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Abstract: The contradiction between course resource overload and learners’
personalised needs in online education platforms is becoming increasingly
prominent. Addressing the common issues of weak interpretability and poor
dynamic adaptability in existing recommendation methods, this paper proposes
a knowledge graph-based adaptive course recommendation model. By
constructing a hierarchical knowledge graph to precisely represent the course
knowledge system and integrating deep knowledge tracking with reinforcement
learning techniques, the model dynamically perceives learners’ knowledge
states and evolving interests, enabling real-time adjustment of recommendation
paths. Experiments on the publicly available china university massive open
online course dataset demonstrate that compared to mainstream baseline
models, our model achieves up to 8.7% higher performance on key metrics
such as normalised discounted cumulative gain@10 and hit rate @10. This
validates its effectiveness and superiority in delivering precise, explainable
personalised recommendations.
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1 Introduction

Inspired by the digital education tide, the higher education in the world is experiencing a
dramatic change (Berberoglu et al., 2024). Both universities and online learning
platforms release large courses resources (Sancristobal Ruiz et al., 2014), trying to
transcend space and time limitations to realise global access to resources (Nguyen et al.,
2012), This sudden explosion of course release brings new challenges. The global
pandemic has served as a significant catalyst, markedly accelerating the transition toward
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digital education. This shift has, in turn, sharply intensified the demand for robust and
effective personalised learning solutions that can accommodate diverse learner needs in
increasingly virtual environments. Students are trapped in the paradox of choice when
they face a large number of choices (Braul, 2006) they find it hard to filter high quality
contents from these massive resources which are suitable for their knowledge
background, learning objectives and interests (Cole et al., 2020). This situation not only
reduces students engagement and completion rates, but also leads to unbalanced
allocation of education resources. It becomes a bottleneck that hinders the development
of high quality online education (Liu et al., 2024).

Personalised recommendation technology has been gradually attracted attentions as a
hot issue in educational technology research (Dutta, 2013). The early recommendation
systems just used mature methods from e-commerce area, such as collaborative filtering
and content based recommendation methods (Yue et al., 2025). These methods used
users’ historical behaviour data and item attributes to make recommendations. These
traditional measures can ease the information overload to some degree. But when faced
with practical situations in education, their defects become more obvious (Skovgaard
et al.,, 2010). They always treat courses as independent entities and ignore the logical
sense and dependencies between them (Ward and Wandersee, 2002). So it is hard to
know what knowledge point’s prerequisite relationships are, and thus make
pedagogically recommendations without logical sequence. A concrete illustration of this
shortcoming would be a system recommending an advanced machine learning course to a
student who lacks foundational knowledge in statistics. This misalignment with the
learner’s actual preparedness is likely to cause frustration, comprehension difficulties,
and ultimately increase the risk of course dropout. More seriously, these static models
cannot catch the dynamic changes of students cognitive structure and knowledge mastery.
So it is hard to know the student’s current interest areas and ability levels and make
teaching suggestions accordingly.

With the rapid development of artificial intelligence technology, how to solve the
above problem (Zheng et al., 2015) proposed a new solution: knowledge graph. As an
effective method to represent and reason on complex relational networks, knowledge
graph can integrate the scattered course knowledge points into a whole and make the
associative paths and hierarchical relationship between concepts clearly visible (Miltgen
et al., 2013). Some researchers began to attempt to apply knowledge graph in educational
recommendation. They added connection to course content and logical relationship
between knowledge points into semantic data of recommendations, and improved the
explanation degree of recommendation result to some extent (Graf et al., 2009). At the
same time, with the development of deep knowledge tracking method of learner
modelling technology, the real-time assessment and prediction of learners’ knowledge
states are also possible (Chen et al., 2024). Through analysing learners’ interaction
sequence, the method maps learners’ cognitive track dynamically in knowledge space and
provides data support for more accurate personalised recommendation. However, most of
the existing recommendation models based on knowledge graph still face many
challenges (Svetinasupa et al., 2011). Most of the existing methods build static
knowledge graph which cannot respond to the dynamic change of learners’ cognitive
states. These methods usually focus on the optimisation of short-term indicators such as
click-through rate or completion rate, but ignore the long-term influence of
recommendation on the construction of learners’ knowledge framework and the
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development of learners’ skills. These methods do not consider the level of instructional
strategy (Kontos et al., 2010).

