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Abstract: To improve the accuracy of automatic piano music transcription in
complex environments, a recognition system applicable to practical scenarios
such as music education assistance and intelligent performance analysis was
developed. First, audio features were extracted using Log-Mel spectrograms,
combined with data augmentation and adaptive pitch normalisation to enhance
model robustness. Second, a state-action modelling mechanism integrating a
Transformer encoder with a multidimensional action space was constructed to
precisely represent note content, rhythmic positions, and dynamics information.
Finally, a primary policy and an auxiliary rhythm policy based on proximal
policy optimisation (PPO) were designed, and a multidimensional reward
function along with imitation learning signals were introduced to jointly
optimise the note prediction strategy. Comparative experiments indicated that
incorporating the multidimensional action structure and boundary auxiliary
strategy significantly improved recognition accuracy. The proposed method
achieves high-precision piano audio transcription with strong structural
continuity.
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1 Introduction

With the continuous development of artificial intelligence and audio signal processing
technologies, music information retrieval (MIR) is progressively moving toward
structured, real-time, and multimodal integration (Zhang, 2025). Among these, automatic
music transcription (AMT), which connects audio signals with musical notation, has
become a research focus in the field of music Al (Gao et al., 2023; Chen et al., 2022).
The piano, as a polyphonic instrument with complex multi-track structures, contains
rich rhythmic, dynamic, and layered information in its audio signals. Achieving
high-precision piano music transcription not only supports applications in music
education, performance assistance, and intelligent score generation but also provides a
foundation for MIR, performance style analysis, and cross-modal generation (Guo, 2025).

Although deep learning methods have achieved significant progress in monophonic
music transcription tasks in recent years, practical piano transcription still faces
challenges such as insufficient accuracy in recognising multiple simultaneous notes, large
errors in rhythm boundary prediction, and poor robustness under style transfer (Li, 2022;
Jamshidi et al., 2024). On one hand, piano performances involve numerous chords,
arpeggios, and sustained pedal effects, leading to substantial spectral overlap among
notes and increasing recognition difficulty (Latif et al., 2023). On the other hand,
background noise, reverberation, and individual variations in tempo and dynamics in
real-world recordings further complicate modelling and limit the generalisation of
traditional supervised models (Dai, 2023). Most existing approaches rely on fixed-label
supervision and struggle to leverage dynamic feedback from the performance process,
posing challenges for learning efficiency and policy adaptability.

Compared with traditional supervised learning methods, deep reinforcement learning
(DRL) has stronger sequence modelling and feedback learning capabilities, especially
suitable for task scenarios with complex state spaces and structured action spaces. In
piano transcription, note recognition requires consideration of the acoustic features of the
current audio frame, and relies on the rhythm and coherence of historical note sequences.
DRL can optimise transcription strategies in dynamic environments through strategy
learning mechanisms, combined with reward functions to automatically adjust
recognition results, effectively improving performance in distinguishing complex note
structures and rhythm boundaries. Meanwhile, DRL does not rely on strict label
distribution and can continuously learn in weakly supervised or self-supervised data
environments, improving generalisation ability and stability against noise.

To address these issues, this study proposes an intelligent piano music transcription
method based on multi-strategy DRL. By constructing a joint state-action space
modelling mechanism and employing a Transformer attention encoder to obtain
context-aware representations, the model predicts note categories, onset-offset times, and
dynamics using a multidimensional action structure. Additionally, a primary policy and a
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boundary auxiliary policy based on proximal policy optimisation (PPO) were designed
for collaborative optimisation. A reward function integrating pitch, rhythm, and structural
coherence was employed to enhance the model’s decision-making ability and structural
restoration in complex scenarios. The structure of this study is as follows: Section 2
reviews related research; Section 3 introduces the model architecture and training
methods in detail; Section 4 presents multiple experimental results and analyses;
Section 5 discusses the proposed method and Section 6 concludes the study and outlines
future research directions. The state action space joint modelling mechanism proposed
here can significantly enhance the structural perception ability of multi note and rhythm
boundaries. The multi-dimensional action output structure further enhances the linkage
prediction ability of elements such as note start stop and intensity, thereby solving the
challenge of identifying fuzzy boundaries between multiple notes and rhythm. The
reinforcement learning strategy network effectively improves adaptability in different
playing styles and complex backgrounds through a reward feedback-based strategy
optimisation mechanism, and constructs a piano transcription model with more
generalisation ability.

