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Abstract: To address the critical challenges of insufficient diagnostic
granularity and limited interpretability in spoken English assessment, this
research proposes an intelligent framework that synergistically integrating
knowledge graph and deep learning technologies. We construct a structured
oral knowledge graph using multidimensional error annotations from the
Speechocean762 corpus and phoneme-level pronunciation data from L2-Arctic,
and design a knowledge graph-enhanced multi-task learning model to achieve
cross-dimensional joint optimisation. Experimental results show 12.3%
reduction in pronunciation error rate and 14.7% improvement in grammatical
diagnostic F1-score compared to mainstream baselines, with overall diagnostic
accuracy reaching 86.2%. Ablation studies confirm the knowledge graph’s
pivotal role in error-path reasoning, while the meta-relation learner
significantly enhances few-shot adaptation capability (31.2% F1-score gain).
This framework provides interpretable diagnostic support for adaptive language
learning systems, reducing error-correction cycles by 40.5% in real-world
educational applications.
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1 Introduction

Under the wave of digital transformation of global education, intelligent assessment and
diagnostic technology for English speaking ability, as the core carrier of cross-cultural
communication, has become the cutting-edge focus of artificial intelligence in education.
According to a United Nations Educational, Scientific and Cultural Organization
(UNESCO) report, only 23% of the world’s more than 1.5 billion English language
learners have access to professional speaking instruction, and the traditional manual
assessment model has inherent shortcomings such as strong spatial and temporal
limitations, large subjective bias in scoring (with a standard deviation of as high as
0.81 points), and lagging feedback (Bo, 2025). To break through this bottleneck, the
industry has taken the lead in launching automated tools: Duolingo uses an end-to-end
long short-term memory (LSTM) model to achieve instantaneous scoring, but it only
outputs a single-dimensional score; Grammarly relies on a rule engine to provide
grammatical error correction (GEC), but it is difficult to deal with the coupling between
speech signals and linguistic structures (O’Neill and Russell, 2019). The shortcomings of
these tools at the diagnostic fine-grained level and the interpretation generation level have
severely constrained the effectiveness of the implementation of personalised instruction —
the learners’ learning experience. The lack of diagnostic granularity and explanation
generation severely constrains the implementation of personalised instruction — learners
need to be explicitly aware that ‘the /0/ sound is pronounced with incorrect dental-lingual
position, leading to third-person singular confusion’ rather than a generalised
‘pronunciation needs to be improved’ (Yesilyurt, 2023).

Currently, mainstream research is centred on breakthrough exploration of multimodal
fusion architectures. In the field of speech characterisation, wav2vec 2.0 significantly
improves the robustness of phoneme recognition through self-supervised pre-training,
with a frame-level accuracy of 89.7% in the L2-Arctic dataset (Baevski et al., 2020); at
the level of textual analysis, wav2vec 2.0 significantly outperforms the automatic speech
recognition (ASR)-trained bidirectional encoder representations from transformers
(BERT) baseline system and manual transcription in evaluating the proficiency level of
spoken language and its individual aspects (Banno and Matassoni, 2023). However, this
type of data-driven paradigm faces two essential challenges: first, the dilemma of
labelling data drought, where spoken errors need to be finely labelled by linguistic
experts, and the average labelling time for a single speech in Speechocean762 is
8.7 minutes, resulting in the limited size of the available dataset (Zhang et al., 2021).;
second, the black-boxing of error propagation, where distorted pronunciation triggers
ASR transcription errors (e.g., ‘think’ is misrecognised as ‘sink’), the subsequent
grammar analysis module attributes the error to subject-predicate agreement rather than
pronunciation problems, and the system cannot trace the root of the error (Suhm et al.,
2001).
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To enhance model interpretability, researchers have tried to introduce linguistic
structured knowledge into the evaluation system. In the field of phonetics, Gibbon and
Lee (2011) constructed a Phonemic Contrast Graph to encode the features of the parts of
speech/methods of 44 phonemes in English, which the atlas deconstructs phonemes into
binary feature matrices (e.g., [+interdental] [+fricative]) according to articulatory organ
movements, allowing the model to localise learners’ tongue positional deviations (e.g.,
the tip of the tongue does not extend between the teeth when pronouncing the /6/ sound,
leading to confusion with /s/), and thus generate targeted physiological feedback. The
atlas has been used in the design of pronunciation correction animation libraries in ESL
instruction (e.g., ARTUR system), which increased the detection rate of phoneme
confusion by 19%; in the direction of grammatical diagnosis, GrammarNet integrates
more than 2,000 dependency grammar rules, and detects errors such as tense misuse and
misapplication through subgraph matching. In the direction of grammar diagnosis,
GrammarNet integrates more than 2,000 dependent grammar rules and detects tense and
other errors through subgraph matching. However, the pure rule-based system suffers
from rigidity defects: limited coverage, only able to deal with predefined error patterns,
and less than 65% diagnostic accuracy (DA) for multiple errors (tense =+ third
person singular) such as ‘he goes to school yesterday’ (Pazzani and Brun, 1991); weak
dynamic adaptability, unable to model the gradual development of learner’s
interlanguage (e.g., the language of the learner), interlanguage gradual features (e.g.,
Chinese English-specific structures).

