t. the

V)
1/ l/
i=1,2,...mj=1,2,...,q9). By DF = (a )mxn» We denote the intuitionistic triangular

criterion ¢; given by the expert e is an ITFN @k = (1", wl™*, wi*), (v,

fuzzy matrix given by experte; (k=1, 2, ... q)

Based on the cosine similarity measure between ITFSs proposed in section 4, we
analysis the consensus problem of ITFMCGDM from two aspects: consensus
measurements and consensus adjustments.

For each pair of DMs, the similarity measure between DM, and DM; in their

evaluation for alternative a; concerning criterion ¢; is given as sm/ = SI(a;, &), (i =1,
2, omyj=1,2, ..,m k 1 =1,2, ..., q, k# [). Then, the similarity matrix
SMH = (sm Y e between the intuitionistic trlangular fuzzy evaluation matrices D* and
D' is obtained. In addition, the consensus matrix CM = (cm;)mn can be calculated by
aggregating all similarity matrices:

2 q W
o= q(q— l)zk,izl,k<zsm’f (20)

According to the consensus matrix, we can define the consensus measures on three levels
(Lietal., 2019):

1 Ciriterion level: the consensus measure for alternative a; over criterion ¢;, denoted as
ccij, can be defined by the element of consensus matrix CM as

ceg=cmy,i=12,...,m; j=12,...,n (21)
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This measure is used to identify the positions in the evaluation matrix that have a low
consensus level.

2 Alternative level: the consensus measure on alternative a;, denoted as ca;, is defined
to measure the consensus level among all the DMs for that alternative:

S em,
ca; == i=1,2,...m. (22)
n
3 Decision matrix level: the consensus measure on the decision matrix, called cd, is
defined to represent the global consensus level amongst the experts’ evaluation
information

cd = min{ca;}. (23)

By taking the min operator, the compromise between some alternatives with high
consensus levels and those with low consensus levels can be avoided.

Once the consensus measures for three levels are obtained, we can determine whether
the consensus is reached by a comparison between the consensus degree cd and the
predefined consensus threshold . If cd > ¢, then the consensus reaching process ends and
the evaluation matrices can be used for subsequent decision making.

For cases where the consensus threshold is not reached, the consensus adjustment
process is implemented.

First, the non-consensus alternative set /4 is obtained by comparing the consensus
measure ca; with the consensus threshold ¢, i.e., [4 = {ajlca;<e,i=1,2, ..., m}. This rule
identifies the rows of the decision matrix that should be revised.

Second, the non-consensus criterion set /C; is obtained as IC; = {¢jla; € IA A ccjj <e,
j=1,2, ..., n} to identify the columns of the decision matrix that should be modified for
the rows distinguished in /4. On this basis, we can locate the elements in the decision
matrix that require consensus improvement.

In terms of consensus reaching, it used to be through multiple feedbacks and
adjustments. To improve the efficiency of consensus improvements, we adopt the method
based on programming model.

Since the consensus level of the group is judged by taking the min operator of
consensus measure on alternative level, all the consensus measures on alternative level
without achieving the consensus threshold need to be improved. Therefore, we focus on
the consensus measure on alternative level.

For the alternative a; (i = 1, 2, ..., m) without achieving the consensus threshold, it is
necessary to further identify the non-consensus criterion set /C; under that alternative. All
the criteria can be divided into two categories according to whether meet the consensus
threshold or not. Without loss of generality, it can be assumed that the first »; criteria
meet the consensus threshold, and the last n — n; criteria fail to meet the consensus
threshold. To ensure that alternative a; meets the consensus threshold with the overall
minimum adjustment, the following programming model is constructed to adjust the
individual evaluation information on criterion set /C;.
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n 4
(Model 1) T =min Z Z(xlfk +y,jL.’k +x,-jM’k +yle’k +yU * fk +t,§’k

Jj=ni+l k=1

2K ) 4 2 )

s.t.
S sm +Z z Smk1>q(q D e
Jj=1 k,i=1,k<l j=ni+lk,I=1,k<l
ﬂé’k‘* yl]k <# y,k_yl_y,k
ﬂgj,\'l’k _)’z k<luUk+x _yiljj,k
v,fk-i-z,fk t,fk<ka+z£-4’k t,ﬁ”k
k+z§4’k tyk<ka+z tf/k

