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Abstract: This paper presents a cognitive-semantic guided generative 
adversarial network for automatically generating interactive environment 
layouts that optimise both visual realism and user experience. By 
computationally operationalising cognitive load theory, our framework 
integrates a novel interaction-aware discriminator and a semantic consistency 
loss, enabling the generator to produce layouts that minimise navigational 
cognitive load. Validated on the Stanford 2D-3D-Semantics dataset, our model 
significantly outperforms state-of-the-art methods in functional metrics, 
achieving an 85.2% navigation success rate, a 13.4% higher mean intersection 
over union than graph-based methods (68.7% versus 55.2%), and a 
substantially lower cognitive load score of 0.65. Ablation studies and user 
evaluations involving 45 participants confirm the necessity of each component 
and demonstrate a strong preference for the generated environments. This work 
aims to establish between cognitive theory and generative artificial intelligence 
for human-centric design. 
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1 Introduction 

As a container and background for human activities, the quality of environmental design 
profoundly affects individual behavioural patterns, cognitive processes, and emotional 
experiences. From the flow organisation of architectural spaces to the construction of 
scenes in virtual reality, good environmental design always strives to find the best 
balance between form and function, aesthetics and experience (Alexander, 1977). 
However, traditional environmental design methods rely heavily on designers’ 
experience, intuition, and static standards, which is not only a long and costly process, 
but also lacks the ability to quantify the real-time cognitive and behavioural responses of 
users during their dynamic interactions with the environment. The advantages and 
disadvantages of the design results are often verified only after the completion of the 
construction or development through post-use evaluation, which makes the  
pre-decision-making of the design lack of a solid scientific basis, and there is a 
significant risk of trial and error. With the rise of concepts such as digital twins and  
meta-universes, the demand for human environments has expanded from single physical 
entities to complex digital simulations, requiring the design paradigm to shift from a 
static, experience-driven model to a new paradigm that is dynamic, data-driven and 
capable of evaluating interaction experiences in advance. As the future form of 
immersive virtual environment, the metaverse has an urgent need for large-scale, highly 
interactive and good user experience virtual scenes, which is one of the direct application 
scenarios of the ‘interaction modelling’ goal of this research. 

During this transition, AI generative technologies, especially generative adversarial 
networks (GANs), have shown disruptive potential. GANs, with their powerful  
data-distributed learning and high-fidelity content generation capabilities, have already 
made impressive achievements in areas such as image synthesis and style migration 
(Creswell et al., 2018). In recent years, researchers have begun to explore the application 
of GANs to the field of environmental design, such as generating architectural floor 
plans, interior layouts, or urban streetscapes (Dhamo et al., 2021; Patil et al., 2024). 
These pioneering works confirm the feasibility of data-driven design, but the vast 
majority of research still remains in the imitation and generation of visual forms or spatial 
syntax. The core evaluation metrics, such as Fréchet distance (FID) or visual fidelity, 
focus on the pixel-level similarity between the generated results and the training data, 
ignoring the essential property of the environment as a ‘functional vehicle’ (Park et al., 
2024). A visually realistic environment that is confusing to navigate, difficult to find, or 
imposes a high cognitive load on the user is a functional failure. The current research gap 
in this area is how to deeply integrate ‘generation’ and ‘interaction’ so that generative 
models not only learn the ‘static appearance’ of the environment, but also understand and 
optimise the ‘static appearance’ of the environment. This requires models to go beyond 
pixels or bodies to model and enhance their ‘dynamic performance’ in supporting human 
activities. This requires models to move beyond the generation of pixels or voxels to the 
joint modelling of semantic, functional, and potentially interactive behaviours in the 
environment. 

To fill this gap, one possible path is to cross-fertilise environmental design with  
well-established theories of human cognition. Cognitive load theory (CLT) provides us 
with a classic theoretical lens to analyse human cognitive processing in complex 
information environments. The theory suggests that individuals have a limited working 
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memory capacity and that learning and task performance are significantly impaired when 
external information is presented in a manner (extrinsic cognitive load) that exceeds their 
processing capacity (Sweller, 1988; Sweller et al., 2019). Mapping this theory to 
environmental interactions, a space with a confusing layout and unclear navigational cues 
imposes an extremely high external cognitive load on the user, forcing him or her to 
expend valuable cognitive resources on non-core tasks such as wayfinding and obstacle 
avoidance, leading to decreased efficiency and frustration (Shah and Miyake, 2005). 
However, despite the fruitful results of CLT in areas such as instructional design, its 
application in environmental design has mostly remained at the level of ex post facto 
explanations or principled guidance, lacking a computable quantitative framework that 
can be embedded into the optimisation goals of generative models. Therefore, 
constructing a computational model that can quantitatively assess the cognitive load 
induced by the environment and guide the generative process is the key theoretical 
challenge and the core of technological innovation to realise the leap from ‘generative 
space’ to ‘generative experience’. 