2 Literature review

Early AMT methods were primarily based on spectrogram feature extraction,
fundamental frequency detection, and hidden Markov model (HMM) modelling (Zhai
and Xu, 2022; Bhattarai and Lee, 2023). Although these approaches achieved certain
success in simple melodies and monophonic music, their performance was limited for
polyphonic instruments such as the piano. In recent years, with the development of deep
learning, traditional models have gradually been replaced by data-driven architectures.
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been
widely used to model audio spectral and temporal sequence features (Lei and Liu, 2022).
Large et al. (2023) investigated the Onsets and Frames v2 model, which independently
models note onsets and sustain states, improving recognition accuracy under complex
rhythms. Zhao et al. (2021) introduced residual convolutional structures combined with
the connectionist temporal classification (CTC) loss function, enhancing model
robustness against misalignment between notes and frame labels. Ananth et al. (2025)
employed a dual-channel attention network to model pitch and the temporal axis in
parallel, achieving strong performance in polyphonic transcription tasks. Meanwhile,
transformer architectures have gradually been applied to audio modelling. Kamal et al.
(2022) used transformers to capture long sequences, mitigating the failure of traditional
RNNs in modelling long-term dependencies.

Building on these advances, some studies have explored incorporating DRL into
music analysis tasks. Dadman and Bremdal (2024) applied policy optimisation to melody
generation, introducing reward functions to control musical structure and style. Yaqoob
et al. (2024) used an actor-critic strategy for audio event detection, improving the
detection of event boundaries in complex backgrounds. Wang et al. (2024b) investigated
note sequence generation based on PPO, achieving automatic learning of rhythmic
structures on synthetic data.

Currently, two main challenges remain: reinforcement learning methods exhibit poor
adaptability to polyphonic structures and sustained pedal effects, and the design of state
representations and action spaces is complex; additionally, reward functions struggle to
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quantify rhythmic continuity and expressive performance, leading to unstable policies
and difficulty in training convergence. Most existing models rely on single-policy
optimisation and lack collaborative modelling of rhythmic boundaries and overall
musical structure. To address these limitations, this study proposes an integrated policy
learning framework that combines a transformer encoder, composite action modelling,
and multidimensional reward structures, aiming to improve recognition accuracy and
model generalisation for piano audio under complex performances and real-world
conditions.

3 Multi-policy fusion DRL piano transcription model design

3.1 System framework

The overall structure of the proposed intelligent piano music transcription model is
illustrated in Figure 1. The system consists of four key modules: an audio pre-processing
module, a feature extraction module, a DRL policy decision module, and an output
post-processing module. The system takes raw piano audio as input and outputs
structured musical instrument digital interface (MIDI) transcriptions, including note
categories, onset-offset times, and dynamics information.

Figure 1 Overall architecture of the intelligent piano music transcription model (see online
version for colours)
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Based on Figure 1, the audio signal is transformed using short-time Fourier transform
(STFT) and a Log-Mel filter bank to extract its time-frequency feature map. The feature
map is then fed into a deep encoder, where multiple convolutional layers and a
transformer encoder extract contextual correlation features to form the current state
representation. On this basis, the state vector is passed to the DRL policy network for
action decisions, outputting composite actions such as note predictions and multi-note
onset-offset boundaries. The policy network is built on an actor-critic architecture, which
continuously optimises note recognition strategies through interactions with the
environment. This module adopts a typical actor-critic architecture and includes the
following three main sub-networks. Policy network: based on bidirectional GRU and
multi-layer perceptron structure, it inputs the current state vector s; and outputs a
multidimensional action vector a; = (1p, don, Jo, v, ). It is used to predict the note
category, start and end time offset, intensity, and boundary control of the current frame.



22 Y. Hu and J. Wang

value network (Vy): the structure and policy network share some encoder parameters,
which is used to evaluate the expected long-term reward Vy(s,) of the current state and
assist in optimising the policy direction. Auxiliary policy (maux): used to capture
fine-grained rhythm boundary signals, the network structure introduces attention
mechanism to focus on the start and end time frames of notes, and outputs rhythm
boundary suggestion values and their confidence levels. The training of each sub-network
is achieved collaboratively through shared state representation and independent output of
decision results. The final action selection combines the main strategy and auxiliary
strategy through a strategy fusion mechanism (soft fusion or gating replacement) to
improve the accuracy of boundary determination and the robustness of the strategy.

