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Abstract: To address the critical challenges of insufficient diagnostic 
granularity and limited interpretability in spoken English assessment, this 
research proposes an intelligent framework that synergistically integrating 
knowledge graph and deep learning technologies. We construct a structured 
oral knowledge graph using multidimensional error annotations from the 
Speechocean762 corpus and phoneme-level pronunciation data from L2-Arctic, 
and design a knowledge graph-enhanced multi-task learning model to achieve 
cross-dimensional joint optimisation. Experimental results show 12.3% 
reduction in pronunciation error rate and 14.7% improvement in grammatical 
diagnostic F1-score compared to mainstream baselines, with overall diagnostic 
accuracy reaching 86.2%. Ablation studies confirm the knowledge graph’s 
pivotal role in error-path reasoning, while the meta-relation learner 
significantly enhances few-shot adaptation capability (31.2% F1-score gain). 
This framework provides interpretable diagnostic support for adaptive language 
learning systems, reducing error-correction cycles by 40.5% in real-world 
educational applications. 

Keywords: knowledge graph fusion; spoken English diagnosis; multi-task 
learning; fine-grained error analysis. 
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1 Introduction 

Under the wave of digital transformation of global education, intelligent assessment and 
diagnostic technology for English speaking ability, as the core carrier of cross-cultural 
communication, has become the cutting-edge focus of artificial intelligence in education. 
According to a United Nations Educational, Scientific and Cultural Organization 
(UNESCO) report, only 23% of the world’s more than 1.5 billion English language 
learners have access to professional speaking instruction, and the traditional manual 
assessment model has inherent shortcomings such as strong spatial and temporal 
limitations, large subjective bias in scoring (with a standard deviation of as high as  
0.81 points), and lagging feedback (Bo, 2025). To break through this bottleneck, the 
industry has taken the lead in launching automated tools: Duolingo uses an end-to-end 
long short-term memory (LSTM) model to achieve instantaneous scoring, but it only 
outputs a single-dimensional score; Grammarly relies on a rule engine to provide 
grammatical error correction (GEC), but it is difficult to deal with the coupling between 
speech signals and linguistic structures (O’Neill and Russell, 2019). The shortcomings of 
these tools at the diagnostic fine-grained level and the interpretation generation level have 
severely constrained the effectiveness of the implementation of personalised instruction – 
the learners’ learning experience. The lack of diagnostic granularity and explanation 
generation severely constrains the implementation of personalised instruction – learners 
need to be explicitly aware that ‘the /θ/ sound is pronounced with incorrect dental-lingual 
position, leading to third-person singular confusion’ rather than a generalised 
‘pronunciation needs to be improved’ (Yesilyurt, 2023). 

Currently, mainstream research is centred on breakthrough exploration of multimodal 
fusion architectures. In the field of speech characterisation, wav2vec 2.0 significantly 
improves the robustness of phoneme recognition through self-supervised pre-training, 
with a frame-level accuracy of 89.7% in the L2-Arctic dataset (Baevski et al., 2020); at 
the level of textual analysis, wav2vec 2.0 significantly outperforms the automatic speech 
recognition (ASR)-trained bidirectional encoder representations from transformers 
(BERT) baseline system and manual transcription in evaluating the proficiency level of 
spoken language and its individual aspects (Bannò and Matassoni, 2023). However, this 
type of data-driven paradigm faces two essential challenges: first, the dilemma of 
labelling data drought, where spoken errors need to be finely labelled by linguistic 
experts, and the average labelling time for a single speech in Speechocean762 is  
8.7 minutes, resulting in the limited size of the available dataset (Zhang et al., 2021).; 
second, the black-boxing of error propagation, where distorted pronunciation triggers 
ASR transcription errors (e.g., ‘think’ is misrecognised as ‘sink’), the subsequent 
grammar analysis module attributes the error to subject-predicate agreement rather than 
pronunciation problems, and the system cannot trace the root of the error (Suhm et al., 
2001). 
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To enhance model interpretability, researchers have tried to introduce linguistic 
structured knowledge into the evaluation system. In the field of phonetics, Gibbon and 
Lee (2011) constructed a Phonemic Contrast Graph to encode the features of the parts of 
speech/methods of 44 phonemes in English, which the atlas deconstructs phonemes into 
binary feature matrices (e.g., [±interdental] [±fricative]) according to articulatory organ 
movements, allowing the model to localise learners’ tongue positional deviations (e.g., 
the tip of the tongue does not extend between the teeth when pronouncing the /θ/ sound, 
leading to confusion with /s/), and thus generate targeted physiological feedback. The 
atlas has been used in the design of pronunciation correction animation libraries in ESL 
instruction (e.g., ARTUR system), which increased the detection rate of phoneme 
confusion by 19%; in the direction of grammatical diagnosis, GrammarNet integrates 
more than 2,000 dependency grammar rules, and detects errors such as tense misuse and 
misapplication through subgraph matching. In the direction of grammar diagnosis, 
GrammarNet integrates more than 2,000 dependent grammar rules and detects tense and 
other errors through subgraph matching. However, the pure rule-based system suffers 
from rigidity defects: limited coverage, only able to deal with predefined error patterns, 
and less than 65% diagnostic accuracy (DA) for multiple errors (tense + third  
person singular) such as ‘he goes to school yesterday’ (Pazzani and Brun, 1991); weak 
dynamic adaptability, unable to model the gradual development of learner’s 
interlanguage (e.g., the language of the learner), interlanguage gradual features (e.g., 
Chinese English-specific structures). 