U,k U,k U,k U,k U,k U,k
I S T A

L.k Lk Mk M.k _ Uk Uk LkL,k_MkMk U.k U,k .
X~ Vi Yy = Yy’ Zjj tij =2z tl/ =z t/ =0;
L k Lk Mk Mk Uk .Uk
’ylj > t] ’yt] s X, ’yt] > z/ 9111 9Z§/' slz/ :Zij 7t1] 2 09

j=Em+l,...onk=12,...,q

where smf' =SI(&), a;) is the similarity measure between DM; and DM, on their

evaluation for alternative a@; under criterion ¢;, ¢ is the predefined consensus threshold.
The first constraint ensures that the consensus measure on alternative a; can reach the

given threshold, constraints (2)—(6) can ensure that they are still ITFNs after adding the

corresponding non-negative deviation variables: x;*, y*, X, pith XA 0k

Lk
Zi s tl/

L.k Mk Mk U.k
s Zjj s tlj s Zil s 1

U,k
y y :

ij

After obtaining the individual intuitionistic triangular fuzzy matrices that all meet the
consensus requirements, we can aggregate them to get the collective intuitionistic
triangular fuzzy matrix D = (& ).x, and carry out the subsequent decision process.

6 The ITFMCDM method based on extended prospect theory and
PROMETHEE

Two subsections are included in this part, the first one discusses the criteria weights
determination method considering the interactions among criteria, and the second one
introduces the PROMETHEE method based on the extended prospect theory.
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6.1 A method to determine the weights of criteria under interaction

The information aggregation in traditional multi-criteria decision-making method
assumes that the criteria are independent of each other, while in practical decision making
problems, multiple decision criteria are usually interrelated. To deal with the interactions
among criteria, Sugeno (1974) proposed the concept of fuzzy measure.

As the fuzzy measure is defined on the power set of the criteria, when the number of
criteria is n, 2" parameters need to be determined. Such complexity limits its practical
application. For this reason, Grabisch (1997) further proposed the k-additive measures,
among them, the 2-additive measure only involves the relative importance of criteria and
the interaction between two criteria, which can better solve the contradiction between
complexity and expressive ability.

Theorem 6.1 (See Grabisch, 1997): Let i be a fuzzy measure on N= {1, 2, ..., n}, then u
is called a 2-additive measure if and only if there exist u(7) and (i, j) for all i, j € N that
satisfy the below conditions:

1 u()>0(Vie N)
20 G D=NI=2)) (i) =1
3 Z,-es\,- (u(i, j)— u()) = (S|-2)u(j)(VS < N), subject toj € Sand [S]>2.

Shapley function is an important allocation index in cooperative game theory, which
determines the optimal income distribution scheme according to the expected value of
each player’s marginal contribution to the alliance.

Since the interactions exist among the criteria in MCDM, Marichal (2000) introduced
Shapley function into fuzzy measure to reflect the weights of criteria. To facilitate the
application, Meng and Tang (2013) further proposed the following Shapley value on
2-additive measure:

3-|N|

q)[ ,N =
(4, N) >

WO+ (G = u(). Vie N. 24)

Based on the above analysis and in combination with the AITFWA operator defined in
Section 2, we give the following 2-additive Shapley arithmetic intuitionistic triangular
fuzzy aggregation (2ASAITFA) operator:

2ASAITFA (&, s, ..., Gy )
=D O N
=((Z;‘Di(ﬂs N)ﬂz'L>z:l:1q)f(#’ N)ﬂ’M’Z:l:lq)i(u’N)ﬂF)’

LG NYVE D NV (N
i=1 i=1 i=1

where ®@;(u, N) is the Shapley value shown in formula (24).
It is easy to verify that the operator satisfies the idempotency, boundedness and
monotony.

(25)
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Under the condition that the weights of criteria are incompletely known, the
following programming model can be constructed to obtain the optimal 2-additive
measure of the criteria, aiming at minimising the similarity degree among the column
vectors of criteria.

n

Model 2 min )" @, (u, C)SI(D;, D,)

Jit=L#j

s.t.

z (,u(cj,c,)—,u(c,))z (|S|—2),u(cj),VS cC,Vc;€8,15122,

creS\c;
D uleje)=(C=2) u(e;) =1,
cj,ercC cjeC

u(c;)eW;, u(e;)20,j=12,...n.

where ¢(u, C) is the Shapley value of the criterion ¢; (j = 1, 2, ..., n), 1 is the 2-additive
measure defined on C, D; is the /™ column of the collective intuitionistic triangular fuzzy
matrix D =(&;)mwm, and SI is the similarity measure between ITFSs defined in
Section 4.

According to formula (24), we have
3—

sz(Dj,Dz)[—”ﬂ(cn% > (ﬂ(c]-,c»—ﬂ(cr))j

2 ¢ eC\c;

n

Model 3 min Z

Jot=Lt#]

s.t.

