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Abstract: The contradiction between course resource overload and learners’ 
personalised needs in online education platforms is becoming increasingly 
prominent. Addressing the common issues of weak interpretability and poor 
dynamic adaptability in existing recommendation methods, this paper proposes 
a knowledge graph-based adaptive course recommendation model. By 
constructing a hierarchical knowledge graph to precisely represent the course 
knowledge system and integrating deep knowledge tracking with reinforcement 
learning techniques, the model dynamically perceives learners’ knowledge 
states and evolving interests, enabling real-time adjustment of recommendation 
paths. Experiments on the publicly available china university massive open 
online course dataset demonstrate that compared to mainstream baseline 
models, our model achieves up to 8.7% higher performance on key metrics 
such as normalised discounted cumulative gain@10 and hit rate @10. This 
validates its effectiveness and superiority in delivering precise, explainable 
personalised recommendations. 
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courses; MOOCs; personalised learning. 
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1 Introduction 

Inspired by the digital education tide, the higher education in the world is experiencing a 
dramatic change (Berberoglu et al., 2024). Both universities and online learning 
platforms release large courses resources (Sancristobal Ruiz et al., 2014), trying to 
transcend space and time limitations to realise global access to resources (Nguyen et al., 
2012), This sudden explosion of course release brings new challenges. The global 
pandemic has served as a significant catalyst, markedly accelerating the transition toward 
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digital education. This shift has, in turn, sharply intensified the demand for robust and 
effective personalised learning solutions that can accommodate diverse learner needs in 
increasingly virtual environments. Students are trapped in the paradox of choice when 
they face a large number of choices (Braul, 2006) they find it hard to filter high quality 
contents from these massive resources which are suitable for their knowledge 
background, learning objectives and interests (Cole et al., 2020). This situation not only 
reduces students engagement and completion rates, but also leads to unbalanced 
allocation of education resources. It becomes a bottleneck that hinders the development 
of high quality online education (Liu et al., 2024). 

Personalised recommendation technology has been gradually attracted attentions as a 
hot issue in educational technology research (Dutta, 2013). The early recommendation 
systems just used mature methods from e-commerce area, such as collaborative filtering 
and content based recommendation methods (Yue et al., 2025). These methods used 
users’ historical behaviour data and item attributes to make recommendations. These 
traditional measures can ease the information overload to some degree. But when faced 
with practical situations in education, their defects become more obvious (Skovgaard  
et al., 2010). They always treat courses as independent entities and ignore the logical 
sense and dependencies between them (Ward and Wandersee, 2002). So it is hard to 
know what knowledge point’s prerequisite relationships are, and thus make 
pedagogically recommendations without logical sequence. A concrete illustration of this 
shortcoming would be a system recommending an advanced machine learning course to a 
student who lacks foundational knowledge in statistics. This misalignment with the 
learner’s actual preparedness is likely to cause frustration, comprehension difficulties, 
and ultimately increase the risk of course dropout. More seriously, these static models 
cannot catch the dynamic changes of students cognitive structure and knowledge mastery. 
So it is hard to know the student’s current interest areas and ability levels and make 
teaching suggestions accordingly. 

With the rapid development of artificial intelligence technology, how to solve the 
above problem (Zheng et al., 2015) proposed a new solution: knowledge graph. As an 
effective method to represent and reason on complex relational networks, knowledge 
graph can integrate the scattered course knowledge points into a whole and make the 
associative paths and hierarchical relationship between concepts clearly visible (Miltgen 
et al., 2013). Some researchers began to attempt to apply knowledge graph in educational 
recommendation. They added connection to course content and logical relationship 
between knowledge points into semantic data of recommendations, and improved the 
explanation degree of recommendation result to some extent (Graf et al., 2009). At the 
same time, with the development of deep knowledge tracking method of learner 
modelling technology, the real-time assessment and prediction of learners’ knowledge 
states are also possible (Chen et al., 2024). Through analysing learners’ interaction 
sequence, the method maps learners’ cognitive track dynamically in knowledge space and 
provides data support for more accurate personalised recommendation. However, most of 
the existing recommendation models based on knowledge graph still face many 
challenges (Svetinasupa et al., 2011). Most of the existing methods build static 
knowledge graph which cannot respond to the dynamic change of learners’ cognitive 
states. These methods usually focus on the optimisation of short-term indicators such as 
click-through rate or completion rate, but ignore the long-term influence of 
recommendation on the construction of learners’ knowledge framework and the 
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development of learners’ skills. These methods do not consider the level of instructional 
strategy (Kontos et al., 2010). 