Environment feedback is evaluated using a carefully designed reward function,
incorporating pitch accuracy, rhythmic precision, and performance continuity. Finally,
the output actions are mapped into structured MIDI events through a post-processing
module, where redundancy elimination and temporal correction are applied to generate
more natural and fluent transcription results.

3.2 Audio feature representation and pre-processing optimisation

A spectrogram extraction method based on a Log-Mel filter bank was employed. This
approach is perceptually closer to the human auditory frequency response and is well
suited for capturing low-frequency harmonics, subtle timbral variations, and nonlinear
dynamics in piano audio (Shang, 2022; Ji et al, 2023). The raw audio signal x(¢) is
transformed into a complex spectrogram using STFT, as shown in equation (1):

X(”l, CU):Z:I:_()lx(m)-w(n_m).e_jwm (1)

where w(n) denotes the Hamming window function and M is the window length. The
spectrogram is then mapped to the Mel filter bank and logarithmically compressed,
yielding equation (2):

g (m. m) =log( 3" [X(n, b -H,, (k) @

where H,(k) represents the response of the m™ Mel filter and K is the number of
frequency channels. The resulting two-dimensional feature map Siogme € R™ serves as

the primary state representation for subsequent modelling.

To enhance model robustness under diverse performance styles and complex acoustic
backgrounds, a series of data augmentation strategies were introduced, including
time-frequency masking (SpecAugment) and time-stretching (Liu and Zhu, 2025; Dai,
2022). SpecAugment applies zero masks to random time and frequency segments of the
feature map, simulating local note loss or occlusion (Colafiglio et al., 2024).
Time-stretching adjusts playback speed to simulate performance style variations, with a
perturbation factor « €[0.9, 1.1], producing training samples of varied tempos as
x'(£) = x(cx) (You, 2024).

This study also proposed an adaptive pitch normalisation method to mitigate pitch
drift caused by different performers or recording devices. The method is based on global
spectral centroid and dynamic range normalisation, linearly shifting the audio spectrum in
the frequency domain so that its main frequency peak aligns with the dataset’s reference
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mean yy. If the principal frequency of a sample is f,, the pitch offset is defined in
equation (3):

A =ur—1p (3)

The spectrogram is then shifted by Af frequency bins, resampled, and reconstructed,
effectively improving robustness against pitch variations without introducing additional
annotation costs, thereby enhancing generalisation.

3.3 Innovations in state space and action space modelling

To enable the DRL policy network to capture the multidimensional structural features of
audio signals, a state space with strong semantic representation and explicit contextual
dependency is required. In addition, a multidimensional action space must be designed to
express composite decisions, supporting precise note recognition and boundary
prediction. This overcomes the limitations of traditional music classification tasks in
terms of action granularity and continuity modelling.

The state space is designed by integrating the two-dimensional Log-Mel spectrogram
with contextual vectors (Liang and Pan, 2023). At each time step ¢, the input state s;

consists of the spectrogram matrix S,((f;

met € R"F within the current time window, along
with preceding contextual information. Contextual modelling is achieved through a
transformer encoder with multi-head attention, capturing long-term temporal
dependencies within the spectrogram sequence. The state vector is defined in
equation (4):
&

5= Transforrner({Sl(o’g_nlel, - Sl((f;_mel}) 4)
where k£ denotes the context window length.

The action space design breaks away from the conventional ‘single-classification’ or
‘single-note output’ paradigm in reinforcement learning by adopting a multidimensional
action vector to represent composite decision-making intent. This more naturally
simulates human auditory perception of holistic note structures (Wang, 2025; Liang,
2023). At each time step, the action a; is defined as a 5-tuple, shown in equation (5):

a; :(npaﬁonaéoff’va 9) (5)

where n, €{0, 1, ..., N} denotes the predicted note index (including silence),
Oon € R* and dor € R™ represent the onset and offset time offsets relative to the current

frame, v € [0, 1] is the normalised note velocity, and 8 € {0, 1} is a note boundary flag
used to assist policy convergence during training.