D (ulejre)=ule))2(SI-2u(e;), ¥S € C, Ve, € 5,182 2,

creS\c;
D uleje)=(C=2) u(e;) =1,
cj,ercC cjeC

w(e;)eW;, u(c;)20,j=12,...,n

After the optimal 2-additive measures on criteria set are obtained by solving model 3, we
can further use formula (24) to get the Shapley values, namely the weights, for the
criteria.

6.2 The PROMETHEFE method based on extended prospect theory

According to PROMETHEE method introduced in Section 2, one of the main steps is to
compare the evaluation information of alternatives under the criteria in pairs, and put the
comparison results into the preference function. On this basis, the preference net flow of
each alternative compared with others is obtained to rank the alternatives.

In the above process of comparing the evaluation information among the alternatives,
the subjective psychological characteristics of DMs should be taken into consideration.
Prospect theory (PT) proposed by Kahneman and Tversky (1979) is an effective tool to
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describe human decision-making behaviour under risk. PT assumes that individuals are
risk aversion for gains and risk pursuit for losses, which is expressed as the below value
function

x“ if x>0
M= {—A(—x)/" if x<0 (26)

where ¢ and [ are parameters related to gains and losses, respectively, the parameter A
denotes the degree of loss aversion, which is usually larger than 1. Kahneman and
Tversky (1979) experimentally determined that o = = 0.88, and 1 = 2.25. The value
function of PT can be described by an S-shaped function as shown in Figure 1.

Figure 1 The value function of PT

A v(x)

\/

Reference point

As mentioned in Section 1, in the case of MCDM, the reference point is usually not an
exact value, but corresponds to an interval 7 =[r’, rY]. The DMs are not sensitive to the

change of evaluation information within the reference interval, and the value function can
be expressed as

FU—L

x7 if0<x<

Vi(x) = 27
—(=x) if e o

where y > 1.

The value function defined on the reference interval is symmetrically distributed, and
the slope is relatively gentle to reflect the insensitivity of DMs. However, when the
evaluation information is lower than or higher than the reference interval, it will cause the
DMs’ strong satisfaction or dissatisfaction, and show obvious risk aversion. Combing the
above two cases, we can get the value function of the EPT as below:
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V() =

(28)

B L_ U
—x) ifx<r "
2

where the values of ¢, fand / are the same as that in the traditional PT. The parameter y
complies with y > 1, and is determined by the DM. The value function can be intuitively
expressed as the curve shown in Figure 2.

Figure 2 The value function of extended PT

A v(x)

.. | -
Lower limit of | Upper limit of
reference interval! I reference interval

v

In addition, the DMs are usually accustomed to using linguistic variables to make
qualitative judgements in the actual decision-making process (Tian, 2024). To reduce the
difficulty of decision making and better reflect the uncertainty of subjective judgement,
the corresponding relationship between the linguistic scale and the ITFNs is established

as shown in Table 1.

Table 1

Linguistic variables and their ITFN representations

Linguistic variables

ITFNs

Extremely high (EH)
Very high (VH)
High (H)

Medium high (MH)
Medium (M)
Medium low (ML)
Low (L)

Very low (VL)
Extremely low (EL)

((0.80, 0.85, 0.90), (0, 0.05, 0.10))
((0.70, 0.75, 0.80), (0.10, 0.15, 0.20))
((0.60, 0.65, 0.70), (0.20, 0.25, 0.30))
((0.50, 0.55, 0.60), (0.30, 0.35, 0.40))
((0.40, 0.45, 0.50), (0.40, 0.45, 0.50))
((0.30, 0.35, 0.40), (0.50, 0.55, 0.60))
((0.20, 0.25, 0.30), (0.60, 0.65, 0.70))
((0.10, 0.15, 0.20), (0.70, 0.75, 0.80))

((0, 0.05, 0.10), (0.80, 0.85, 0.90))
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To sum up the above analysis, the steps of ITFMCGDM based on the extended prospect
theory are given as follows:

Step 1  The DM ¢; evaluates the alternative a; w.r.t. criterion ¢; by linguistic variable [}

(i=12,...,mj=1,2,....,nk=1,2, ..., q) and forms the linguistic evaluation
matrix L* = (I}) -

Step 2 Based on the linguistic variables and their ITFN representations, the
corresponding individual intuitionistic triangular fuzzy matrices D* = (&} )

can be obtained.

