
 
International Journal of Information and Communication
Technology
 
ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

 
Analysis of an intelligent piano music transcription model by
deep reinforcement learning
 
Yan Hu, Jing Wang
 
DOI: 10.1504/IJICT.2026.10075844
 
Article History:
Received: 29 September 2025
Last revised: 07 November 2025
Accepted: 10 November 2025
Published online: 02 February 2026

Powered by TCPDF (www.tcpdf.org)

Copyright © 2026 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2026.10075844
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   18 Int. J. Information and Communication Technology, Vol. 27, No. 3, 2026    
 

   Copyright © The Author(s) 2026. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 
 

   

   
 

   

   

 

   

       
 

Analysis of an intelligent piano music transcription 
model by deep reinforcement learning 

Yan Hu and Jing Wang* 
Humanities Quality Education Center, 
University of Science and Technology, 
Beijing 100083, China 
Email: yah2@stir.ac.uk 
Email: 15907437755@163.com 
*Corresponding author 

Abstract: To improve the accuracy of automatic piano music transcription in 
complex environments, a recognition system applicable to practical scenarios 
such as music education assistance and intelligent performance analysis was 
developed. First, audio features were extracted using Log-Mel spectrograms, 
combined with data augmentation and adaptive pitch normalisation to enhance 
model robustness. Second, a state-action modelling mechanism integrating a 
Transformer encoder with a multidimensional action space was constructed to 
precisely represent note content, rhythmic positions, and dynamics information. 
Finally, a primary policy and an auxiliary rhythm policy based on proximal 
policy optimisation (PPO) were designed, and a multidimensional reward 
function along with imitation learning signals were introduced to jointly 
optimise the note prediction strategy. Comparative experiments indicated that 
incorporating the multidimensional action structure and boundary auxiliary 
strategy significantly improved recognition accuracy. The proposed method 
achieves high-precision piano audio transcription with strong structural 
continuity. 

Keywords: piano transcription; deep reinforcement learning; DRL; 
multidimensional action space; music sequence modelling; proximal policy 
optimisation; PPO. 
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1 Introduction 

With the continuous development of artificial intelligence and audio signal processing 
technologies, music information retrieval (MIR) is progressively moving toward 
structured, real-time, and multimodal integration (Zhang, 2025). Among these, automatic 
music transcription (AMT), which connects audio signals with musical notation, has 
become a research focus in the field of music AI (Gao et al., 2023; Chen et al., 2022). 
The piano, as a polyphonic instrument with complex multi-track structures, contains  
rich rhythmic, dynamic, and layered information in its audio signals. Achieving  
high-precision piano music transcription not only supports applications in music 
education, performance assistance, and intelligent score generation but also provides a 
foundation for MIR, performance style analysis, and cross-modal generation (Guo, 2025). 

Although deep learning methods have achieved significant progress in monophonic 
music transcription tasks in recent years, practical piano transcription still faces 
challenges such as insufficient accuracy in recognising multiple simultaneous notes, large 
errors in rhythm boundary prediction, and poor robustness under style transfer (Li, 2022; 
Jamshidi et al., 2024). On one hand, piano performances involve numerous chords, 
arpeggios, and sustained pedal effects, leading to substantial spectral overlap among 
notes and increasing recognition difficulty (Latif et al., 2023). On the other hand, 
background noise, reverberation, and individual variations in tempo and dynamics in 
real-world recordings further complicate modelling and limit the generalisation of 
traditional supervised models (Dai, 2023). Most existing approaches rely on fixed-label 
supervision and struggle to leverage dynamic feedback from the performance process, 
posing challenges for learning efficiency and policy adaptability. 

Compared with traditional supervised learning methods, deep reinforcement learning 
(DRL) has stronger sequence modelling and feedback learning capabilities, especially 
suitable for task scenarios with complex state spaces and structured action spaces. In 
piano transcription, note recognition requires consideration of the acoustic features of the 
current audio frame, and relies on the rhythm and coherence of historical note sequences. 
DRL can optimise transcription strategies in dynamic environments through strategy 
learning mechanisms, combined with reward functions to automatically adjust 
recognition results, effectively improving performance in distinguishing complex note 
structures and rhythm boundaries. Meanwhile, DRL does not rely on strict label 
distribution and can continuously learn in weakly supervised or self-supervised data 
environments, improving generalisation ability and stability against noise. 

To address these issues, this study proposes an intelligent piano music transcription 
method based on multi-strategy DRL. By constructing a joint state-action space 
modelling mechanism and employing a Transformer attention encoder to obtain  
context-aware representations, the model predicts note categories, onset-offset times, and 
dynamics using a multidimensional action structure. Additionally, a primary policy and a 
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boundary auxiliary policy based on proximal policy optimisation (PPO) were designed 
for collaborative optimisation. A reward function integrating pitch, rhythm, and structural 
coherence was employed to enhance the model’s decision-making ability and structural 
restoration in complex scenarios. The structure of this study is as follows: Section 2 
reviews related research; Section 3 introduces the model architecture and training 
methods in detail; Section 4 presents multiple experimental results and analyses;  
Section 5 discusses the proposed method and Section 6 concludes the study and outlines 
future research directions. The state action space joint modelling mechanism proposed 
here can significantly enhance the structural perception ability of multi note and rhythm 
boundaries. The multi-dimensional action output structure further enhances the linkage 
prediction ability of elements such as note start stop and intensity, thereby solving the 
challenge of identifying fuzzy boundaries between multiple notes and rhythm. The 
reinforcement learning strategy network effectively improves adaptability in different 
playing styles and complex backgrounds through a reward feedback-based strategy 
optimisation mechanism, and constructs a piano transcription model with more 
generalisation ability. 