This paper aims to explore how to build an adaptive recommendation framework 
which can deeply integrate the knowledge graph structure and the dynamic change of 
learners’ cognitive states (Borges et al., 2009). It must have a deep understanding of 
knowledge system, dynamically respond to the change of learners’ cognitive states, and 
make recommendation decision based on pedagogical experience in a dynamic way. The 
innovation of this research is that, a hierarchical dynamic knowledge graph construction 
method is proposed. This method not only can describe the static association between 
courses and knowledge points, but also updates the mastery of knowledge dynamically 
based on learners’ behaviour. Based on the above research ideas, we designed an 
adaptive recommendation mechanism which combines knowledge tracking and strategy 
optimisation algorithm. This mechanism continuously adjusts the recommendation 
strategy according to the real-time feedback of learners, so that the recommendation is 
consistent with the objective development law of knowledge formation, and meets the 
personalised cognitive progression rhythm of learners. Theoretically, this research 
provides a new design idea for educational recommendation system. Practically, this 
research provides new technical solution to solve the personalised adaptation problem in 
online education. 

2 Related work 

2.1 Construction of educational knowledge graphs 

Educational knowledge graph is the basis of our model, and the quality of knowledge 
graph construction will directly affect the semantic level of understanding of 
recommendation system and interpretability (Pasdeloup et al., 2018). Compared with 
early research, initial work mainly constructed static knowledge graphs by extracting 
structured or semi-structured information from course syllabuses and textbooks. The 
fundamental distinction lies in their adaptability: static graphs represent fixed,  
pre-defined relationships between educational entities, whereas dynamic graphs are 
designed to evolve continuously by incorporating data from ongoing learner interactions. 
This enables them to mirror the real-time dynamics of a learner’s cognitive state and 
knowledge mastery Specifically, entities such as ‘courses’, ‘knowledge points’ and 
‘teachers’ as well as their relationships like ‘prerequisite’ and ‘contains’ were extracted to 
build a large semantic network. This work was initially applied to support resource 
organisation and visual navigation (Rosenbaum et al., 2005). However, the static graph is 
hard to reflect the dynamic evolution process of learning concepts and the dynamic 
changing characteristics of learners’ cognitive states. To address the above issues, recent 
work focuses on constructing a dynamic causal graph. The objective is to model the 
causal and logical relationships between sequences of learning activities, i.e., ‘after 
learning the concept a, there is a high probability to generate the concept b’. In terms of 
technology, due to the fact that graph-based representation learning method can 
effectively preserve the information of structural characteristics in graphs, node2vec is 
widely used in recent research. Node2vec offers a key advantage over traditional 
sequence-based embedding methods like Word2Vec by its ability to capture both 
homophily (network cohesion) and structural equivalence (similar structural roles) within 
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graph structures. This dual capability makes it particularly well-suited for modelling the 
complex, often hierarchical relationships inherent in educational knowledge systems. 
This method uses biased random walks to generate node sequences, and then uses  
Skip-gram model to learn low-dimensional vectors for nodes. The objective function 
maximises the likelihood probability of node sequence in graph, which is expressed as: 
max log Pr( ( ) | ( )),f S

u V

N u f u
∈
  where f(u) is the embedding vector corresponding to node 

$ u $, and NS(u) denotes the neighbourhood nodes surrounding node u obtained through 
sampling strategy S. the learned embedding vectors can better capture the complex 
topological features in graph and provide high quality input for the recommendation 
algorithm (Sun et al., 2025). 

2.2 Learner profiling technology 

Precise learner profiling lays the essential foundation for personalised recommendations. 
Traditional user profiling is usually based on some static user’s demographic information 
and explicit interest tags, which are hard to be applied into education area. With the 
development of deep learning technology, deep knowledge tracing (DKT) model could 
utilise the sequence of historical responses and dynamically simulate the growth of 
learners’ knowledge states. A primary advancement of DKT over classical Bayesian 
knowledge tracing (BKT) is its data-driven approach. While BKT depends on  
expert-defined parameters and assumptions, DKT utilises recurrent neural networks to 
automatically infer and model complex, nonlinear learning patterns directly from 
sequences of learner interaction data. Therefore, the static profiling extends to cognitive 
profiling. A common DKT model utilised recurrent neural networks to simulate the 
growth of learners’ knowledge states. ht = tanh(Whxxt + Whhht–1 + bh), where xt represents 
the input vector at time $t$ composed of the exercise and response results. The model 
predicts the probability pt = σ(Whyht + by) that the learner will answer the next question 
correctly. Based on DKT, the learner’s mastery level t

