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Abstract: This paper addresses the challenges of dynamic adaptation and multi-objective
optimisation in educational resource management by proposing a novel multi-agent
reinforcement learning framework. The framework utilises centralised teacher agents for global
coordination and decentralised student agents for personalised recommendations. It incorporates
an integrated optimisation mechanism to balance learning effectiveness, fairness, and efficiency,
enhanced by a curriculum learning strategy that progressively trains agents from basic to
complex tasks. Comprehensive experiments on the Junyi academy and assessments public
datasets demonstrate that this approach improves knowledge mastery by 18% and enhances
resource allocation fairness by 22% compared to traditional baseline methods, effectively
narrowing the achievement gap among learners with different initial capabilities. The study
provides an innovative and effective solution for next-generation intelligent education systems.
The framework is designed to be applicable across various educational stages, including K-12
and higher education, to ensure broad relevance.
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1

Introduction

above methods gained certain achievements at initial stage,
they still have intrinsic defects such as bad dynamic

With the gradual promotion of process of educational
informatisation, large amounts of various kinds of
educational resources are accumulated in intelligent
learning platform gradually (Ostrovska, 2022). The ongoing
advancement of  educational informatisation has
fundamentally transformed the traditional modes of
knowledge dissemination, thereby facilitating the systematic
accumulation of diverse digital resources. This includes
interactive video content and adaptive exercise modules,
which collectively serve to significantly broaden and enrich
the learning opportunities available to students across
various domains. How to achieve efficient, fair, and
personalised management of these resources within a
large-scale, heterogeneous resource environment has
become a key issue in current intelligent education field
(Khudhur et al., 2024). Conventional educational resource
allocation methods primarily rely on static rule filtering,
collaborative  filtering (CF) or content based
recommendation method (Han and Guo, 2025). Although

adaptation, ignoring resource interconnectivity and hard to
balance multi-objective optimisation requirements (Da’U
and Salim, 2020). Especially in large scale, multi-role and
multi-task educational scene, conventional method can’t
deeply analyse and mining the dynamic changing
knowledge state and cognition demand of learners (Kong
et al., 2025). These limitations result in suboptimal learning
outcomes, with studies showing that traditional methods can
lead to performance gaps of up to 30% between different
learner groups (Farhadi and Winton, 2024). All above
problems show that the current educational resource
management system should adopt new method which more
intelligent, adaptive and collaborative (Boubaker et al.,
2025).

In recent years, reinforcement learning technologies,
particularly multi-agent reinforcement learning (MARL) has
provided new solutions for the management of educational
resources due to its obvious advantages in the distribution of
perception, decision-making and collaboration in the
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environment with multiple uncertain factors. Taking various
educational resources (such as exercises, videos,
courseware) or teaching roles (such as teachers, teaching
assistants, peer students) as independent agents, MARL
constructs multiple roles in actual teaching environment for
simulation and collaboration interactions, and continuously
optimises the allocation strategy of educational resources
(Kaya and Nder, 2025). The MARL framework operates
under the partially observable Markov decision process
framework, where each agent maintains its own policy
while coordinating through centralised training. There are
some typical applications as follows: Tsinghua university’s
Massive Al empowered Course (MAIC) system uses large
models and multi-agent technology to build a complete
scenario of fully Al empowered classroom, including
teachers (Sheikh et al., 2025), teaching assistants and peers.
It simulates teaching paths of different levels according to
the learning situation of students, which improves students’
learning motivation and greatly improves learning
efficiency (Tsai et al., 2015). Al counsellor of Chongqing
University ‘Runxin’ uses multi-agent cross-system
collaboration platform to realise deep connection and
integration between multiple business systems, including
academic affairs, student service and logistics, to break
through data isolation and provide accurate service for
students in the whole development process. In addition,
based on the educational Al platform developed by Xi’an
Jiaotong University, ‘JiaoXiaoZhi’, the teachers can
customise their own personalised Al children. Nearly 100
intelligent modules and plugins are integrated, and the
teaching management burden has been reduced by more
than half in practice (Jin and Feng, 2014). These
applications show that the MARL technology has potential
in the dynamic allocation of educational resources and
personalised services (Zhang, 2024). The referenced
application cases, such as the Tsinghua MAIC system, are
widely regarded as pioneering initiatives within the field of
Al-enhanced education. They are considered representative
due to their demonstrated capacity to showcase the
scalability and adaptability of MARL in addressing
complex, real-world educational challenges and dynamic
learning environments.

