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Abstract: This paper presents a cognitive-semantic guided generative
adversarial network for automatically generating interactive environment
layouts that optimise both visual realism and user experience. By
computationally operationalising cognitive load theory, our framework
integrates a novel interaction-aware discriminator and a semantic consistency
loss, enabling the generator to produce layouts that minimise navigational
cognitive load. Validated on the Stanford 2D-3D-Semantics dataset, our model
significantly outperforms state-of-the-art methods in functional metrics,
achieving an 85.2% navigation success rate, a 13.4% higher mean intersection
over union than graph-based methods (68.7% versus 55.2%), and a
substantially lower cognitive load score of 0.65. Ablation studies and user
evaluations involving 45 participants confirm the necessity of each component
and demonstrate a strong preference for the generated environments. This work
aims to establish between cognitive theory and generative artificial intelligence
for human-centric design.
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1 Introduction

As a container and background for human activities, the quality of environmental design
profoundly affects individual behavioural patterns, cognitive processes, and emotional
experiences. From the flow organisation of architectural spaces to the construction of
scenes in virtual reality, good environmental design always strives to find the best
balance between form and function, aesthetics and experience (Alexander, 1977).
However, traditional environmental design methods rely heavily on designers’
experience, intuition, and static standards, which is not only a long and costly process,
but also lacks the ability to quantify the real-time cognitive and behavioural responses of
users during their dynamic interactions with the environment. The advantages and
disadvantages of the design results are often verified only after the completion of the
construction or development through post-use evaluation, which makes the
pre-decision-making of the design lack of a solid scientific basis, and there is a
significant risk of trial and error. With the rise of concepts such as digital twins and
meta-universes, the demand for human environments has expanded from single physical
entities to complex digital simulations, requiring the design paradigm to shift from a
static, experience-driven model to a new paradigm that is dynamic, data-driven and
capable of evaluating interaction experiences in advance. As the future form of
immersive virtual environment, the metaverse has an urgent need for large-scale, highly
interactive and good user experience virtual scenes, which is one of the direct application
scenarios of the ‘interaction modelling’ goal of this research.

During this transition, Al generative technologies, especially generative adversarial
networks (GANs), have shown disruptive potential. GANs, with their powerful
data-distributed learning and high-fidelity content generation capabilities, have already
made impressive achievements in areas such as image synthesis and style migration
(Creswell et al., 2018). In recent years, researchers have begun to explore the application
of GANs to the field of environmental design, such as generating architectural floor
plans, interior layouts, or urban streetscapes (Dhamo et al., 2021; Patil et al., 2024).
These pioneering works confirm the feasibility of data-driven design, but the vast
majority of research still remains in the imitation and generation of visual forms or spatial
syntax. The core evaluation metrics, such as Fréchet distance (FID) or visual fidelity,
focus on the pixel-level similarity between the generated results and the training data,
ignoring the essential property of the environment as a ‘functional vehicle’ (Park et al.,
2024). A visually realistic environment that is confusing to navigate, difficult to find, or
imposes a high cognitive load on the user is a functional failure. The current research gap
in this area is how to deeply integrate ‘generation’ and ‘interaction’ so that generative
models not only learn the ‘static appearance’ of the environment, but also understand and
optimise the ‘static appearance’ of the environment. This requires models to go beyond
pixels or bodies to model and enhance their ‘dynamic performance’ in supporting human
activities. This requires models to move beyond the generation of pixels or voxels to the
joint modelling of semantic, functional, and potentially interactive behaviours in the
environment.

To fill this gap, one possible path is to cross-fertilise environmental design with
well-established theories of human cognition. Cognitive load theory (CLT) provides us
with a classic theoretical lens to analyse human cognitive processing in complex
information environments. The theory suggests that individuals have a limited working
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memory capacity and that learning and task performance are significantly impaired when
external information is presented in a manner (extrinsic cognitive load) that exceeds their
processing capacity (Sweller, 1988; Sweller et al., 2019). Mapping this theory to
environmental interactions, a space with a confusing layout and unclear navigational cues
imposes an extremely high external cognitive load on the user, forcing him or her to
expend valuable cognitive resources on non-core tasks such as wayfinding and obstacle
avoidance, leading to decreased efficiency and frustration (Shah and Miyake, 2005).
However, despite the fruitful results of CLT in areas such as instructional design, its
application in environmental design has mostly remained at the level of ex post facto
explanations or principled guidance, lacking a computable quantitative framework that
can be embedded into the optimisation goals of generative models. Therefore,
constructing a computational model that can quantitatively assess the cognitive load
induced by the environment and guide the generative process is the key theoretical
challenge and the core of technological innovation to realise the leap from ‘generative
space’ to ‘generative experience’.