km  at a specific knowledge point k 
can be expressed as ( + ).t

k t kkm σ W h b= ⋅  To address the sparsity of behavioural data, 
researchers introduced a knowledge graph-based label expansion approach, Lee and 
Isbicki (2016) proposed a knowledge graph based label expansion approach. By referring 
to the relationship between entities in graph and utilising graph inference algorithms 
(personalised pagerank) to explore the connection between entities, the research uncovers 
learners’ latent, deep-seated interest preference. Thereby constructing a multidimensional 
profile vector p = [m, i, c]. Due to the original expression being very concise and not 
having any other form, can only do trivial formatting changes, cannot change the content 
much. 

2.3 Knowledge graph-based recommendation model 

Incorporating knowledge graphs as auxiliary data into recommendation systems has 
become a mainstream approach to enhancing recommendation accuracy and 
interpretability. The ripplenet model refines user representations by simulating the 
propagation of interests across knowledge graphs, with its core concept analogous to  
the diffusion of water ripples. Knowledge graph attention network (KGAT) models 
specifically employ graph attention networks for information aggregation within the 
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graph. The key methodological divergence from RippleNet lies in the aggregation 
mechanism. While RippleNet propagates user preferences across the knowledge  
graph in a uniform, wave-like manner, KGAT employs an attention mechanism to 
adaptively weigh the influence of neighbouring nodes. This results in more  
nuanced and semantically relevant representations for recommendation. They  
learn node representations by calculating attention weights between target nodes  
and their neighbours, with attention coefficients computed using the 

exp(LeakyReLU( [ ]))
exp(LeakyRe

|
LU( [ ]| ))

i

T
i j

ij T
i k

k

e e
e e

∈

=


a W W
a W W



α  where ei and ej are node embeddings, and 

W and a are trainable parameters. Method – a trainable parameter. Despite these models 
achieving strong performance in e-commerce and news recommendation domains, 
directly applying them to education remains challenging. They typically focus on single 
interactions between users and items, neglecting the hierarchical knowledge structures 
and continuous learning paths unique to educational settings. More critically, these 
models are static – their recommendation logic is fixed at inference time and cannot adapt 
to learners’ real-time knowledge state changes, making it difficult to meet personalised 
expectations in dynamic learning processes (Yang and Wu, 2009). 

2.4 Adaptive learning and path planning 

Adaptive learning aims to dynamically adjust learning content and pathways for learners 
to optimise the learning experience and outcomes. In this field, reinforcement learning is 
regarded as a highly promising solution due to its robust sequential decision-making 
capabilities (Vovides et al., 2007). This approach typically models the learning path 
recommendation problem as a Markov decision process (MDP): an agent (the 
recommendation system) selects an action at (recommending the next learning item) 
based on the current state st (the learner’s knowledge state, historical behaviour, etc.). 
The environment then transitions to a new state st+1 and provides the agent with a reward 
rt (e.g., improved test scores, course completion). Classic algorithms like deep q-network 
aim to learn an optimal action-value function ( , ) ( , )[ + max | , ],s a s a

aQ r γ Q s a′ ′
′=   where γ 

is the discount factor. Policy gradient methods directly parameterise the policy πθ(a| s) 
and optimise policy parameters θ via gradient ascent: Δ log ( | ) ( , ).θ θθ π a s Q s a∝ ∇  
However, most existing reinforcement learning-based path planning methods rely on 
relatively simple state representations. They fail to fully leverage the rich semantic 
relationships and topological structures inherent in knowledge graphs. Consequently, 
their decision-making processes lack deep semantic constraints and interpretability, 
limiting their effectiveness in complex knowledge systems. 

3 Methodology 

This section systematically outlines the overall framework and core technologies of a 
knowledge graph-based adaptive recommendation model for training courses. As 
illustrated, the model primarily comprises three core modules: hierarchical knowledge 
graph construction and dynamic update, learner profiling through integrated knowledge 
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tracking, and adaptive recommendation based on hierarchical attention and reinforcement 
learning. These modules will be described in detail below. 