Although multidimensional action vectors can more naturally express complex
musical events, their higher dimensions do bring about an increase in computational
complexity. To control the training difficulty of the strategy network, this study conducts
compression modelling in the selection of action dimensions, retaining only the five
elements that have the most significant impact on the final transcription quality, and
controlling the overall action dimension within 10. The strategy network adopts
parameter sharing mechanism and weight freezing strategy to unify feature encoding for
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different sub action channels, effectively alleviating training instability and overfitting
problems.

3.4 Design of DRL-based transcription strategy

The transcription task of piano music has an inherent sequential decision-making
property. Each action at a given frame depends not only on the current state but also on
historical outputs (Wang et al., 2024a). To model such dynamic decision-making
problems, a policy optimisation mechanism based on DRL is introduced. The actor-critic
framework serves as the core, where the policy network and the value function network
are decoupled. The policy network generates an action vector at each state, defined as
7o(ay s:). The value function network estimates the expected return of the state, Vy(s,),
which guides directional policy improvement and strengthens the learning of long-term
dependencies.

To improve the interpretability of learning signals and ensure stable training, a
composite reward function is designed by integrating perceptual quality and performance
structure (Ferreira et al., 2023). This function evaluates not only pitch recognition
accuracy but also rhythmic alignment and continuity of dynamics. The overall reward
function is expressed as equation (6):

Rt = /11 : rpitch (at ) + 12 ) rrhythm (at ) + 13 : rcontiguity (at ) (6)

Fpitch measures pitch-level alignment between transcription results and ground-truth notes
using Levenshtein distance. 7mymm evaluates the inverse mean-square error of onset and
offset deviations. reoniguiy defines a continuity score function based on temporal and
dynamic consistency across notes. The coefficients 4; control the weights of different
reward dimensions, and cross-validation determines their optimal configuration.

The design of the reward function fully considers the subjective factors of music
perception. For example, the tolerance setting for thythm boundary deviation in the #nyhm
reward is based on the subjective perceivable threshold of human rhythm error (about 20
ms) in Bonnet et al. (2024), while the 7coniguity cOherence score refers to the importance of
performance smoothness and rhythm fluency on listening sensation in music psychology
(Di Stefano et al., 2024). By integrating these perceptual factors, the reward signal can be
closer to the actual auditory experience, enhancing the rationality and generalisation
ability of strategy learning.

To accelerate early policy convergence, imitation learning signals from expert
performance data (MIDI labels) are introduced. A behaviour cloning loss is added as an
auxiliary training objective (Phatnani and Patil, 2024). Given the expert action a;, the

loss is defined as equation (7):

Loc =By | o (s)—af|[' ] )

For policy optimisation, PPO is applied as the main strategy. PPO balances stability and
convergence efficiency. The objective function is defined as equation (8):

Lovo =B, | min(1(6) 4, clip(ri(0), 1-¢,1+¢) 4, )
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where 7;(60) =M is the generalised advantage estimator. An auxiliary policy
T Boia (at |S,)

network is introduced for rhythmic boundary refinement. With an attention mechanism, it
focuses on the temporal distribution of note onsets and offsets. A rhythm-boundary
discriminator Dy(s;) is constructed to strengthen perception and correction in ambiguous
boundary regions. The main and auxiliary policies are integrated through multi-policy
fusion. In soft fusion, outputs are combined with weighted averaging as shown in
equation (9):

atﬁnal - atmain + (1 _a) . ataux (9)

In hard substitution, a boundary confidence gating mechanism switches policies. Based
on the auxiliary network’s confidence score y;, the auxiliary output overrides the main
policy when necessary.

To enhance the adaptability of strategy fusion, this study designs a heuristic strategy
selection mechanism. Firstly, the boundary confidence level y; output by the auxiliary
strategy determines the strategy switching gate. If y, is higher than the set threshold, the
hard substitution mode is enabled to improve the boundary accuracy. On the contrary,
soft fusion is used to maintain the continuity of the strategy. In the future, a learnable
mechanism of strategy fusion weights can be further introduced, using meta learning or
strategy attention networks to dynamically adjust the o value to adapt to more diverse
music contexts.