2 Literature review 

Early AMT methods were primarily based on spectrogram feature extraction, 
fundamental frequency detection, and hidden Markov model (HMM) modelling (Zhai 
and Xu, 2022; Bhattarai and Lee, 2023). Although these approaches achieved certain 
success in simple melodies and monophonic music, their performance was limited for 
polyphonic instruments such as the piano. In recent years, with the development of deep 
learning, traditional models have gradually been replaced by data-driven architectures. 
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been 
widely used to model audio spectral and temporal sequence features (Lei and Liu, 2022). 
Large et al. (2023) investigated the Onsets and Frames v2 model, which independently 
models note onsets and sustain states, improving recognition accuracy under complex 
rhythms. Zhao et al. (2021) introduced residual convolutional structures combined with 
the connectionist temporal classification (CTC) loss function, enhancing model 
robustness against misalignment between notes and frame labels. Ananth et al. (2025) 
employed a dual-channel attention network to model pitch and the temporal axis in 
parallel, achieving strong performance in polyphonic transcription tasks. Meanwhile, 
transformer architectures have gradually been applied to audio modelling. Kamal et al. 
(2022) used transformers to capture long sequences, mitigating the failure of traditional 
RNNs in modelling long-term dependencies. 

Building on these advances, some studies have explored incorporating DRL into 
music analysis tasks. Dadman and Bremdal (2024) applied policy optimisation to melody 
generation, introducing reward functions to control musical structure and style. Yaqoob 
et al. (2024) used an actor-critic strategy for audio event detection, improving the 
detection of event boundaries in complex backgrounds. Wang et al. (2024b) investigated 
note sequence generation based on PPO, achieving automatic learning of rhythmic 
structures on synthetic data. 

Currently, two main challenges remain: reinforcement learning methods exhibit poor 
adaptability to polyphonic structures and sustained pedal effects, and the design of state 
representations and action spaces is complex; additionally, reward functions struggle to 
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quantify rhythmic continuity and expressive performance, leading to unstable policies 
and difficulty in training convergence. Most existing models rely on single-policy 
optimisation and lack collaborative modelling of rhythmic boundaries and overall 
musical structure. To address these limitations, this study proposes an integrated policy 
learning framework that combines a transformer encoder, composite action modelling, 
and multidimensional reward structures, aiming to improve recognition accuracy and 
model generalisation for piano audio under complex performances and real-world 
conditions. 

3 Multi-policy fusion DRL piano transcription model design 

3.1 System framework 

The overall structure of the proposed intelligent piano music transcription model is 
illustrated in Figure 1. The system consists of four key modules: an audio pre-processing 
module, a feature extraction module, a DRL policy decision module, and an output  
post-processing module. The system takes raw piano audio as input and outputs 
structured musical instrument digital interface (MIDI) transcriptions, including note 
categories, onset-offset times, and dynamics information. 

Figure 1 Overall architecture of the intelligent piano music transcription model (see online 
version for colours) 
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Based on Figure 1, the audio signal is transformed using short-time Fourier transform 
(STFT) and a Log-Mel filter bank to extract its time-frequency feature map. The feature 
map is then fed into a deep encoder, where multiple convolutional layers and a 
transformer encoder extract contextual correlation features to form the current state 
representation. On this basis, the state vector is passed to the DRL policy network for 
action decisions, outputting composite actions such as note predictions and multi-note 
onset-offset boundaries. The policy network is built on an actor-critic architecture, which 
continuously optimises note recognition strategies through interactions with the 
environment. This module adopts a typical actor-critic architecture and includes the 
following three main sub-networks. Policy network: based on bidirectional GRU and 
multi-layer perceptron structure, it inputs the current state vector st and outputs a 
multidimensional action vector at = (np, δon, δoff, v, θ). It is used to predict the note 
category, start and end time offset, intensity, and boundary control of the current frame. 
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value network (Vφ): the structure and policy network share some encoder parameters, 
which is used to evaluate the expected long-term reward Vφ(st) of the current state and 
assist in optimising the policy direction. Auxiliary policy (πaux): used to capture  
fine-grained rhythm boundary signals, the network structure introduces attention 
mechanism to focus on the start and end time frames of notes, and outputs rhythm 
boundary suggestion values and their confidence levels. The training of each sub-network 
is achieved collaboratively through shared state representation and independent output of 
decision results. The final action selection combines the main strategy and auxiliary 
strategy through a strategy fusion mechanism (soft fusion or gating replacement) to 
improve the accuracy of boundary determination and the robustness of the strategy. 

Environment feedback is evaluated using a carefully designed reward function, 
incorporating pitch accuracy, rhythmic precision, and performance continuity. Finally, 
the output actions are mapped into structured MIDI events through a post-processing 
module, where redundancy elimination and temporal correction are applied to generate 
more natural and fluent transcription results. 

3.2 Audio feature representation and pre-processing optimisation 

A spectrogram extraction method based on a Log-Mel filter bank was employed. This 
approach is perceptually closer to the human auditory frequency response and is well 
suited for capturing low-frequency harmonics, subtle timbral variations, and nonlinear 
dynamics in piano audio (Shang, 2022; Ji et al, 2023). The raw audio signal x(t) is 
transformed into a complex spectrogram using STFT, as shown in equation (1): 

1

0
( , ) ( ) ( )

M jωm
m

X n ω x m w n m e
−

=
= ⋅ − ⋅ −  (1) 

where w(n) denotes the Hamming window function and M is the window length. The 
spectrogram is then mapped to the Mel filter bank and logarithmically compressed, 
yielding equation (2): 

( )2
log-mel 1

( , ) log ( , ) ( )
K

mk
S n m X n k H k

=
= ⋅  (2) 

where Hm(k) represents the response of the mth Mel filter and K is the number of 
frequency channels. The resulting two-dimensional feature map log-mel

T FS ×∈  serves as 
the primary state representation for subsequent modelling. 