In summary, environmental design research is standing at a critical crossroads: on one
side are data-driven models that have strong generative power but lack interaction and
cognitive depth, and on the other side are cognitive science principles that have deep
theoretical insights but lack the means to realise them computationally. The primary task
of this research is to build a bridge between these two ends. Specifically, we aim to
explore a novel GAN framework that not only generates visually plausible and
semantically accurate environment layouts, but also intrinsically embeds the simulation
of human interactions and the evaluation of cognitive load. To achieve this goal, we
chose the Stanford 2D-3D-Semantics (2D-3D-S), a real-world dataset enriched with
multi-level annotations, as the cornerstone of our research (Armeni et al., 2016). The
precise geometric, semantic segmentation and instance labelling information provided by
this dataset provides an indispensable foundation for us to build spatial semantic models
and construct computable interaction contexts. By translating the core ideas of CLT into
optimisable algorithmic goals, we aim to push the boundaries of generative Al in
environmental design, evolving it from a form-generating tool to an interaction modelling
system capable of anticipating and optimising user experience.

2 Related work

2.1 Evolution and limitations of generative modelling in environmental design

GANSs have sparked a revolution in the field of image synthesis since they were proposed
by Goodfellow et al. (2014). The core idea lies in the adversarial game between a
generator and a discriminator, which enables the model to learn the essential features of
complex data distributions and sample from them to generate new, realistic data
instances. This powerful data-driven capability quickly attracted the attention of
researchers in the field of environmental design. Early work focused on 2D planar layout
generation, e.g., Tang et al. (2024) proposed graph transformer GAN (GTGAN), which
achieves significantly better results than the existing state of the art on three
graph-constrained architectural layout generation tasks by means of an end-to-end
architecture that contains an innovative encoder, an attentional mechanism, a graph
building module, a node classification discriminator, and a new loss and pre-training
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method. existing levels. In interior design, the 3D layout of indoor scenes is the core of
scene understanding and reconstruction, and has outstanding application value in real
estate display and furniture design. Yan et al. (2020) provides a novel solution for this
purpose, which is capable of automatically accomplishing interior 3D layout estimation
from a single 2D image. Firstly, the neural network is used to extract the room structure
lines from the image, and then the innovative topology recognition technology and the
nonlinear optimisation method with equality constraints are used to obtain the
three-dimensional layout results. As the first fully automatic technology to achieve this
task in the industry, its tests on public datasets such as large-scale scene understanding
(LSUN), Hedau, and 3D geometric primitives (3DGP) show that even when facing
images with different layout topologies, it can achieve high-precision 3D layout
reconstruction, which significantly improves the visual rationality of generation.
However, the evaluation systems of these pioneering studies are mostly based on visual
fidelity or distributional similarity to the training set, such as the widely used FID and
initial score (IS). Furniture arrangement in interior space planning often relies on manual
iterations, which can be automated and optimised by machine learning. Tanasra et al.
(2023) accordingly developed a machine learning-driven approach to furniture
arrangement by constructing a dataset to train three conditional GAN models, combining
post-processing with multidimensional evaluation metrics, which not only confirms the
best performance of BicycleGAN, but also provides a machine learning solution that
enhances the interior design process, and completes the development of evaluation
metrics for the quality of the results. Furthermore, as noted in its critical evaluation of the
interior design GAN, it is entirely possible for a model that performs well on the FID
metrics to generate a space that looks beautiful but has disorganised mobility and cannot
be used efficiently. This suggests that the lack of functionality and interaction assessment
is at the heart of current generative modelling-led environmental design research. Models
have learned to ‘mimic form’ but have not learned to ‘optimise function’, and the result is
more like a series of objects reasonably stacked up rather than an organic whole that
supports smooth human activities.