Step 3 Ifall criteriac; (j =1, 2, ..., n) are benefit (i.e., the larger the value, the greater
the preference), then there is no need to normalise the criteria values. Otherwise,
we normalise the intuitionistic triangular fuzzy matrix D* = (aj )ux, into

al for benefit criterion c;

D" = (6 Y (k=1,2, ..., q), where &} = — o
& for cost criterion ¢;

(i=1,2,...,m;j=1,2,...,n), & is the complement of &} such that
k Lk Mk Uk Lk Mk Uk
015‘- = (" v v ) (s s ™ ))-

Step4 Calculate the similarity matrix between each pair of individual intuitionistic
triangular fuzzy matrices, and get the consensus matrix CM = (cmjj)m=n.

Step 5 Calculate the consensus measures on criterion level, alternative level, and
decision matrix level respectively. Compare the consensus degree cd and the
predefined consensus threshold e. If cd > €, go to step 6. Otherwise, for each
alternative without achieving the consensus threshold, model 1 can be used to
adjust the individual evaluation information.

Step 6 Aggregate the individual evaluation matrices into collective intuitionistic
triangular fuzzy matrix D = (& )ux,. Determine the optimal 2-additive measure
on criteria set C by model 3, and calculate the Shapley value of each criterion by
formula (25).

Step 7 By using the intuitionistic triangular fuzzy score function, the final intuitionistic
triangular fuzzy matrix D = (&; )mx» can be transformed into score matrix
S = (S(&;))mxn- To avoid the arbitrariness of individual preferences, the mean

value of each column of the score matrix § is taken as the reference point under
each criterion. For reference points r;, j = 1, 2, 3, 4, the corresponding reference
intervals can be obtained by incorporating the parameter ¢ as

7= [er, rjUJ =[r;(1=6), r;(1+9)]. (29)
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Step 8 By the comparison between S(¢&;) and 7; (i=1,2,...,m;j=1,2, ..., n), the
extended prospect value matrix V' = (v} ),x, can be obtained by formula (28).

Step 9 Based on the value matrix V' = (v;),x, and the given preferred function, the

weighted preferred value I'(a;, as) of the alternative a; over a; for all criteria can
be calculated by formula (4).

Step 10 The positive outranking flow ¢'(a;) and the negative outranking flow ¢(a;) of
alternative a; can be obtained by formula (5).

Step 11 Calculate the net flow of the alternative a; as a;) = ¢'(a;) — ¢(a:)
(i=1,2, ..., m), and get the ranking result of the alternatives.

7 Application of the proposed ITFMCGDM method

To illustrate the application of the proposed algorithm and compare the new method with
previous ones, the following example on the selection of social parties of pension
institutions is introduced.

Aging of population is a global problem. As the most populous country in the world,
China is facing a rapidly growing trend of population aging. According to the latest
census data, by the end of 2020, the elderly population aged 65 or above was 190.64
million in China, accounting for 13.5% of the total population, which is approaching the
level of deep aging. It is expected that by the middle of this century, the proportion will
be close to 30%. To improve the utilisation efficiency of pension resources and
effectively deal with the increasing social pension pressure, China is accelerating the
market-oriented reform in the pension service field and encouraging social capital to
enter the pension service industry. One of the important ways is to hand over the public
pension institutions to social capital parties to operate and manage. To ensure the
operation effect of the new pension institutions, the key lies in the selection of
appropriate social capital parties.

There is a public pension service project is open to public bidding. After preliminary
screening, eight social capital parties are shortlisted, that is, the alternative set, denoted as
A = {a, ar, a3, a4, as, as, az, as} The competent authorities appoint three experts
E = {e1, es, e3} to carry out a further review from four aspects, including social credit
status, elderly service ability, operation and management level, and sustainable
development ability, shown as C = {ci, ¢z, ¢3, ca}. Next, we use the GDM method
proposed in section 6 to solve this problem.

Step 1 The individual linguistic decision matrices offered by three experts are listed in
Tables 2—4.

Step 2 By the linguistic variables and their ITFN representations shown in Table 1, we
can get the individual intuitionistic triangular fuzzy decision matrices as listed in
Tables 5-7.

Step 3 Since all criteria are benefit, there is no need to modify the intuitionistic
triangular fuzzy decision matrices.
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Table 2 Linguistic decision matrix L! offered by the expert e1
el cl c2 c3 c4
ai MH H VH H
az M H M MH
as EH VH MH M
a4 M M H EH
as MH MH EH H
as H EH H VH
ar VH M H ML
as H H VH VH
Table 3 Linguistic decision matrix L? offered by the expert ez
el cl c2 c3 c4
ai MH MH H MH
az M MH H MH
as H MH VH VH
as MH M VH H
as VH EH M ML
as MH H H MH
ar M VH EH H
as MH M MH H
Table 4 Linguistic decision matrix L3 offered by the expert e3
er cl c2 c3 c4
ai M MH MH H
az M H VH H
as MH ML M ML
as M H M H
as ML VH MH M
as M M ML ML
ar MH MH M VH
as MH M H MH
Table 5 Intuitionistic triangular fuzzy decision matrix D! offered by the expert ei

e]