The latest fusion paradigms reveal the direction of breakthroughs: Yan and Chen
(2024) propose the HierGAT method based on hierarchical graph attention network,
which models the input discourse as a heterogeneous graph containing language nodes
with different granularities, encapsulates the dependency relationships between linguistic
units and takes into account the linguistic hierarchies through the hierarchical graph
messaging mechanism, and designs the coding correlation of aspectual attention modules,
and demonstrates its feasibility and effectiveness in the Speechocean762 dataset.
Experiments on Speechocean762 dataset proved its feasibility and effectiveness, and this
is the first time that multiple language nodes are introduced into the graph neural network
(GNN) of APA and comprehensive qualitative analysis is performed; Qin et al. (2025)
proposed the efficient knowledge distillation and alignment (EKDA) method, which does
not require a large amount of computational resources and complex processes, and
achieves the knowledge extraction through the knowledge distillation technique with
LLaMA model as a teacher model for knowledge extraction, using GNN to efficiently
align visual information and knowledge, capturing image-related knowledge to enhance
semantic understanding, and achieving state-of-the-art accuracy on outside knowledge
visual question answering (OK-VQA) dataset, which is 6.63% higher than the baseline
method, and using grammatical knowledge graph as a teacher network to constrain the
student model decision. Despite local progress, these works still have three major
unsolved challenges: dimensional fragmentation, where existing maps model only a
single linguistic dimension (pronunciation or grammar), ignoring the cross-influence of
fluency and content coherence; static knowledge representation, where the relationships
of mapping entities are fixed, and cannot adapt to the dynamic evolution of learners’
error patterns; and diagnostic-feedback disconnect, where the system identifies errors and
then lacks the generation of corrective suggestions based on the knowledge correlation
mechanisms (e.g., associating ‘/v/-/w/ obfuscation’ with lip-sync vibration exercise
videos) (Siemer and Angelides, 1998).
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To address the above challenges, this study proposes a ‘dynamic graph-coupled
multidimensional diagnosis paradigm’, whose core breakthrough lies in reconfiguring the
interaction mechanism between knowledge representation and computational
architecture. The first one is cross-dimensional oral knowledge graph (OralKG), which
integrates Speechocean762’s grammatical-lexical error chains (e.g., ‘tense error —
temporal pronominal absence’), articulatory physiological parameters of the L2-Arctic
phonemes (tongue height/anterior tongue extension), and Common European Framework
of Reference (CEFR) oral proficiency descriptors. The CEFR framework for describing
oral proficiency is used to construct a unified atlas covering 4 entity types (articulatory
units, grammatical structures, error patterns, and teaching resources) and 11 types of
relationships (e.g., confuse with, triggers_error, remediation_link). This map is the first
to quantitatively model the cross-dimensional propagation path of ‘articulatory distortion
— grammatical misjudgment — fluency decline’. Next is the graph-enhanced meta-
learning architecture (KG-MetaMTL), which designs a differentiable graph inference
engine to dynamically activate the relevant subgraphs via a gated graph attention network
(GGAT). When the input speech has dental fricative distortion, OralKG automatically
correlates phonemic nodes (/6/), common confusion pairs (/s/), and possible triggering
grammatical errors (third-person singular deletion) to guide the multitasking model to
focus on key features. This mechanism improves the system’s syntactic diagnosis F1
value by 31.2% in small sample scenarios (<50 labelled data). This method not only
breaks through the dichotomy of ‘black-box model’ and ‘rigid rule’, but also promotes
the evolution of spoken language diagnosis from isolated error identification to adaptive
feedback guided by causal reasoning, laying a theoretical foundation for building the
next-generation intelligent language learning engine.

2 Related work

2.1 Deep learning-driven evolution of spoken language assessment techniques

Research on deep learning-based spoken language assessment has developed along two
main paths: speech scoring and error diagnosis. In the area of scoring, a novel multimodal
end-to-end neural method is proposed for automatic assessment of spontaneous speech of
non-native English speakers through attentional fusion. The process of the method is as
follows: a bi-directional recurrent convolutional neural network and a bi-directional long
and short-term memory neural network are used to encode acoustic cues and lexical cues
in spectrograms and transcribed content, respectively, and these learned predictive
features are subsequently subjected to attentional fusion in order to learn complex
interactions between the different modalities prior to the final scoring. The combined
attention to lexical and acoustic cues significantly improves the overall performance of
the system as shown by comparison with a strong baseline model, which is also analysed
qualitatively and quantitatively in the study. In neural machine translation the attention
mechanism overcomes the sequence-to-sequence problem of LSTM, while audio-visual
speech recognition (AVSR) is difficult to balance the training attention due to richer
audio information, for this reason Lee et al. (2020) proposed a dual cross-modal (DCM)
attention scheme and introduced connectionist temporal classification (CTC) loss
combined with an attention model, which has a higher word error rate than a competing
method based on Transformer on the relevant dataset. The word error rate on the relevant
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dataset is at least 7.3% higher than that of the competing Transformer-based methods.
However, such methods are still black-box regression models in nature and cannot
provide interpretable diagnostic feedback (Khabbazbashi et al., 2021).