2.2 Environment modelling based on semantic scene understanding

To give functional awareness to a generative model, the model must first ‘understand’ the
internal composition and semantic logic of the environment. In this context, large-scale
datasets rich in accurate annotations, such as Stanford 2D-3D-S (Armeni et al., 2016) and
Matterport3D (Chang et al., 2017), play a crucial role. These datasets provide dense
semantic segmentation of environments, instance labelling, and 3D geometric
information, laying a solid foundation for data-driven scene understanding. Based on
these data, the research field has rapidly moved from mere scene reconstruction to deep
semantic parsing. For example, the work of Armeni et al. (2016) not only provides data,
but also proposes a method for 3D semantic parsing of large-scale indoor spaces by
associating each point in the point cloud with a specific semantic label (e.g., ‘wall’,
‘chair’, ‘door’). This fine-grained semantic understanding provides rich structured
information for subsequent research. Subsequent researchers have attempted to utilise
this semantic information for inverse generative tasks, e.g., synthesising realistic indoor
scene images or completing scene completions via semantically labelled graphs.
However, most of these approaches (Liu et al., 2017) still treat semantic information as a
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static condition for controlling the generated content, e.g., to ensure that the texture of a
table is generated in the ‘table’ region. They have not yet fully explored the functional
rules and interaction possibilities behind the semantics. For example, understanding the
spatial relationship (usually proximity and orientation) between ‘chair’ and ‘table’ is
essential to support the interaction behaviour of ‘sitting’, whereas ‘door’ as an
intermediary between ‘chair’ and ‘table’ is not. The location of a door as a spatial hub
directly determines the efficiency of the navigation path. Current research is still at an
early stage of exploring the use of semantic information to portray such dynamic and
behaviourally relevant functional properties.

2.3 Theory of human spatial cognition and computational modelling of
navigation

The ultimate goal of environmental design is to serve people, so understanding how
humans perceive, cognise, and navigate in space is an unavoidable topic. In the field of
cognitive science, Tolman (1948) proposed the concept of ‘cognitive maps’ through
experiments as early as in the 1940s, revealing that an organism’s intrinsic mental
representation of the environment is not a simple stimulus-response association, but a
comprehensive model of spatial layout. Based on this, Shah and Miyake (2005)
systematically elaborated a cognitive theory of spatial navigation, distinguishing between
different navigation strategies, such as path integration and waypoint projection, and
emphasising the key role of environmental cues (landmarks) in the construction and
optimisation of cognitive maps. These theories provide deep qualitative insights for
assessing the quality of environmental design. Meanwhile, in the computational domain,
with the maturity of deep reinforcement learning (DRL), building intelligences capable of
navigating in virtual environments has become a hot research topic. For example, the
work of Wu et al. (2018) in demonstrates the ability of intelligent bodies to autonomously
learn navigation strategies in 3D environments through reinforcement learning. These
computable navigation models provide the technical means to enable quantitative and
automated assessment of environmental interactions. However, a significant disconnect
lies in the fact that rich theories in cognitive science [e.g., the CLT proposed by Sweller
(1988)] have rarely been directly translated into quantitative metrics that can be
embedded in the optimisation process of generative models; whereas navigational models
in the computational domain, most of which have task success and path length as the core
optimisation goals (Mirowski et al., 2016) but less explicitly consider the cognitive load
during navigation, such as the psychological costs of direction confusion and decision-
making difficulties due to environmental complexity. Computationally modelling CLT
and combining it with data-driven generative processes and semantic understanding to
build a framework for user experience-centred design automation is an underexplored
research direction.

3 Methodology

In this section, the overall framework, core components and optimisation goals of our
proposed cognitive semantic guided GAN (CSG-GAN) are elaborated as shown in
Figure 1. The framework aims to generate environment layouts that are not only visually
and semantically sound, but also friendly in terms of interaction experience. We begin
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with an overview of the overall architecture, followed by an in-depth explanation of the
design of the data representation, generator, discriminator, and the final joint optimisation
objective one by one.