Cl

c2

C3

c4

ai

az

as

a4

as

((0.50, 0.55, 0.60),
(0.30. 0.35, 0.40))
((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))
((0.80, 0.85, 0.90),
(0, 0.05, 0.10))
((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))
((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.60, 0.65, 0.70),
(0.20. 0.25, 0.30))
((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))
((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))
((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))
((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.70, 0.75, 0.80),
(0.10. 0.15. 0.20))
((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))
((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))
((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))
((0.80, 0.85, 0.90),
(0, 0.05, 0.10))

((0.60, 0.65, 0.70),
(0.20. 0.25. 0.30))
((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))
((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))
((0.80, 0.85, 0.90),
(0, 0.05, 0.10))
((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

25
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Table 5
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Intuitionistic triangular fuzzy decision matrix D! offered by the expert e1 (continued)

e]

Ci

c2

C3

C4

ae

ar

as

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.80, 0.85, 0.90),
(0, 0.05, 0.10))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

Table 6

Intuitionistic triangular fuzzy decision matrix D? offered by the expert e2

e]

CJl

c2

C3

c4

ai

az

as

as

as

ae

ar

as

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.80, 0.85, 0.90),
(0, 0.05, 0.10))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.80, 0.85, 0.90),
(0, 0.05, 0.10))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

Table 7

Intuitionistic triangular fuzzy decision matrix D? offered by the expert e3

ej

Ci

c2

Cc3

c4

ai

az

as

as

as

ae

ai

as

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.30, 0.35, 0.40),
(0.50, 0.55, 0.60))

((0.70, 0.75, 0.80),
(0.10, 0.15, 0.20))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))
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Step 4 Calculate the similarity matrix between each pair of individual intuitionistic
triangular fuzzy matrices,

1 0.837 0.986 0.981

1 0.981 0917 1
0.954 0.934 0.934 0.810
0.977 1 0.986 0.954
SM1'2 = ,
0.934 0.876 0.753 0.98
0.981 0.954 1 0.934
0.837 0.977 0.954 0.810

0.981 0.917 0.934 0.986

0977 0977 0.934 1

1 1 0.837 0.981
0.876 0.701 0.977 0.986
S = 1 0917 0917 0.954 ’
0.909 0.934 0.876 0.810
0.917 0.753 0.810 0.934
0.934 0977 0917 0.701

0.981 0.917 0.986 0.943

0.977 1 0.981 0.981
1 0.986 0.986 0.981
0.981 0.909 0.837 0.701
0977 0917 0.837 1
0.701 0.991 0.977 0.909
0.977 0917 0.810 1
0.977 1 0.753 0.986
1 1 0.981 0.981

SM? =

and get the consensus matrix

0.985 0.938 0.967 0.987

1 0.989 0.913 0.987
0.937 0.848 0.916 0.832
0.985 0944 00913 0.969
0.848 0.934 0.869 0.900 |
0.958 0.874 0.873 0.956
0916 0985 0.874 0.832
0987 0944 0.967 0.970

CM =
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Based on the consensus matrix, we can get the consensus measure on the
alternative level as below:

ca; =0.969, ca, =0.972, caz; =0.883, cas =0.953,
cas = 0.888, cag =0.916, ca; =0.902, cag =0.967.
Furthermore, we can get the consensus measure on the decision matrix level

cd =minca; =0.883. Compared with the given threshold ¢ = 0.9, the group

consensus level is not reached. To ensure that the group consensus level meets
the threshold requirements, all the alternatives without achieving the consensus
threshold need to be improved by model 1. Take alternative a3 as an example,
the following programming model is constructed to adjust the individual

evaluation of this alternative under the criteria without meeting the consensus
threshold.

3
T =min [ (xht + 5"+ 0yl by 2t el 4 2
k=1
g 2 0 ) (el ot e a2
+ ot et + 2 gt )]
s.t.

3
D (SE(@h )+ ST (o )+ ST (@ )+ S1 (6. ) 2 120
k,=1,k<l

= (0 541 o S 04,
(#3“ xh B MM M Ok Uk Uk ))

paft st =t <t gt -yt

pE gk Mk < Uy Uk Uk

ik bzt <o g 2k

L S Tl

,uéjj’k +x§/j’k —yéjj”‘ +v§jj”‘ +z§jj’k —téjj‘k <1

xhih ybk = Wb M Uk Uk pLibglib = MMk Uk Uk

P S P S 20

j=2,4,k=1,2,3
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By using LINGO software to solve the programming model, the adjusted
individual evaluation information about alternative a; can be obtained as
follows:

@, =((0.7,0.75,0.8), (0.1,0.2,0.2)), @&, = ((0.7,0.75,0.8), (0.1, 0.2, 0.2)),
@, =((0.3,0.4,0.4), (0.5,0.51,0.6)), @, = ((0.3,0.4, 0.4), (0.5, 0.54, 0.6)).