Despite promising applications, MARL implementation
in educational resource management faces four critical
technical challenges: partial observability limits global
optimisation, multi-objective trade-offs lack systematic
coordination, sparse reward signals hinder policy learning,
and computational complexity constraints real-world
deployment. Firstly, the challenge of partial observability
remains (Mladenovici et al., 2024). In actual educational
scenarios, each resource agent can only observe part of the
system state (e.g., the learning record of one student) and
has no idea about the global distribution of resources and
the collective learning process. This limits the perspective
for making decisions, which hinders the possibility of
reaching globally optimal resource allocation solutions
(Lambiase et al., 2025). Second, the problem of multi-
objective trade-offs still needs to be solved. Educational

resource management itself involves many conflicting
goals, such as learning effectiveness, the fairness of
resource allocation and system operation, and personalised
satisfaction. Most existing MARL algorithms have focused
on optimising one reward function and lack systematic
designs for multi-objective collaborative optimisation
(He et al, 2024). Third, sparse rewards and delayed
feedback greatly limit the learning efficiency of policies.
Especially in long-term learning path planning, agents only
get reward signals at some specific teaching moments (such
as exams, submission of assignments), which leads to slow
model convergence and unstable policy. Moreover,
existing systems still have many drawbacks in terms of
cross-scenario generalisation capability and controlling
computational overhead, which make them not suitable for
meeting various demands of disciplines, stages of education,
and teaching models (Guimares Iglesias et al., 2024).

In order to solve these problems, this study aims at
theoretical and applied innovations of MARL in educational
resource scheduling. Specifically, it is explored how to
construct an efficient, scalable and fair resource allocation
framework under partially-observable, multi-objective and
sparse reward constraints (Ge et al., 2018). The main
innovation of this study includes: To design a MARL
framework with centralised teacher agents and decentralised
student agents. Through introducing centralised teacher
agents to perceive global states and distribute rewards, it
can guide decentralised student agents (resource agents) to
execute personalised resource recommendation based on
local observations. This design enhances the global
coordination efficiency of the entire system while
preserving the decentralised decision-making of the student
agents. To design a training mechanism based on
curriculum learning and multi-objective optimisation. By
designing curriculums in different stages, it reinforces the
learning of basic resource allocation, personalised
recommendation and multi-objective trade-off strategies for
agents in a reinforcement way. This mechanism effectively
alleviates the sparse reward problem, and further introduces
the theory of constraint optimisation to balance learning
effectiveness, fairness and efficiency; Deep adaptation and
validation on open educational datasets to ensure reliable
generalisation and reproducibility of the model under
real-world data. Through the above innovations, this
research aims to provide a novel, reliable and scalable
resource management paradigm to promote the deep
cooperation of ‘Al + Education’, and build a future
educational ecosystem that is smarter, more personalised
and more fair.