In summary, environmental design research is standing at a critical crossroads: on one 
side are data-driven models that have strong generative power but lack interaction and 
cognitive depth, and on the other side are cognitive science principles that have deep 
theoretical insights but lack the means to realise them computationally. The primary task 
of this research is to build a bridge between these two ends. Specifically, we aim to 
explore a novel GAN framework that not only generates visually plausible and 
semantically accurate environment layouts, but also intrinsically embeds the simulation 
of human interactions and the evaluation of cognitive load. To achieve this goal, we 
chose the Stanford 2D-3D-Semantics (2D-3D-S), a real-world dataset enriched with 
multi-level annotations, as the cornerstone of our research (Armeni et al., 2016). The 
precise geometric, semantic segmentation and instance labelling information provided by 
this dataset provides an indispensable foundation for us to build spatial semantic models 
and construct computable interaction contexts. By translating the core ideas of CLT into 
optimisable algorithmic goals, we aim to push the boundaries of generative AI in 
environmental design, evolving it from a form-generating tool to an interaction modelling 
system capable of anticipating and optimising user experience. 

2 Related work 

2.1 Evolution and limitations of generative modelling in environmental design 

GANs have sparked a revolution in the field of image synthesis since they were proposed 
by Goodfellow et al. (2014). The core idea lies in the adversarial game between a 
generator and a discriminator, which enables the model to learn the essential features of 
complex data distributions and sample from them to generate new, realistic data 
instances. This powerful data-driven capability quickly attracted the attention of 
researchers in the field of environmental design. Early work focused on 2D planar layout 
generation, e.g., Tang et al. (2024) proposed graph transformer GAN (GTGAN), which 
achieves significantly better results than the existing state of the art on three  
graph-constrained architectural layout generation tasks by means of an end-to-end 
architecture that contains an innovative encoder, an attentional mechanism, a graph 
building module, a node classification discriminator, and a new loss and pre-training 
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method. existing levels. In interior design, the 3D layout of indoor scenes is the core of 
scene understanding and reconstruction, and has outstanding application value in real 
estate display and furniture design. Yan et al. (2020) provides a novel solution for this 
purpose, which is capable of automatically accomplishing interior 3D layout estimation 
from a single 2D image. Firstly, the neural network is used to extract the room structure 
lines from the image, and then the innovative topology recognition technology and the 
nonlinear optimisation method with equality constraints are used to obtain the  
three-dimensional layout results. As the first fully automatic technology to achieve this 
task in the industry, its tests on public datasets such as large-scale scene understanding 
(LSUN), Hedau, and 3D geometric primitives (3DGP) show that even when facing 
images with different layout topologies, it can achieve high-precision 3D layout 
reconstruction, which significantly improves the visual rationality of generation. 
However, the evaluation systems of these pioneering studies are mostly based on visual 
fidelity or distributional similarity to the training set, such as the widely used FID and 
initial score (IS). Furniture arrangement in interior space planning often relies on manual 
iterations, which can be automated and optimised by machine learning. Tanasra et al. 
(2023) accordingly developed a machine learning-driven approach to furniture 
arrangement by constructing a dataset to train three conditional GAN models, combining 
post-processing with multidimensional evaluation metrics, which not only confirms the 
best performance of BicycleGAN, but also provides a machine learning solution that 
enhances the interior design process, and completes the development of evaluation 
metrics for the quality of the results. Furthermore, as noted in its critical evaluation of the 
interior design GAN, it is entirely possible for a model that performs well on the FID 
metrics to generate a space that looks beautiful but has disorganised mobility and cannot 
be used efficiently. This suggests that the lack of functionality and interaction assessment 
is at the heart of current generative modelling-led environmental design research. Models 
have learned to ‘mimic form’ but have not learned to ‘optimise function’, and the result is 
more like a series of objects reasonably stacked up rather than an organic whole that 
supports smooth human activities. 