Similarly, we can obtain the adjusted individual evaluation information about
alternative as under the criteria without meeting the consensus threshold as

@y =((0.8,0.85,0.9), (0, 0.1, 0.1)), @, = ((0.7,0.75,0.8), (0.1, 0.2, 0.2)),
G2 = ((0.4,0.47,0.5), (0.4,0.44,0.5)), @, = ((0.3,0.4,0.4), (0.5, 0.52, 0.6)).

Without loss of generality, it is assumed that the weights of the experts are
equal. The collective intuitionistic triangular fuzzy decision matrix D = (& )msxn

is obtained by aggregating the individual evaluation matrices that meet the
consensus requirement.

Considering the interactions among the criteria, the following programming
model is constructed to determine the optimal 2-additive measure on criteria
with partial weight information.

min—5.873(,u(01 Y+ u(e )+,u(03)+,u(c4)) +2.93u(cr, ) +2.941u(cr, c3)
+2.929u(cr, cq)+2.944 1 (ca, 03)+2.933u(c2, c4)+2.943p(c3, c4)

S.t.

Z (,u(c_,-, c,.)—,u(c,)) >(S|-2)u(c;), VS < C, Ve, € S, |82 2,
creS\c;

D ulee)=(1C-2 ple) =1,
cj.crcC cjeC

ule)+pler) Sula,er), ple)+ules) < plases), ula)+ples) <ula,c),
wle)+pu(es)Spu(er, e3), uler)+ules) Sulea,ea), ules)+ules) 2 (e, ),
Solving this model, we can get the optimal 2-additive measures on the criteria:
1(c)=0.25, u(c)=0.3, u(c;) =0.15, u(cy =0.25)

(e, e2)=0.55u(cr,e3) =04, u(cr,c3)=0.7,

u(ca,c3)=0.45, u(ca,ca)=0.55, u(cs, cq) =0.25.

Following this, we can further calculate the corresponding Shapley value,
namely the criteria weights as below:

@, (1, C)=0.35, @5 (1, C) = 0.3, D3 (1, C) = 0.075, D4 (1, C) = 0.275.
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Table 8
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The collective intuitionistic triangular fuzzy decision matrix D

e]

Ci

c2

C3

C4

ai

az

as

a4

as

ae

ai

as

((0.47,0.52, 0.57),
(0.33,0.38, 0.43))

((0.40, 0.45, 0.50),
(0.40, 0.45, 0.50))

((0.63, 0.68, 0.73),
(0.17,0.22, 0.27))

((0.43,0.48, 0.53),
(0.37, 0.42, 0.47))

((0.50, 0.57, 0.60),
(0.30, 0.36, 0.40))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.53, 0.58, 0.63),
(0.27, 0.32, 0.37))

((0.53, 0.58, 0.63),
(0.27, 0.32, 0.37))

((0.53, 0.58, 0.63),
(0.27,0.32, 0.37))

((0.57,0.62, 0.67),
(0.23,0.28, 0.33))

((0.50, 0.57, 0.60),
(0.30, 0.35, 0.40))

((0.47,0.52, 0.57),
(0.33,0.38, 0.43))

((0.67,0.72, 0.77),
(0.13,0.18, 0.23))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.53, 0.58, 0.63),
(0.27,0.32, 0.37))

((0.47,0.52, 0.57),
(0.33,0.38, 0.43))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.57, 0.62, 0.67),
(0.23,0.28, 0.33))

((0.53, 0.58, 0.63),
(0.27, 0.32, 0.37))

((0.57, 0.62, 0.67),
(0.23,0.28, 0.33))

((0.57, 0.62, 0.67),
(0.23,0.30, 0.33))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

((0.57,0.62, 0.67),
(0.23,0.28, 0.33))

((0.53,0.58, 0.63),
(0.27, 0.32, 0.37))

((0.47,0.53, 0.57),
(0.33, 0.40, 0.43))

((0.67,0.72, 0.77),
(0.13,0.18, 0.23))

((0.43,0.48, 0.53),
(0.37, 0.42, 0.47))