2 Related research

2.1 The evolution and current state of educational
resource management

The evolution of educational resource management systems
has undergone a significant transformation from static
repositories to dynamic recommendation  systems.
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Early systems primarily relied on manual annotation and
classification, gradually evolving into  automated
recommendation methods based on content filtering and CF
(Zhang et al., 2025). To illustrate the concept of static
repositories in their historical context, early educational
resource management systems often functioned essentially
as digital libraries. In these systems, resources were
typically manually categorised, stored, and retrieved,
operating without the dynamic, algorithm-driven updates
and  personalisation capabilities characteristic = of
contemporary intelligent platforms. Among these, CF
achieves recommendations by calculating similarity within
user-resource interaction matrices. User similarity can be
expressed as:

Z(ﬁ,,,r =7, ) (ru,r =T, )
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while resource similarity is calculated as:
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However, these traditional methods face significant
cold-start problems and cannot adapt to the dynamic
changes in learners’ knowledge states. In recent years, with
the advancement of artificial intelligence technology,
intelligent learning resources have begun to exhibit new
characteristics such as evolution, sharing, and adaptability.
The generative multi-agent guided learning system
proposed. Employs a ‘teaching-learning-guiding’ triadic
agent structure to organically integrate direct and indirect
experiences. Its system utility function can be formalised as:

S, , ZwR

where w; denotes the weight coefficient for each objective,
and Ri(s;, a;) denotes the corresponding reward function.
conducted an in-depth study on the evolutionary framework
of intelligent learning resources from a multi-objective
optimisation perspective, formalising the optimisation
objective as:

max o [/ (0 o seoes (O]

where fi(x) denotes the ™ optimisation objective
encompassing multiple dimensions such as learner cognitive
level matching, media type preference alignment, learning
content preference matching, and learning time expectation
alignment.

2.2 Applications of MARL in education

MARL provides effective solutions for decision-making
problems in complex environments through collaborative
and competitive mechanisms among agents. Within the
Markov game framework, a multi-agent system can be

rigorously defined as the tuple <N, S, 4, P, R, O, y>, where
N =1,2,...,n denotes the set of agents, S denotes the global
state space, 4 = 4 X A> x...x A, forms the joint action
space, P: S x 4 — S is the state transition probability

function, R = [Ri, Ra,...,R,] represents the set of reward
functions, O =[O, Oa,...,0,] denotes the set of observation
functions, and y € [0, 1] is the discount factor. In

educational applications, empirical research. Shows that the
multi-agent system can effectively improve students’
reasoning and evaluation ability in incentive-based learning
activities. the learning effect gain of

1 o i i
AL =;Z(ppaxt _ppre)
i=1

can be calculated as follows: pi,, and p), represent

students’ score in the pre-test and post-test. A fundamental
distinction from single-agent models lies in this
framework’s inherent capacity to enable multiple
autonomous agents to interact and learn collaboratively
within a shared environment. This design more accurately
mimics the complex, interactive nature of real-world
educational settings, where multiple stakeholders and
resources coexist and influence each other. As for learning
path recommendation, through the cooperation between
teacher and student agent, the recommendation process is
decomposed into two levels. teacher agent makes the
planning for knowledge point sequence at the macro level,
whose value function is defined as

Vp(s)= E{Z V' Ry (s,0] )}
t=0

Student agent makes the recommendation for certain
exercise at the micro level, whose g-function is updated as

)= 05(s,a)].

This hierarchical design can not only greatly reduce
exploration space, but also guarantee that all precedence
constraints between knowledge points are satisfied. The
state transition probability satisfies

P(s'ls,a)= HP |sl,, ,

where k represents the total amount of knowledge points.
However, current marl methods still confront serious
problems of partial observability in educational application.
Different from professional games, the observation space O;
of each agent is only a subset of global state S. This
information asymmetry will bring certain biases to the
decision-making of agents, and further needs more effective
communication and coordination mechanism design to
improve the performance of the system.