In the direction of error diagnosis, Franco et al. (1999) focus on the automatic
detection of specific segments mispronounced by non-native learners of a foreign
language, and this type of sound-level information allows language teaching systems to
provide learners with feedback on specific pronunciation errors; two approaches are
evaluated for this purpose, one based on acoustic models of native speech to calculate log
posterior likelihood scores for each segment, and the other utilising a phonetically
labelled non Native speech databases were trained with correct (native-like) and incorrect
(strong non-native) acoustic models for each tone and log-likelihood ratio scores were
computed, both scores were compared with segmental correlation thresholds to detect
articulation errors, and the performance of both methods was evaluated on a speech
transcription database containing 130,000 segments in consecutive sentences from
206 non-native speakers, but it relied on forced alignment and was only applicable to the
Read-aloud tasks only.

In English language learning, automatic pronunciation assessment (APA) is crucial
for improving learners’ oral fluency and providing targeted feedback, which is especially
significant for non-native learners, but previous studies have left much to be desired in
terms of recognition accuracy due to the difficulty of simulating the temporal dynamics
of speech in traditional methods, and their poor performance in noisy environments or
with different accents. Recent breakthroughs focus on multi-task joint learning:
Chamundeshwari et al. (2025) proposed a new method based on convolutional recurrent
neural networks (CRNNSs), which utilises a convolutional layer to extract visual features
and a recurrent layer to utilise temporal features of speech, with an accuracy of 99.4%
after implementation in Python and training on a large-scale dataset, which is much more
accurate and scalable than the conventional method in terms of accuracy and scalability.
accuracy and scalability compared to conventional methods. Automatic language
identification (LID) has gained attention due to the development of multilingual speech
applications, but the performance in noisy environments is degraded due to the mismatch
between the training and running environments. Vuddagiri et al. (2018) explore the
course learning strategy to train a multi-signal-to-noise model, combining i-vector, deep
neural network (DNN), and DNN — weighted averaging (WA) architectures, which is
validated by the relevant databases, and outperforms the multi-signal-to-noise model in
terms of iso-error rate and generalisation. The system is validated by relevant databases,
which is better than the multiple signal-to-noise ratio (SNR) model in terms of equal error
rate and generalisation, and effectively reduces the impact of environmental noise on the
performance. However, the existing models are generally limited by the data sparsity
bottleneck — the L2-Arctic contains only 120 samples for specific phoneme confusion
pairs (e.g., /8/-/s/), which leads to insufficient generalisation of the model to niche error
patterns (Zhao et al., 2018).

2.2 A paradigm for the application of knowledge mapping in language
education

Knowledge graphs provide interpretable support for spoken language diagnosis through
structured semantic representations. In the field of pronunciation diagnosis, Algabri et al.
(2022) propose a high-performance general-purpose computer-assisted pronunciation
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training (CAPT) system based on deep learning to provide pronunciation error detection
and diagnosis, articulatory organ feedback generation for non-native Arabic learners,
covering both words and sentences; the recognition of phonemes and articulatory organ
features as a multi-labelled target recognition problem, and also investigates
the generation of speech corpora with common substitution errors using neural
text-to-speech (TTS) techniques. The system and its enhanced version perform well,
better compared to end-to-end techniques and better after fusion, and the best model
achieves 3.83% PER, 70.53% F1 score, and 2.6% diarisation error rate (DER) in
phoneme recognition, minimum duration detection (MDD), and articulatory organ feature
detection tasks, respectively. in the direction of syntactic diagnosis, multilingual syntactic
error correction is a key challenging task in natural language processing (NLP), and
Kumar et al. (2024) propose the adversarial temporal graph convolutional model
(AT-GCM), which combines the capabilities of MT-5, adversarial learning, and temporal
GCN (t-GCNs) to achieve accurate progression: MT-5 provides a powerful embedding
generator, t-GCNs model word temporal context and dependencies, and Adversarial
Learning enhances the model’s cross-language generalisation capabilities to address
low-resource language challenges. Experiments on multi-language datasets show that the
approach provides a significant improvement in syntactic error correction performance
over state-of-the-art models, and is effective in resolving syntactic errors in different
linguistic environments. NLP, which focuses on computer-human language interaction,
encompasses a wide range of technologies and applications, and GEC is an important
task aimed at automatically correcting textual errors. Existing studies are mostly based on
classical machine learning and deep learning, Akbar et al. (2023) proposed to automate
the GEC process using the C4 200M dataset using a deep Q-network (DQN) model with
the goal of optimising the Q-function selection, training a deep reinforcement learning
model and setting a baseline with a reinforcement learning technique, and the results
show that this DQN model outperforms both the machine learning and the rule-based
techniques. However, the purely graphical system suffers from static limitations:
GrammarNet has a high misclassification rate for emerging network expressions (e.g.,
‘gonna’ instead of ‘going to’), and is unable to quantify the severity of errors.