This paper aims to explore how to build an adaptive recommendation framework
which can deeply integrate the knowledge graph structure and the dynamic change of
learners’ cognitive states (Borges et al., 2009). It must have a deep understanding of
knowledge system, dynamically respond to the change of learners’ cognitive states, and
make recommendation decision based on pedagogical experience in a dynamic way. The
innovation of this research is that, a hierarchical dynamic knowledge graph construction
method is proposed. This method not only can describe the static association between
courses and knowledge points, but also updates the mastery of knowledge dynamically
based on learners’ behaviour. Based on the above research ideas, we designed an
adaptive recommendation mechanism which combines knowledge tracking and strategy
optimisation algorithm. This mechanism continuously adjusts the recommendation
strategy according to the real-time feedback of learners, so that the recommendation is
consistent with the objective development law of knowledge formation, and meets the
personalised cognitive progression rhythm of learners. Theoretically, this research
provides a new design idea for educational recommendation system. Practically, this
research provides new technical solution to solve the personalised adaptation problem in
online education.

2 Related work

2.1 Construction of educational knowledge graphs

Educational knowledge graph is the basis of our model, and the quality of knowledge
graph construction will directly affect the semantic level of understanding of
recommendation system and interpretability (Pasdeloup et al., 2018). Compared with
early research, initial work mainly constructed static knowledge graphs by extracting
structured or semi-structured information from course syllabuses and textbooks. The
fundamental distinction lies in their adaptability: static graphs represent fixed,
pre-defined relationships between educational entities, whereas dynamic graphs are
designed to evolve continuously by incorporating data from ongoing learner interactions.
This enables them to mirror the real-time dynamics of a learner’s cognitive state and
knowledge mastery Specifically, entities such as ‘courses’, ‘knowledge points’ and
‘teachers’ as well as their relationships like ‘prerequisite’ and ‘contains’ were extracted to
build a large semantic network. This work was initially applied to support resource
organisation and visual navigation (Rosenbaum et al., 2005). However, the static graph is
hard to reflect the dynamic evolution process of learning concepts and the dynamic
changing characteristics of learners’ cognitive states. To address the above issues, recent
work focuses on constructing a dynamic causal graph. The objective is to model the
causal and logical relationships between sequences of learning activities, i.e., ‘after
learning the concept a, there is a high probability to generate the concept b’. In terms of
technology, due to the fact that graph-based representation learning method can
effectively preserve the information of structural characteristics in graphs, node2vec is
widely used in recent research. Node2vec offers a key advantage over traditional
sequence-based embedding methods like Word2Vec by its ability to capture both
homophily (network cohesion) and structural equivalence (similar structural roles) within
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graph structures. This dual capability makes it particularly well-suited for modelling the
complex, often hierarchical relationships inherent in educational knowledge systems.
This method uses biased random walks to generate node sequences, and then uses
Skip-gram model to learn low-dimensional vectors for nodes. The objective function
maximises the likelihood probability of node sequence in graph, which is expressed as:
max ¢ Zlog Pr(Ng(u)| f(u)), where f(u) is the embedding vector corresponding to node
ueV

$ u $, and Ns(u) denotes the neighbourhood nodes surrounding node u obtained through
sampling strategy S. the learned embedding vectors can better capture the complex
topological features in graph and provide high quality input for the recommendation
algorithm (Sun et al., 2025).

2.2 Learner profiling technology

Precise learner profiling lays the essential foundation for personalised recommendations.
Traditional user profiling is usually based on some static user’s demographic information
and explicit interest tags, which are hard to be applied into education area. With the
development of deep learning technology, deep knowledge tracing (DKT) model could
utilise the sequence of historical responses and dynamically simulate the growth of
learners’ knowledge states. A primary advancement of DKT over classical Bayesian
knowledge tracing (BKT) is its data-driven approach. While BKT depends on
expert-defined parameters and assumptions, DKT utilises recurrent neural networks to
automatically infer and model complex, nonlinear learning patterns directly from
sequences of learner interaction data. Therefore, the static profiling extends to cognitive
profiling. A common DKT model utilised recurrent neural networks to simulate the
growth of learners’ knowledge states. /i, = tanh(Wpx, + Winhet + by), where x; represents
the input vector at time $z$ composed of the exercise and response results. The model
predicts the probability p; = o(Wih, + b,) that the learner will answer the next question
correctly. Based on DKT, the learner’s mastery level mj at a specific knowledge point &