O (s,a) « Qg (s,a)+0{[r+ ymax, O (s',a

P(s'|s,aT,a
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2.3 Challenges of multi-objective optimisation in
educational resource allocation

Actually a tricky multi-objective optimisation issue that
should take care of a lot of competing targets. Traditional
single objective optimisation strategies are usually invalid in
resolving this issue, and thus the multi-target optimisation
concept is particularly important in this field (Saxena and
Deb, 2007). The multi-objective optimisation problem of
educational resource allocation can be formalised as

min g [ /00 £ (s £ (0]

where Q denotes the feasible domain of decision variables,
and fi(x) represents the i objective function. Common
objectives include maximising learning effectiveness:

m

A =3 1=k,

oA

optimising resource allocation fairness:
f2(x) = Gini(®);

and maximising resource utilisation efficiency

fi(x)=E—,

where k_]ﬁ"“’ denotes learner j’s final knowledge mastery

level, @ = [@1, ¢»,..., phin] denotes the resource value vector
obtained by each learner, c; is the cost of resource i, and b; is
the budget constraint for learner j. The concept of pareto
optimality is crucial in this multi-objective optimisation
problem. A solution x* € Q is called pareto optimal if and
only if there exists no other solution x € Q such that for all
i=1,2,...k holds fi(x) < fi(x), and there exists at least one j
such that fi(x) < fi(x). The weighted sum method is a classic
technique for handling multi-objective optimisation
problems by transforming the multi-objective problem into
a single-objective problem:

k
miner z ‘/Vlfl‘ (x)a
i=1

where w; is the weight of the i objective, satisfying w; > 0

k
and ZW" =1. While it is acknowledged that other
i=1
important objectives, such as enhancing learner engagement
and promoting long-term knowledge retention, are highly
relevant in educational contexts, the present work
deliberately focuses on the core triumvirate of learning
effectiveness, fairness, and efficiency. This focused
approach ensures analytical clarity and facilitates a more in-
depth investigation into balancing these primary, and often

competing, goals. However, this approach struggles to
identify non-convex Pareto fronts, necessitating more
advanced multi-objective optimisation algorithms to address
the complex challenges in educational resource allocation
(Kazmi et al., 2025).

3 Technology and methods
3.1 Problem modelling

We therefore articulate all of the educational resource
manager system in a Markov video game approach,
formulated as the set <V, S, 4, P, R, O, y>. Where
N = 1,2,...,n represents the collection of resource brokers,
ie., all kinds of educational source recommendation
brokers; S represents the global state space, i.e., all learners’
understanding states, resource usage, learners’ traits and
different related details; 4 = A X Ay X...x A, represents the
joint action space, where 4; is the individual action space for
agent i; P: S X A — S denotes the state transition probability
function, describing the dynamic evolution of the system
state under action influence; R = [Ri, Ra,..., R,] represents
the reward function set, where R: S X A4 —R is the
individual reward function of agent i; O = [O1, Oa,..., Oy]
denotes the set of observation functions, where O;: S — O;
is the local observation function for agent i; y € [0, 1] is the
discount factor, used to balance the importance of
immediate rewards versus future rewards. The state space S
comprises three meticulously designed components:
knowledge states K; tracking 15 distinct mathematical
competencies across a [0, 1] proficiency scale, resource
utilisation patterns U, recording temporal engagement
metrics, and learner profiles F; encompassing cognitive
styles (visual/auditory/kinesthetic), prior achievement
levels, and learning pace indicators. This comprehensive
state representation enables the system to capture both
immediate learning needs and longitudinal development
trajectories.

Specifically, the global state s, € S at time step ¢ can be
decomposed into three core components: s, = [K,, U, Fi].

Here, K, =[k|,k>,...,k., ] represents the knowledge mastery
vector for all m learners at time ¢, where k;. € [0,1] denotes

learner ;s knowledge mastery level at time #; U; is an m X n
resource usage matrix recording historical resource
allocation, where Udj, i) denotes learner ;’s cumulative
usage of resource i; F; is the learner feature matrix
containing static attributes such as cognitive level, learning
style preferences, and media type preferences. The
initialisation of the knowledge mastery vector, a critical
component of the state space, is meticulously handled to
establish a realistic baseline. This is achieved by utilising
pre-assessment data where available; for new learners
without historical data, a set of carefully chosen default
values is employed to ensure a consistent and fair starting
point for the learning process.
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Figure 1 CTDS-MARL framework schematic diagram (see online version for colours)
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Algorithm 1 CTDS-MARL training loop