The latest fusion paradigms reveal the direction of breakthroughs: Yan and Chen 
(2024) propose the HierGAT method based on hierarchical graph attention network, 
which models the input discourse as a heterogeneous graph containing language nodes 
with different granularities, encapsulates the dependency relationships between linguistic 
units and takes into account the linguistic hierarchies through the hierarchical graph 
messaging mechanism, and designs the coding correlation of aspectual attention modules, 
and demonstrates its feasibility and effectiveness in the Speechocean762 dataset. 
Experiments on Speechocean762 dataset proved its feasibility and effectiveness, and this 
is the first time that multiple language nodes are introduced into the graph neural network 
(GNN) of APA and comprehensive qualitative analysis is performed; Qin et al. (2025) 
proposed the efficient knowledge distillation and alignment (EKDA) method, which does 
not require a large amount of computational resources and complex processes, and 
achieves the knowledge extraction through the knowledge distillation technique with 
LLaMA model as a teacher model for knowledge extraction, using GNN to efficiently 
align visual information and knowledge, capturing image-related knowledge to enhance 
semantic understanding, and achieving state-of-the-art accuracy on outside knowledge 
visual question answering (OK-VQA) dataset, which is 6.63% higher than the baseline 
method, and using grammatical knowledge graph as a teacher network to constrain the 
student model decision. Despite local progress, these works still have three major 
unsolved challenges: dimensional fragmentation, where existing maps model only a 
single linguistic dimension (pronunciation or grammar), ignoring the cross-influence of 
fluency and content coherence; static knowledge representation, where the relationships 
of mapping entities are fixed, and cannot adapt to the dynamic evolution of learners’ 
error patterns; and diagnostic-feedback disconnect, where the system identifies errors and 
then lacks the generation of corrective suggestions based on the knowledge correlation 
mechanisms (e.g., associating ‘/v/-/w/ obfuscation’ with lip-sync vibration exercise 
videos) (Siemer and Angelides, 1998). 
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To address the above challenges, this study proposes a ‘dynamic graph-coupled 
multidimensional diagnosis paradigm’, whose core breakthrough lies in reconfiguring the 
interaction mechanism between knowledge representation and computational 
architecture. The first one is cross-dimensional oral knowledge graph (OralKG), which 
integrates Speechocean762’s grammatical-lexical error chains (e.g., ‘tense error → 
temporal pronominal absence’), articulatory physiological parameters of the L2-Arctic 
phonemes (tongue height/anterior tongue extension), and Common European Framework 
of Reference (CEFR) oral proficiency descriptors. The CEFR framework for describing 
oral proficiency is used to construct a unified atlas covering 4 entity types (articulatory 
units, grammatical structures, error patterns, and teaching resources) and 11 types of 
relationships (e.g., confuse_with, triggers_error, remediation_link). This map is the first 
to quantitatively model the cross-dimensional propagation path of ‘articulatory distortion 
→ grammatical misjudgment → fluency decline’. Next is the graph-enhanced meta-
learning architecture (KG-MetaMTL), which designs a differentiable graph inference 
engine to dynamically activate the relevant subgraphs via a gated graph attention network 
(GGAT). When the input speech has dental fricative distortion, OralKG automatically 
correlates phonemic nodes (/θ/), common confusion pairs (/s/), and possible triggering 
grammatical errors (third-person singular deletion) to guide the multitasking model to 
focus on key features. This mechanism improves the system’s syntactic diagnosis F1 
value by 31.2% in small sample scenarios (<50 labelled data). This method not only 
breaks through the dichotomy of ‘black-box model’ and ‘rigid rule’, but also promotes 
the evolution of spoken language diagnosis from isolated error identification to adaptive 
feedback guided by causal reasoning, laying a theoretical foundation for building the 
next-generation intelligent language learning engine. 

2 Related work 

2.1 Deep learning-driven evolution of spoken language assessment techniques 

Research on deep learning-based spoken language assessment has developed along two 
main paths: speech scoring and error diagnosis. In the area of scoring, a novel multimodal 
end-to-end neural method is proposed for automatic assessment of spontaneous speech of 
non-native English speakers through attentional fusion. The process of the method is as 
follows: a bi-directional recurrent convolutional neural network and a bi-directional long 
and short-term memory neural network are used to encode acoustic cues and lexical cues 
in spectrograms and transcribed content, respectively, and these learned predictive 
features are subsequently subjected to attentional fusion in order to learn complex 
interactions between the different modalities prior to the final scoring. The combined 
attention to lexical and acoustic cues significantly improves the overall performance of 
the system as shown by comparison with a strong baseline model, which is also analysed 
qualitatively and quantitatively in the study. In neural machine translation the attention 
mechanism overcomes the sequence-to-sequence problem of LSTM, while audio-visual 
speech recognition (AVSR) is difficult to balance the training attention due to richer 
audio information, for this reason Lee et al. (2020) proposed a dual cross-modal (DCM) 
attention scheme and introduced connectionist temporal classification (CTC) loss 
combined with an attention model, which has a higher word error rate than a competing 
method based on Transformer on the relevant dataset. The word error rate on the relevant 
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dataset is at least 7.3% higher than that of the competing Transformer-based methods. 
However, such methods are still black-box regression models in nature and cannot 
provide interpretable diagnostic feedback (Khabbazbashi et al., 2021). 