can be expressed as m =a(W; -h +b;). To address the sparsity of behavioural data,

researchers introduced a knowledge graph-based label expansion approach, Lee and
Isbicki (2016) proposed a knowledge graph based label expansion approach. By referring
to the relationship between entities in graph and utilising graph inference algorithms
(personalised pagerank) to explore the connection between entities, the research uncovers
learners’ latent, deep-seated interest preference. Thereby constructing a multidimensional
profile vector p = [m, i, c¢]. Due to the original expression being very concise and not
having any other form, can only do trivial formatting changes, cannot change the content
much.

2.3 Knowledge graph-based recommendation model

Incorporating knowledge graphs as auxiliary data into recommendation systems has
become a mainstream approach to enhancing recommendation accuracy and
interpretability. The ripplenet model refines user representations by simulating the
propagation of interests across knowledge graphs, with its core concept analogous to
the diffusion of water ripples. Knowledge graph attention network (KGAT) models
specifically employ graph attention networks for information aggregation within the
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graph. The key methodological divergence from RippleNet lies in the aggregation
mechanism. While RippleNet propagates user preferences across the knowledge
graph in a uniform, wave-like manner, KGAT employs an attention mechanism to
adaptively weigh the influence of neighbouring nodes. This results in more
nuanced and semantically relevant representations for recommendation. They
learn node representations by calculating attention weights between target nodes
and their neighbours, with attention coefficients computed wusing the

LeakyReLU(a’ [We; | We; .
oy = exp(LeakyReLU(a [We; | We; 1)) where e; and ¢; are node embeddings, and
Z exp(LeakyReLU(a’ [We; | Wei ]))

ke N;

W and a are trainable parameters. Method — a trainable parameter. Despite these models
achieving strong performance in e-commerce and news recommendation domains,
directly applying them to education remains challenging. They typically focus on single
interactions between users and items, neglecting the hierarchical knowledge structures
and continuous learning paths unique to educational settings. More critically, these
models are static — their recommendation logic is fixed at inference time and cannot adapt
to learners’ real-time knowledge state changes, making it difficult to meet personalised
expectations in dynamic learning processes (Yang and Wu, 2009).

2.4 Adaptive learning and path planning

Adaptive learning aims to dynamically adjust learning content and pathways for learners
to optimise the learning experience and outcomes. In this field, reinforcement learning is
regarded as a highly promising solution due to its robust sequential decision-making
capabilities (Vovides et al., 2007). This approach typically models the learning path
recommendation problem as a Markov decision process (MDP): an agent (the
recommendation system) selects an action a; (recommending the next learning item)
based on the current state s; (the learner’s knowledge state, historical behaviour, etc.).
The environment then transitions to a new state s,+1 and provides the agent with a reward
r¢ (e.g., improved test scores, course completion). Classic algorithms like deep g-network
aim to learn an optimal action-value function Q-9 = E[r +ymax, Q%) |s, a], where y

is the discount factor. Policy gradient methods directly parameterise the policy zg(a| s)
and optimise policy parameters 6 via gradient ascent: Af o< Vylogrmy(a|s)O(s, a).

However, most existing reinforcement learning-based path planning methods rely on
relatively simple state representations. They fail to fully leverage the rich semantic
relationships and topological structures inherent in knowledge graphs. Consequently,
their decision-making processes lack deep semantic constraints and interpretability,
limiting their effectiveness in complex knowledge systems.

3 Methodology

This section systematically outlines the overall framework and core technologies of a
knowledge graph-based adaptive recommendation model for training courses. As
illustrated, the model primarily comprises three core modules: hierarchical knowledge
graph construction and dynamic update, learner profiling through integrated knowledge
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tracking, and adaptive recommendation based on hierarchical attention and reinforcement
learning. These modules will be described in detail below.