Figure 1 The overall framework of CSG-GAN (see online version for colours)
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3.1 Overview of the overall framework

The overall goal of CSG-GAN is to introduce the simulation of human interaction
behaviour with quantitative assessment of cognitive load during the training process of
GAN:Ss, so as to guide the generator to produce interaction-friendly environment layouts.
As shown in Figure 1, this framework contains three core modules: a cognitive
semantic-guided generator (G), which is responsible for generating environment layouts
from random noise and high-level semantic constraints as shown in Figure 2; an
interaction-aware discriminator (D), which not only distinguishes between the real and
generated environments, but also evaluates their interaction-friendliness; and an
interaction-simulation module, which performs a fast navigation simulation in the
generated environment in order to extract the quantitative interaction metrics. The
training of the whole system is an adversarial game in which the generator tries to
generate layouts that ‘trick’ the discriminator, while the discriminator evolves to make
more accurate judgments.

Figure 2 Internal architecture of the cognitive semantic-guided generator (see online version
for colours)
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3.2 Data pre-processing and representation based on Stanford 2D-3D-S

We use the Stanford 2D-3D-S dataset (Armeni et al., 2016) as the basis of our approach.
This dataset provides aligned red, green, blue (RGB) images, depth images, surface
normal, 3D mesh models, and dense semantic and instance annotations. To accommodate
our generative task, we performed key data pre-processing. First, we extract a top-down
2D semantic layout map S, from the 3D mesh model. This layout map projects the
environment onto a 2D grid, where each grid cell p; is assigned a specific semantic
category label c¢; (e.g., wall, floor, table, and chair). This representation effectively
preserves the topology and functional partitioning of the environment while significantly
reducing the complexity of the problem. We use this semantic layout graph S, as the
target output of our generator and a real sample of the discriminator. In addition, we
construct an object-relationship graph G.y, = (V, E) from the data, where nodes v € V
represent object instances in the scene, and edges e; € V represent spatial or functional
relationships between objects (e.g., ‘support’ and ‘neighbourhood’), which provides
structured a priori knowledge for the generation process.

3.3 Cognitive semantic-guided generator design

The task of the generator G is to map a random noise vector z [sampled from the standard
normal distribution z ~ N(0, 1)] and an optional high-level semantic constraint C (e.g., a
textual description or semantic graph specifying the room type and main furniture) to a
detailed 2D semantic layout graph Sg., = G(z, C). We use the U-Net architecture with
jump connections (Ronneberger et al., 2015) due to its effectiveness in preserving the
structural information of the input and generating high-resolution outputs in
image-to-image conversion tasks.

The training of the generator is co-directed by a multipart loss function. The first is
the standard adversarial loss, which encourages the generator distribution pg to
approximate the real data distribution pg... We use the loss form of Wasserstein GAN
with gradient penalty (WGAN-GP) (Gulrajani et al., 2017) due to its more stable training:

L5, =Bz ~ p(2), C~ p(C)[ D(Sgen) )

where D(Sgen) is the discriminator’s discriminant score for the generated layout Sgen.

Second, we introduce a semantic consistency loss Lg.,, which enforces the generated
layouts to be semantically consistent with the input constraints C and conform to the
real-world spatial rules. This loss consists of two components: a pixel-level cross-entropy
loss that ensures that the semantic labels of each location are accurately predicted; and a
graph convolutional network (Jiang et al., 2019)-based relational loss that measures how
well the relationships between objects in the generated layouts match with the
object-relationship graph G, learned from the real data.

2

Loem = Ace z CrossEntropy (s;, $; )+ Arel |CI> (Sgen ) =@ (G )|2

i,J

2

where s; and §; are generated and real semantic labels, respectively, ® is a relational

feature extraction function, and A.. and A.; are weight coefficients that balance the two
items.
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3.4 Discriminators of interaction perception and cognitive load quantification

The discriminator D is the innovative core of this framework. It acts not only as a binary
classifier, but also as an interaction experience evaluator. Its input is a semantic layout
graph S (either real Sy or generated See.), and its output is a scalar D(S)e R, which

reflects both the ‘realism’ and ‘interactivity’. This scalar reflects both the ‘realism’ and
‘interactivity’ of the layout.