In the direction of error diagnosis, Franco et al. (1999) focus on the automatic 
detection of specific segments mispronounced by non-native learners of a foreign 
language, and this type of sound-level information allows language teaching systems to 
provide learners with feedback on specific pronunciation errors; two approaches are 
evaluated for this purpose, one based on acoustic models of native speech to calculate log 
posterior likelihood scores for each segment, and the other utilising a phonetically 
labelled non Native speech databases were trained with correct (native-like) and incorrect 
(strong non-native) acoustic models for each tone and log-likelihood ratio scores were 
computed, both scores were compared with segmental correlation thresholds to detect 
articulation errors, and the performance of both methods was evaluated on a speech 
transcription database containing 130,000 segments in consecutive sentences from  
206 non-native speakers, but it relied on forced alignment and was only applicable to the 
Read-aloud tasks only. 

In English language learning, automatic pronunciation assessment (APA) is crucial 
for improving learners’ oral fluency and providing targeted feedback, which is especially 
significant for non-native learners, but previous studies have left much to be desired in 
terms of recognition accuracy due to the difficulty of simulating the temporal dynamics 
of speech in traditional methods, and their poor performance in noisy environments or 
with different accents. Recent breakthroughs focus on multi-task joint learning: 
Chamundeshwari et al. (2025) proposed a new method based on convolutional recurrent 
neural networks (CRNNs), which utilises a convolutional layer to extract visual features 
and a recurrent layer to utilise temporal features of speech, with an accuracy of 99.4% 
after implementation in Python and training on a large-scale dataset, which is much more 
accurate and scalable than the conventional method in terms of accuracy and scalability. 
accuracy and scalability compared to conventional methods. Automatic language 
identification (LID) has gained attention due to the development of multilingual speech 
applications, but the performance in noisy environments is degraded due to the mismatch 
between the training and running environments. Vuddagiri et al. (2018) explore the 
course learning strategy to train a multi-signal-to-noise model, combining i-vector, deep 
neural network (DNN), and DNN – weighted averaging (WA) architectures, which is 
validated by the relevant databases, and outperforms the multi-signal-to-noise model in 
terms of iso-error rate and generalisation. The system is validated by relevant databases, 
which is better than the multiple signal-to-noise ratio (SNR) model in terms of equal error 
rate and generalisation, and effectively reduces the impact of environmental noise on the 
performance. However, the existing models are generally limited by the data sparsity 
bottleneck – the L2-Arctic contains only 120 samples for specific phoneme confusion 
pairs (e.g., /θ/-/s/), which leads to insufficient generalisation of the model to niche error 
patterns (Zhao et al., 2018). 

2.2 A paradigm for the application of knowledge mapping in language 
education 

Knowledge graphs provide interpretable support for spoken language diagnosis through 
structured semantic representations. In the field of pronunciation diagnosis, Algabri et al. 
(2022) propose a high-performance general-purpose computer-assisted pronunciation 
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training (CAPT) system based on deep learning to provide pronunciation error detection 
and diagnosis, articulatory organ feedback generation for non-native Arabic learners, 
covering both words and sentences; the recognition of phonemes and articulatory organ 
features as a multi-labelled target recognition problem, and also investigates  
the generation of speech corpora with common substitution errors using neural  
text-to-speech (TTS) techniques. The system and its enhanced version perform well, 
better compared to end-to-end techniques and better after fusion, and the best model 
achieves 3.83% PER, 70.53% F1 score, and 2.6% diarisation error rate (DER) in 
phoneme recognition, minimum duration detection (MDD), and articulatory organ feature 
detection tasks, respectively. in the direction of syntactic diagnosis, multilingual syntactic 
error correction is a key challenging task in natural language processing (NLP), and 
Kumar et al. (2024) propose the adversarial temporal graph convolutional model  
(AT-GCM), which combines the capabilities of MT-5, adversarial learning, and temporal 
GCN (t-GCNs) to achieve accurate progression: MT-5 provides a powerful embedding 
generator, t-GCNs model word temporal context and dependencies, and Adversarial 
Learning enhances the model’s cross-language generalisation capabilities to address  
low-resource language challenges. Experiments on multi-language datasets show that the 
approach provides a significant improvement in syntactic error correction performance 
over state-of-the-art models, and is effective in resolving syntactic errors in different 
linguistic environments. NLP, which focuses on computer-human language interaction, 
encompasses a wide range of technologies and applications, and GEC is an important 
task aimed at automatically correcting textual errors. Existing studies are mostly based on 
classical machine learning and deep learning, Akbar et al. (2023) proposed to automate 
the GEC process using the C4_200M dataset using a deep Q-network (DQN) model with 
the goal of optimising the Q-function selection, training a deep reinforcement learning 
model and setting a baseline with a reinforcement learning technique, and the results 
show that this DQN model outperforms both the machine learning and the rule-based 
techniques. However, the purely graphical system suffers from static limitations: 
GrammarNet has a high misclassification rate for emerging network expressions (e.g., 
‘gonna’ instead of ‘going to’), and is unable to quantify the severity of errors. 