Figure 1 Adaptive course recommendation model framework based on knowledge graphs
(see online version for colours)
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3.1 Hierarchical knowledge graph construction and dynamic updates

To precisely characterise the complex knowledge system among university courses, we
first construct a hierarchical knowledge graph G =(&, R), where £ denotes the entity

set and R denotes the relation set. The hierarchical organisation of the knowledge graph
is designed across multiple levels of granularity. It spans from high-level, broad course
categories and modules down to intermediate learning units and fine-grained knowledge
concepts. This multi-tiered structure is fundamental for enabling reasoning and
recommendation at varying levels of abstraction. Entity types include course, concept,
resource, and learner. Relationships encompass ‘prerequisite’, ‘contains’, ‘related to’,
and interactive interactions such as ‘studies’ and ‘clicks’.

For graph embedding representation learning, we adopt the node to vector method
similar to related work, but its objective function is optimised to better preserve network
structure. For each entity e £, we aim to learn a low-dimensional vector representation

ec R?, where d denotes the embedding dimension. After generating node sequences via

second-order random walks, we maximise the log probability of contextual nodes using a
Skip-gram model. The objective function is defined as:

Lhg==")" [logo(evien)+ Y k=15Bv ~ B,(v)loga(—el,e, )| M

(u,v)eD

where (u, v) denotes a pair of nodes co-occurring in a random walk sequence (positive
sample), D is the set of all positive samples, o is the Sigmoid function, v, is the k™
negative sample sampled from the noise distribution P,(v), and K is the number of
negative samples. By minimising this loss, we obtain high-quality vector representations
for all entities and relations.

To capture the local structure of knowledge and learners’ dynamic interests, we
introduce a hierarchical subgraph extraction mechanism. For a given learner / and current
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curriculum ¢, we perform breadth-first search (BFS) on the global graph G centred
around its associated knowledge points, extracting an A-hop local subgraph G, (l, ¢;).

We employ BFS for local subgraph extraction as it systematically captures all entities
within a specified proximity, ensuring no directly connected knowledge concepts are
omitted. This completeness is crucial for maintaining the pedagogical coherence and
logical continuity of the recommended learning path. This subgraph serves as the direct
knowledge context for subsequent recommendation decisions.

3.2 Generation of learner profiles through knowledge-integrated tracking

This module aims to generate a dynamic, multidimensional learner profile that serves not
only as a collection of static characteristics but also as a real-time reflection of the
learner’s cognitive state.

Knowledge state modelling: we employ a deep knowledge tracking model to quantify
learners’ mastery across different knowledge points. The historical interaction sequence
of learner / — such as answer records and video completion rates — xi, x2, ..., x; is fed into
a long short-term memory (LSTM) network. The update process of the LSTM at each
step ¢ is as follows:

i, = o (Wxixt + Whih,_, +bi) (2)
f, = o (Wxfxt + Whth,_, +bf) (3)
o, = o (Wxoxt+Whoh,_; +bo) 4)
¢, = tanh (Wxcext + Wheh,_; +bc) 3
¢, =f, Oc, +i, OC (6)
h, =0, Otanh(c,) (7)

where i, f;, and o, represent the input gate, forget gate, and output gate respectively; ¢,
denotes the candidate cell state; ¢, denotes the current cell state; h, denotes the hidden
state; o denotes the sigmoid activation function, © represents element-wise
multiplication, W and b denote the corresponding weight matrix and bias vector. Finally,
the learner’s / mastery level mj at knowledge point k is computed through a fully

connected layer:
mi =c(wih, +b;) (®)

where w; and by represent the weight and bias associated with knowledge point k. The
mastery levels of all knowledge points collectively form the learner’s knowledge state
vector m’ € RM, where | K| denotes the total number of knowledge points.

Interest preference modelling: beyond knowledge state, learners’ interest preferences
are equally crucial. Based on their historical interaction sequences with resources, we
employ attention mechanisms to compute preference weights for different knowledge
concepts. The integration of an attention mechanism enables the model to dynamically
assign higher weights to knowledge concepts with which the learner has frequently and
recently interacted. This functionality effectively mirrors human attentional patterns by
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prioritising familiar and relevant content within the learner’s profile. Learner /’s interest
score i. for concept c is calculated as follows: interest score i. for concept ¢ of learner / is
computed as follows:

. exp(qT tanh (W_e. + W,,m’ +ba)) ©)
i, =
ZC'G C(l)exp(q” tanh(Wcec’+ W,m’ +b, ))

where e, is the embedding vector for concept ¢, C(/) is the set of concepts historically

interacted with by learner /, and W., W,,, b, and q are learnable parameters. Ultimately,
the learner’s interest vector i is the weighted sum of the embedding vectors of the
concepts they are interested in.