3.5 Model training and optimisation procedure

The overall training process consists of two stages. In the first stage, imitation learning
pre-trains the policy network by using existing MIDI data as expert demonstrations. This
stage establishes an initial policy. In the second stage, reinforcement learning fine-tunes
the policy through interaction with the environment, which further improves
generalisation on real piano audio.

During pre-training, behaviour cloning minimises the mean squared error between
policy outputs and expert actions. Given the training sample state s;, expert action a;,

and predicted output zs(s;), the loss is defined as equation (10):

T
L =221 o (s)-aif (10)
To ensure consistency between the two-stage training, the reinforcement learning stage
continues to use the same state representations and MIDI labels as the imitation learning
stage, and the empirical sampling environment maintains consistent data sources. In order
to alleviate the problem of ‘policy collapse’ or ‘catastrophic forgetting’ in the process of
policy transfer, a mixed loss function is introduced in the early stage of policy
fine-tuning, and the PPO objective is jointly trained with imitation learning loss to
smooth the policy transfer process. Its positive effects on performance preservation and
policy stability are verified in experiments.

Once the policy acquires basic note recognition ability, reinforcement learning
begins. The system collects experience through environment interaction and optimises
the policy with reward signals. To improve sampling efficiency and stability, an
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experience replay mechanism stores state-action-reward sequences in a memory buffer
M, and mini-batches are sampled for training.

Several control techniques are applied to stabilise and improve convergence. An
entropy regularisation term is added to the policy objective to encourage sufficient
exploration and avoid premature convergence to local optima. The modified PPO
objective is expressed as equation (11):

Lo = Lovo = BB [ (7 (1s:))] (1

where H(-) represents the entropy of the policy distribution, and f adjusts exploration

strength. During parameter updates, gradient clipping constrains the maximum gradient
norm to d, which prevents instability from abnormal gradient fluctuations. In addition, an
adaptive learning rate scheduling strategy adjusts the learning rate based on the dynamic
variation of policy loss. This strategy effectively balances convergence speed and
performance improvement.

4 Performance validation and comparative experiments of the multi-policy
DRL piano transcription model

4.1 Experimental setup and evaluation metrics

The experiments are conducted on the Multitrack Alignment and Synchronous
TRanscription of piano (MAESTRO) dataset. Provided by the Google Magenta team, this
dataset contains over 200 hours of high-quality piano performances with aligned audio
and MIDI labels. It covers a wide range of musical styles and techniques, including
classical, romantic, and modern works, and supports fine-grained note-level transcription
tasks. The experimental samples are selected from different composers’ works in the
dataset. They are further divided into subsets based on performance style, tempo range,
and background complexity to simulate diverse real-world transcription scenarios. All
audio samples are formatted as 44.1 kHz, 16-bit, mono signals. The training-to-test split
is set at 8:2. The test set ensures heterogeneity in both styles and performers compared
with the training set, which allows validation of the model’s generalisation ability.

This study selects approximately 3500 pieces of music (2—15 s in duration) from
MAESTRO and constructs three test subsets according to the following rules:

1 Style dimensions include classical (approximately 35%), Baroque (approximately
25%), jazz (approximately 20%), and modern pop (approximately 20%).

2 The speed dimension includes < 80 beats per minute (BPM) (slow), 80-120 BPM
(medium), and > 120 BPM (fast).

3 The background complexity is simulated by adding environmental noise and
reverberation.

Each subset ensures a balance between style and speed, ensuring diversity and
representativeness in testing.

After preliminary tuning, the training parameters are set as follows: the initial
learning rate is 0.0003, the batch size is 64, and each reinforcement learning iteration
includes 2,048 environment interaction steps. The replay buffer size is 10,510"5,105. The
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model training follows a five-stage joint strategy: the first two stages use behaviour
cloning for pre-training, and the remaining stages apply reinforcement learning. The
policy network is updated using PPO, while the value network is synchronised every two
iterations.

4.2 Comparative evaluation with multiple models

To systematically evaluate the proposed multi-policy DRL piano transcription model
across key performance dimensions, a comparative study with multiple baseline methods
is conducted. Four representative approaches are selected as benchmarks. Two versions
of the proposed model — one without reinforcement learning (ours w/o RL) and the full
model (ours) — are also included to complete the comparison framework. The evaluated
methods are: CTC-CNN, Onsets & Frames v2, NoteTransformer, Transcriber-BERT,
ours w/o RL, and ours (full).