Current fusion paradigms focus on neural-symbolic collaborative computation: the 
knowledge graph-guided contrastive learning framework (KG-CL) is designed to use 
articulatory knowledge graphs as a positive sample generator to enhance the model’s 
discrimination of confusing phonemes, while Wang et al. (2021) propose the knowledge 
distillation architecture (KDistill), which allows the BERT model to inherit rule-based 
reasoning from the grammatical graphs. However, these works have not yet solved the 
problem of cross-dimensional knowledge isolation – pronunciation and grammar maps 
are independent of each other, and fail to model the causal chain of ‘pronunciation 
distortion triggering grammatical misjudgement’. 

2.3 Interaction mechanism innovation for multimodal fusion 

Spoken language diagnosis requires synergistic processing of acoustic signals, 
transcribed text, and rhythmic features. Early fusion used simple feature splicing: 
Alkhatib et al. (2023) concatenated MFCC acoustic features with ASR text vectors for 
input into BiLSTM, but did not solve the modal asynchrony problem. In addition, the 
pronunciation differences of different accents bring challenges to speech recognition, and 
the existing solutions suffer from the problems of requiring a priori accent information or 
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increasing model parameters and computational complexity. Dong et al. (2025) propose a 
cross-modal parallel training (CPT) method and a multi-objective learning mechanism to 
improve the accent robustness of the conformer-transducer ASR system: CPT a  
cross-modal attention and fusion (CAF) module is designed to align acoustic phonetic 
representations with phonemic embeddings to generate accent-normalised multimodal 
representations, and the CAF introduces a phoneme masking strategy; a parallel  
training approach is used to simultaneously model low-level acoustic features and  
accent-normalised multimodal features, and a multi-objective learning mechanism is 
explored for further enhancement. Validation on publicly available datasets shows that 
the method significantly reduces the relative word error rate by 14.1% to 15.7% across 
the test sets without increasing the model parameters and computational cost for 
inference. 

Addressing the error propagation challenge, the rapid development of speech  
human-computer interaction and natural language understanding applications over the 
past decades has driven research in error detection and classification for ASR systems, 
but related methods are difficult to compare directly due to different datasets and 
evaluation protocols. El Hannani et al. (2021) evaluate the effectiveness and efficiency of 
state-of-the-art methods in a unified framework. The main contributions include: 
comparing the variational recurrent neural network (V-RNN) with three other neural 
models and showing that it is the classifier with optimal accuracy and speed for ASR 
error detection; comparing four feature settings and finding that generic features are 
particularly suitable for real-time ASR error detection applications; and investigating the 
ability of error detection frameworks to generalise in the later stages and analysing the 
perception of hard-to-detect recognition errors through detailed post-tests. However, 
existing methods still rely on supervised alignment signals (e.g., phoneme boundary 
labelling), whereas rhyme breaks and grammatical errors in real-world scenarios are often 
not explicitly boundary labelled. 

3 Methodology 

3.1 Cross-dimensional spoken knowledge graph construction (OralKG) 

The OralKG constructed in this study is the core knowledge infrastructure  
supporting intelligent diagnosis, and its design follows the three-phase paradigm of 
‘multi-source fusion – ontology definition – dynamic extension’. At the data  
layer, 3,812 grammatical-lexical error chains labelled by Speechocean762 (e.g.,  
‘co-occurrence relationship between tense errors and temporal gerund deletions’) and 
12,740 phoneme-level pronunciation scores from L2-Arctic (inter-annotator agreement 
Kappa = 0.82, which is in the ‘almost perfect agreement’ class (> 0.8) according to the 
Landis and Koch criterion, and which is calculated based on the results of three certified 
phoneticians independently labelling a random sample of 300 entries, using the formula 

,
1
o e

e

P Pκ
P

−=
−

 where Po is the actual agreement rate, Pe is the random agreement rate) are 

integrated and incorporating external linguistic resources: 39 phoneme articulatory 
physiological parameters (tongue height, tongue forward extension) from Carnegie 
Mellon University Pronouncing Dictionary (CMUDict), a library of 55 categories of 
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dependencies from Universal Dependencies, and 128 proficiency indicators from the 
CEFR Oral Proficiency Description Framework. The ontology was designed using a  
four-tuple structured representation: 

( , , , )=      (1) 

{Phoneme, GrammarRule, ErrorType, Remediation}=  (2) 

Define 11 categories of semantic relations ,  including confuse_with (phoneme 
confusion) in the pronunciation dimension, triggers_error (error triggering) in the 
grammatical dimension, and remediation_link (correlation of error correction resources) 
in the pedagogical dimension. 

Relationship extraction is performed using a rule-guided remotely supervised 
algorithm: 

• Pronunciation error modelling: based on the L2-Arctic confusion matrix, if the 

phoneme $p_i$ is mispronounced as jp  as often as i jp pN →  in N occurrences, then a 
weighting relation confuse_with(pi, pj, ω) is established with weights 

log 1 i j

i

p p

p

N
ω

N
→ 

= + 
 

 reflecting the probability of error. 

• Cross-dimensional propagation path: Stanford CoreNLP is utilised to parse 
Speechocean762’s error sentence dependency tree, and when nodes ek and em  
satisfy dist(ek, em) ≤ 2 and there is causal dependency (e.g., ‘he go’ triggers  
subject-predicate agreement error), triggers_error(ek, em) is built. 

• Link to teaching resource: manually construct 1,007 error-correction strategy-entity 
mappings (e.g., ‘/θ/ sound mispronunciation’ associated with tongue animation 
ID=ANIM_theta), and generate remediation_link via a bidirectional LSTM matcher. 

The final generated OralKG contains | | 37,152=  entities, | | 128, 406=  relationships, 
and provides structured a priori knowledge for subsequent GNNs. 