In order to quantify the ‘interaction friendliness’, we introduce the interaction
simulation module. For a given layout S, we instantiate it as a simplified 3D navigable
environment, which environment is built on a lightweight custom grid-world simulator,
which can efficiently convert 2D semantic layout maps into 3D space for agents to
navigate, and deploy a pre-trained DRL navigational intelligence [e.g., a DQN or
asynchronous advantage actor-critic (A3C) intelligence similar to the one proposed the
work of Zhu et al. (2017)] to perform a series of navigational tasks from a random
starting point to a random end point in it. Different from game AI whose core goal is
competitive confrontation, the design goal of the agent is to complete point-to-point
movement efficiently and collision-free, and its reward function focuses more on path
efficiency and task success, so as to better simulate the basic human pathfinding
behaviour in space. Both the start and goal points were strictly randomly sampled within
areas of the layout marked as’ passable ‘(e.g., the floor), and we set a minimum
Euclidean distance threshold to ensure that each navigation task was a substantial path
planning challenge, rather than a single step. By collecting the navigational trajectories of
the intelligent body:

T

v =5, a ),:1 3)

we can compute a series of interaction metrics.

The most critical of these is the cognitive load metric CL(zr). We build on CLT
(Sweller, 1988) and operationalise it as a function of decision complexity and
environmental clutter during navigation. We propose the following formula:

CL(T):a"Nt;_Vms +ﬂ.Nde;:iends +]}H(S) (4)

where Ny is the total number of turns in the trajectory, representing the decision
frequency. Naedenas 1s the number of entries into dead ends, representing the misleading
nature of the environment design. T is the total step size of the trajectory, used for
normalisation. H(S) is the visual entropy of the layout S based on its semantic
segmentation, used to measure visual complexity. ¢, B, y are hyperparameters used to
balance the weights.

From this, we can define an interaction reward Rix(z), which is the negative of
cognitive load, and add a task success reward:

Rint (T) = Rsucces: - CL(T) (5)
where Rguccess 18 @ positive reward given to the intelligence when it successfully reaches

the goal.
Ultimately, the goal of the discriminator is to minimise the following loss function:
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Lint = Jint * Bis- puuwope [ Rint (25)- D(S)] (10)

where the first two are Wasserstein distance estimates, the third is a gradient penalty term

(S is the sampling point between the real and generated data distributions), and the
fourth is our newly introduced interaction reward term. This term encourages the
discriminator D to give higher scores to layouts S that produce high interaction rewards
(i.e., low cognitive load, high success rate). The Ag and Ainc are hyperparameters that
control the penalty strength and the weight of the interaction reward.

3.5 Overall optimisation goals

Combining all the above components, the complete optimisation objective of CSG-GAN
is a min-max game problem:

minG maxp Ltatal = LD + iadeG + lsemLsem (1 1)

adv

where Lp is the total loss of the discriminator, LG, 1is the adversarial loss of the

generator, and L., is the semantic consistency loss of the generator. A.s and L., are the
weights used to balance each loss of the generator. By jointly optimising this objective,
the generator G is trained not only to produce semantically sound layouts, but also to
actively generate environment designs that are judged by the discriminator D to provide
smooth, low cognitive load interaction experiences.

4 Experimental validation

4.1 Experimental setup

Our experiments build on the Stanford 2D-3D-S dataset (Armeni et al.,, 2016). The
dataset contains a total of 70,496 panoramic RGB-depth (RGB-D) images and their
corresponding dense 3D semantic annotations from six large indoor regions, covering
271 individual room instances, including offices, conference rooms, classrooms, and
other multi-functional spaces. We divided the data into a training set (151 rooms), a
validation set (40 rooms), and a test set (80 rooms) according to scenarios, ensuring that
the model is evaluated on unseen spatial layouts. All generated and compared layout
maps have a uniform resolution of 256 x 256 pixels. We chose as a baseline for
comparison two recent state-of-the-art (SOTA) approaches that have excelled in the field
of layout generation: the scene graph to layout generation model (G2L), proposed by
Krishna et al. (2017), which utilises graph convolutional networks to process object
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relationships and generate layouts, and represents a SOTA structured constraints-based
approach; and the diffusion model-based layout generator (LDM), which we adapt to the
layout generation task with reference to the latent diffusion model architecture proposed
by Rombach et al. (2022), which generates data through an iterative denoising process
and represents the SOTA in generative modelling. Our CSG-GAN model and all
baselines are trained on the same training set and hyperparameter tuning is performed
using the same validation set.