To enhance model robustness under diverse performance styles and complex acoustic 
backgrounds, a series of data augmentation strategies were introduced, including  
time-frequency masking (SpecAugment) and time-stretching (Liu and Zhu, 2025; Dai, 
2022). SpecAugment applies zero masks to random time and frequency segments of the 
feature map, simulating local note loss or occlusion (Colafiglio et al., 2024).  
Time-stretching adjusts playback speed to simulate performance style variations, with a 
perturbation factor α ∈[0.9, 1.1], producing training samples of varied tempos as  
x′(t) = x(αt) (You, 2024). 

This study also proposed an adaptive pitch normalisation method to mitigate pitch 
drift caused by different performers or recording devices. The method is based on global 
spectral centroid and dynamic range normalisation, linearly shifting the audio spectrum in 
the frequency domain so that its main frequency peak aligns with the dataset’s reference 
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mean μf. If the principal frequency of a sample is fp, the pitch offset is defined in  
equation (3): 

Δ f pf μ f= −  (3) 

The spectrogram is then shifted by Δf frequency bins, resampled, and reconstructed, 
effectively improving robustness against pitch variations without introducing additional 
annotation costs, thereby enhancing generalisation. 

3.3 Innovations in state space and action space modelling 

To enable the DRL policy network to capture the multidimensional structural features of 
audio signals, a state space with strong semantic representation and explicit contextual 
dependency is required. In addition, a multidimensional action space must be designed to 
express composite decisions, supporting precise note recognition and boundary 
prediction. This overcomes the limitations of traditional music classification tasks in 
terms of action granularity and continuity modelling. 

The state space is designed by integrating the two-dimensional Log-Mel spectrogram 
with contextual vectors (Liang and Pan, 2023). At each time step t, the input state st 
consists of the spectrogram matrix ( )

log-mel
t W FS ×∈  within the current time window, along 

with preceding contextual information. Contextual modelling is achieved through a 
transformer encoder with multi-head attention, capturing long-term temporal 
dependencies within the spectrogram sequence. The state vector is defined in  
equation (4): 

{ }( )( ) ( )
log -mel log -melTransformer , ...,t k t

ts S S−=  (4) 

where k denotes the context window length. 
The action space design breaks away from the conventional ‘single-classification’ or 

‘single-note output’ paradigm in reinforcement learning by adopting a multidimensional 
action vector to represent composite decision-making intent. This more naturally 
simulates human auditory perception of holistic note structures (Wang, 2025; Liang, 
2023). At each time step, the action at is defined as a 5-tuple, shown in equation (5): 

( )on off, , , ,t pa n δ δ v θ=  (5) 

where np ∈{0, 1, …, N} denotes the predicted note index (including silence), 
on offandδ δ+ +∈ ∈   represent the onset and offset time offsets relative to the current 

frame, v ∈ [0, 1] is the normalised note velocity, and θ ∈ {0, 1} is a note boundary flag 
used to assist policy convergence during training. 

Although multidimensional action vectors can more naturally express complex 
musical events, their higher dimensions do bring about an increase in computational 
complexity. To control the training difficulty of the strategy network, this study conducts 
compression modelling in the selection of action dimensions, retaining only the five 
elements that have the most significant impact on the final transcription quality, and 
controlling the overall action dimension within 10. The strategy network adopts 
parameter sharing mechanism and weight freezing strategy to unify feature encoding for 
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different sub action channels, effectively alleviating training instability and overfitting 
problems. 

3.4 Design of DRL-based transcription strategy 

The transcription task of piano music has an inherent sequential decision-making 
property. Each action at a given frame depends not only on the current state but also on 
historical outputs (Wang et al., 2024a). To model such dynamic decision-making 
problems, a policy optimisation mechanism based on DRL is introduced. The actor-critic 
framework serves as the core, where the policy network and the value function network 
are decoupled. The policy network generates an action vector at each state, defined as 
πθ(at| st). The value function network estimates the expected return of the state, Vφ(st), 
which guides directional policy improvement and strengthens the learning of long-term 
dependencies. 

To improve the interpretability of learning signals and ensure stable training, a 
composite reward function is designed by integrating perceptual quality and performance 
structure (Ferreira et al., 2023). This function evaluates not only pitch recognition 
accuracy but also rhythmic alignment and continuity of dynamics. The overall reward 
function is expressed as equation (6): 

( ) ( ) ( )1 pitch 2 rhythm 3 contiguity+ +t t t tR λ r a λ r a λ r a= ⋅ ⋅ ⋅  (6) 

rpitch measures pitch-level alignment between transcription results and ground-truth notes 
using Levenshtein distance. rrhythm evaluates the inverse mean-square error of onset and 
offset deviations. rcontiguity defines a continuity score function based on temporal and 
dynamic consistency across notes. The coefficients λi control the weights of different 
reward dimensions, and cross-validation determines their optimal configuration. 

The design of the reward function fully considers the subjective factors of music 
perception. For example, the tolerance setting for rhythm boundary deviation in the rrhythm 
reward is based on the subjective perceivable threshold of human rhythm error (about 20 
ms) in Bonnet et al. (2024), while the rcontiguity coherence score refers to the importance of 
performance smoothness and rhythm fluency on listening sensation in music psychology 
(Di Stefano et al., 2024). By integrating these perceptual factors, the reward signal can be 
closer to the actual auditory experience, enhancing the rationality and generalisation 
ability of strategy learning. 