3.2 Graph enhanced multi-task learning architecture (KG-MTL) 

The KG-MTL model realises end-to-end spoken language analysis through four phases: 
multimodal coding-knowledge query-graph inference-joint diagnosis, and the framework 
is shown in Figure 1. 

Multimodal features are co-coded, and the input speech signal T F
audio

×∈X   (T: 
number of frames, F: Meier spectral dimension) is subjected to a wav2vec 2.0 base model 
to extract context-aware features: 

( )LayerNorm Wav2vec( ) ( 768)vT d
v v audio v vd′×= ⋅ + ∈ =H W X b   (3) 

Meanwhile, ASR translates the text Xtext input to RoBERTa-large to generate word 
vectors: 

( )RoBERTa ( 1024)tL d
t text td×= ∈ =H X   (4) 
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Figure 1 KG-MTL fusion framework schematic (see online version for colours) 
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To eliminate modal asynchrony, a cross-modal alignment module is designed: 

( ) ( )
softmax

T
v q t k

d

 
 =  
 

H W H W
A  (5) 

The aligned features Halign and Hv are spliced into a multimodal representation: 

[ ] ( ); v tT d d
multi v align

′× += ∈H H H   (7) 

Dynamic knowledge retrieval and injection based on multimodal features to generate 
knowledge query vectors: 

( )( )( )2 1MLP ReLU MLP ( 512)d
multi d= ∈ =q H   (8) 

Retrieve the relevant subfigure in OralKG :sub  

( ) ( )( ){ }, , | sim , , 0.65sub i ij j ie r e e τ τφ= > =q  (9) 

where 128:φ →   is the entity embedding function and sim is the cosine similarity. The 
retrieval process is accelerated by the approximate nearest neighbour (ANN) algorithm 
with a recall of 92.3%. 

Gated graph attentional reasoning, which inputs sub  into the GGAT for knowledge 
fusion: 

Node aggregation: 



   

 

   

   
 

   

   

 

   

    Knowledge graphs meet deep learning for intelligent diagnosis 79    
 

    
 
 

   

   
 

   

   

 

   

       
 

( ) ( ) ( 1)

i

l l l
ij ri j

j

σ α −

∈

 =
 
 
h W h


 (10) 

The attention coefficient αij is modulated by the query vector q: 

( )( )exp LeakyReLU

exp( )
i

T
q e j

ij

k

α

∈

  =
⋅

a W q W h



 (11) 

Knowledge gating: controlling the balance between primitive features and knowledge 
infusion: 

( )( )sigm |oid |lT
i ig  =  u h q  (12) 

The gating value gi dynamically adjusts the knowledge contribution. 
Multi-task co-optimisation, the output layer performs four types of diagnostic tasks in 

parallel: 

• Pronunciation diagnostics: phoneme-level triple categorisation 
(correct/acceptable/incorrect): 

( )( )
3

( ) ( )
pron

1 1

1 log softmax
N

c k
pk sub c

k c

y
N = =

= −  W h  (13) 

• Syntactic error correction: CRF-based sequence annotation (BIO format): 

( ) 2out
grammar log | ; ,

2g gtext
λP= − +y H W T W  (14) 

 where T is the transfer matrix and λ = 0.01 controls the regularisation strength.  

• Fluency analysis: regression of pause frequency  fp on average pause length tp: 

( )2 2
fluency 2 2

1
2

f t
align p align pf ff t= − + −W h W h  (15) 

• Total loss function weighted fusion: 

total pron grammar fluency0.4 0.4 0.2= + +     (16) 

3.3 Meta-knowledge adaptive extension mechanism 

Designing the meta-relational learner (MetaRL) to address the limitations of OralKG’s 
staticity:  

When a not-logged-in error pattern is detected: 

( )( )new new 1
, , K

i j k
e r e

=
=  (17) 

where K < 50 is a small number of samples to extract the relational prototype: 
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( ) ( )( )( ) ( )
pair

1

1 LSTM ;
K

k k
r i j

k

e e a
K

φ φ
=

 =  v  (18) 

Calculate the similarity to existing relationships: 

( )( )sim cos , ,k r k kr rφ= ∀ ∈v   (19) 

If max(simk) < θ (θ = 0.8), then extend the map: 

( )( )sim cos , ,k r k kr rφ= ∀ ∈v   (20) 

This mechanism allows OralKG to dynamically assimilate emerging error patterns (e.g., 
‘because...so...’ Chinese redundant constructions), resulting in a 17.2% increase in 
grammatical diagnostic recall on the validation set. 

3.4 Interpretable diagnostic report generation 

OralKG-based semantic reasoning generates structured feedback: 

• Error tracing: locate the critical error node eerror, and backtrack the propagation path 
along the triggers_error edge: 

{ }1 2
1 2

r re e= ⎯⎯→ ⎯⎯→  (21) 

• Resource association: retrieval of error correction strategies: 

( ){ }fix , remediation _ link,n error nr e r= ∈   (22) 

• Severity quantification: calculating the error impact factor: 

impact ( )p
p

ω I p
∈

= ⋅


 (23) 

 where ωp is the path weight and I(p) is the node importance.  

The final output is a machine-readable diagnostic report that supports direct calls from 
educational application programming interface (APIs). 