2.2 Environment modelling based on semantic scene understanding 

To give functional awareness to a generative model, the model must first ‘understand’ the 
internal composition and semantic logic of the environment. In this context, large-scale 
datasets rich in accurate annotations, such as Stanford 2D-3D-S (Armeni et al., 2016) and 
Matterport3D (Chang et al., 2017), play a crucial role. These datasets provide dense 
semantic segmentation of environments, instance labelling, and 3D geometric 
information, laying a solid foundation for data-driven scene understanding. Based on 
these data, the research field has rapidly moved from mere scene reconstruction to deep 
semantic parsing. For example, the work of Armeni et al. (2016) not only provides data, 
but also proposes a method for 3D semantic parsing of large-scale indoor spaces by 
associating each point in the point cloud with a specific semantic label (e.g., ‘wall’, 
‘chair’, ‘door’). This fine-grained semantic understanding provides rich structured 
information for subsequent research. Subsequent researchers have attempted to utilise 
this semantic information for inverse generative tasks, e.g., synthesising realistic indoor 
scene images or completing scene completions via semantically labelled graphs. 
However, most of these approaches (Liu et al., 2017) still treat semantic information as a 
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static condition for controlling the generated content, e.g., to ensure that the texture of a 
table is generated in the ‘table’ region. They have not yet fully explored the functional 
rules and interaction possibilities behind the semantics. For example, understanding the 
spatial relationship (usually proximity and orientation) between ‘chair’ and ‘table’ is 
essential to support the interaction behaviour of ‘sitting’, whereas ‘door’ as an 
intermediary between ‘chair’ and ‘table’ is not. The location of a door as a spatial hub 
directly determines the efficiency of the navigation path. Current research is still at an 
early stage of exploring the use of semantic information to portray such dynamic and 
behaviourally relevant functional properties. 

2.3 Theory of human spatial cognition and computational modelling of 
navigation 

The ultimate goal of environmental design is to serve people, so understanding how 
humans perceive, cognise, and navigate in space is an unavoidable topic. In the field of 
cognitive science, Tolman (1948) proposed the concept of ‘cognitive maps’ through 
experiments as early as in the 1940s, revealing that an organism’s intrinsic mental 
representation of the environment is not a simple stimulus-response association, but a 
comprehensive model of spatial layout. Based on this, Shah and Miyake (2005) 
systematically elaborated a cognitive theory of spatial navigation, distinguishing between 
different navigation strategies, such as path integration and waypoint projection, and 
emphasising the key role of environmental cues (landmarks) in the construction and 
optimisation of cognitive maps. These theories provide deep qualitative insights for 
assessing the quality of environmental design. Meanwhile, in the computational domain, 
with the maturity of deep reinforcement learning (DRL), building intelligences capable of 
navigating in virtual environments has become a hot research topic. For example, the 
work of Wu et al. (2018) in demonstrates the ability of intelligent bodies to autonomously 
learn navigation strategies in 3D environments through reinforcement learning. These 
computable navigation models provide the technical means to enable quantitative and 
automated assessment of environmental interactions. However, a significant disconnect 
lies in the fact that rich theories in cognitive science [e.g., the CLT proposed by Sweller 
(1988)] have rarely been directly translated into quantitative metrics that can be 
embedded in the optimisation process of generative models; whereas navigational models 
in the computational domain, most of which have task success and path length as the core 
optimisation goals (Mirowski et al., 2016) but less explicitly consider the cognitive load 
during navigation, such as the psychological costs of direction confusion and decision-
making difficulties due to environmental complexity. Computationally modelling CLT 
and combining it with data-driven generative processes and semantic understanding to 
build a framework for user experience-centred design automation is an underexplored 
research direction. 

3 Methodology 

In this section, the overall framework, core components and optimisation goals of our 
proposed cognitive semantic guided GAN (CSG-GAN) are elaborated as shown in  
Figure 1. The framework aims to generate environment layouts that are not only visually 
and semantically sound, but also friendly in terms of interaction experience. We begin 
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with an overview of the overall architecture, followed by an in-depth explanation of the 
design of the data representation, generator, discriminator, and the final joint optimisation 
objective one by one. 

Figure 1 The overall framework of CSG-GAN (see online version for colours) 

 

3.1 Overview of the overall framework 

The overall goal of CSG-GAN is to introduce the simulation of human interaction 
behaviour with quantitative assessment of cognitive load during the training process of 
GANs, so as to guide the generator to produce interaction-friendly environment layouts. 
As shown in Figure 1, this framework contains three core modules: a cognitive  
semantic-guided generator (G), which is responsible for generating environment layouts 
from random noise and high-level semantic constraints as shown in Figure 2; an 
interaction-aware discriminator (D), which not only distinguishes between the real and 
generated environments, but also evaluates their interaction-friendliness; and an 
interaction-simulation module, which performs a fast navigation simulation in the 
generated environment in order to extract the quantitative interaction metrics. The 
training of the whole system is an adversarial game in which the generator tries to 
generate layouts that ‘trick’ the discriminator, while the discriminator evolves to make 
more accurate judgments. 