Current fusion paradigms focus on neural-symbolic collaborative computation: the
knowledge graph-guided contrastive learning framework (KG-CL) is designed to use
articulatory knowledge graphs as a positive sample generator to enhance the model’s
discrimination of confusing phonemes, while Wang et al. (2021) propose the knowledge
distillation architecture (KDistill), which allows the BERT model to inherit rule-based
reasoning from the grammatical graphs. However, these works have not yet solved the
problem of cross-dimensional knowledge isolation — pronunciation and grammar maps
are independent of each other, and fail to model the causal chain of ‘pronunciation
distortion triggering grammatical misjudgement’.

2.3 Interaction mechanism innovation for multimodal fusion

Spoken language diagnosis requires synergistic processing of acoustic signals,
transcribed text, and rhythmic features. Early fusion used simple feature splicing:
Alkhatib et al. (2023) concatenated MFCC acoustic features with ASR text vectors for
input into BiLSTM, but did not solve the modal asynchrony problem. In addition, the
pronunciation differences of different accents bring challenges to speech recognition, and
the existing solutions suffer from the problems of requiring a priori accent information or
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increasing model parameters and computational complexity. Dong et al. (2025) propose a
cross-modal parallel training (CPT) method and a multi-objective learning mechanism to
improve the accent robustness of the conformer-transducer ASR system: CPT a
cross-modal attention and fusion (CAF) module is designed to align acoustic phonetic
representations with phonemic embeddings to generate accent-normalised multimodal
representations, and the CAF introduces a phoneme masking strategy; a parallel
training approach is used to simultaneously model low-level acoustic features and
accent-normalised multimodal features, and a multi-objective learning mechanism is
explored for further enhancement. Validation on publicly available datasets shows that
the method significantly reduces the relative word error rate by 14.1% to 15.7% across
the test sets without increasing the model parameters and computational cost for
inference.

Addressing the error propagation challenge, the rapid development of speech
human-computer interaction and natural language understanding applications over the
past decades has driven research in error detection and classification for ASR systems,
but related methods are difficult to compare directly due to different datasets and
evaluation protocols. El Hannani et al. (2021) evaluate the effectiveness and efficiency of
state-of-the-art methods in a unified framework. The main contributions include:
comparing the variational recurrent neural network (V-RNN) with three other neural
models and showing that it is the classifier with optimal accuracy and speed for ASR
error detection; comparing four feature settings and finding that generic features are
particularly suitable for real-time ASR error detection applications; and investigating the
ability of error detection frameworks to generalise in the later stages and analysing the
perception of hard-to-detect recognition errors through detailed post-tests. However,
existing methods still rely on supervised alignment signals (e.g., phoneme boundary
labelling), whereas rhyme breaks and grammatical errors in real-world scenarios are often
not explicitly boundary labelled.

3 Methodology

3.1 Cross-dimensional spoken knowledge graph construction (OralKG)

The OralKG constructed in this study is the core knowledge infrastructure
supporting intelligent diagnosis, and its design follows the three-phase paradigm of
‘multi-source fusion — ontology definition — dynamic extension’. At the data
layer, 3,812 grammatical-lexical error chains labelled by Speechocean762 (e.g.,
‘co-occurrence relationship between tense errors and temporal gerund deletions’) and
12,740 phoneme-level pronunciation scores from L2-Arctic (inter-annotator agreement
Kappa = 0.82, which is in the ‘almost perfect agreement’ class (> 0.8) according to the
Landis and Koch criterion, and which is calculated based on the results of three certified
phoneticians independently labelling a random sample of 300 entries, using the formula
K= Fljo _;e , where P, is the actual agreement rate, P. is the random agreement rate) are
integrated and incorporating external linguistic resources: 39 phoneme articulatory
physiological parameters (tongue height, tongue forward extension) from Carnegie
Mellon University Pronouncing Dictionary (CMUDict), a library of 55 categories of
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dependencies from Universal Dependencies, and 128 proficiency indicators from the
CEFR Oral Proficiency Description Framework. The ontology was designed using a
four-tuple structured representation:

G=(E R, AF) O]
& = {Phoneme, GrammarRule, ErrorType, Remediation} 2

Define 11 categories of semantic relations R, including confuse with (phoneme
confusion) in the pronunciation dimension, triggers error (error triggering) in the
grammatical dimension, and remediation_link (correlation of error correction resources)
in the pedagogical dimension.

Relationship extraction is performed using a rule-guided remotely supervised
algorithm:

e Pronunciation error modelling: based on the L2-Arctic confusion matrix, if the

phoneme $p _i$ is mispronounced as Dj asoftenas N pi—p; 10 N occurrences, then a
weighting relation confuse with(p;, pj, @) is established with weights

Ny sp : o
o =log [1 + MJ reflecting the probability of error.

Pi

e Cross-dimensional propagation path: Stanford CoreNLP is utilised to parse
Speechocean762’s error sentence dependency tree, and when nodes e and e,
satisfy dist(ex, en) < 2 and there is causal dependency (e.g., ‘he go’ triggers
subject-predicate agreement error), triggers_error(ex, e,) is built.

e Link to teaching resource: manually construct 1,007 error-correction strategy-entity
mappings (e.g., ‘/0/ sound mispronunciation’ associated with tongue animation
ID=ANIM _theta), and generate remediation_link via a bidirectional LSTM matcher.