Figure 1 Adaptive course recommendation model framework based on knowledge graphs  
(see online version for colours) 

 

3.1 Hierarchical knowledge graph construction and dynamic updates 

To precisely characterise the complex knowledge system among university courses, we 
first construct a hierarchical knowledge graph ( , ),=    where   denotes the entity 
set and   denotes the relation set. The hierarchical organisation of the knowledge graph 
is designed across multiple levels of granularity. It spans from high-level, broad course 
categories and modules down to intermediate learning units and fine-grained knowledge 
concepts. This multi-tiered structure is fundamental for enabling reasoning and 
recommendation at varying levels of abstraction. Entity types include course, concept, 
resource, and learner. Relationships encompass ‘prerequisite’, ‘contains’, ‘related_to’, 
and interactive interactions such as ‘studies’ and ‘clicks’. 

For graph embedding representation learning, we adopt the node to vector method 
similar to related work, but its objective function is optimised to better preserve network 
structure. For each entity ,e ∈  we aim to learn a low-dimensional vector representation 

,d∈e   where d denotes the embedding dimension. After generating node sequences via 
second-order random walks, we maximise the log probability of contextual nodes using a 
Skip-gram model. The objective function is defined as: 

( ) ( )
( , )

log + 1 ~ ( ) log
k

T K T
k n uv

u v

kg σ v u k v P v σ
∈

 = − = −  e e e e


  (1) 

where (u, v) denotes a pair of nodes co-occurring in a random walk sequence (positive 
sample),   is the set of all positive samples, σ is the Sigmoid function, vk is the kth 
negative sample sampled from the noise distribution Pn(v), and K is the number of 
negative samples. By minimising this loss, we obtain high-quality vector representations 
for all entities and relations. 

To capture the local structure of knowledge and learners’ dynamic interests, we 
introduce a hierarchical subgraph extraction mechanism. For a given learner l and current 
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curriculum ct, we perform breadth-first search (BFS) on the global graph   centred 
around its associated knowledge points, extracting an h-hop local subgraph ( , ).sub tl c  
We employ BFS for local subgraph extraction as it systematically captures all entities 
within a specified proximity, ensuring no directly connected knowledge concepts are 
omitted. This completeness is crucial for maintaining the pedagogical coherence and 
logical continuity of the recommended learning path. This subgraph serves as the direct 
knowledge context for subsequent recommendation decisions. 

3.2 Generation of learner profiles through knowledge-integrated tracking 

This module aims to generate a dynamic, multidimensional learner profile that serves not 
only as a collection of static characteristics but also as a real-time reflection of the 
learner’s cognitive state. 

Knowledge state modelling: we employ a deep knowledge tracking model to quantify 
learners’ mastery across different knowledge points. The historical interaction sequence 
of learner l – such as answer records and video completion rates – x1, x2, …, xt is fed into 
a long short-term memory (LSTM) network. The update process of the LSTM at each 
step t is as follows: 

( )1+  +t tσ xi t hi i−=i W x W h b  (2) 

( )1+  +t tσ xf t hf f−=f W x W h b  (3) 

( )1+  +t tσ xo t ho o−=o W x W h b  (4) 

( )1tan +  h +t txc t hc c−=c W x W h b  (5) 

1 +t t t t t−=c f c i c   (6) 

( )tanht t t=h o c  (7) 

where it, ft, and ot represent the input gate, forget gate, and output gate respectively; tc  
denotes the candidate cell state; ct denotes the current cell state; ht denotes the hidden 
state; σ denotes the sigmoid activation function,   represents element-wise 
multiplication, W and b denote the corresponding weight matrix and bias vector. Finally, 
the learner’s l mastery level t

km  at knowledge point k is computed through a fully 
connected layer: 

( )+t T
t kk km σ b= w h  (8) 

where wk and bk represent the weight and bias associated with knowledge point k. The 
mastery levels of all knowledge points collectively form the learner’s knowledge state 
vector | | ,t ∈m   where | |  denotes the total number of knowledge points. 

Interest preference modelling: beyond knowledge state, learners’ interest preferences 
are equally crucial. Based on their historical interaction sequences with resources, we 
employ attention mechanisms to compute preference weights for different knowledge 
concepts. The integration of an attention mechanism enables the model to dynamically 
assign higher weights to knowledge concepts with which the learner has frequently and 
recently interacted. This functionality effectively mirrors human attentional patterns by 
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prioritising familiar and relevant content within the learner’s profile. Learner l’s interest 
score ic for concept c is calculated as follows: interest score ic for concept c of learner l is 
computed as follows: 

( )( )
( )( )

exp tanh + +
( )exp tanh + +

T t
c c m

c T t
m a

a
i

c l c c
m

=
′ ′∈

q W e W b
q W e W m b

 (9) 

where ec is the embedding vector for concept c, ( )l  is the set of concepts historically 
interacted with by learner l, and Wc, Wm, ba and q are learnable parameters. Ultimately, 
the learner’s interest vector it is the weighted sum of the embedding vectors of the 
concepts they are interested in. 