Figure 2 Internal architecture of the cognitive semantic-guided generator (see online version  
for colours) 
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3.2 Data pre-processing and representation based on Stanford 2D-3D-S 

We use the Stanford 2D-3D-S dataset (Armeni et al., 2016) as the basis of our approach. 
This dataset provides aligned red, green, blue (RGB) images, depth images, surface 
normal, 3D mesh models, and dense semantic and instance annotations. To accommodate 
our generative task, we performed key data pre-processing. First, we extract a top-down 
2D semantic layout map Sgt from the 3D mesh model. This layout map projects the 
environment onto a 2D grid, where each grid cell pij is assigned a specific semantic 
category label cij (e.g., wall, floor, table, and chair). This representation effectively 
preserves the topology and functional partitioning of the environment while significantly 
reducing the complexity of the problem. We use this semantic layout graph Sgt as the 
target output of our generator and a real sample of the discriminator. In addition, we 
construct an object-relationship graph Gobj = (V, E) from the data, where nodes vi ∈ V 
represent object instances in the scene, and edges eij ∈ V represent spatial or functional 
relationships between objects (e.g., ‘support’ and ‘neighbourhood’), which provides 
structured a priori knowledge for the generation process. 

3.3 Cognitive semantic-guided generator design 

The task of the generator G is to map a random noise vector z [sampled from the standard 
normal distribution z ~ N(0, 1)] and an optional high-level semantic constraint C (e.g., a 
textual description or semantic graph specifying the room type and main furniture) to a 
detailed 2D semantic layout graph Sgen = G(z, C). We use the U-Net architecture with 
jump connections (Ronneberger et al., 2015) due to its effectiveness in preserving the 
structural information of the input and generating high-resolution outputs in  
image-to-image conversion tasks. 

The training of the generator is co-directed by a multipart loss function. The first is 
the standard adversarial loss, which encourages the generator distribution pg to 
approximate the real data distribution pdata. We use the loss form of Wasserstein GAN 
with gradient penalty (WGAN-GP) (Gulrajani et al., 2017) due to its more stable training: 

( )~ ( ), ~ ( )G
genadvL z p z C p C D S= −     (1) 

where D(Sgen) is the discriminator’s discriminant score for the generated layout Sgen. 
Second, we introduce a semantic consistency loss Lsem, which enforces the generated 

layouts to be semantically consistent with the input constraints C and conform to the  
real-world spatial rules. This loss consists of two components: a pixel-level cross-entropy 
loss that ensures that the semantic labels of each location are accurately predicted; and a 
graph convolutional network (Jiang et al., 2019)-based relational loss that measures how 
well the relationships between objects in the generated layouts match with the  
object-relationship graph Gobj learned from the real data. 

( ) ( ) ( ) 2

2
,

ˆ,sem ce ij gen obij j
i j

L λ CrossEntropy s s λrel S G= + Φ − Φ  (2) 

where sij and îjs  are generated and real semantic labels, respectively, Φ is a relational 
feature extraction function, and λce and λrel are weight coefficients that balance the two 
items. 
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3.4 Discriminators of interaction perception and cognitive load quantification 

The discriminator D is the innovative core of this framework. It acts not only as a binary 
classifier, but also as an interaction experience evaluator. Its input is a semantic layout 
graph S (either real Sgt or generated Sgen), and its output is a scalar ( ) ,D S ∈  which 
reflects both the ‘realism’ and ‘interactivity’. This scalar reflects both the ‘realism’ and 
‘interactivity’ of the layout. 