To accelerate early policy convergence, imitation learning signals from expert 
performance data (MIDI labels) are introduced. A behaviour cloning loss is added as an 
auxiliary training objective (Phatnani and Patil, 2024). Given the expert action *,ta  the 
loss is defined as equation (7): 

( ) 2*
BC 0ts t tπ s a = −    (7) 

For policy optimisation, PPO is applied as the main strategy. PPO balances stability and 
convergence efficiency. The objective function is defined as equation (8): 

( )( )PPO ˆ ˆmin ( ) , clip ( ), 1 , 1+t t t t tr θ A r θ A = −     (8) 
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where 
( )
( )old

( ) θ t t
t

θ t t

π a s
r θ

π a s
=  is the generalised advantage estimator. An auxiliary policy 

network is introduced for rhythmic boundary refinement. With an attention mechanism, it 
focuses on the temporal distribution of note onsets and offsets. A rhythm-boundary 
discriminator Dψ(st) is constructed to strengthen perception and correction in ambiguous 
boundary regions. The main and auxiliary policies are integrated through multi-policy 
fusion. In soft fusion, outputs are combined with weighted averaging as shown in 
equation (9): 

final main aux+ (1 )t t ta a a= ⋅ − ⋅α α  (9) 

In hard substitution, a boundary confidence gating mechanism switches policies. Based 
on the auxiliary network’s confidence score γt, the auxiliary output overrides the main 
policy when necessary. 

To enhance the adaptability of strategy fusion, this study designs a heuristic strategy 
selection mechanism. Firstly, the boundary confidence level γt output by the auxiliary 
strategy determines the strategy switching gate. If γt is higher than the set threshold, the 
hard substitution mode is enabled to improve the boundary accuracy. On the contrary, 
soft fusion is used to maintain the continuity of the strategy. In the future, a learnable 
mechanism of strategy fusion weights can be further introduced, using meta learning or 
strategy attention networks to dynamically adjust the α value to adapt to more diverse 
music contexts. 

3.5 Model training and optimisation procedure 

The overall training process consists of two stages. In the first stage, imitation learning 
pre-trains the policy network by using existing MIDI data as expert demonstrations. This 
stage establishes an initial policy. In the second stage, reinforcement learning fine-tunes 
the policy through interaction with the environment, which further improves 
generalisation on real piano audio. 

During pre-training, behaviour cloning minimises the mean squared error between 
policy outputs and expert actions. Given the training sample state st, expert action *,ta  
and predicted output πθ(st), the loss is defined as equation (10): 

( ) 2*
pre 1

1 T
θ t tt
π s a

T =
= −  (10) 

To ensure consistency between the two-stage training, the reinforcement learning stage 
continues to use the same state representations and MIDI labels as the imitation learning 
stage, and the empirical sampling environment maintains consistent data sources. In order 
to alleviate the problem of ‘policy collapse’ or ‘catastrophic forgetting’ in the process of 
policy transfer, a mixed loss function is introduced in the early stage of policy  
fine-tuning, and the PPO objective is jointly trained with imitation learning loss to 
smooth the policy transfer process. Its positive effects on performance preservation and 
policy stability are verified in experiments. 

Once the policy acquires basic note recognition ability, reinforcement learning 
begins. The system collects experience through environment interaction and optimises 
the policy with reward signals. To improve sampling efficiency and stability, an 
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experience replay mechanism stores state-action-reward sequences in a memory buffer 
M, and mini-batches are sampled for training. 

Several control techniques are applied to stabilise and improve convergence. An 
entropy regularisation term is added to the policy objective to encourage sufficient 
exploration and avoid premature convergence to local optima. The modified PPO 
objective is expressed as equation (11): 

( )( )total PPO t θ tπ s = − ⋅ ⋅   β  (11) 

where ( )⋅  represents the entropy of the policy distribution, and β adjusts exploration 
strength. During parameter updates, gradient clipping constrains the maximum gradient 
norm to δ, which prevents instability from abnormal gradient fluctuations. In addition, an 
adaptive learning rate scheduling strategy adjusts the learning rate based on the dynamic 
variation of policy loss. This strategy effectively balances convergence speed and 
performance improvement. 

4 Performance validation and comparative experiments of the multi-policy 
DRL piano transcription model 

4.1 Experimental setup and evaluation metrics 

The experiments are conducted on the Multitrack Alignment and Synchronous 
TRanscription of piano (MAESTRO) dataset. Provided by the Google Magenta team, this 
dataset contains over 200 hours of high-quality piano performances with aligned audio 
and MIDI labels. It covers a wide range of musical styles and techniques, including 
classical, romantic, and modern works, and supports fine-grained note-level transcription 
tasks. The experimental samples are selected from different composers’ works in the 
dataset. They are further divided into subsets based on performance style, tempo range, 
and background complexity to simulate diverse real-world transcription scenarios. All 
audio samples are formatted as 44.1 kHz, 16-bit, mono signals. The training-to-test split 
is set at 8:2. The test set ensures heterogeneity in both styles and performers compared 
with the training set, which allows validation of the model’s generalisation ability. 

This study selects approximately 3500 pieces of music (2–15 s in duration) from 
MAESTRO and constructs three test subsets according to the following rules: 

1 Style dimensions include classical (approximately 35%), Baroque (approximately 
25%), jazz (approximately 20%), and modern pop (approximately 20%). 