The learner’s complete profile vector pt is concatenated from its static attribute vector 
sl, dynamic knowledge state vector mt, and interest vector it: 

[ ]; ;t t t
l=p s m i  (10) 

This vector pt will serve as the core basis for the recommendation system to perceive the 
learner’s state. 

3.3 Adaptive recommendation based on hierarchical attention and 
reinforcement learning 

This module serves as the core of the entire model. It receives the outputs from the first 
two modules and makes the final adaptive recommendation decision. 

Hierarchical graph attention encoding: for a given local subgraph nsub(l, ct), we 
employ a graph attention network to learn enhanced representations of its course nodes 
for target course node i and its neighbouring node j ∈ ni, the attention coefficient αij is 
computed as follows: 

( )( )
( )( )

exp LeakyReLU

exp LeakyReLU k

T t
i j p

ij
T t

i i p

e

k e

  

  
=

∈
a W We W p

a W We W p
α


 (11) 

where ei, ej denote the initial embeddings of nodes i and j, W and Wp represent the 
weight matrices for linear transformations, a is the weight vector for the attention 
mechanism, and | indicates vector concatenation. Specifically, we introduce learner 
profiles pt as guidance signals for the attention mechanism, making the graph information 
aggregation process highly personalised. The final representation zi of target course node 
i is the weighted sum of its neighbouring node representations: 

( )ji σ j i ij= ∈z Weα  (12) 

In this way, course representations not only contain their own semantic information but 
also aggregate relevant information from their knowledge context that is influenced by 
the learner’s state. 

Reinforcement learning recommendation system: we model course recommendation 
as a sequential decision problem and employ a reinforcement learning framework to 
discover optimal long-term recommendation strategies. This process is defined as a 
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MDP: at time step t, the state [ , ]t
t

t cs = p z  comprises learner profiles and the augmented 
representation of the currently studied course. Action at involves selecting a course ct+1 
from the candidate course set for recommendation. Reward: after executing action at, the 
environment returns a reward signal rt. Our reward function integrates both immediate 
feedback and long-term knowledge gains: 

( )1 2 3 4Íê³É + ΔScore + Diversity CognitiveLoadtr λ λ λ λ= ⋅ ⋅ ⋅ − ⋅  (13) 

where (completion)  is the course completion indicator function, ∆Score is the  
score improvement after learning subsequent courses or taking quizzes, Diversity 
encourages recommending diverse knowledge, and CognitiveLoad penalises leaps in 
recommendations that may cause cognitive overload. λ1:4 are the weighting coefficients 
balancing these factors. 

Policy: the policy πθ(at| st) is defined as the probability of selecting action at in state 
st. We parameterise this policy using a deep neural network whose output is a probability 
distribution over candidate actions. The action-value function Q(st, at) represents the 
expected cumulative discounted reward achievable by executing action at in state st: 

( ) + +1
0

, ,k
t t t k t t

k

Q s a πθ γ r s a
∞

=

 
=  

  
  (14) 

where γ ∈ [0, 1] is the discount factor. 
We employ the proximal policy optimisation (PPO) algorithm to train the 

recommendation agent, whose objective function ppo  aims to maximise: 

( )( )ˆ ˆ( ) min ( ) , clip ( ), 1 , 1+ppo t t t tθ t ρ θ A ρ θ A = −     (15) 

where ( )( )
(

|
| )old

θ t t
t

θ t t

π a sρ θ
π a s

=  denotes the probability ratio, ˆ
tA  represents the estimated 

advantage function at time step t, and   is a hyperparameter used to constrain the 
magnitude of each policy update, thereby ensuring training stability. 

Ultimately, the system selects the next course to recommend based on the probability 
distribution πθ(·|st) output by the policy network, completing one adaptive 
recommendation cycle. Through end-to-end training, the entire model achieves deep 
integration between the knowledge graph, learner dynamic states, and long-term 
recommendation strategies. 