In order to quantify the ‘interaction friendliness’, we introduce the interaction 
simulation module. For a given layout S, we instantiate it as a simplified 3D navigable 
environment, which environment is built on a lightweight custom grid-world simulator, 
which can efficiently convert 2D semantic layout maps into 3D space for agents to 
navigate, and deploy a pre-trained DRL navigational intelligence [e.g., a DQN or 
asynchronous advantage actor-critic (A3C) intelligence similar to the one proposed the 
work of Zhu et al. (2017)] to perform a series of navigational tasks from a random 
starting point to a random end point in it. Different from game AI whose core goal is 
competitive confrontation, the design goal of the agent is to complete point-to-point 
movement efficiently and collision-free, and its reward function focuses more on path 
efficiency and task success, so as to better simulate the basic human pathfinding 
behaviour in space. Both the start and goal points were strictly randomly sampled within 
areas of the layout marked as’ passable ‘(e.g., the floor), and we set a minimum 
Euclidean distance threshold to ensure that each navigation task was a substantial path 
planning challenge, rather than a single step. By collecting the navigational trajectories of 
the intelligent body: 

( ) 1, T
t t tτ s a ==  (3) 

we can compute a series of interaction metrics. 
The most critical of these is the cognitive load metric CL(τ). We build on CLT 

(Sweller, 1988) and operationalise it as a function of decision complexity and 
environmental clutter during navigation. We propose the following formula: 

( ) ( )turns deadendsN NCL τ γ H S
T T

= ⋅ + ⋅ + ⋅α β  (4) 

where Nturns is the total number of turns in the trajectory, representing the decision 
frequency. Ndeadends is the number of entries into dead ends, representing the misleading 
nature of the environment design. T is the total step size of the trajectory, used for 
normalisation. H(S) is the visual entropy of the layout S based on its semantic 
segmentation, used to measure visual complexity. α, β, γ are hyperparameters used to 
balance the weights. 

From this, we can define an interaction reward Rint(τ), which is the negative of 
cognitive load, and add a task success reward: 

int ( ) ( )successR τ R CL τ= −  (5) 

where Rsuccess is a positive reward given to the intelligence when it successfully reaches 
the goal. 

Ultimately, the goal of the discriminator is to minimise the following loss function: 
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int
fake real

D gpadv advL L L L L= + + +  (6) 

( )~gen g
fake

S p genadvL D S=     (7) 

( )~gt data
real

S p gtadvL D S= −     (8) 

( )( )ˆ

2
ˆ ˆ~ 2

ˆ 1
S

gp gp S p SL λ D S = ⋅ ∇ −    (9) 

( )[ ]int int ~ int ( )data gS p p SL λ R τ D S∪= − ⋅ ⋅  (10) 

where the first two are Wasserstein distance estimates, the third is a gradient penalty term 
( Ŝ  is the sampling point between the real and generated data distributions), and the 
fourth is our newly introduced interaction reward term. This term encourages the 
discriminator D to give higher scores to layouts S that produce high interaction rewards 
(i.e., low cognitive load, high success rate). The λgp and λint are hyperparameters that 
control the penalty strength and the weight of the interaction reward. 

3.5 Overall optimisation goals 

Combining all the above components, the complete optimisation objective of CSG-GAN 
is a min-max game problem: 

min max G
G D total D adv sem semadvL L λ L λ L= + +  (11) 

where LD is the total loss of the discriminator, G
advL  is the adversarial loss of the 

generator, and Lsem is the semantic consistency loss of the generator. λadv and Lsem are the 
weights used to balance each loss of the generator. By jointly optimising this objective, 
the generator G is trained not only to produce semantically sound layouts, but also to 
actively generate environment designs that are judged by the discriminator D to provide 
smooth, low cognitive load interaction experiences. 

4 Experimental validation 

4.1 Experimental setup 

Our experiments build on the Stanford 2D-3D-S dataset (Armeni et al., 2016). The 
dataset contains a total of 70,496 panoramic RGB-depth (RGB-D) images and their 
corresponding dense 3D semantic annotations from six large indoor regions, covering 
271 individual room instances, including offices, conference rooms, classrooms, and 
other multi-functional spaces. We divided the data into a training set (151 rooms), a 
validation set (40 rooms), and a test set (80 rooms) according to scenarios, ensuring that 
the model is evaluated on unseen spatial layouts. All generated and compared layout 
maps have a uniform resolution of 256 × 256 pixels. We chose as a baseline for 
comparison two recent state-of-the-art (SOTA) approaches that have excelled in the field 
of layout generation: the scene graph to layout generation model (G2L), proposed by 
Krishna et al. (2017), which utilises graph convolutional networks to process object 
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relationships and generate layouts, and represents a SOTA structured constraints-based 
approach; and the diffusion model-based layout generator (LDM), which we adapt to the 
layout generation task with reference to the latent diffusion model architecture proposed 
by Rombach et al. (2022), which generates data through an iterative denoising process 
and represents the SOTA in generative modelling. Our CSG-GAN model and all 
baselines are trained on the same training set and hyperparameter tuning is performed 
using the same validation set. 