The final generated OralKG contains |£]=37,152 entities, |R|=128,406 relationships,

and provides structured a priori knowledge for subsequent GNNs.

3.2 Graph enhanced multi-task learning architecture (KG-MTL)

The KG-MTL model realises end-to-end spoken language analysis through four phases:
multimodal coding-knowledge query-graph inference-joint diagnosis, and the framework
is shown in Figure 1.

Multimodal features are co-coded, and the input speech signal X, € R (T:

number of frames, F: Meier spectral dimension) is subjected to a wav2vec 2.0 base model
to extract context-aware features:

H, = LayerNorm (W, - Wav2vec(Xuui0) +b, )€ RT*%  (d, =768) 3)

Meanwhile, ASR translates the text X . input to RoBERTa-large to generate word
vectors:

H, = RoBERTa (X, )€ R¥4  (d, =1024) 4)
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Figure 1 KG-MTL fusion framework schematic (see online version for colours)

Explainable .
report Input voice
A I
I | v v
Pronunciation Grammar Fluency Speech feature ASR text
diagnosis correction analysis extraction transcription

i f | ¢ |

Graph neural Multimodal
encoder
network
A
OralKG
Knowledge
graph engine
I
Pronunciation Grammar Vocabulary
node node node
v v v
Phoneme Acoustic Grammatical
confusion rules parameters error pattern

To eliminate modal asynchrony, a cross-modal alignment module is designed:

T
H, W, )(H,W,
A=softmax(( q)( ‘W) J .
Jd
The aligned features Hasz, and H, are spliced into a multimodal representation:
H,.i = [Hv, Halign ] IS RT'x(dV+d,) (7)

Dynamic knowledge retrieval and injection based on multimodal features to generate
knowledge query vectors:

q =MLP, (ReLU(MLP; (H,.is)))e RY  (d =512) (®)
Retrieve the relevant subfigure in OralKG Gy, :
gm,,={(e,-,nj,ej)\sim(qﬁ(e,-),q)>r}, 7=0.65 )

where ¢: & — R'?® is the entity embedding function and sim is the cosine similarity. The

retrieval process is accelerated by the approximate nearest neighbour (ANN) algorithm
with a recall of 92.3%.

Gated graph attentional reasoning, which inputs G, into the GGAT for knowledge
fusion:

Node aggregation:
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h(" :U(Z a,-er(l)h(j”)j (10)
JeNi
The attention coefficient ¢; is modulated by the query vector q:
exp (LeakyReLU (aT [qu ||Wehj ]))

o > exp()

ke N;

)

Knowledge gating: controlling the balance between primitive features and knowledge
infusion:

g = sigmoid(uT [h,(l) I q]) .

The gating value g; dynamically adjusts the knowledge contribution.
Multi-task co-optimisation, the output layer performs four types of diagnostic tasks in
parallel:

e Pronunciation diagnostics: phoneme-level triple categorisation
(correct/acceptable/incorrect):

N 3
Loton = —%;;y}c") log(softmax (thg;z )L) (13)

e  Syntactic error correction: CRF-based sequence annotation (BIO format):
A 2
Lyrammar =—log P(y | Hg5; W, T)+5||wg|| (14)

where T is the transfer matrix and 4 = 0.01 controls the regularisation strength.

e  Fluency analysis: regression of pause frequency f, on average pause length #,:
1 2 2
[ =—(IW/h .. — Wih, .. —
uency — 2 (" f haltgn fp ||2 + || /’halzgn tp ||2 ) (1 5)

e  Total loss function weighted fusion:

Etotal = O~4£pron + 0'4£grammar + O-z‘cﬂuency (16)

3.3 Meta-knowledge adaptive extension mechanism

Designing the meta-relational learner (MetaRL) to address the limitations of OralKG’s
staticity:
When a not-logged-in error pattern is detected:

K
k=1

Daew =((ei7 Thew » e/)) (17)

where K < 50 is a small number of samples to extract the relational prototype:
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v, =%iLSTMW ([Lo(e®): 0(ef"))a "

=1
Calculate the similarity to existing relationships:

sim; =cos(v,,#(1)), VneR (19)
If max(simy) < 6 (6 = 0.8), then extend the map:

sim; =cos(v,,#(1)), VneR (20)

This mechanism allows OralKG to dynamically assimilate emerging error patterns (e.g.,
‘because...so...” Chinese redundant constructions), resulting in a 17.2% increase in
grammatical diagnostic recall on the validation set.

3.4 Interpretable diagnostic report generation

OralKG-based semantic reasoning generates structured feedback:

e  Error tracing: locate the critical error node e, and backtrack the propagation path
along the triggers_error edge:

P={e—Lse,—25...} 1)

e Resource association: retrieval of error correction strategies:

Rix ={71|(€crror» remediation _link, 7, )€ G} (22)
e  Severity quantification: calculating the error impact factor:
impact = pr 1(p) (23)
peP

where w), is the path weight and /(p) is the node importance.

The final output is a machine-readable diagnostic report that supports direct calls from
educational application programming interface (APIs).