2 The speed dimension includes < 80 beats per minute (BPM) (slow), 80–120 BPM 
(medium), and > 120 BPM (fast). 

3 The background complexity is simulated by adding environmental noise and 
reverberation. 

Each subset ensures a balance between style and speed, ensuring diversity and 
representativeness in testing. 

After preliminary tuning, the training parameters are set as follows: the initial 
learning rate is 0.0003, the batch size is 64, and each reinforcement learning iteration 
includes 2,048 environment interaction steps. The replay buffer size is 10,510^5,105. The 
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model training follows a five-stage joint strategy: the first two stages use behaviour 
cloning for pre-training, and the remaining stages apply reinforcement learning. The 
policy network is updated using PPO, while the value network is synchronised every two 
iterations. 

4.2 Comparative evaluation with multiple models 

To systematically evaluate the proposed multi-policy DRL piano transcription model 
across key performance dimensions, a comparative study with multiple baseline methods 
is conducted. Four representative approaches are selected as benchmarks. Two versions 
of the proposed model – one without reinforcement learning (ours w/o RL) and the full 
model (ours) – are also included to complete the comparison framework. The evaluated 
methods are: CTC-CNN, Onsets & Frames v2, NoteTransformer, Transcriber-BERT, 
ours w/o RL, and ours (full). 

All models are trained and tested on the MAESTRO dataset, using the same train/test 
split and evaluation metrics to ensure fairness. Each model runs on the same hardware 
platform with its optimal public configuration and hyperparameter settings. The 
evaluation covers several dimensions: note recognition F1-score, pitch error rate (PER), 
onset/offset deviation error (ms), note bilingual evaluation understudy (BLEU) score, and 
average inference latency. Together, these metrics assess accuracy, structural fidelity, and 
real-time performance. The results are presented in Figures 2 and 3. 

Figure 2 Comparative results of different models in terms of F1-score, PER, and note BLEU 
score (see online version for colours) 
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From Figures 2 and 3, it can be observed that the complete model proposed in this study 
outperforms all baseline methods across all key performance indicators. The F1-score 
reaches 0.862, representing a substantial improvement over the traditional CTC-CNN 
model. Meanwhile, the PER decreases to 8.4%, demonstrating a significant advantage in 
note recognition accuracy. The improvement in the Note BLEU score (reaching 0.803) 
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further indicates that the proposed method better preserves structural consistency and 
rhythmic continuity within musical segments. 

In terms of rhythmic alignment, the proposed model achieves a note onset/offset 
deviation error of 38.5 ms, which is clearly superior to CNN-based static modelling 
methods and onsets and frames. This result verifies the effectiveness of the 
multidimensional action space and auxiliary rhythm strategy in structural reconstruction. 
Although the inference latency is slightly higher than that of the CTC-CNN model, the 
proposed approach maintains strong real-time performance while achieving higher 
accuracy, demonstrating its potential for practical deployment. 

Figure 3 Note onset/offset deviation error (ms) and average inference latency (ms) (see online 
version for colours) 
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4.3 Ablation studies and validation of module effectiveness 

To further verify the contribution of each key module to the overall performance of the 
proposed piano transcription model, multiple ablation experiments are designed. In each 
case, one core component of the model is removed, and performance is evaluated under 
identical training configurations and dataset partitions. Four model variants are included: 

1 removing the auxiliary strategy network and retaining only the main strategy for note 
prediction 

2 removing the rhythm continuity term from the joint reward function to examine its 
impact on output quality 

3 replacing the multidimensional action space with a single-note classification 
structure, ignoring onset/offset and velocity prediction 

4 replacing the transformer encoder with a bidirectional GRU to assess the effect of 
temporal dependency modelling on strategy accuracy. 
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Each experiment is repeated three times, and average results are reported. The results are 
shown in Figure 4. 

Based on Figure 4, removing the auxiliary strategy network causes a marked drop in 
both F1-score and BLEU structural scores. The onset/offset deviation increases by nearly 
11 ms, highlighting the crucial role of the rhythm boundary discriminator in  
time-structure modelling. This component effectively alleviates boundary ambiguity and 
failures in handling legato passages. When the rhythm continuity term is excluded from 
the reward function, the note BLEU score drops to 0.741, and rhythm deviation increases 
by approximately 15 ms. This indicates that the absence of rhythmic structural 
supervision leads the strategy to favour short-term optimisation while neglecting overall 
rhythmic flow. Using a single-action output structure significantly weakens the model’s 
ability to capture note duration and velocity, resulting in performance degradation in both 
pitch prediction and rhythm control. This finding further validates the structural 
advantages of the multidimensional action space in complex music sequence modelling. 
Replacing the Transformer with a bidirectional GRU preserves basic sequential 
modelling ability, but fails to capture long-term dependencies and global attention 
relationships. Consequently, the F1-score falls to 0.793, and the BLEU score for note 
sequences declines substantially. 

Figure 4 Results of the module ablation experiments (see online version for colours) 
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4.4 Impact of reward function design on performance 

To assess the actual contribution of each reward component to the policy optimisation 
process, four controlled experiments are designed, each enabling different reward 
dimensions. The configurations are as follows: 

1 using only the pitch-matching term 

2 using only the onset/offset timing term 
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3 adding the note continuity term 

4 using the complete joint reward structure. 

All experiments are conducted under identical initial weights and training data 
conditions. For each case, convergence speed within 50 k steps, final F1-score, and 
fluctuation during training (measured by the standard deviation of policy entropy) are 
recorded. The results are shown in Figure 5. 