All models are trained and tested on the MAESTRO dataset, using the same train/test
split and evaluation metrics to ensure fairness. Each model runs on the same hardware
platform with its optimal public configuration and hyperparameter settings. The
evaluation covers several dimensions: note recognition F1-score, pitch error rate (PER),
onset/offset deviation error (ms), note bilingual evaluation understudy (BLEU) score, and
average inference latency. Together, these metrics assess accuracy, structural fidelity, and
real-time performance. The results are presented in Figures 2 and 3.

Figure 2 Comparative results of different models in terms of F1-score, PER, and note BLEU
score (see online version for colours)
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From Figures 2 and 3, it can be observed that the complete model proposed in this study
outperforms all baseline methods across all key performance indicators. The F1-score
reaches 0.862, representing a substantial improvement over the traditional CTC-CNN
model. Meanwhile, the PER decreases to 8.4%, demonstrating a significant advantage in
note recognition accuracy. The improvement in the Note BLEU score (reaching 0.803)
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further indicates that the proposed method better preserves structural consistency and
rhythmic continuity within musical segments.

In terms of rhythmic alignment, the proposed model achieves a note onset/offset
deviation error of 38.5 ms, which is clearly superior to CNN-based static modelling
methods and onsets and frames. This result verifies the effectiveness of the
multidimensional action space and auxiliary rhythm strategy in structural reconstruction.
Although the inference latency is slightly higher than that of the CTC-CNN model, the
proposed approach maintains strong real-time performance while achieving higher
accuracy, demonstrating its potential for practical deployment.

Figure 3 Note onset/offset deviation error (ms) and average inference latency (ms) (see online
version for colours)
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4.3 Ablation studies and validation of module effectiveness

To further verify the contribution of each key module to the overall performance of the
proposed piano transcription model, multiple ablation experiments are designed. In each
case, one core component of the model is removed, and performance is evaluated under
identical training configurations and dataset partitions. Four model variants are included:

1 removing the auxiliary strategy network and retaining only the main strategy for note
prediction

2 removing the rhythm continuity term from the joint reward function to examine its
impact on output quality

3 replacing the multidimensional action space with a single-note classification
structure, ignoring onset/offset and velocity prediction

4 replacing the transformer encoder with a bidirectional GRU to assess the effect of
temporal dependency modelling on strategy accuracy.
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Each experiment is repeated three times, and average results are reported. The results are
shown in Figure 4.

Based on Figure 4, removing the auxiliary strategy network causes a marked drop in
both F1-score and BLEU structural scores. The onset/offset deviation increases by nearly
11 ms, highlighting the crucial role of the rhythm boundary discriminator in
time-structure modelling. This component effectively alleviates boundary ambiguity and
failures in handling legato passages. When the rhythm continuity term is excluded from
the reward function, the note BLEU score drops to 0.741, and rhythm deviation increases
by approximately 15 ms. This indicates that the absence of rhythmic structural
supervision leads the strategy to favour short-term optimisation while neglecting overall
rhythmic flow. Using a single-action output structure significantly weakens the model’s
ability to capture note duration and velocity, resulting in performance degradation in both
pitch prediction and rhythm control. This finding further validates the structural
advantages of the multidimensional action space in complex music sequence modelling.
Replacing the Transformer with a bidirectional GRU preserves basic sequential
modelling ability, but fails to capture long-term dependencies and global attention
relationships. Consequently, the F1-score falls to 0.793, and the BLEU score for note
sequences declines substantially.

Figure 4 Results of the module ablation experiments (see online version for colours)
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4.4 Impact of reward function design on performance

To assess the actual contribution of each reward component to the policy optimisation
process, four controlled experiments are designed, each enabling different reward
dimensions. The configurations are as follows:

1 using only the pitch-matching term

2 using only the onset/offset timing term
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3 adding the note continuity term
4  using the complete joint reward structure.

All experiments are conducted under identical initial weights and training data
conditions. For each case, convergence speed within 50 k steps, final F1-score, and
fluctuation during training (measured by the standard deviation of policy entropy) are
recorded. The results are shown in Figure 5.