The learner’s complete profile vector p’ is concatenated from its static attribute vector
s;, dynamic knowledge state vector m’, and interest vector i’:

p' =[s;;m';i] (10)

This vector p’ will serve as the core basis for the recommendation system to perceive the
learner’s state.

3.3 Adaptive recommendation based on hierarchical attention and
reinforcement learning

This module serves as the core of the entire model. It receives the outputs from the first
two modules and makes the final adaptive recommendation decision.

Hierarchical graph attention encoding: for a given local subgraph nus(/, c¢;), we
employ a graph attention network to learn enhanced representations of its course nodes
for target course node i and its neighbouring node j € n;, the attention coefficient ¢ is
computed as follows:

exp(LeakyReLU(aT [We,- |Wej|Wth ])) (11
11

& = Zke N; exP(LeakyReLU(aT [We,- |Wek|pr’]))

where e;, e; denote the initial embeddings of nodes i and j, W and W, represent the
weight matrices for linear transformations, a is the weight vector for the attention
mechanism, and | indicates vector concatenation. Specifically, we introduce learner
profiles p’ as guidance signals for the attention mechanism, making the graph information
aggregation process highly personalised. The final representation z; of target course node
i is the weighted sum of its neighbouring node representations:

zi=o() ) je NiaijWe;) (12)

In this way, course representations not only contain their own semantic information but
also aggregate relevant information from their knowledge context that is influenced by
the learner’s state.

Reinforcement learning recommendation system: we model course recommendation
as a sequential decision problem and employ a reinforcement learning framework to
discover optimal long-term recommendation strategies. This process is defined as a
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MDP: at time step ¢, the state s, =[p’, z.,] comprises learner profiles and the augmented

representation of the currently studied course. Action a; involves selecting a course c+1
from the candidate course set for recommendation. Reward: after executing action a,, the
environment returns a reward signal 7. Our reward function integrates both immediate
feedback and long-term knowledge gains:

n=X4-1 (fe’g) + 4 - AScore + /; - Diversity — 44 - CognitiveLoad (13)

where [(completion) is the course completion indicator function, AScore is the

score improvement after learning subsequent courses or taking quizzes, Diversity
encourages recommending diverse knowledge, and CognitiveLoad penalises leaps in
recommendations that may cause cognitive overload. 1;.4 are the weighting coefficients
balancing these factors.

Policy: the policy mg(ai s:) is defined as the probability of selecting action a, in state
s;. We parameterise this policy using a deep neural network whose output is a probability
distribution over candidate actions. The action-value function Q(s;, a;) represents the
expected cumulative discounted reward achievable by executing action «, in state s;:

Q(st,a,):EnG{Zy"mkﬂ |St,a,} (14)

k=0

where y € [0, 1] is the discount factor.
We employ the proximal policy optimisation (PPO) algorithm to train the
recommendation agent, whose objective function L,,, aims to maximise:

L1p0(8) = Eit| min (p, (0) 4, clip(p (6), 1-¢,1+¢) 4,) | (15)

Tolals)
0ot (a; | 5t)
advantage function at time step ¢, and € is a hyperparameter used to constrain the
magnitude of each policy update, thereby ensuring training stability.

Ultimately, the system selects the next course to recommend based on the probability
distribution 7y(‘|s)) output by the policy network, completing one adaptive
recommendation cycle. Through end-to-end training, the entire model achieves deep
integration between the knowledge graph, learner dynamic states, and long-term
recommendation strategies.

where p,(0) = denotes the probability ratio, 4 represents the estimated

4 Experimental verification

To comprehensively evaluate the effectiveness and superiority of the knowledge-grained
adaptive reinforcement learning (KARL) proposed in this paper, we designed and
conducted a series of comparative experiments, ablation studies, and case studies. All
experiments were performed under the same experimental environment to ensure the
fairness of the results.
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4.1 Experimental setup

4.1.1 Dataset

In this experiment, we use the public higher education dataset massive open online course
(MOOC) Cube extracted from Xuetang platform in China. It contains rich course
information and user behaviour logs (click, view, quiz finish result, etc.), as well as
knowledge concept tags. We filtered and pre-processed the raw data and finally obtained
the final dataset including 125 courses, 8,420 key knowledge points and more than
12,000 interaction records from nearly 58 k learners. For each learner, we split his
interaction sequence into training, validation and test set by time. The split ratio is 8:1:1.