4 Experimental validation 

4.1 Experimental setup and baseline model 

This experiment was conducted on two authoritative public datasets: Speechocean762 
provides 762 spoken samples from non-native speakers with fine-grained error 
annotations in five dimensions: pronunciation, grammar, Zhang, et al. (2021) vocabulary, 
fluency, and content, and is divided into training/testing sets (612/150) in the official  
8:2 ratio; L2-Arctic focuses on phoneme-level pronunciation diagnostics covering  
13,750 read-aloud utterances from 24 non-native speakers, Zhao, et al. (2018) divided  
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into a 16-person training set (11,000 sentences) and a 4-person testing set  
(2,750 sentences) by speaker. 13,750 read-aloud utterances from 24 non-native speakers, 
divided by speaker into a 16-person training set (11,000 utterances) and a 4-person test 
set (2,750 utterances). Three types of metrics were used for the evaluation: phoneme 
error rate (PER): quantifies pronunciation accuracy, calculated as the number of 
erroneous phonemes as a percentage of the total number of phonemes;  
grammatical diagnostic F1 value: a macro-averaged measure of the accuracy of 
recognising grammatical error types; and Overall DA: a composite of the model’s  
ability to determine the type and location of the error, defined as 

Number of misjudgments and errors
Total number of err s

.
or

1DA = −  

Five cutting-edge methods are selected for the comparison baseline, all reproduced 
from the top issue papers: transformer-ASR (Hu, et al., 2021): fusion of speech and text 
features based on cross-modal attention; BERT-GRU (Han et al., 2021): enhanced 
syntactic error detection using gated recurrent units; GrammarNet: rule-dependent 
graphical mapping of subgraphs matching system; wav2vec-MTL (Mohamed et al., 
2022): an extended Multi-task learning framework for wav2vec 2.0; KG-CL (Fang et al., 
2023): Knowledge-guided contrast learning model; All experiments are run on a local 
high-performance computing cluster configured with 8 computing nodes, each equipped 
with 4×NVIDIA A100 GPUs (80GB HBM2e memory), with 600GB/s high-speed 
interconnections between the GPUs via NVLink 3.0, and InfiniBand HDR 200Gb/s 
network for inter-node communication, and KG-MTL was converged by 50 rounds of 
training (early stopping threshold = 10 rounds, which was verified by grid search: when 
the continuous monitoring window was set to [5,15] rounds, window = 10 yielded 
optimal generalisability on the validation set (F1 = 0.89 ± 0.02), window <7 resulted in 
underfitting due to early termination (F1 ↓0.11), and window >13 resulted in degradation 
of the performance of the test set due to overfitting (DA ↓4.3%)) using the AdamW 
optimiser (learning rate 5e-5). 

4.2 Multi-dimensional diagnostic performance analysis 

As shown in Table 1, KG-MTL achieves overall leadership on the Speechocean762 test 
set. For articulatory diagnosis, the PER is as low as 8.7%, which is 12.3% lower than the 
next best model, KG-CL (9.9%). This advantage stems from OralKG’s explicit modelling 
of phoneme confusion rules (e.g., dentoalveolar differences in /θ/-/s/), which allows the 
model to more accurately differentiate error-prone phonemes. For grammatical diagnosis, 
the F1 value reaches 0.89, significantly outperforming GrammarNet (0.75) and  
BERT-GRU (0.82). The main reason is that the GGAT module dynamically injects 
grammatical dependencies (e.g., ‘subject-predicate agreement → tense synergy’), which 
solves the coverage limitation of the traditional rule system. In terms of overall DA, 
86.2% of the state-of-the-art (SOTA) results verified the effectiveness of  
cross-dimensional joint optimisation, especially in the coupled dimensions of fluency and 
content coherence, as shown in Figure 2. 
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Table 1 Multi-dimensional diagnostic performance comparison 

Model PER (%) Grammar F1 DA (%) 
Transformer-ASR 14.2 ± 0.9 0.75 ± 0.03 73.9 ± 1.2 
BERT-GRU - 0.82 ± 0.02 78.1 ± 0.8 
GrammarNet - 0.75 ± 0.04 70.3 ± 1.5 
wav2vec-MTL 11.8 ± 0.7 0.79 ± 0.03 78.3 ± 1.0 
KG-CL 9.9 ± 0.5 0.85 ± 0.02 82.6 ± 0.7 
KG-MTL (Ours) 8.7 ± 0.4 0.89 ± 0.01 86.2 ± 0.8 

Figure 2 Comparison of DA across models (see online version for colours) 
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4.3 In-depth analysis of phoneme-level articulation diagnostics 

On the L2-Arctic test set, we focused on 6 types of high-frequency phoneme confusion 
pairs. KG-MTL had a detection rate of 92.1% for dental fricative confusion (/θ/-/s/), 
which was significantly higher than KG-CL (85.3%). Because OralKG encodes a tongue 
position parameter (/θ/ sounds require tongue tip extension between the teeth), it guides 
the model to focus on high-frequency energy deficit features in the phonogram. However, 
there was only a 3.2% improvement over KG-CL (89.7% vs. 86.5%) on vowel loosening 
opposition (/ɪ/-/i:/). Traceability revealed insufficient vowel labelling granularity in  
L2-Arctic and OralKG did not include knowledge of resonance peak dynamic 
trajectories, as shown in Figure 3. 
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Figure 3 Phonological error detection rate analysis (see online version for colours) 
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4.4 Ablation experiments and attribution analysis 