Figure 5 Statistical analysis of the impact of reward function combinations on policy 
performance (see online version for colours) 
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As shown in Figure 5, relying solely on pitch or rhythm rewards guides the policy toward 
learning basic recognition capabilities, but results in weaker overall structural 
reconstruction ability and stability. When the note continuity reward is introduced, the 
policy converges faster (with the number of steps reduced by about 10%), and the 
entropy standard deviation decreases significantly, indicating reduced volatility. 
Meanwhile, the improvement in the BLEU score confirms its effectiveness in preserving 
musical coherence. 

4.5 Robustness evaluation 

To evaluate the model’s adaptability in real-world environments, several non-ideal 
scenario simulations are designed. These included background noise interference, style 
diversity variations, and device sampling mismatches. All tests used samples from the 
MAESTRO dataset, with data augmentation and parameter adjustments applied for 
simulation. For the noise environment test, background speech, mechanical noise, and 
room reverberation were added to emulate open-space performance conditions. For the 
style diversity test, subsets of different genres – jazz, Baroque, and pop – were selected to 
assess adaptability to tempo and expressivity variations. For the device sampling 
mismatch test, audio inputs were generated at different sampling rates (32 kHz, 22 kHz), 
bit depths, and frequency ranges to mimic discrepancies across recording devices. 



   

 

   

   
 

   

   

 

   

    Analysis of an intelligent piano music transcription model 31    
 

    
 
 

   

   
 

   

   

 

   

       
 

Performance was evaluated using two metrics: accuracy (F1-score) and rhythm deviation 
(onset-offset deviation). Both the complete model (ours full) and the supervised ablation 
version (ours w/o RL) were compared. Results are presented in Figure 6. 

Figure 6 Robustness evaluation results under non-ideal test conditions (see online version  
for colours) 
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As illustrated in Figure 6, the proposed model consistently outperforms the ablation 
version without reinforcement learning across all complex test conditions, with 
particularly stable performance in rhythm deviation control. In noisy environments, the 
average F1-score improves by about 4.5%, and rhythm errors decrease by more than  
10 ms, demonstrating that the policy network can effectively adapt to input fluctuations 
through environmental feedback. In the style adaptability tests, when facing variations in 
tempo and expressivity, the reinforcement learning strategy maintained stronger rhythm 
stability, with BLEU structural consistency also improving accordingly. 

This study designs two sets of refined ablation experiments to remove force 
prediction and boundary marker information, respectively, to verify the contributions of 
each dimension in the action space. The experimental results are shown in Table 1. 
Table 1 Experimental results of refined ablation of action space 

Model variant (action space dimension) F1-score Note BLEU Starting and ending 
time offset (ms) 

Ours (Full) 0.862 0.803 38.5 
Remove the dimension of force 0.843 0.751 42.7 
Remove boundary markers (without 
auxiliary strategy) 

0.835 0.768 50.1 

Table 1 show that the BLEU score decreased from 0.803 to 0.751 after the absence of the 
strength dimension, indicating its crucial role in maintaining the consistency of musical 
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sentence structure. After removing the boundary markers and corresponding auxiliary 
strategies, the start stop time offset error significantly increased from 38.5 ms to 50.1 ms, 
verifying the optimisation effect of rhythm assisted mechanism on temporal modelling. 

To further evaluate the adaptability of soft fusion and hard substitution strategies in 
different music styles, this study applies two fusion methods to fast-paced jazz and 
rhythmic-balanced Baroque music segments for testing. The results are shown in Table 2. 
Table 2 Transcriptional performance of different fusion strategies under different music styles 

Styles Strategic integration approach F1 score Boundary accuracy PER 
Jazz Soft fusion 86.20% 81.50% 11.80% 
Jazz Hard substitution 85.90% 86.20% 11.30% 
Baroque Soft fusion 90.70% 84.40% 9.60% 
Baroque Hard substitution 87.30% 81.90% 10.10% 

The results in Table 2 indicate that in fast-paced jazz passages, the hard substitution 
strategy improves the average rhythm boundary accuracy by about 4.7%, while in the 
Baroque style with a steady rhythm; the soft fusion strategy can increase the overall 
transcription F1 score by 3.1%. 

5 Discussion 

From the perspective of modelling note and rhythm structures, represented by Wei et al. 
(2022), they improved transcription accuracy through harmonic expansion convolution 
and frequency grouping RNN, but still relied on supervised labels and static modelling 
mechanisms. In contrast, the strategy network and action space design in this study 
enable the model to actively decide on the start and end, intensity, and rhythm boundaries 
of musical notes, thereby enhancing its adaptability to complex polyphonic instruments. 
From the perspective of generative and weakly supervised approaches, Marták et al. 
(2022) proposed treating transcription as a conditional generative task and achieved 
significant improvements, but it mainly focused on generative ability and lacked  
real-time decision feedback mechanisms. In contrast, this study integrates the  
‘decision-feedback’ mechanism into the transcription process through reinforcement 
learning, thereby improving the model’s ability to adjust strategies and restore structure 
accurately. From the perspective of the application of reinforcement learning in music 
tasks, Peter (2023) used reinforcement learning to achieve symbol music alignment tasks, 
verifying the potential of reinforcement learning in note structure recognition. Although 
its application scenarios are slightly different, it provides methodological support for the 
strategy optimisation framework in this study. Based on the above comparison, the 
highlight of this study is the establishment of a state action decision-making system 
directly facing transcription tasks, which fills the gap in the strategy feedback stage of 
traditional supervised learning. This study refines the action space design to  
multi-dimensional outputs such as note categories, start and end times, intensity, and 
boundary markers, making structured outputs more diverse. The study introduces strategy 
fusion mechanism and multidimensional reward function to enhance the performance of 
the model in rhythm boundary discrimination and performance style transfer. These 
mechanisms have been validated in experiments to enhance performance. However, this 
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study also has certain limitations. Firstly, although the experiment covers various styles 
and background environments, it has not yet been validated in a large number of multi 
instrument, extreme improvisation, or live recording scenarios. Secondly, although 
reinforcement learning mechanisms introduce structural feedback, policy training still 
heavily relies on labelled data and manually designed reward functions, and there is still 
room for improvement in terms of automation and weak supervision. Finally, although 
the real-time performance and resource consumption of the model are within an 
acceptable range, there is still room for optimisation in larger scale audio input or edge 
device deployment scenarios. Future research can be conducted in the following 
directions: 

1 Introduce multimodal data (such as performance videos and finger detection) to 
enhance state representation and strategic decision-making capabilities. 