The evaluation metrics are divided into two main categories. Generation quality 
metrics include: the FID, which measures the distribution distance between the generated 
layouts and the real layouts in the feature space, and the mean intersection-to-union ratio 
(mIoU), which calculates the consistency between the generated layouts and the real 
layouts in the semantic segmentation at the pixel level. Interaction performance metrics 
are obtained by running the same navigational intelligences in our customised simulation 
environment and include: navigation success rate, average path length (normalised), 
average navigation time (normalised), and the cognitive load score (CLS), which is the 
core of our approach. All reported values are the statistical results of 80 scenarios on the 
test set and were tested for statistical significance (one-way ANOVA and post-hoc Tukey 
HSD test with significance level set at p < 0.5). 

4.2 Generate quantitative and qualitative analysis of results 

In terms of generation quality, the quantitative results (Table 1) clearly show that our 
CSG-GAN model achieves optimal or comparable performance on both key metrics. 
Specifically, CSG-GAN achieved the lowest FID score (15.3 ± 0.4), which is 
significantly better than the G2L model (p < 0.01) and not statistically different from the 
LDM model (p = 0.12), suggesting that CSG-GAN-generated layouts are closest to the 
real data in terms of overall visual and structural distributions. On the mIoU metric,  
CSG-GAN significantly outperforms all baselines with 68.7% ± 1.2% (p < 0.01), which 
demonstrates that it generates semantic labelling maps with higher pixel-level accuracy 
and clearer and more accurate semantic boundaries. 
Table 1 Quantitative comparison of different models on environment layout generation and 

navigation tasks 

Models FID mIoU (%) Navigation 
success rate (%) 

Average 
path length CLS 

G2L 24.5 ± 0.7 55.2 ± 1.5 71.3 ± 2.1 1.28 ± 0.05 0.89 ± 0.03 
LDM 16.1 ± 0.5 61.8 ± 1.1 78.5 ± 1.8 1.19 ± 0.04 0.76 ± 0.02 
CSG-GAN 15.3 ± 0.4 68.7 ± 1.2 85.2 ± 1.5 1.08 ± 0.03 0.65 ± 0.02 

The qualitative analysis provides intuitive support for the above quantitative conclusions. 
From the visualisation comparison of the generated layouts, it can be observed that the 
layouts generated by the G2L model sometimes have overlapping objects or irrational 
spatial relationships (e.g., table levitation); the layouts generated by the LDM model are 
coordinated as a whole, but in the details, such as the location of the door and the width 
of the passageway, they sometimes generate structures that are not conducive to access. 
In contrast, the layouts generated by our CSG-GAN model are not only visually 
reasonable, but more importantly, their spatial structures show better functionality and 



   

 

   

   
 

   

   

 

   

   46 J. Wang and Z. Fan    
 

    
 
 

   

   
 

   

   

 

   

       
 

accessibility, e.g., passages are kept clear, room entrances and exits are clearly designed, 
and furniture placement does not obstruct the main movement lines. 

4.3 Analysis of interaction performance and ablation experiments 

Interaction performance is the core measure of the functionality of the generated 
environment. As shown in Table 1, in terms of navigation success rate, CSG-GAN 
achieves 85.2%, which is significantly higher than78.5% in LDM and 71.3% in G2L. 
What’s more, in the average path length and CLS, which reflect the navigation efficiency, 
the advantage of CSG-GAN is more obvious. This suggests that CSG-GAN generated 
environments are not only easier to traverse successfully, but also have shorter traversal 
paths and impose less cognitive load on the navigators. To visualise this difference, we 
plotted a box-and-line plot of the distribution of CLSs (Figure 3). The box-and-line plot 
clearly shows that the CSG-GAN has the lowest median CLS and the entire data 
distribution is more compactly concentrated in the low load region, while the distribution 
of the baseline model is relatively spread out and contains more outliers with high load. 

Figure 3 Distribution of CLS for different model generation environments (see online version  
for colours) 
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To validate the necessity of each component in the CSG-GAN framework, we conducted 
systematic ablation experiments. We constructed three variants of the model: w/o inter.: 
removing the interaction reward term in the discriminator (i.e., λint = 0); w/o sem.: 
removing the semantic consistency loss Lsem in the generator; and w/o both: removing 
both the interaction reward and the semantic loss. All ablation variants are trained from 
scratch under exactly the same hyperparameter Settings, training cycles, and random 
seeds as the full model (FM) to ensure that performance differences are solely 
attributable to the removed components, thus ensuring fairness of comparison and 
reliability of conclusions. Figure 4 shows the results of the ablation experiments on key 
metrics. It can be clearly seen that the FM performs best on all metrics. Removing the 
interaction reward term leads to a significant decrease in navigation performance and 
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CLS, which demonstrates the critical importance of interaction simulation for generating 
functionalised environments. Removing the semantic loss, on the other hand, leads to a 
significant decrease in mIoU, indicating that the loss is indispensable for ensuring the 
semantic accuracy of the generated layout. 