4 Experimental validation

4.1 Experimental setup and baseline model

This experiment was conducted on two authoritative public datasets: Speechocean762
provides 762 spoken samples from non-native speakers with fine-grained error
annotations in five dimensions: pronunciation, grammar, Zhang, et al. (2021) vocabulary,
fluency, and content, and is divided into training/testing sets (612/150) in the official
8:2 ratio; L2-Arctic focuses on phoneme-level pronunciation diagnostics covering
13,750 read-aloud utterances from 24 non-native speakers, Zhao, et al. (2018) divided
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into a 16-person training set (11,000 sentences) and a 4-person testing set
(2,750 sentences) by speaker. 13,750 read-aloud utterances from 24 non-native speakers,
divided by speaker into a 16-person training set (11,000 utterances) and a 4-person test
set (2,750 utterances). Three types of metrics were used for the evaluation: phoneme
error rate (PER): quantifies pronunciation accuracy, calculated as the number of
erroneous phonemes as a percentage of the total number of phonemes;
grammatical diagnostic F1 value: a macro-averaged measure of the accuracy of
recognising grammatical error types; and Overall DA: a composite of the model’s
ability to determine the type and location of the error, defined as
Number of misjudgments and errors

DA=1-
Total number of errors

Five cutting-edge methods are selected for the comparison baseline, all reproduced
from the top issue papers: transformer-ASR (Hu, et al., 2021): fusion of speech and text
features based on cross-modal attention; BERT-GRU (Han et al., 2021): enhanced
syntactic error detection using gated recurrent units; GrammarNet: rule-dependent
graphical mapping of subgraphs matching system; wav2vec-MTL (Mohamed et al.,
2022): an extended Multi-task learning framework for wav2vec 2.0; KG-CL (Fang et al.,
2023): Knowledge-guided contrast learning model; All experiments are run on a local
high-performance computing cluster configured with 8 computing nodes, each equipped
with 4xNVIDIA A100 GPUs (80GB HBM2e memory), with 600GB/s high-speed
interconnections between the GPUs via NVLink 3.0, and InfiniBand HDR 200Gb/s
network for inter-node communication, and KG-MTL was converged by 50 rounds of
training (early stopping threshold = 10 rounds, which was verified by grid search: when
the continuous monitoring window was set to [5,15] rounds, window = 10 yielded
optimal generalisability on the validation set (F1 = 0.89 + 0.02), window <7 resulted in
underfitting due to early termination (F1 |0.11), and window >13 resulted in degradation
of the performance of the test set due to overfitting (DA |4.3%)) using the AdamW
optimiser (learning rate Se-5).

4.2 Multi-dimensional diagnostic performance analysis

As shown in Table 1, KG-MTL achieves overall leadership on the Speechocean762 test
set. For articulatory diagnosis, the PER is as low as 8.7%, which is 12.3% lower than the
next best model, KG-CL (9.9%). This advantage stems from OralKG’s explicit modelling
of phoneme confusion rules (e.g., dentoalveolar differences in /6/-/s/), which allows the
model to more accurately differentiate error-prone phonemes. For grammatical diagnosis,
the F1 value reaches 0.89, significantly outperforming GrammarNet (0.75) and
BERT-GRU (0.82). The main reason is that the GGAT module dynamically injects
grammatical dependencies (e.g., ‘subject-predicate agreement — tense synergy’), which
solves the coverage limitation of the traditional rule system. In terms of overall DA,
86.2% of the state-of-the-art (SOTA) results verified the effectiveness of
cross-dimensional joint optimisation, especially in the coupled dimensions of fluency and
content coherence, as shown in Figure 2.
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Table 1 Multi-dimensional diagnostic performance comparison

Model PER (%) Grammar F1 DA (%)

Transformer-ASR 142+ 0.9 0.75 +0.03 73.9+1.2
BERT-GRU - 0.82 +0.02 78.1+0.8
GrammarNet - 0.75 +0.04 703+ 1.5
wav2vec-MTL 11.8+£0.7 0.79 £ 0.03 78.3+ 1.0
KG-CL 9.9+0.5 0.85+0.02 82.6+0.7
KG-MTL (Ours) 8.7+04 0.89+0.01 86.2+0.8

Figure 2 Comparison of DA across models (see online version for colours)
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4.3 In-depth analysis of phoneme-level articulation diagnostics

On the L2-Arctic test set, we focused on 6 types of high-frequency phoneme confusion
pairs. KG-MTL had a detection rate of 92.1% for dental fricative confusion (/6/-/s/),
which was significantly higher than KG-CL (85.3%). Because OralKG encodes a tongue
position parameter (/8/ sounds require tongue tip extension between the teeth), it guides
the model to focus on high-frequency energy deficit features in the phonogram. However,
there was only a 3.2% improvement over KG-CL (89.7% vs. 86.5%) on vowel loosening
opposition (/1/-/i:/). Traceability revealed insufficient vowel labelling granularity in
L2-Arctic and OralKG did not include knowledge of resonance peak dynamic
trajectories, as shown in Figure 3.
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Figure 3 Phonological error detection rate analysis (see online version for colours)
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4.4 Ablation experiments and attribution analysis

83

To deconstruct the source of KG-MTL contribution, systematic ablation experiments
were designed, as shown in Table 2. Removal of OralKG (w/o OralKG): DA plummets to
73.9% and PER rises to 14.2%. This suggests that structured knowledge is the
cornerstone of stable diagnosis in small-sample scenarios (e.g., only 38 cases of ‘would +
verb original® errors). Replacing GGAT with mean-value aggregation (w/o GGAT): the
Grammar F1 decreased to 0.82 (]7.0%). Noise is introduced by mean aggregation
without joints (e.g., false activation of the ‘Coronary Error’ node interferes with
pronunciation diagnosis). Single-task training (w/o Multitask): PER rises to 11.8% when
optimising only the grammar task, confirming that cross-dimensional joint learning
suppresses error propagation.