To deconstruct the source of KG-MTL contribution, systematic ablation experiments 
were designed, as shown in Table 2. Removal of OralKG (w/o OralKG): DA plummets to 
73.9% and PER rises to 14.2%. This suggests that structured knowledge is the 
cornerstone of stable diagnosis in small-sample scenarios (e.g., only 38 cases of ‘would + 
verb original’ errors). Replacing GGAT with mean-value aggregation (w/o GGAT): the 
Grammar F1 decreased to 0.82 (↓7.0%). Noise is introduced by mean aggregation 
without joints (e.g., false activation of the ‘Coronary Error’ node interferes with 
pronunciation diagnosis). Single-task training (w/o Multitask): PER rises to 11.8% when 
optimising only the grammar task, confirming that cross-dimensional joint learning 
suppresses error propagation. 
Table 2 KG-MTL ablation test 

Model variant DA (%) PER (%) Grammar F1 
Full KG-MTL 86.2 8.7 0.89 
w/o OralKG 73.9 14.2 0.75 
w/o GGAT 80.1 10.5 0.82 
w/o Multitask 78.3 11.8 0.79 
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4.5 Visual parsing of cross-dimensional error propagation 

Quantitatively analyse the conduction effect of the error chain through OralKG’s 
triggers_error relation: main propagation paths: mispronunciation (e.g., /θ/ → /s/) → 
grammatical errors (three missing singles, due to misrecognition of ‘thinks’ as ‘sinks’) → 
fluency decrease (repeated corrections). Decrease in fluency (repeated corrections). This 
path accounted for 37.2% of the cases, and the DA of KG-MTL was 81.4%, which was 
19.2% higher than that of KG-CL. Key finding: 68.3% of fluency problems are triggered 
by underlying pronunciation/grammar errors, highlighting the need for cross-dimensional 
modelling. 

4.6 Validation of generalisation ability for small samples 

Simulating a low-resource scenario (only 6 training data), KG-MTL performs well with 
the meta-knowledge expansion mechanism. Emergent error diagnosis: 72% F1 on ‘no + 
verb’ Chinese errors (31.2% improvement over KG-CL). Automatic expansion of 
relations (negative prepositions, verb prototypes misuse) due to MetaRL. Convergence 
efficiency: the DA of KG-MTL has reached 80% at epoch=15, which is a 58% speedup 
compared to KG-CL (epoch=36). It proves that OralKG’s structured prior significantly 
reduces data dependency, as shown in Figure 4. 

Figure 4 Convergence curve for small sample training (see online version for colours) 
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4.7 Experimental results and analysis 

This study breaks through the dimensional fragmentation of traditional spoken language 
diagnosis through the fusion of dynamic knowledge graph and deep learning. 
Relationships explicitly defined in OralKG (e.g., phoneme confusion triggers 
grammatical errors) are the first to validate the Cascade Propagation Theory of linguistic 
errors at the computational level (McMillan and Corley, 2010). Experiments show that 
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37.2% of fluency problems stem from underlying articulatory distortions, which is highly 
consistent with the ‘error chain effect’ hypothesis in the field of second language 
acquisition (Spada and Lightbown, 2019). Compared with purely data-driven black-box 
models (e.g., KG-CL), we have found that 37.2% of fluency problems stem from 
underlying articulatory distortions. Experiments show that 37.2% of fluency problems are 
due to underlying articulatory distortions, which is highly consistent with the ‘error chain 
effect’ hypothesis in second language acquisition.33 Compared to purely data-driven 
black-box models (e.g., KG-CL) and rigid rule-based systems (e.g., GrammarNet),  
KG-MTL’s gated graph attention mechanism ( )sigmoid( [ ]( | ))lT

i ig = u h q  realises 
contextualised modulation of knowledge injection – when speech intelligibility triggers 
grammatical errors, it can be contextualised and moderated. contextualised modulation – 
when speech intelligibility (in terms of SNR>25dB) is high, the mean value of gi 
stabilises at 0.32 ± 0.07, and the model relies on the data features; whereas, when SNR <  
15 dB, gi jumps to 0.71 ± 0.12, and activates the articulatory rule nodes to intervene in 
decision-making. This neural-symbolic dynamic coupling mechanism provides a new 
paradigm for constructing interpretable and adaptive educational AI, especially 
promoting a paradigm shift from ‘outcome scoring’ to ‘process attribution’ in the 
diagnosis of articulation errors. 

Of more profound significance is the revolution of meta-knowledge extension 
mechanism for knowledge engineering in education. MetaRL enables OralKG to improve 
F1 by 31.2% in absorbing emerging error patterns (e.g., ‘no + verb’ neuter constructions) 

through sample-sparing prototype learning 1 LSTMpair([ ( ); ( )]) .i jr e e
K

φ φ = 
 v  This 

is essentially a computationalisation of Vygotsky and Cole (1978) Scaffolding Theory of 
Cognition (STC) – where the graph dynamically evolves with the learner’s Interlanguage 
to form a growing knowledge network. Compared to static knowledge bases (e.g., 
WordNet), OralKG’s continuous scalability paves the way for personalised language 
learning in low-resource areas. 