Figure 4 Ablation study results chart (see online version for colours) 
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4.4 User research results 

To further assess the perceived quality of the generated environment in practical 
applications, we conducted a user study. We recruited 45 participants (including 25 
experts with a background in architectural design or environmental psychology and 20 
general users). These participants were recruited openly mainly through internal 
university mailing lists and social media platforms to ensure a diverse sample. The age 
distribution of participants ranged from 20 to 45 years, with a roughly balanced ratio of 
men and women. The specific professional background of the experts covers a number of 
related fields such as urban planning, interior design and ergonomics. The study 
randomly presented each participant with 30 sets of environment layouts generated by 
different methods (each set contained results generated by G2L, LDM, and CSG-GAN, in 
a randomly disrupted order) and asked them to rate them on a five-point Likert scale in 
terms of the dimensions of ‘spatial reasonableness’, ‘navigational ease’, and ‘overall 
preference’. The Likert scale is a standard subjective evaluation tool widely used in 
psychology and social science research, which quantifies the attitudes or feelings of a 
respondent through an ordered set of statement options. In this study, for each dimension 
(e.g., ‘ease of navigation’), we set a scale from ‘1 – strongly disagree’ to ‘5 – strongly 
agree’, and participants were asked to choose the scale that best matched their feelings. 
This approach captures the strength of a user’s subjective experience more finely than a 
simple binary choice (good/bad). The results (Figure 5) show that CSG-GAN obtained 
significantly higher scores on all three dimensions than the baseline model (p < 0.001). In 
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their feedback, many experts pointed out that the environment generated by CSG-GAN 
has ‘clear lines of motion’ and ‘clear functional zoning’, and that it “has high reference 
value in the conceptual design stage. These subjective evaluations are highly consistent 
with our objective experimental results, which together prove the effectiveness and 
superiority of CSG-GAN in generating human-centred environment design. 

Figure 5 Chart of user research ratings results (see online version for colours) 

G2L

LDM

CSG-GAN

0 1 2 3 4 5

 Overall preference
 Ease of navigation
 Space rationalization

 

4.5 Experimental results and analysis 

The experimental results of this study show that our proposed CSG-GAN framework not 
only achieves a level of visual fidelity comparable to current SOTA methods in 
generating environment layouts, but also, more importantly, significantly surpasses the 
dimensions of functionality and interactive experience. This success is not by chance, but 
is due to the fact that the framework has successfully integrated the three originally 
independent research dimensions of computational generation, semantic understanding 
and cognitive evaluation. 

First, our results strongly support the feasibility of manipulating CLT 
computationally and embedding it into generative model optimisation goals. Compared to 
the G2L model proposed by Krishna et al. (2017), CSG-GAN generates environmental 
navigation with higher success rates, shorter paths, and, in particular, significantly lower 
CLSs. This demonstrates that by quantifying the core concepts of CLT (e.g., decision 
frequency, environmental misdirection) as CL(τ) and as part of the loss function, the 
generator is efficiently steered to those solutions in the search space that can support 
more efficient and comfortable navigation behaviour. This is in line with the principle 
emphasised by Sweller (2011) that ‘instructional design should aim to reduce external 
cognitive load’, which we successfully extend from digital learning environments to the 
design of physical and virtual spaces. Second, the superior performance of CSG-GAN on 
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semantic consistency (mIoU) validates the key role of the semantic loss function Lsem in 
maintaining the spatial structure and functional relationships among objects. It ensures 
that the generated environments are not only statistically sound, but also common-sense 
‘usable’, e.g., doors are aligned with passages and tables and chairs appear in groups, 
which compensates for the potential deficiencies in fine-grained spatial logic control of 
diffusion models such as Rombach et al. (2022). 