4.1.2 Baseline models

To ensure fair comparison, we selected four state-of-the-art models representative of the
course recommendation domain as baselines. Knowledge graph convolutional network
with positive-unlabeled learning (KGCN-PN): this model, proposed in ‘knowledge graph
convolutional networks for recommender systems’, enriches item representations by
aggregating neighbour information on knowledge graphs. We employ it as a strong
baseline for knowledge graph-based recommendation. Graph attention network (GAT):
GAT introduced in ‘graph attention networks’. We utilise GAT to learn node
representations in the course graph for recommendation purposes. KGAT: this model,
introduced in ‘KGAT: KGAT for recommendation’, captures collaborative signals by
performing attention mechanisms on higher-order knowledge graphs. It is a widely cited
strong baseline in the recommendation domain. POCR: proposed in ‘provisioning online
education with reinforcement learning’, it is one of the few works applying reinforcement
learning to online education path recommendation. We adopt it as a representative
baseline for adaptive recommendation.

4.1.3 Evaluation metrics

We adopt top-k recommendation evaluation metrics commonly used in information
retrieval, including: normalised discounted cumulative gain (NDCG@K), which
measures the ranking quality of the recommendation list; hit rate (HR@XK), which
measures whether the target course is included in the recommendation list; mean
recovered rank (MRR), which measures the average ranking of the target course within
the recommendation list. In the main results, we report outcomes for K = 10.
Implementation details: our KARL model is implemented using pytorch. All model
embeddings are uniformly set to a dimension of 64. The Adam optimiser was employed
with an initial learning rate of 0.001 and a batch size of 128. For the reinforcement
learning component, the discount factor y was set to 0.9, and the clipping coefficient ¢ for
the PPO algorithm was set to 0.2. The weight coefficients in the reward function were
determined via grid search: 4, = 1.0, 4, = 0.5, 43 = 0.1, 44 = 0.3.

4.2 Results and analysis

In order to thoroughly evaluate the effectiveness of recommendation of KARL model, we
implemented intensive quantitative comparison with four representative baseline models
on the public dataset MOOC Cube. As shown in Table 1, our model got excellent
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performance on all three evaluation metrics including NDCG@10, HR@10 and MRR,
and significantly improved over all baseline models.

Table 1 Performance comparison of models on the MOOC cube dataset (K = 10)

Model NDCG@10 HR@10 MRR
KGCN-PN 0.358 0.408 0.291
GAT 0.371 0.422 0.302
KGAT 0.389 0.441 0.318
POCR 0.365 0.415 0.297
KARL (ours) 0.423 0.479 0.349

As shown in Table 1, KARL obtains 0.423 in NDCG@10 to evaluate ranking
performance. Compared with the strongest baseline KGAT in static graph-based
recommendations, KARL obtains an absolute improvement of 0.034, which is relative
improvement of 8.7%. In addition, HR@10 reflects the hit ability of recommendation,
KARL (0.479) is 8.6% better than KGAT (0.441). As for MRR which represents the
average ranking position of target courses, KARL (0.349) is improved most greatly
compared with KGAT (0.318), it gets 9.7 percentage points improvement. Overall, the
consistent performance improvement shows that KARL put the course user really wants
more frequently in recommendation list and try to place these target courses as high as
possible, and thus provide a better search experience.

By analysing the performance of baseline models below, we can get more instructive
conclusions. Performance of KGAT and GAT KGAT is better than both GAT and
KGCN-PN. It shows that attention mechanism can capture the collaborative signals on
high-order knowledge graphs. Performance limitations reflect performance defects of
static graph models: They cannot identify and respond to learners’ knowledge states
evolution. Their recommendations are just a ‘one-time’ solution. But they do planning for
the whole learning process.