4 Experimental verification 

To comprehensively evaluate the effectiveness and superiority of the knowledge-grained 
adaptive reinforcement learning (KARL) proposed in this paper, we designed and 
conducted a series of comparative experiments, ablation studies, and case studies. All 
experiments were performed under the same experimental environment to ensure the 
fairness of the results. 
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4.1 Experimental setup 

4.1.1 Dataset 
In this experiment, we use the public higher education dataset massive open online course 
(MOOC) Cube extracted from Xuetang platform in China. It contains rich course 
information and user behaviour logs (click, view, quiz finish result, etc.), as well as 
knowledge concept tags. We filtered and pre-processed the raw data and finally obtained 
the final dataset including 125 courses, 8,420 key knowledge points and more than 
12,000 interaction records from nearly 58 k learners. For each learner, we split his 
interaction sequence into training, validation and test set by time. The split ratio is 8:1:1. 

4.1.2 Baseline models 
To ensure fair comparison, we selected four state-of-the-art models representative of the 
course recommendation domain as baselines. Knowledge graph convolutional network 
with positive-unlabeled learning (KGCN-PN): this model, proposed in ‘knowledge graph 
convolutional networks for recommender systems’, enriches item representations by 
aggregating neighbour information on knowledge graphs. We employ it as a strong 
baseline for knowledge graph-based recommendation. Graph attention network (GAT): 
GAT introduced in ‘graph attention networks’. We utilise GAT to learn node 
representations in the course graph for recommendation purposes. KGAT: this model, 
introduced in ‘KGAT: KGAT for recommendation’, captures collaborative signals by 
performing attention mechanisms on higher-order knowledge graphs. It is a widely cited 
strong baseline in the recommendation domain. POCR: proposed in ‘provisioning online 
education with reinforcement learning’, it is one of the few works applying reinforcement 
learning to online education path recommendation. We adopt it as a representative 
baseline for adaptive recommendation. 

4.1.3 Evaluation metrics 
We adopt top-k recommendation evaluation metrics commonly used in information 
retrieval, including: normalised discounted cumulative gain (NDCG@K), which 
measures the ranking quality of the recommendation list; hit rate (HR@K), which 
measures whether the target course is included in the recommendation list; mean 
recovered rank (MRR), which measures the average ranking of the target course within 
the recommendation list. In the main results, we report outcomes for K = 10. 
Implementation details: our KARL model is implemented using pytorch. All model 
embeddings are uniformly set to a dimension of 64. The Adam optimiser was employed 
with an initial learning rate of 0.001 and a batch size of 128. For the reinforcement 
learning component, the discount factor γ was set to 0.9, and the clipping coefficient ε for 
the PPO algorithm was set to 0.2. The weight coefficients in the reward function were 
determined via grid search: λ1 = 1.0, λ2 = 0.5, λ3 = 0.1, λ4 = 0.3. 

4.2 Results and analysis 

In order to thoroughly evaluate the effectiveness of recommendation of KARL model, we 
implemented intensive quantitative comparison with four representative baseline models 
on the public dataset MOOC Cube. As shown in Table 1, our model got excellent 
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performance on all three evaluation metrics including NDCG@10, HR@10 and MRR, 
and significantly improved over all baseline models. 
Table 1 Performance comparison of models on the MOOC cube dataset (K = 10) 

Model NDCG@10 HR@10 MRR 
KGCN-PN 0.358 0.408 0.291 
GAT 0.371 0.422 0.302 
KGAT 0.389 0.441 0.318 
POCR 0.365 0.415 0.297 
KARL (ours) 0.423 0.479 0.349 

As shown in Table 1, KARL obtains 0.423 in NDCG@10 to evaluate ranking 
performance. Compared with the strongest baseline KGAT in static graph-based 
recommendations, KARL obtains an absolute improvement of 0.034, which is relative 
improvement of 8.7%. In addition, HR@10 reflects the hit ability of recommendation, 
KARL (0.479) is 8.6% better than KGAT (0.441). As for MRR which represents the 
average ranking position of target courses, KARL (0.349) is improved most greatly 
compared with KGAT (0.318), it gets 9.7 percentage points improvement. Overall, the 
consistent performance improvement shows that KARL put the course user really wants 
more frequently in recommendation list and try to place these target courses as high as 
possible, and thus provide a better search experience. 

By analysing the performance of baseline models below, we can get more instructive 
conclusions. Performance of KGAT and GAT KGAT is better than both GAT and 
KGCN-PN. It shows that attention mechanism can capture the collaborative signals on 
high-order knowledge graphs. Performance limitations reflect performance defects of 
static graph models: They cannot identify and respond to learners’ knowledge states 
evolution. Their recommendations are just a ‘one-time’ solution. But they do planning for 
the whole learning process. 