The theoretical contribution of this work is that it substantially builds a bridge 
connecting cognitive psychology and AI generative modelling. Previous research, such as 
the work of Shah and Miyake (2005), although deeply articulating the principles of 
environmental cognition, is mostly descriptive and difficult to be directly translated into 
design tools. Our framework, however, translates abstract concepts such as ‘cognitive 
maps’ and ‘spatial orientation’ into optimisable algorithmic goals (e.g., path length, 
number of turns), making the leap from qualitative theory to quantitative models. This 
makes human-centred design not just a philosophical concept or a criterion to be 
evaluated at a later stage, but a driving factor embedded in the early stage of design 
generation. 

At the practical level, the framework shows promising applications. In the field of 
smart education, it can be used to automatically generate personalised classroom layouts 
that promote collaboration and reduce distractions, echoing Barrett et al. (2013) finding 
that physical environments significantly affect students’ learning progress. In the design 
of medical environments, based on Ulrich (1984) supportive design theory, our model 
can optimise the flow of hospitals and generate spatial layouts that can reduce patients’ 
sense of disorientation and stress, thus assisting in rehabilitation. In addition, in virtual 
reality and meta-universe scenario construction, CSG-GAN can quickly generate virtual 
environments that are aesthetically pleasing and easy for users to navigate, greatly 
enhancing user experience and immersion. 

However, several limitations remain in this study. First, the generalisation ability of 
the model is limited by the training data. The Stanford 2D-3D-S dataset we used mainly 
covers indoor office and educational scenarios, and the validity of the model has not yet 
been verified in residential, industrial buildings or complex urban outdoor environments. 
Future improvements include: training and fine-tuning on datasets with more diverse 
scenarios such as Matterport3D, Gibson Environment, etc.; exploring domain adaptation 
techniques to allow the model to transfer spatial logic learned in office scenarios to new 
environments; and adopting a meta-learning framework to allow the model to be used in 
a more spatial environment. Learning (meta-learning) framework, which allows the 
model to learn quickly from a small number of new scene samples. Second, there is a 
bottleneck in the fidelity of the interaction simulation; despite our use of DRL 
intelligences, there is still a gap between their navigation behaviours and the  
decision-making patterns of real human beings under stress, fatigue, or complex social 
situations. Finally, current frameworks have mainly optimised the visual and geometric 
properties of spaces, and have not yet integrated multimodal physical environment factors 
such as acoustics, lighting, and thermal comfort, which have a critical impact on user 
experience. 

Future research can be carried out in depth in three directions. One is to extend the 
model’s scenario adaptability by training and testing it on a wider and more diverse 
dataset, such as the Matterport3D dataset containing residential, mall, and outdoor 
streetscapes (Chang et al., 2017), in order to build a universal environmental design 



   

 

   

   
 

   

   

 

   

   50 J. Wang and Z. Fan    
 

    
 
 

   

   
 

   

   

 

   

       
 

assistant. The second is to explore higher fidelity interaction simulations, such as the 
introduction of behavioural models driven by human movement trajectory data, or the 
integration of psychological experiments to more accurately quantify subjective 
experiences such as cognitive load (Shah and Miyake, 2005). Thirdly, it is to promote 
multi-modal perception and generation. The future framework should be committed to 
integrating visual, acoustic and even tactile information to generate all-around 
environmental solutions that can simultaneously optimise visual layout, noise control and 
light design, which will truly realise human-centred holistic environmental design. 

5 Conclusions 

In this paper, we propose and validate a novel CSG-GAN for automated generation of 
interactive environment designs. The core contributions of this study are mainly in the 
following three aspects: first, we realise the transformation of CLT from a descriptive 
framework to a computable model. By defining the quantitative CLS CL(τ) and the 
interaction reward Rint(τ), we equip the AI model with the ability to proactively optimise 
the user experience during the generation process, which promotes a paradigm shift in the 
environment design methodology. Second, we construct an end-to-end generation 
framework that fuses static semantic understanding with dynamic interaction simulation. 
Through an innovative interaction-aware discriminator, we unify the evaluation criteria 
of ‘realism’ and ‘interaction-friendliness’ of environments, and enable the generator to 
produce environment layouts with good form and function. Third, experiments on the 
Stanford 2D-3D-S dataset show that CSG-GAN significantly outperforms existing SOTA 
methods in terms of generation quality and interaction performance. The ablation study 
verifies the necessity of each core component, while the user study confirms the practical 
value of the generative environment at the subjective perception level. 

This study establishes a ‘theory-technology’ bridge connecting cognitive theory and 
generative modelling, and provides a new paradigm and methodological support for 
intelligent environment design in the fields of architecture, urban planning, and virtual 
reality. 
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