The evaluation metrics are divided into two main categories. Generation quality
metrics include: the FID, which measures the distribution distance between the generated
layouts and the real layouts in the feature space, and the mean intersection-to-union ratio
(mloU), which calculates the consistency between the generated layouts and the real
layouts in the semantic segmentation at the pixel level. Interaction performance metrics
are obtained by running the same navigational intelligences in our customised simulation
environment and include: navigation success rate, average path length (normalised),
average navigation time (normalised), and the cognitive load score (CLS), which is the
core of our approach. All reported values are the statistical results of 80 scenarios on the
test set and were tested for statistical significance (one-way ANOVA and post-hoc Tukey
HSD test with significance level set at p <0.5).

4.2  Generate quantitative and qualitative analysis of results

In terms of generation quality, the quantitative results (Table 1) clearly show that our
CSG-GAN model achieves optimal or comparable performance on both key metrics.
Specifically, CSG-GAN achieved the lowest FID score (15.3 + 0.4), which is
significantly better than the G2L model (p < 0.01) and not statistically different from the
LDM model (p = 0.12), suggesting that CSG-GAN-generated layouts are closest to the
real data in terms of overall visual and structural distributions. On the mIoU metric,
CSG-GAN significantly outperforms all baselines with 68.7% + 1.2% (p < 0.01), which
demonstrates that it generates semantic labelling maps with higher pixel-level accuracy
and clearer and more accurate semantic boundaries.

Table 1 Quantitative comparison of different models on environment layout generation and
navigation tasks

Models FID mioU (%) ‘;:ﬁ%‘:f’g’;% ) pftzelr:ift " CLS

GaL 24507  552+15 713421 128£0.05  0.89+0.03
LDM 16.1£0.5  61.8+1.1 785+ 138 119£0.04  0.76+0.02
CSG-GAN  153+04  687+12 8524 1.5 1084003  0.65+0.02

The qualitative analysis provides intuitive support for the above quantitative conclusions.
From the visualisation comparison of the generated layouts, it can be observed that the
layouts generated by the G2L model sometimes have overlapping objects or irrational
spatial relationships (e.g., table levitation); the layouts generated by the LDM model are
coordinated as a whole, but in the details, such as the location of the door and the width
of the passageway, they sometimes generate structures that are not conducive to access.
In contrast, the layouts generated by our CSG-GAN model are not only visually
reasonable, but more importantly, their spatial structures show better functionality and
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accessibility, e.g., passages are kept clear, room entrances and exits are clearly designed,
and furniture placement does not obstruct the main movement lines.

4.3 Analysis of interaction performance and ablation experiments

Interaction performance is the core measure of the functionality of the generated
environment. As shown in Table 1, in terms of navigation success rate, CSG-GAN
achieves 85.2%, which is significantly higher than78.5% in LDM and 71.3% in G2L.
What’s more, in the average path length and CLS, which reflect the navigation efficiency,
the advantage of CSG-GAN is more obvious. This suggests that CSG-GAN generated
environments are not only easier to traverse successfully, but also have shorter traversal
paths and impose less cognitive load on the navigators. To visualise this difference, we
plotted a box-and-line plot of the distribution of CLSs (Figure 3). The box-and-line plot
clearly shows that the CSG-GAN has the lowest median CLS and the entire data
distribution is more compactly concentrated in the low load region, while the distribution
of the baseline model is relatively spread out and contains more outliers with high load.

Figure 3 Distribution of CLS for different model generation environments (see online version
for colours)
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To validate the necessity of each component in the CSG-GAN framework, we conducted
systematic ablation experiments. We constructed three variants of the model: w/o inter.:
removing the interaction reward term in the discriminator (i.e., Ainx = 0); W/o sem.:
removing the semantic consistency loss L, in the generator; and w/o both: removing
both the interaction reward and the semantic loss. All ablation variants are trained from
scratch under exactly the same hyperparameter Settings, training cycles, and random
seeds as the full model (FM) to ensure that performance differences are solely
attributable to the removed components, thus ensuring fairness of comparison and
reliability of conclusions. Figure 4 shows the results of the ablation experiments on key
metrics. It can be clearly seen that the FM performs best on all metrics. Removing the
interaction reward term leads to a significant decrease in navigation performance and
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CLS, which demonstrates the critical importance of interaction simulation for generating
functionalised environments. Removing the semantic loss, on the other hand, leads to a
significant decrease in mloU, indicating that the loss is indispensable for ensuring the
semantic accuracy of the generated layout.