((0.50, 0.55, 0.60),
(0.30, 0.35, 0.40))

((0.53,0.58, 0.63),
(0.27, 0.32, 0.37))

((0.60, 0.65, 0.70),
(0.20, 0.25, 0.30))

Step 7

Step 8

By using the intuitionistic triangular fuzzy score function, the final intuitionistic
triangular fuzzy matrix can be transformed into the score matrix

0.55
0.491
0.716
0.523
0.591
0.587
0.619
0.619

0.619
0.652
0.591
0.555
0.748
0.684
0.619
0.555

0.684
0.652
0.619
0.652
0.651
0.587
0.684
0.684

0.652
0.619
0.557
0.748
0.523 |
0.587
0.619
0.684

Let 6 = 0.05, then the reference interval under each criterion can be obtained by
formula (29) as follows:

71 =[0.558,0.617], » =[0.596, 0.659], 75 =[0.619, 0.684], 74 =[0.592, 0.655].
Except for o= = 0.88, and 1 = 2.25, which are experimentally determined in

(Kahneman and Tversky, 1979), we set y = 1.5. By formula (28), the extended
prospect value matrix can be obtained
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-0.0196 -0.0008 0.0058  0.0048
-0.2142  0.0037 0 —-0.0003
0.1357 -0.0286 -0.0059 -0.1246
-0.1235 -0.1423 0 0.1294
0.0002  0.1242 0 -0.2207 |
0 0.0441 —0.1148 -0.0284
0.0092 -0.0008 0.0058 —0.0003
0.0092 -0.1423 0.0058  0.0501

Step 9 Based on the value matrix V, and the following linear preference function
proposed in Brans et al. (1986)

d; (@i, ay)
P (ai,a,)= p
1, ifd;(aj,a,)>p

if0<d;(a,a,)<p

Let the preference threshold p = 0.3, we can get the weighted preferred relations
among the alternatives by formula (4)

0 0.2332 0.1493 0.2642 0.2081 0.0606 0.0047 0.1415
0.0046 0 0.1477 0.1460 0.2020 0.0545 0.0046 0.1460
0.1811 0.3500 0 0.4161 0.2462 0.1856 0.1475 0.2612
0.1142 0.2247 0.2343 0 0.2762 0.1856 0.1475 0.2612
0.1481 0.3706 0.1543 0.4108 0 0.1091 0.1251 0.2665
0.0677 0.2903 0.1609 0.3305 0.1763 0 0.0450 0.1864
0.0366 0.2622 0.1446 0.2978 0.2140 0.0667 0 0.1415
0.0752 0.3084 0.1631 0.1563 0.2603 0.1129 0.0462 0

Step 10 According to the formula (5), the positive outranking flow ¢*(«a;) and the
negative outranking flow ¢(a;) of each alternative can be calculated.

¢ (a1)=0.1517, ¢* (ay) = 0.1008, ¢* (a3 ) = 0.2554, ¢* (ay ) = 0.1733,
¢* (as)=0.2264, ¢* (as) =0.17967, ¢* (a;) =0.1658, ¢* (ag) = 0.1603.
¢~ (a)=0.0892, ¢~ (a) =0.2913, ¢~ (a3 ) = 0.1649, ¢~ (a, ) = 0.2888,
¢~ (as)=0.2260, ¢~ (a5 ) =0.1090, ¢~ (a;) = 0.0703, ¢~ (ag) = 0.1737.
Step 11 Then, we can get the net flow of each alternative as
P(a) =0.0624, p(ay) =-0.1906, ¢(az ) = 0.0905, #(ay ) =—0.1155,
#(as)=0.0004, ¢(as ) =0.0706, ¢(a;) = 0.0955, ¢(az) =—0.0134.

Following this, the ranking result of the alternatives can be obtained as:
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a; >az >deg > A > ds > ag > dq > Aay.

To illustrate the rationality of the proposed method, we further use some other methods to
deal with the above example.

1  Based on the score matrix S obtained above, a simple method is to directly carry out
weighted average of the score values of the alternatives under each criterion. By
comparing the comprehensive score values of the alternatives S(a;) = 0.6106,

S(az) = 0.5866, S(az) = 0.6275, S(as) = 0.6042, S(as) = 0.6239, S(as) = 0.6161,
S(a7) = 0.6238, S(as) = 0.6226, we can get the alternatives ranked as:

ay > as >ay >dag > dg > a1 > dg > Aay.

Compared with the ranking results obtained by the method in this paper, the
difference between them is obvious. In particular, the optimal alternative obtained
from the two methods are different, one is alternative as, while the other is a;. The
main reason is that the method proposed in this paper considers the influence of the
decision makers’ subjective psychological characteristics.