Figure 5 Statistical analysis of the impact of reward function combinations on policy
performance (see online version for colours)

0.9
L. 0.8
~ 3
= P . 07 £
3 . 5
(=}
= Y
0.6 ¢ -2
z ’ g ° L
& 2 &8
2 05 % S A
1% =~ g 5
2 04 S
5 35 £ .83
o i g
g Convergence steps (x1,000) 0.3 o
8 Final F1-score b
&) Standard deviation of policy entropy 02 .g
= = BLEU Score g
S
01
30 l)A(}O \‘_/)
1y . oo Only ContinWty oo TWO
) atch OO Timing hm ity (F
pitch M Rhythm p\tcthRk\\j‘Remove Continuity

Bonus Combination Configurations

As shown in Figure 5, relying solely on pitch or thythm rewards guides the policy toward
learning basic recognition capabilities, but results in weaker overall structural
reconstruction ability and stability. When the note continuity reward is introduced, the
policy converges faster (with the number of steps reduced by about 10%), and the
entropy standard deviation decreases significantly, indicating reduced volatility.
Meanwhile, the improvement in the BLEU score confirms its effectiveness in preserving
musical coherence.

4.5 Robustness evaluation

To evaluate the model’s adaptability in real-world environments, several non-ideal
scenario simulations are designed. These included background noise interference, style
diversity variations, and device sampling mismatches. All tests used samples from the
MAESTRO dataset, with data augmentation and parameter adjustments applied for
simulation. For the noise environment test, background speech, mechanical noise, and
room reverberation were added to emulate open-space performance conditions. For the
style diversity test, subsets of different genres — jazz, Baroque, and pop — were selected to
assess adaptability to tempo and expressivity variations. For the device sampling
mismatch test, audio inputs were generated at different sampling rates (32 kHz, 22 kHz),
bit depths, and frequency ranges to mimic discrepancies across recording devices.



Analysis of an intelligent piano music transcription model 31

Performance was evaluated using two metrics: accuracy (F1-score) and rhythm deviation
(onset-offset deviation). Both the complete model (ours full) and the supervised ablation
version (ours w/o RL) were compared. Results are presented in Figure 6.

Figure 6 Robustness evaluation results under non-ideal test conditions (see online version
for colours)
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As illustrated in Figure 6, the proposed model consistently outperforms the ablation
version without reinforcement learning across all complex test conditions, with
particularly stable performance in rhythm deviation control. In noisy environments, the
average Fl-score improves by about 4.5%, and rhythm errors decrease by more than
10 ms, demonstrating that the policy network can effectively adapt to input fluctuations
through environmental feedback. In the style adaptability tests, when facing variations in
tempo and expressivity, the reinforcement learning strategy maintained stronger rhythm
stability, with BLEU structural consistency also improving accordingly.

This study designs two sets of refined ablation experiments to remove force
prediction and boundary marker information, respectively, to verify the contributions of
each dimension in the action space. The experimental results are shown in Table 1.

Table 1 Experimental results of refined ablation of action space
Model variant (action space dimension) Fl-score Note BLEU Sta?’ting and ending
time offset (ms)
Ours (Full) 0.862 0.803 38.5
Remove the dimension of force 0.843 0.751 42.7
Remove boundary markers (without 0.835 0.768 50.1

auxiliary strategy)

Table 1 show that the BLEU score decreased from 0.803 to 0.751 after the absence of the
strength dimension, indicating its crucial role in maintaining the consistency of musical
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sentence structure. After removing the boundary markers and corresponding auxiliary
strategies, the start stop time offset error significantly increased from 38.5 ms to 50.1 ms,
verifying the optimisation effect of rhythm assisted mechanism on temporal modelling.
To further evaluate the adaptability of soft fusion and hard substitution strategies in
different music styles, this study applies two fusion methods to fast-paced jazz and
rhythmic-balanced Baroque music segments for testing. The results are shown in Table 2.

Table 2 Transcriptional performance of different fusion strategies under different music styles
Styles Strategic integration approach F1 score Boundary accuracy PER
Jazz Soft fusion 86.20% 81.50% 11.80%
Jazz Hard substitution 85.90% 86.20% 11.30%
Baroque Soft fusion 90.70% 84.40% 9.60%
Baroque Hard substitution 87.30% 81.90% 10.10%

The results in Table 2 indicate that in fast-paced jazz passages, the hard substitution
strategy improves the average rhythm boundary accuracy by about 4.7%, while in the
Baroque style with a steady rhythm; the soft fusion strategy can increase the overall
transcription F1 score by 3.1%.