Figure 4 Ablation study results chart (see online version for colours)
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4.4 User research results

To further assess the perceived quality of the generated environment in practical
applications, we conducted a user study. We recruited 45 participants (including 25
experts with a background in architectural design or environmental psychology and 20
general users). These participants were recruited openly mainly through internal
university mailing lists and social media platforms to ensure a diverse sample. The age
distribution of participants ranged from 20 to 45 years, with a roughly balanced ratio of
men and women. The specific professional background of the experts covers a number of
related fields such as urban planning, interior design and ergonomics. The study
randomly presented each participant with 30 sets of environment layouts generated by
different methods (each set contained results generated by G2L, LDM, and CSG-GAN, in
a randomly disrupted order) and asked them to rate them on a five-point Likert scale in
terms of the dimensions of ‘spatial reasonableness’, ‘navigational ease’, and ‘overall
preference’. The Likert scale is a standard subjective evaluation tool widely used in
psychology and social science research, which quantifies the attitudes or feelings of a
respondent through an ordered set of statement options. In this study, for each dimension
(e.g., ‘ease of navigation’), we set a scale from ‘1 — strongly disagree’ to 5 — strongly
agree’, and participants were asked to choose the scale that best matched their feelings.
This approach captures the strength of a user’s subjective experience more finely than a
simple binary choice (good/bad). The results (Figure 5) show that CSG-GAN obtained
significantly higher scores on all three dimensions than the baseline model (p <0.001). In
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their feedback, many experts pointed out that the environment generated by CSG-GAN
has ‘clear lines of motion’ and ‘clear functional zoning’, and that it “has high reference
value in the conceptual design stage. These subjective evaluations are highly consistent
with our objective experimental results, which together prove the effectiveness and
superiority of CSG-GAN in generating human-centred environment design.

Figure 5 Chart of user research ratings results (see online version for colours)

1| Overall preference
1 Ease of navigation
3 Space rationalization

CSG-GAN —+

LDM +

G2L

4.5 Experimental results and analysis

The experimental results of this study show that our proposed CSG-GAN framework not
only achieves a level of visual fidelity comparable to current SOTA methods in
generating environment layouts, but also, more importantly, significantly surpasses the
dimensions of functionality and interactive experience. This success is not by chance, but
is due to the fact that the framework has successfully integrated the three originally
independent research dimensions of computational generation, semantic understanding
and cognitive evaluation.

First, our results strongly support the feasibility of manipulating CLT
computationally and embedding it into generative model optimisation goals. Compared to
the G2L model proposed by Krishna et al. (2017), CSG-GAN generates environmental
navigation with higher success rates, shorter paths, and, in particular, significantly lower
CLSs. This demonstrates that by quantifying the core concepts of CLT (e.g., decision
frequency, environmental misdirection) as CL(z7) and as part of the loss function, the
generator is efficiently steered to those solutions in the search space that can support
more efficient and comfortable navigation behaviour. This is in line with the principle
emphasised by Sweller (2011) that ‘instructional design should aim to reduce external
cognitive load’, which we successfully extend from digital learning environments to the
design of physical and virtual spaces. Second, the superior performance of CSG-GAN on
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semantic consistency (mloU) validates the key role of the semantic loss function Ly, in
maintaining the spatial structure and functional relationships among objects. It ensures
that the generated environments are not only statistically sound, but also common-sense
‘usable’, e.g., doors are aligned with passages and tables and chairs appear in groups,
which compensates for the potential deficiencies in fine-grained spatial logic control of
diffusion models such as Rombach et al. (2022).