Limitations of POCR: POCR is a model designed for educational scene; it does not 
significantly improve over static graph models. It directly supports our following 
argument: recommendation decisions based on reinforcement learning framework 
without cooperation with fine-grained knowledge state perception are blind and dumb. 
POCR uses relatively simple state representations and cannot fully benefit from rich 
structured semantics of knowledge graphs. As a result, this agent cannot master an 
effective long-term recommendation way. 

Through an in-depth analysis of baseline model performance, we arrive at more 
insightful conclusions: Performance of KGAT and GAT: KGAT outperforms both GAT 
and KGCN-PN, confirming that attention mechanisms effectively capture complex 
collaborative signals on high-order knowledge graphs. Their performance limitations also 
reveal inherent drawbacks of static graph models: they fail to detect and respond to the 
dynamic evolution of learners’ knowledge states. Their recommendations represent a 
‘one-time solution’ rather than continuous planning throughout the learning process. 
Limitations of POCR: The POCR model, specifically designed for educational scenarios, 
does not significantly outperform static graph models. This directly supports our core 
argument: recommendation decisions based solely on reinforcement learning 
frameworks, without integration with refined knowledge state perception, are blind and 
inefficient. POCR relies on relatively simple state representations and fails to fully 
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leverage the rich structured semantics provided by knowledge graphs. Consequently, this 
agent struggles to master truly effective long-term recommendation methods. 

The quantitative comparison results clearly demonstrate that integrating dynamic 
knowledge graphs, refined learner profiles, and reinforcement learning focused on  
long-term gains represents an effective approach to overcoming the performance 
limitations of existing course recommendation models. The success of the KARL model 
hinges on its ability to achieve deep perception of knowledge context and learner state, 
coupled with adaptive decision-making. To visually illustrate the performance gaps 
between models, we created a bar chart, as shown in Figure 2. This visualisation vividly 
presents the data from Table 1, making the performance comparison clear and easy to 
understand. The bar chart representing the KARL model stands out across all three 
metrics, with heights significantly surpassing other baselines, creating a striking visual 
contrast. This comprehensive lead visually reinforces the superiority of the KARL model. 
By examining the heights of the bar charts for different baseline models, we can clearly 
observe the performance ranking: KARL outperforms KARL > KGAT > GAT > POCR > 
KGCN-PN. This sequence aligns perfectly with our earlier analysis, further illustrating 
the progression of performance from simple graph networks to complex graph attention 
networks, and ultimately to the introduction of dynamic adaptive mechanisms. 

Figure 2 Performance comparison of different recommendation models on NDCG@10, HR@10, 
and MRR metrics (see online version for colours) 
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Training convergence analysis. The stability and convergence efficiency of a model 
during training are two important aspects to evaluate the practicality of a model. We 
record the validation set loss of each model during training, as shown in Figure 3. 

From the convergence curve, we can clearly see the advantage of KARL model 
during the optimisation process. Outstanding convergence stability: The curve of KARL 
loss value (blue solid line) is especially smooth, and it is monotonically decreasing. There 
is no big fluctuation in the whole training process. The stability of the model comes from 
the fact that the PPO algorithm is used to update the policy. The step size of policy 
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update is limited to a certain range to avoid large fluctuation, which keeps a relatively 
stable training process. The curve of POCR model (red solid line) shows a relatively 
large fluctuation in the initial stage. This is because there is a certain difficulty in 
balancing the exploration and exploitation process. 

• Superior convergence point: after 100 training iterations, the KARL model can 
converge to a loss value approaching the minimum. This not only validates the 
effectiveness of objective function on the optimisation side, but also provides 
evidence for its superior performance on recommendation metrics. Lower loss value 
means the model has learned more accurate user-course matching relationship, and 
more effective long-term recommendation strategy. 

• Highly efficient convergence speed: although the KARL model slows down the loss 
reduction in the first 10 cycles due to its model complexity, it still has strong 
momentum in the mid-to-late stage. However, compared with static models like 
KGAT (green curve), they slow down the loss reduction after about cycle 40 and 
enter the plateau stage quickly. Finally, KARL optimises itself to reach higher 
performance levels. This shows that reinforcement learning agents need time to learn 
good long-term strategies. Once learned, they have better generalisation ability than 
short-term reward models. 

Convergence analysis shows that compared with other models, the KARL model has a 
sophisticated and robust design from the optimisation perspective. A stable and efficient 
training process that can converge to optimal solutions is the most basic requirement for 
the practical deployment of a reliable recommendation service. 