2 If we carry out comprehensive evaluation information aggregation of the alternatives
on the basis of the extended prospect value matrix V, the comprehensive extended
prospect values of the alternatives can be obtained ¥(a;) =—0.0053, V{az) =—-0.0739,
(as) = 0.0042, V(as) =-0.0503, V(as) =—-0.0234, V(as) =—0.0032, V(a7) = 0.0033,
V(as) =—0.0252. Thus, the ranking result of the alternatives is

ay > a; >de > > Aas > ag > a4 > Ady.

The difference between this ranking result and that obtained by the proposed method
lies only in the order relationship between alternatives a3 and a7. The main reason for
this difference is that the proposed method not only considers the influence of
decision makers’ subjective psychology, but also avoids the complete
compensability among criteria by introducing the PROMETHEE method.

3 On the basis of the score matrix S, the reference points of classic PT can be used to
get the prospect value matrix
—0.1107 -0.0352 0.0489  0.0435
—-0.2878 0.0377  0.0010 -0.0198
0.1642 -0.1233 -0.1107 -0.2075
—-0.2020 -0.2245 0.0010  0.1597
0.0067  0.1549 -0.0034 -0.2982 |
—-0.0034 0.0793 -0.2020 -0.1225
0.0475 —-0.0352 0.0489 —0.0198
0.0475 —-0.2245 0.0489  0.0846

Similar to the proposed method, the net flow of each alternative can be obtained by
PROMETHEE method ¢(a;) = 0.0313, ¢(az2) =-0.1589, ¢(as) =—0.0334,

Has) =—-0.1998, ¢as) = 0.0519, ¢as) = 0.0639, &a7) = 0.1755, ¢as) = 0.0695.
Thus, the ranking result of the alternatives can be obtained as:
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a; >dag >deg > As > Ay > Az > Ay > dg.

Although the optimal alternative is the same, the ranking results obtained by this
method and the one proposed in this paper are obviously different. The main reason
is that the reference intervals-based EPT is adopted in this paper, while the reference
points-based PT is adopted in above method.

4  Based on the score matrix S, similar to some existing methods (Kahneman and
Tversky, 1979), we further take the value function of PT as the preference function
of PROMETHEE, and the net flow of each alternative can be obtained as
Ha) =—0.0685, ¢az) =-0.1284, ¢az) =—0.0514, ¢as) =—0.1049,\ ¢as) =—-0.0546,
M as) =—0.0537, a7) =—-0.0235, ¢(as) =—0.0398. From this, all the alternatives can
be ranked as:

a; >dag > az >de > As > Ay > dg > Aay.

The ranking results obtained from the two methods also have obvious differences. In
contrast to the method proposed in this paper, this method introduces PT in the
pairwise comparison of the evaluation information, that is, the reference points of
each comparison are different. However, in line with the principle of uniformity, all
the alternatives should have a common reference point under one criterion.

Through the above analysis, the advantages of the proposed method are not only the
combination of PT and PROMETHEE method, but also the extension of the reference
point of traditional PT to the reference interval, which can more objectively reflect the
actual decision situation, so as to get more reasonable decision results.

8 Conclusions

For the ranking of ITFNs, a novel score function of ITFNs is defined in this paper.
Compared with some existing ranking method, it has better distinguishing effect and
robustness. In order to depict the similarity relationship between two ITFSs, the cosine
similarity measure of ITFSs is defined, and the properties are proved. Aiming at the lack
of consensus analysis in the existing ITFMCGDM methods, this paper defines the
consensus measure on three levels based on the defined similarity measure. For the group
consensus level unachieved the threshold, a programming model is constructed to assure
that the amount of adjustment is minimal. Considering the interactions among the criteria,
the optimal 2-additive measures of the criteria are obtained by the programming model,
and the corresponding Shapley values are further obtained as the weight of the criteria. In
addition, to reflect the influence of decision makers’ subjective psychological
characteristics, the EPT is introduced, which is characterised by changing the reference
points of the classical PT into the reference intervals, so as to be more consistent with the
actual decision situation. On the basis of the extended prospect value matrix, the ranking
results of the alternatives are obtained by PROMETHEE method. Finally, the application
of the proposed method is illustrated by an example of social capital parties’ selection in
the reform of public pension institutions, and the comparison with some other methods is
introduced. The limitation of the proposed method lies in that some parameters involved
in the determinations of the reference intervals and the value function within the
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reference intervals are given by DMs. In order to further popularise the application of the
method, it is necessary to combine the theory of psychology and behavioural science to
determine the parameters experimentally.
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