The theoretical contribution of this work is that it substantially builds a bridge
connecting cognitive psychology and Al generative modelling. Previous research, such as
the work of Shah and Miyake (2005), although deeply articulating the principles of
environmental cognition, is mostly descriptive and difficult to be directly translated into
design tools. Our framework, however, translates abstract concepts such as ‘cognitive
maps’ and ‘spatial orientation’ into optimisable algorithmic goals (e.g., path length,
number of turns), making the leap from qualitative theory to quantitative models. This
makes human-centred design not just a philosophical concept or a criterion to be
evaluated at a later stage, but a driving factor embedded in the early stage of design
generation.

At the practical level, the framework shows promising applications. In the field of
smart education, it can be used to automatically generate personalised classroom layouts
that promote collaboration and reduce distractions, echoing Barrett et al. (2013) finding
that physical environments significantly affect students’ learning progress. In the design
of medical environments, based on Ulrich (1984) supportive design theory, our model
can optimise the flow of hospitals and generate spatial layouts that can reduce patients’
sense of disorientation and stress, thus assisting in rehabilitation. In addition, in virtual
reality and meta-universe scenario construction, CSG-GAN can quickly generate virtual
environments that are aesthetically pleasing and easy for users to navigate, greatly
enhancing user experience and immersion.

However, several limitations remain in this study. First, the generalisation ability of
the model is limited by the training data. The Stanford 2D-3D-S dataset we used mainly
covers indoor office and educational scenarios, and the validity of the model has not yet
been verified in residential, industrial buildings or complex urban outdoor environments.
Future improvements include: training and fine-tuning on datasets with more diverse
scenarios such as Matterport3D, Gibson Environment, etc.; exploring domain adaptation
techniques to allow the model to transfer spatial logic learned in office scenarios to new
environments; and adopting a meta-learning framework to allow the model to be used in
a more spatial environment. Learning (meta-learning) framework, which allows the
model to learn quickly from a small number of new scene samples. Second, there is a
bottleneck in the fidelity of the interaction simulation; despite our use of DRL
intelligences, there is still a gap between their navigation behaviours and the
decision-making patterns of real human beings under stress, fatigue, or complex social
situations. Finally, current frameworks have mainly optimised the visual and geometric
properties of spaces, and have not yet integrated multimodal physical environment factors
such as acoustics, lighting, and thermal comfort, which have a critical impact on user
experience.

Future research can be carried out in depth in three directions. One is to extend the
model’s scenario adaptability by training and testing it on a wider and more diverse
dataset, such as the Matterport3D dataset containing residential, mall, and outdoor
streetscapes (Chang et al., 2017), in order to build a universal environmental design
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assistant. The second is to explore higher fidelity interaction simulations, such as the
introduction of behavioural models driven by human movement trajectory data, or the
integration of psychological experiments to more accurately quantify subjective
experiences such as cognitive load (Shah and Miyake, 2005). Thirdly, it is to promote
multi-modal perception and generation. The future framework should be committed to
integrating visual, acoustic and even tactile information to generate all-around
environmental solutions that can simultaneously optimise visual layout, noise control and
light design, which will truly realise human-centred holistic environmental design.

5 Conclusions

In this paper, we propose and validate a novel CSG-GAN for automated generation of
interactive environment designs. The core contributions of this study are mainly in the
following three aspects: first, we realise the transformation of CLT from a descriptive
framework to a computable model. By defining the quantitative CLS CL(z) and the
interaction reward Rin(7), we equip the Al model with the ability to proactively optimise
the user experience during the generation process, which promotes a paradigm shift in the
environment design methodology. Second, we construct an end-to-end generation
framework that fuses static semantic understanding with dynamic interaction simulation.
Through an innovative interaction-aware discriminator, we unify the evaluation criteria
of ‘realism’ and ‘interaction-friendliness’ of environments, and enable the generator to
produce environment layouts with good form and function. Third, experiments on the
Stanford 2D-3D-S dataset show that CSG-GAN significantly outperforms existing SOTA
methods in terms of generation quality and interaction performance. The ablation study
verifies the necessity of each core component, while the user study confirms the practical
value of the generative environment at the subjective perception level.

This study establishes a ‘theory-technology’ bridge connecting cognitive theory and
generative modelling, and provides a new paradigm and methodological support for
intelligent environment design in the fields of architecture, urban planning, and virtual
reality.
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