KG-MTL’s diagnostic capabilities are reshaping the practical scenarios of language 
education. The first one is personalised learning path generation: a resource 
recommendation system based on the remediation_link relationship has demonstrated 
significant benefits in a pilot English writing course at Zhejiang University. When the 
system detects the /θ/ sound distortion, it automatically pushes the tongue position 
animation (ID=ANIM_theta) and reinforcement exercises, which shortens the learners’ 
pronunciation error-correction cycle from an average of 4.2 weeks to 2.5 weeks (speeding 
up by 40.5%), and the consolidation rate of error correction (the rate of no recurrence 
after 3 months) reaches 82.3% (only 47.6% in the control group). Second is the teacher’s 
intelligent assisted decision-making: the visual diagnostic report annotates the error 
propagation path and influence factor impact (( ),)pω I p= ⋅  helping teachers focus on 
the core issues. An empirical study by Shanghai International Studies University shows 
that the time cost for teachers to analyse students’ speaking assignments decreased from 
12.3 to 8.0 minutes per assignment (35.0% efficiency improvement), while the feedback 
accuracy (student satisfaction) increased from 3.8/5 to 4.5/5. Finally, it promotes 
educational equity: in a remote middle school in Yunnan, KG-MTL only needs 6 pieces 
of annotated data to achieve 80% DA, enabling students in areas without professional 
foreign teachers to obtain expert diagnosis. This directly supports the UN SDG4 (equity 
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in education) goal, especially providing inclusive services to 617 million second language 
learners worldwide (Gottschalk and Weise, 2023). 

Despite the remarkable results, there are still bottlenecks that need to be broken in 
this study. Rhyme modelling is missing: OralKG does not include suprasegmental 
features such as stress and intonation, resulting in 23% of rhyme errors (e.g., flat 
intonation in interrogative sentences) being missed in L2-Arctic. In the future, we can 
expand the rhyme knowledge layer of OralKG: integrate open-source rhyme libraries 
(e.g., PROSOUND), and add three types of entities: intonation rules, stress patterns, and 
rhythmic thresholds; design a lightweight rhyme analysis module to automatically detect 
features such as rising intonation in interrogative sentences through fundamental 
frequency trajectory (F0) and energy distribution; and correlate the articulatory nodes 
with rhyme rules (e.g., fricative distortions are often accompanied by stress offsets) with 
the goal of reducing the rhyme The goal is to reduce the error detection rate from 23% to 
less than 8%. Culture-specific expression rules (e.g., ‘white lie’) are not encoded in the 
map, resulting in a 38% misdiagnosis of euphemisms among American learners. The 
PragmaticNet subgraphs should be constructed: 15,000 culturally specific rules (e.g., 
‘white lie needs to be paired with a softened intonation’) are extracted from MICASE and 
other corpora; new cultural_constraint relations are added to dynamically match the 
learners’ native language backgrounds and contexts; a discourse severity grader is 
developed to prioritise high-conflict expressions (e.g., direct refusal of Chinese native 
speakers); and a predictive grammar is expected to be developed to ensure that the 
learners can use the euphemisms in the best possible way. Chinese native speakers’ direct 
refusal tense); expected to compress euphemism misdiagnosis rate from 38% to 12%. 
Real-time constraints: The average latency of GGAT inference is 217ms (A100 GPU), 
which is difficult to meet the real-time feedback requirements of the dialog system. This 
can be achieved by implementing a three-level acceleration scheme: dynamic graph 
pruning: retain high-weight error propagation paths (e.g., /θ/→three single errors), and 
trim low-frequency relations; model quantisation deployment: convert GGAT parameters 
to 8-bit integer (INT8), optimised by TensorRT edge computation; high-frequency error 
cache: pre-generate diagnostic results for TOP20% error patterns, which can be directly 
invoked by real-time querying; goal Achieve ≤50ms latency in Jetson Orin device, 
accuracy loss is controlled within 1.2%. 

Future work will deepen along the following three directions. Cross-language 
mapping migration: extend OralKG to French, Spanish, and other languages by utilising 
multi-language alignment techniques (e.g., mBERT). Specific implementations include: 
constructing a multilingual phoneme mapper to resolve pronunciation rule differences 
(e.g., tongue parameter conversion for the French nasalised vowel /ɔ̃/); designing a 
language adaptation rule converter to automatically generate grammatical relationship 
subgraphs (e.g., Spanish verb conjugation error chain); and aiming to achieve a DA 
deviation of ≤3.5% across five languages. Cognitive factor fusion: Integrate cognitive 
indicators such as working memory capacity and anxiety level to construct a personalised 
diagnostic model. Meta-universe teaching field: real-time capturing of articulatory organ 
movement in VR environment to realise physiological feedback enhanced diagnosis. 
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5 Conclusions 

In this paper, we pioneered the intelligent diagnostic framework of spoken language by 
integrating ‘dynamic knowledge graph + deep learning’, and achieved four core 
breakthroughs: constructing cross-dimensional diagnostic graph OralKG: covering 37K 
entities and 128K relations, and for the first time, explicitly modelling the error 
propagation path of ‘distortion of pronunciation → grammatical miscalculation → 
fluency 31.2%’; establish education application ecology: verify personalised learning 
efficiency increase of 40.5% in Zhejiang University and other scenes, empowering 
universal language education. 

This study not only confirms the effectiveness of structured knowledge representation 
for complex language diagnosis, but also pushes the educational AI from ‘black-box 
scoring’ to cognitively transparent tutoring partners. The synergistic paradigm of OralKG 
and KG-MTL lays the theoretical cornerstone and technical support for the construction 
of a new-generation adaptive language learning system, and the core value lies in – make 
every language error a traceable learning signpost. 
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