Table 2 KG-MTL ablation test

Model variant DA (%) PER (%) Grammar F1
Full KG-MTL 86.2 8.7 0.89
w/o OralKG 73.9 14.2 0.75
w/o GGAT 80.1 10.5 0.82
w/o Multitask 78.3 11.8 0.79
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4.5 Visual parsing of cross-dimensional error propagation

Quantitatively analyse the conduction effect of the error chain through OralKG’s
triggers_error relation: main propagation paths: mispronunciation (e.g., /60/ — /s/) —
grammatical errors (three missing singles, due to misrecognition of ‘thinks’ as ‘sinks’) —
fluency decrease (repeated corrections). Decrease in fluency (repeated corrections). This
path accounted for 37.2% of the cases, and the DA of KG-MTL was 81.4%, which was
19.2% higher than that of KG-CL. Key finding: 68.3% of fluency problems are triggered
by underlying pronunciation/grammar errors, highlighting the need for cross-dimensional
modelling.

4.6 Validation of generalisation ability for small samples

Simulating a low-resource scenario (only 6 training data), KG-MTL performs well with
the meta-knowledge expansion mechanism. Emergent error diagnosis: 72% F1 on ‘no +
verb’ Chinese errors (31.2% improvement over KG-CL). Automatic expansion of
relations (negative prepositions, verb prototypes misuse) due to MetaRL. Convergence
efficiency: the DA of KG-MTL has reached 80% at epoch=15, which is a 58% speedup
compared to KG-CL (epoch=36). It proves that OralKG’s structured prior significantly
reduces data dependency, as shown in Figure 4.

Figure 4 Convergence curve for small sample training (see online version for colours)
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4.7 Experimental results and analysis

This study breaks through the dimensional fragmentation of traditional spoken language
diagnosis through the fusion of dynamic knowledge graph and deep learning.
Relationships explicitly defined in OralKG (e.g., phoneme confusion triggers
grammatical errors) are the first to validate the Cascade Propagation Theory of linguistic
errors at the computational level (McMillan and Corley, 2010). Experiments show that
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37.2% of fluency problems stem from underlying articulatory distortions, which is highly
consistent with the ‘error chain effect’ hypothesis in the field of second language
acquisition (Spada and Lightbown, 2019). Compared with purely data-driven black-box
models (e.g., KG-CL), we have found that 37.2% of fluency problems stem from
underlying articulatory distortions. Experiments show that 37.2% of fluency problems are
due to underlying articulatory distortions, which is highly consistent with the ‘error chain
effect’ hypothesis in second language acquisition.33 Compared to purely data-driven
black-box models (e.g., KG-CL) and rigid rule-based systems (e.g., GrammarNet),

KG-MTL’s gated graph attention mechanism (g; =sigmoid(u’[h!”|q])) realises

contextualised modulation of knowledge injection — when speech intelligibility triggers
grammatical errors, it can be contextualised and moderated. contextualised modulation —
when speech intelligibility (in terms of SNR>25dB) is high, the mean value of g;
stabilises at 0.32 + 0.07, and the model relies on the data features; whereas, when SNR <
15 dB, g; jumps to 0.71 £ 0.12, and activates the articulatory rule nodes to intervene in
decision-making. This neural-symbolic dynamic coupling mechanism provides a new
paradigm for constructing interpretable and adaptive educational Al, especially
promoting a paradigm shift from ‘outcome scoring’ to ‘process attribution’ in the
diagnosis of articulation errors.

Of more profound significance is the revolution of meta-knowledge extension
mechanism for knowledge engineering in education. MetaRL enables OralKG to improve
F1 by 31.2% in absorbing emerging error patterns (e.g., ‘no + verb’ neuter constructions)

through sample-sparing prototype learning (Vr = %ZLSTMpair([q)(ei); o(e; )])j. This

is essentially a computationalisation of Vygotsky and Cole (1978) Scaffolding Theory of
Cognition (STC) — where the graph dynamically evolves with the learner’s Interlanguage
to form a growing knowledge network. Compared to static knowledge bases (e.g.,
WordNet), OralKG’s continuous scalability paves the way for personalised language
learning in low-resource areas.