2 Explore self-supervised or semi supervised reinforcement learning frameworks to 
reduce reliance on high-quality labels. 

3 Extend the model to multi instrument ensemble and live multi-source recording 
environments to verify the generalisation ability of structured strategies in more 
complex music ecosystems. 

In summary, this study enriches the methodological perspective of piano automatic 
transcription, and provides theoretical and practical references for the development of 
intelligent music understanding systems towards decision-making and structural 
perception. 

6 Conclusions 

This study proposes an intelligent piano music transcription model based on multi-policy 
DRL, establishing a state-action modelling framework that integrates Log-Mel 
spectrograms, a transformer encoder, and a multidimensional action space. For policy 
learning, a joint reward function was designed and imitation learning signals were 
introduced to guide efficient convergence of the PPO strategy under the actor-critic 
architecture. An auxiliary rhythm boundary discriminator and policy fusion mechanism 
further enhanced rhythm recognition and boundary alignment. Empirical studies 
conducted on the MAESTRO dataset demonstrate that the proposed model outperforms 
existing representative approaches in multiple dimensions, including F1-score, PER, 
rhythm deviation, and structural BLEU score. In robustness tests under complex 
conditions, the reinforcement learning strategy exhibited stronger noise resistance and 
style adaptability, confirming its potential for practical deployment. Despite the 
promising results on a single-instrument dataset, limitations remain. The model has not 
yet been validated in multi-instrument polyphonic scenarios, and its handling of 
expressive parameters, (e.g., pedal use and dynamic variations) is still incomplete. Future 
work will focus on expanding multimodal input structures. This includes incorporating 
fingering videos and score information. In addition, reward function designs that capture 
deeper awareness of musical structure will be explored. These improvements aim to 
enhance the model’s performance in more complex music understanding tasks. 



   

 

   

   
 

   

   

 

   

   34 Y. Hu and J. Wang    
 

    
 
 

   

   
 

   

   

 

   

       
 

Data availability statement 

The data used to support the findings of this study are all in the manuscript. 

Declarations 

The authors declare no conflicts of interests. 

References 
Ananth, P., Kothandaraman, M. and Ishwarya, V.S. (2025) ‘Multi-channel audio enhancement 

using dual-stream encoders with attention mechanisms and spatial discrimination GAN’, 
Circuits, Systems, and Signal Processing, Vol. 44, pp.5945–5989. 

Bhattarai, B. and Lee, J. (2023) ‘A comprehensive review on music transcription’, Applied 
Sciences, Vol. 13, No. 21, p.11882. 

Bonnet, P., Bonnefond, M. and Kösem, A. (2024) ‘What is a rhythm for the brain? The impact of 
contextual temporal variability on auditory perception’, Journal of Cognition, Vol. 7, No. 1, 
p.15. 

Chen, S., Zhong, Y. and Du, R. (2022) ‘Automatic composition of Guzheng (Chinese Zither) music 
using long short-term memory network (LSTM) and reinforcement learning (RL)’, Scientific 
Reports, Vol. 12, No. 1, p.15829. 

Colafiglio, T., Ardito, C., Sorino, P., Lofù, D., Festa, F., Di Noia, T. and Di Sciascio, E. (2024) 
‘Neuralpmg: a neural polyphonic music generation system based on machine learning 
algorithms’, Cognitive Computation, Vol. 16, No. 5, pp.2779–2802. 

Dadman, S. and Bremdal, B.A. (2024) ‘Crafting creative melodies: a user-centric approach for 
symbolic music generation’, Electronics, Vol. 13, No. 6, p.1116. 

Dai, L. (2022) ‘Analysis of two-piano teaching assistant training based on neural network model 
sound sequence recognition’, Computational Intelligence and Neuroscience, Vol. 2022, No. 1, 
p.5768291. 

Dai, S. (2023) Towards Artificial Musicians: Modeling Style for Music Composition, Performance, 
and Synthesis via Machine Learning, Diss. Stanford University, Vol. 1, pp.1–32. 

Di Stefano, N., Lo Presti, D., Raiano, L., Massaroni, C., Romano, C., Schena, E., Leman, M. and 
Formica, D. (2024) ‘Expressivity attributed to music affects the smoothness of bowing 
movements in violinists’, Scientific Reports, Vol. 14, No. 1, p.22267. 

Ferreira, P., Limongi, R. and Fávero, L.P. (2023) ‘Generating music with data: application of deep 
learning models for symbolic music composition’, Applied Sciences, Vol. 13, No. 7, p.4543. 

Gao, W., Zhang, S., Zhang, N., Xiong, X., Shi, Z. and Sun, K. (2023) ‘Generating fingerings for 
piano music with model-based reinforcement learning’, Applied Sciences, Vol. 13, No. 20, 
p.11321. 

Guo, H. (2025) ‘Piano harmony automatic adaptation system based on deep reinforcement 
learning’, Entertainment Computing, Vol. 52, p.100706. 