Limitations of POCR: POCR is a model designed for educational scene; it does not
significantly improve over static graph models. It directly supports our following
argument: recommendation decisions based on reinforcement learning framework
without cooperation with fine-grained knowledge state perception are blind and dumb.
POCR uses relatively simple state representations and cannot fully benefit from rich
structured semantics of knowledge graphs. As a result, this agent cannot master an
effective long-term recommendation way.

Through an in-depth analysis of baseline model performance, we arrive at more
insightful conclusions: Performance of KGAT and GAT: KGAT outperforms both GAT
and KGCN-PN, confirming that attention mechanisms effectively capture complex
collaborative signals on high-order knowledge graphs. Their performance limitations also
reveal inherent drawbacks of static graph models: they fail to detect and respond to the
dynamic evolution of learners’ knowledge states. Their recommendations represent a
‘one-time solution’ rather than continuous planning throughout the learning process.
Limitations of POCR: The POCR model, specifically designed for educational scenarios,
does not significantly outperform static graph models. This directly supports our core
argument: recommendation decisions based solely on reinforcement learning
frameworks, without integration with refined knowledge state perception, are blind and
inefficient. POCR relies on relatively simple state representations and fails to fully
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leverage the rich structured semantics provided by knowledge graphs. Consequently, this
agent struggles to master truly effective long-term recommendation methods.

The quantitative comparison results clearly demonstrate that integrating dynamic
knowledge graphs, refined learner profiles, and reinforcement learning focused on
long-term gains represents an effective approach to overcoming the performance
limitations of existing course recommendation models. The success of the KARL model
hinges on its ability to achieve deep perception of knowledge context and learner state,
coupled with adaptive decision-making. To visually illustrate the performance gaps
between models, we created a bar chart, as shown in Figure 2. This visualisation vividly
presents the data from Table 1, making the performance comparison clear and easy to
understand. The bar chart representing the KARL model stands out across all three
metrics, with heights significantly surpassing other baselines, creating a striking visual
contrast. This comprehensive lead visually reinforces the superiority of the KARL model.
By examining the heights of the bar charts for different baseline models, we can clearly
observe the performance ranking: KARL outperforms KARL > KGAT > GAT > POCR >
KGCN-PN. This sequence aligns perfectly with our earlier analysis, further illustrating
the progression of performance from simple graph networks to complex graph attention
networks, and ultimately to the introduction of dynamic adaptive mechanisms.

Figure 2 Performance comparison of different recommendation models on NDCG@10, HR@10,
and MRR metrics (see online version for colours)
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Training convergence analysis. The stability and convergence efficiency of a model
during training are two important aspects to evaluate the practicality of a model. We
record the validation set loss of each model during training, as shown in Figure 3.

From the convergence curve, we can clearly see the advantage of KARL model
during the optimisation process. Outstanding convergence stability: The curve of KARL
loss value (blue solid line) is especially smooth, and it is monotonically decreasing. There
is no big fluctuation in the whole training process. The stability of the model comes from
the fact that the PPO algorithm is used to update the policy. The step size of policy
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update is limited to a certain range to avoid large fluctuation, which keeps a relatively
stable training process. The curve of POCR model (red solid line) shows a relatively
large fluctuation in the initial stage. This is because there is a certain difficulty in
balancing the exploration and exploitation process.

Superior convergence point: after 100 training iterations, the KARL model can
converge to a loss value approaching the minimum. This not only validates the
effectiveness of objective function on the optimisation side, but also provides
evidence for its superior performance on recommendation metrics. Lower loss value
means the model has learned more accurate user-course matching relationship, and
more effective long-term recommendation strategy.

Highly efficient convergence speed: although the KARL model slows down the loss
reduction in the first 10 cycles due to its model complexity, it still has strong
momentum in the mid-to-late stage. However, compared with static models like
KGAT (green curve), they slow down the loss reduction after about cycle 40 and
enter the plateau stage quickly. Finally, KARL optimises itself to reach higher
performance levels. This shows that reinforcement learning agents need time to learn
good long-term strategies. Once learned, they have better generalisation ability than
short-term reward models.

Convergence analysis shows that compared with other models, the KARL model has a
sophisticated and robust design from the optimisation perspective. A stable and efficient
training process that can converge to optimal solutions is the most basic requirement for
the practical deployment of a reliable recommendation service.