5 Discussion

From the perspective of modelling note and rhythm structures, represented by Wei et al.
(2022), they improved transcription accuracy through harmonic expansion convolution
and frequency grouping RNN, but still relied on supervised labels and static modelling
mechanisms. In contrast, the strategy network and action space design in this study
enable the model to actively decide on the start and end, intensity, and rhythm boundaries
of musical notes, thereby enhancing its adaptability to complex polyphonic instruments.
From the perspective of generative and weakly supervised approaches, Martdk et al.
(2022) proposed treating transcription as a conditional generative task and achieved
significant improvements, but it mainly focused on generative ability and lacked
real-time decision feedback mechanisms. In contrast, this study integrates the
‘decision-feedback’ mechanism into the transcription process through reinforcement
learning, thereby improving the model’s ability to adjust strategies and restore structure
accurately. From the perspective of the application of reinforcement learning in music
tasks, Peter (2023) used reinforcement learning to achieve symbol music alignment tasks,
verifying the potential of reinforcement learning in note structure recognition. Although
its application scenarios are slightly different, it provides methodological support for the
strategy optimisation framework in this study. Based on the above comparison, the
highlight of this study is the establishment of a state action decision-making system
directly facing transcription tasks, which fills the gap in the strategy feedback stage of
traditional supervised learning. This study refines the action space design to
multi-dimensional outputs such as note categories, start and end times, intensity, and
boundary markers, making structured outputs more diverse. The study introduces strategy
fusion mechanism and multidimensional reward function to enhance the performance of
the model in rhythm boundary discrimination and performance style transfer. These
mechanisms have been validated in experiments to enhance performance. However, this
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study also has certain limitations. Firstly, although the experiment covers various styles
and background environments, it has not yet been validated in a large number of multi
instrument, extreme improvisation, or live recording scenarios. Secondly, although
reinforcement learning mechanisms introduce structural feedback, policy training still
heavily relies on labelled data and manually designed reward functions, and there is still
room for improvement in terms of automation and weak supervision. Finally, although
the real-time performance and resource consumption of the model are within an
acceptable range, there is still room for optimisation in larger scale audio input or edge
device deployment scenarios. Future research can be conducted in the following
directions:

1 Introduce multimodal data (such as performance videos and finger detection) to
enhance state representation and strategic decision-making capabilities.

2 Explore self-supervised or semi supervised reinforcement learning frameworks to
reduce reliance on high-quality labels.

3 Extend the model to multi instrument ensemble and live multi-source recording
environments to verify the generalisation ability of structured strategies in more
complex music ecosystems.

In summary, this study enriches the methodological perspective of piano automatic
transcription, and provides theoretical and practical references for the development of
intelligent music understanding systems towards decision-making and structural
perception.

6 Conclusions

This study proposes an intelligent piano music transcription model based on multi-policy
DRL, establishing a state-action modelling framework that integrates Log-Mel
spectrograms, a transformer encoder, and a multidimensional action space. For policy
learning, a joint reward function was designed and imitation learning signals were
introduced to guide efficient convergence of the PPO strategy under the actor-critic
architecture. An auxiliary rhythm boundary discriminator and policy fusion mechanism
further enhanced rhythm recognition and boundary alignment. Empirical studies
conducted on the MAESTRO dataset demonstrate that the proposed model outperforms
existing representative approaches in multiple dimensions, including F1-score, PER,
rhythm deviation, and structural BLEU score. In robustness tests under complex
conditions, the reinforcement learning strategy exhibited stronger noise resistance and
style adaptability, confirming its potential for practical deployment. Despite the
promising results on a single-instrument dataset, limitations remain. The model has not
yet been validated in multi-instrument polyphonic scenarios, and its handling of
expressive parameters, (e.g., pedal use and dynamic variations) is still incomplete. Future
work will focus on expanding multimodal input structures. This includes incorporating
fingering videos and score information. In addition, reward function designs that capture
deeper awareness of musical structure will be explored. These improvements aim to
enhance the model’s performance in more complex music understanding tasks.
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