KG-MTL’s diagnostic capabilities are reshaping the practical scenarios of language
education. The first one is personalised learning path generation: a resource
recommendation system based on the remediation link relationship has demonstrated
significant benefits in a pilot English writing course at Zhejiang University. When the
system detects the /0/ sound distortion, it automatically pushes the tongue position
animation (ID=ANIM theta) and reinforcement exercises, which shortens the learners’
pronunciation error-correction cycle from an average of 4.2 weeks to 2.5 weeks (speeding
up by 40.5%), and the consolidation rate of error correction (the rate of no recurrence
after 3 months) reaches 82.3% (only 47.6% in the control group). Second is the teacher’s
intelligent assisted decision-making: the visual diagnostic report annotates the error

propagation path and influence factor (impact = Za) » - 1(p)), helping teachers focus on

the core issues. An empirical study by Shanghai International Studies University shows
that the time cost for teachers to analyse students’ speaking assignments decreased from
12.3 to 8.0 minutes per assignment (35.0% efficiency improvement), while the feedback
accuracy (student satisfaction) increased from 3.8/5 to 4.5/5. Finally, it promotes
educational equity: in a remote middle school in Yunnan, KG-MTL only needs 6 pieces
of annotated data to achieve 80% DA, enabling students in areas without professional
foreign teachers to obtain expert diagnosis. This directly supports the UN SDG4 (equity
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in education) goal, especially providing inclusive services to 617 million second language
learners worldwide (Gottschalk and Weise, 2023).

Despite the remarkable results, there are still bottlenecks that need to be broken in
this study. Rhyme modelling is missing: OralKG does not include suprasegmental
features such as stress and intonation, resulting in 23% of rhyme errors (e.g., flat
intonation in interrogative sentences) being missed in L2-Arctic. In the future, we can
expand the rthyme knowledge layer of OralKG: integrate open-source rhyme libraries
(e.g., PROSOUND), and add three types of entities: intonation rules, stress patterns, and
rhythmic thresholds; design a lightweight rhyme analysis module to automatically detect
features such as rising intonation in interrogative sentences through fundamental
frequency trajectory (FO) and energy distribution; and correlate the articulatory nodes
with rhyme rules (e.g., fricative distortions are often accompanied by stress offsets) with
the goal of reducing the rhyme The goal is to reduce the error detection rate from 23% to
less than 8%. Culture-specific expression rules (e.g., ‘white lie”) are not encoded in the
map, resulting in a 38% misdiagnosis of euphemisms among American learners. The
PragmaticNet subgraphs should be constructed: 15,000 culturally specific rules (e.g.,
‘white lie needs to be paired with a softened intonation’) are extracted from MICASE and
other corpora; new cultural constraint relations are added to dynamically match the
learners’ native language backgrounds and contexts; a discourse severity grader is
developed to prioritise high-conflict expressions (e.g., direct refusal of Chinese native
speakers); and a predictive grammar is expected to be developed to ensure that the
learners can use the euphemisms in the best possible way. Chinese native speakers’ direct
refusal tense); expected to compress euphemism misdiagnosis rate from 38% to 12%.
Real-time constraints: The average latency of GGAT inference is 217ms (A100 GPU),
which is difficult to meet the real-time feedback requirements of the dialog system. This
can be achieved by implementing a three-level acceleration scheme: dynamic graph
pruning: retain high-weight error propagation paths (e.g., /6/—three single errors), and
trim low-frequency relations; model quantisation deployment: convert GGAT parameters
to 8-bit integer (INTS), optimised by TensorRT edge computation; high-frequency error
cache: pre-generate diagnostic results for TOP20% error patterns, which can be directly
invoked by real-time querying; goal Achieve <50ms latency in Jetson Orin device,
accuracy loss is controlled within 1.2%.

Future work will deepen along the following three directions. Cross-language
mapping migration: extend OralKG to French, Spanish, and other languages by utilising
multi-language alignment techniques (e.g., mBERT). Specific implementations include:
constructing a multilingual phoneme mapper to resolve pronunciation rule differences
(e.g., tongue parameter conversion for the French nasalised vowel /3/); designing a
language adaptation rule converter to automatically generate grammatical relationship
subgraphs (e.g., Spanish verb conjugation error chain); and aiming to achieve a DA
deviation of <3.5% across five languages. Cognitive factor fusion: Integrate cognitive
indicators such as working memory capacity and anxiety level to construct a personalised
diagnostic model. Meta-universe teaching field: real-time capturing of articulatory organ
movement in VR environment to realise physiological feedback enhanced diagnosis.
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5 Conclusions

In this paper, we pioneered the intelligent diagnostic framework of spoken language by
integrating ‘dynamic knowledge graph + deep learning’, and achieved four core
breakthroughs: constructing cross-dimensional diagnostic graph OralKG: covering 37K
entities and 128K relations, and for the first time, explicitly modelling the error
propagation path of ‘distortion of pronunciation — grammatical miscalculation —
fluency 31.2%’; establish education application ecology: verify personalised learning
efficiency increase of 40.5% in Zhejiang University and other scenes, empowering
universal language education.

This study not only confirms the effectiveness of structured knowledge representation
for complex language diagnosis, but also pushes the educational Al from ‘black-box
scoring’ to cognitively transparent tutoring partners. The synergistic paradigm of OralKG
and KG-MTL lays the theoretical cornerstone and technical support for the construction
of a new-generation adaptive language learning system, and the core value lies in — make
every language error a traceable learning signpost.
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