Figure 3 Loss convergence curves of different models during training (see online version

for colours)
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4.3 Melting experiment

Next, we explore the contributions of each component in the KARL model through
ablation experiments. We implement three models based on the KARL model:
KARL-w/0-KT: remove the deep knowledge tracking module and replace the dynamic
knowledge state vector m’ with static user profiles. KARL-w/o-RL: remove the
reinforcement learning module and replace it with a static model that performs top-K
recommendations after computing user-course match scores through the inner product
calculation. ARL-w/o-Att: replace the personalised attention in graph attention encoding
with mean pooling. w/o-KT: remove the deep knowledge tracking module and replace
dynamic knowledge state vectors m’ with static user profiles.

The ablation experiment results (take NDCG@]10 as an example). The full KARL
model gets 0.423; KARL-w/0-KT scores drop to 0.395; KARL-w/o-RL scores drop
dramatically to 0.382; KARL-w/0-Att scores drop to 0.401. The experimental results
clearly show that the reinforcement learning module contributes the most and plays an
important role in achieving adaptive recommendations with the maximum long-term
gain. Only when the dynamic knowledge tracking module exists can the system have an
accurate understanding of the current state. Removing this module will lead to a dramatic
performance drop. The personalised graph attention module can significantly improve the
accuracy of course representations and provides a stable gain for model performance.

4.4 Case study

We conducted a case study on a student specialising in computer science. The mastery
level of this student for ‘Fundamentals of programming’ was very good, and the mastery
level for ‘data structures’ was average. We plotted the positions of the five recommended
courses recommended by KARL model as well as the top five courses. The results
proved that the model recommended courses such as ‘data structures and algorithms’ and
‘advanced java programming’ successfully, while omitting a too basic course such as
‘introduction to ¢ programming’. More importantly, when visualising graph attention
weights, we found that when the model recommended ‘data structures and algorithms’,
the attention weight of ‘prerequisite’ relationship edge between this course and
‘fundamentals of programming’ as well as ‘association’ entity between ‘data structures
and algorithms’ and the previously highly rated courses was highlighted. This gives clear
interpretability for recommendation decision, i.e., the model not only ‘recommends
what’, but also ‘explains why it recommends’ to some extent.

5 Conclusions

This study addresses the core issue of mismatched course overload and personalised
learning needs in online higher education environments by proposing and validating an
adaptive course recommendation model that integrates knowledge graphs with
reinforcement learning. Systematic experimental evaluations confirm that this model
significantly outperforms existing mainstream recommendation methods across key
metrics including recommendation accuracy, ranking quality, and user satisfaction. The
primary conclusion is that constructing an intelligent recommendation framework
capable of dynamically responding to changes in learners’ cognitive states effectively
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addresses the inherent limitations of traditional static models in terms of interpretability
and long-term adaptability.

Theoretically, this research contributes in three key areas. First, it proposes a
hierarchical dynamic knowledge graph construction and updating paradigm that
integrates static course knowledge systems with dynamic learner behaviour data,
enriching the semantic layers and temporal relevance of educational knowledge graphs.
Second, it designs a learner profiling method integrating deep knowledge tracking with
graph attention mechanisms, enabling refined, dynamic modelling of learners’ knowledge
states and interest preferences to enhance the recommendation system’s perceptual
accuracy. Finally, it innovatively introduces reinforcement learning’s sequential
decision-making mechanism into course path planning, establishing a recommendation
framework aimed at maximising long-term learning benefits. This advances the paradigm
shift in recommendation systems from ‘matching’ to ‘planning’.

Practically, this research offers viable technical pathways and solutions for building
university online education platforms. Platform administrators can leverage this model to
construct more intelligent course navigation systems, helping learners overcome choice
overload, optimise learning paths, and thereby improve course completion rates and
overall teaching effectiveness. For educators, the model’s revelations about knowledge
structure interconnections and cognitive bottlenecks within learner groups provide
data-driven decision support for optimising curriculum systems and precisely targeting
instructional content. Furthermore, the model’s explainable recommendation capabilities
enhance learners’ trust in the system and foster the development of their metacognitive
abilities. This enables learners to gain clearer insights into the evolution of their
knowledge structures and identify their next learning steps.
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