Jamshidi, F., Pike, G., Das, A. and Chapman, R. (2024) Machine Learning Techniques in 
Automatic Music Transcription: A Systematic Survey, arXiv preprint arXiv:2406.15249. 

Ji, S., Yang, X., Luo, J. and Li, J. (2023) ‘RL-chord: CLSTM-based melody harmonization using 
deep reinforcement learning’, IEEE Transactions on Neural Networks and Learning Systems, 
Vol. 35, No. 8, pp.11128–11141. 

Kamal, M.B., Khan, A.A., Khan, F.A., Shahid, M.M.A., Kamal, M.D. and Ali, M.J. (2022) ‘An 
innovative approach utilizing binary-view transformer for speech recognition task’, 
Computers, Materials & Continua, Vol. 72, No. 3, pp.5547–5562. 



   

 

   

   
 

   

   

 

   

    Analysis of an intelligent piano music transcription model 35    
 

    
 
 

   

   
 

   

   

 

   

       
 

Large, E.W., Roman, I., Kim, J.C., Cannon, J., Pazdera, J.K., Trainor, L.J. et al. (2023) ‘Dynamic 
models for musical rhythm perception and coordination’, Frontiers in Computational 
Neuroscience, Vol. 17, p.1151895. 

Latif, S., Cuayáhuitl, H., Pervez, F., Shamshad, F., Ali, H.S. and Cambria, E. (2023) ‘A survey on 
deep reinforcement learning for audio-based applications’, Artificial Intelligence Review,  
Vol. 56, No. 3, pp.2193–2240. 

Lei, S. and Liu, H. (2022) ‘Deep learning dual neural networks in the construction of learning 
models for online courses in piano education’, Computational Intelligence and Neuroscience, 
Vol. 2022, No. 1, p.4408288. 

Li, W. (2022) ‘Analysis of piano performance characteristics by deep learning and artificial 
intelligence and its application in piano teaching’, Frontiers in Psychology, Vol. 12, p.751406. 

Liang, J. (2023) ‘Harmonizing minds and machines: survey on transformative power of machine 
learning in music’, Frontiers in Neurorobotics, Vol. 17, p.1267561. 

Liang, Y. and Pan, F. (2023) ‘Study of automatic piano transcription algorithms based on the 
polyphonic properties of piano audio’, IEIE Transactions on Smart Processing & Computing, 
Vol. 12, No. 5, pp.412–418. 

Liu, L. and Zhu, W. (2025) ‘Research on restructuring the piano lesson teaching model in the 
context of artificial intelligence’, GBP Proceedings Series, Vol. 5, pp.167–173. 

Marták, L.S., Kelz, R. and Widmer, G. (2022) ‘Balancing bias and performance in polyphonic 
piano transcription systems’, Frontiers in Signal Processing, Vol. 2, p.975932. 

Peter, SD. (2023) Online Symbolic Music Alignment with Offline Reinforcement Learning, arXiv 
preprint arXiv:2401.00466. 

Phatnani, K.S. and Patil, H.A. (2024) ‘Modeling musical expectancy via reinforcement learning 
and directed graphs’, Multimedia Tools and Applications, Vol. 83, No. 10, pp.28523–28547. 

Shang, R. (2022) ‘A deep learning-enabled composition system based on piano score recognition’, 
Mobile Information Systems, Vol. 2022, No. 1, p.9132697. 

Wang, L., Zhao, Z., Liu, H., Pang, J., Qin, Y. and Wu, Q. (2024a) ‘A review of intelligent music 
generation systems’, Neural Computing and Applications, Vol. 36, No. 12, pp.6381–6401. 

Wang, X., Ma, Z., Cao, L., Ran, D., Ji, M., Sun, K. et al. (2024b) ‘A planar tracking strategy based 
on multiple-interpretable improved PPO algorithm with few-shot technique’, Scientific 
Reports, Vol. 14, No. 1, p.3910. 

Wang, S. (2025) ‘Hybrid models of piano instruction: how combining traditional teaching methods 
with personalized AI feedback affects learners’ skill acquisition, self-efficacy, and academic 
locus of control’, Education and Information Technologies, Vol. 30, pp.12967–12989. 

Wei, W., Li, P., Yu, Y. and Li, W. (2022) Hppnet: Modeling the Harmonic Structure and Pitch 
Invariance in Piano Transcription, arXiv preprint arXiv:2208.14339. 

Yaqoob, A., Yuan, Z. and Muntean, G.M. (2024) ‘A UAV-centric improved soft actor-critic 
algorithm for qoe-focused aerial video streaming’, IEEE Transactions on Vehicular 
Technology, Vol. 73, No. 9, pp.13498–13512. 

You, W. (2024) ‘Modeling method for classification of piano music style based on big data mining 
and machine learning’, IEIE Transactions on Smart Processing & Computing, Vol. 13, No. 2, 
pp.129–139. 

Zhai, Y. and Xu, C. (2022) ‘The application of artificial intelligence-assisted computer on piano 
education’, Comput. Aided. Des. Appl., Vol. 20, pp.157–167. 

Zhang, M. (2025) ‘Advancing deep learning for expressive music composition and performance 
modeling’, Scientific Reports, Vol. 15, No. 1, p.28007. 

Zhao, Z., Li, Q., Zhang, Z., Cummins, N., Wang, H., Tao, J. and Schuller, B.W. (2021) ‘Combining 
a parallel 2D CNN with a self-attention Dilated Residual Network for CTC-based discrete 
speech emotion recognition’, Neural Networks, Vol. 141, pp.52–60. 