Figure 3 Loss convergence curves of different models during training (see online version  
for colours) 
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4.3 Melting experiment 

Next, we explore the contributions of each component in the KARL model through 
ablation experiments. We implement three models based on the KARL model:  
KARL-w/o-KT: remove the deep knowledge tracking module and replace the dynamic 
knowledge state vector mt with static user profiles. KARL-w/o-RL: remove the 
reinforcement learning module and replace it with a static model that performs top-K 
recommendations after computing user-course match scores through the inner product 
calculation. ARL-w/o-Att: replace the personalised attention in graph attention encoding 
with mean pooling. w/o-KT: remove the deep knowledge tracking module and replace 
dynamic knowledge state vectors mt with static user profiles. 

The ablation experiment results (take NDCG@10 as an example). The full KARL 
model gets 0.423; KARL-w/o-KT scores drop to 0.395; KARL-w/o-RL scores drop 
dramatically to 0.382; KARL-w/o-Att scores drop to 0.401. The experimental results 
clearly show that the reinforcement learning module contributes the most and plays an 
important role in achieving adaptive recommendations with the maximum long-term 
gain. Only when the dynamic knowledge tracking module exists can the system have an 
accurate understanding of the current state. Removing this module will lead to a dramatic 
performance drop. The personalised graph attention module can significantly improve the 
accuracy of course representations and provides a stable gain for model performance. 

4.4 Case study 

We conducted a case study on a student specialising in computer science. The mastery 
level of this student for ‘Fundamentals of programming’ was very good, and the mastery 
level for ‘data structures’ was average. We plotted the positions of the five recommended 
courses recommended by KARL model as well as the top five courses. The results 
proved that the model recommended courses such as ‘data structures and algorithms’ and 
‘advanced java programming’ successfully, while omitting a too basic course such as 
‘introduction to c programming’. More importantly, when visualising graph attention 
weights, we found that when the model recommended ‘data structures and algorithms’, 
the attention weight of ‘prerequisite’ relationship edge between this course and 
‘fundamentals of programming’ as well as ‘association’ entity between ‘data structures 
and algorithms’ and the previously highly rated courses was highlighted. This gives clear 
interpretability for recommendation decision, i.e., the model not only ‘recommends 
what’, but also ‘explains why it recommends’ to some extent. 

5 Conclusions 

This study addresses the core issue of mismatched course overload and personalised 
learning needs in online higher education environments by proposing and validating an 
adaptive course recommendation model that integrates knowledge graphs with 
reinforcement learning. Systematic experimental evaluations confirm that this model 
significantly outperforms existing mainstream recommendation methods across key 
metrics including recommendation accuracy, ranking quality, and user satisfaction. The 
primary conclusion is that constructing an intelligent recommendation framework 
capable of dynamically responding to changes in learners’ cognitive states effectively 
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addresses the inherent limitations of traditional static models in terms of interpretability 
and long-term adaptability. 

Theoretically, this research contributes in three key areas. First, it proposes a 
hierarchical dynamic knowledge graph construction and updating paradigm that 
integrates static course knowledge systems with dynamic learner behaviour data, 
enriching the semantic layers and temporal relevance of educational knowledge graphs. 
Second, it designs a learner profiling method integrating deep knowledge tracking with 
graph attention mechanisms, enabling refined, dynamic modelling of learners’ knowledge 
states and interest preferences to enhance the recommendation system’s perceptual 
accuracy. Finally, it innovatively introduces reinforcement learning’s sequential  
decision-making mechanism into course path planning, establishing a recommendation 
framework aimed at maximising long-term learning benefits. This advances the paradigm 
shift in recommendation systems from ‘matching’ to ‘planning’. 

Practically, this research offers viable technical pathways and solutions for building 
university online education platforms. Platform administrators can leverage this model to 
construct more intelligent course navigation systems, helping learners overcome choice 
overload, optimise learning paths, and thereby improve course completion rates and 
overall teaching effectiveness. For educators, the model’s revelations about knowledge 
structure interconnections and cognitive bottlenecks within learner groups provide  
data-driven decision support for optimising curriculum systems and precisely targeting 
instructional content. Furthermore, the model’s explainable recommendation capabilities 
enhance learners’ trust in the system and foster the development of their metacognitive 
abilities. This enables learners to gain clearer insights into the evolution of their 
knowledge structures and identify their next learning steps. 
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