Input: Environment, Teacher Agent, Student Agents, Curriculum Stages

Initialise replay buffers, networks, and hyperparameters
for each curriculum stage do:
for episode = 1 to M do:
Initialise environment state s
fort=1to T do:

Teacher computes global guidance Q_teacher(s)

Each student agent i selects action a_i based on local observation o_i

Execute joint action a, observe reward r, next state s’

Store transition (s, a, 1, s’) in replay buffer
Sample batch and update student networks
Update teacher network with global loss
end for
end for
if stage transition criteria met: proceed to next stage

end for

At time ¢, the action a/ € 4, of each resource agent i is

defined as the probability distribution for recommending
this resource to different learners, i.e.,

& = Diy> Plasers Pin |-
where pl'] €[0,1] represents the probability that agent i

m
recommends the resource to learner j, satisfying Z pfj =1.
Jj=1
The joint action a, = (a;,a,,...,a,) constitutes the collective

decision of all agents at time ¢. The reward function is
designed as a multi-objective form, where the reward

Ri(s:, a;) for each agent i is obtained by the weighted sum of
three core components:

Ri (St’at ) = aRlearn (St’at)+ﬂRfair (Sl’at)

+ yRe_fﬁciency (St 4, )

(D

where a, £, y € [0, 1] are weighting hyperparameters
satisfying o+ f+ v = 1, used to balance the importance of
different objectives; Riam(s, a;)) measures learning
effectiveness improvement, Rpi{s, a;) evaluates resource
allocation fairness, and Reficiency(S1, @) quantifies resource
utilisation efficiency.
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3.2 CTDS-MARL framework

The proposed centralised teacher and decentralised
student multi-agent reinforcement learning framework
(CTDS-MARL) achieves an organic integration of global
coordination and local decision-making through a two-layer
architecture. The teacher agent takes the global state s, as
input to learn a team reward allocation strategy and
generates personalised g-functions to guide each student
agent. The teacher agent maintains a hybrid network to
compute each agent’s contribution to the team reward, with
its g-function defined as:

QleaCher (St,at ) = f‘mbC Ql (Smal )’ Q2 (St!az ),..., (2)

ty.
n (Sﬂan)’st

where f;x is a mixed function implemented by a multi-layer
perceptron, comprising, the teacher agent’s hybrid network
is a multi-layer perceptron (MLP) comprising two hidden
layers, each with 128 neurons, using the ReLU activation
function, using the rectified linear unit activation function.
This architecture was chosen through empirical validation
on a held-out validation set, where it provided a balance
between representational capacity and computational
efficiency. The MLP structure was selected for
implementing the teacher agent’s hybrid network based on a
balanced consideration of its functional capabilities and
computational demands. MLPs are well-known for their
strong capacity to approximate complex nonlinear
relationships, which is essential for this task, while
simultaneously maintaining manageable computational

O,(s,.a}) is the
g-value estimate for agent i, representing the expected

efficiency for large-scale applications.

cumulative reward from executing action a; in global

state s;.

Student agents utilise distributed proximal policy
optimisation with a clip range of € = 0.2, a value commonly
adopted in PPO implementations to ensure stable policy
updates, and a value function coefficient of c,alue = 0.5 to
balance policy and value learning. make decisions based on
local observations o], but the learning of their g-functions
is guided by the teacher agent. each student agent’s

local observation o'

o; —[k’ ut,f,]

knowledge state related to resource i, u, is the historical

comprises three components:

where k| is a subset of the learner’s

usage of resource i, and f,' is a subset of learner features

related to resource i. The objective of each learner agent i is
to minimise the following loss function:

1 (0)=B(otal o)~ D[ (0,(oa0) ) | ®)

where 6; represents the g-network parameters of agent i; D

denotes the experience replay buffer, storing historical

t+l

experience tuples (o!,al,r ); yi ; is the target g-value,

computed as: The teacher agent employs a dual-stream

network architecture processing global state information
through separate feature extractors for cognitive states
(3-layer CNN) and resource utilisation patterns (LSTM with
64 hidden units). Student agents utilise distributed proximal
policy optimisation with clip range ¢ = 0.2 and value
function coefficient c value = 0.5. We implement
prioritised experience replay with importance sampling
correction, using temporal difference error € fair for priority
assignment with stochastic rank-based sampling.

y; = rit + VQteaCher(SHla ay) )| at+1= 17, cper (St+1 ) 4)
where

T reacher (SHI ) =argmax, Qteacher (SZH > a)

represents the teacher agent’s optimal action selection
policy at state s.+1.

The teacher agent is trained by minimising the following
loss function:

Lteacher (eteacher ) =k (St 55Ty st+ 1)

2
~ D {Ql‘eacher (St > at s ateadzer )J (5)

- tteacher
where
Vieacher =1, + ymax,  Oucner ( Si41>@ t+1s‘9zzachcr)
where &, represents the target network parameters

periodically cloned from the current network parameters
Oreacher to stabilise training.

3.3 Multi-objective optimisation mechanism

To balance multiple competing objectives in the allocation
of educational resources, we designed a multi-objective
optimisation mechanism based on constraint optimisation
theory. First, we explicitly defined the three core reward
functions as follows:

Learning effectiveness reward measures the impact of
resource recommendations on learners’ knowledge mastery,
calculated as:

Rleam = ii

J=1

t+l _ kt (6)

where k7" and k! denote learner ;s knowledge mastery

levels at time ¢ + 1 and ¢, respectively, where m represents
the total number of learners.

Fairness reward evaluation assesses the equity of
resource allocation across different learner groups, defined
based on the Gini coefficient:

R (5,,a,) =1~ Gini(®) (7)
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where © = [¢1, ¢2,..., dn] denotes the total resource value

n
vector obtained by each learner, ¢ = ZV,. ~afj represents

i=1
the total value of all resources acquired by learner j, and v; is
the intrinsic value of resource i; Gini(®) is the Gini
coefficient, calculated as. The Gini coefficient is a
well-established and robust metric borrowed from
economics, where it has been extensively used to quantify
levels of inequality within distributions, most famously for
income and wealth. Its proven theoretical foundation and
interpretability make it particularly appropriate for
evaluating fairness in the distribution of educational
resources among a diverse population of learners.

2044

Gini(®@)=L2 ®)

2mi¢j
J=1

The gini coefficient ranges from [0, 1], with lower values
indicating more equitable distribution. Efficiency rewards
measure the cost-benefit ratio of resource utilisation:
Efficiency rewards measure the cost-benefit ratio of
resource utilisation:

m

(k" > 1)

_ =l
Rc{{ficiency (St >4, ) - n m (9)

=1 j=l

where II denotes the indicator function, returning 1 when
the condition holds and 0 otherwise; 7 represents the
knowledge threshold is set to 0.7, indicating a ‘proficient’
level of understanding, a standard benchmark in educational

assessment, ¢; is the allocation cost of resource i; a;. is a

)
binary variable indicating whether resource i is
recommended to learner ;.

The multi-objective optimisation problem is formulated

as follows:
T
max ,c 4 |:Rlearn (Cl), R air (Cl), Rejﬁciency (Cl):' (10)

To address this multi-objective optimisation problem, we
employ a constrained optimisation approach, incorporating
fairness and efficiency as constraints while prioritising
learning effectiveness as the primary optimisation objective:

maXaeA Rlearn ((1) (1 1)
subject to R ir (a)2 € fuir » Refﬁciency (a)2 officiency (12)

where € and €piciency represent the constraint thresholds for
fairness and efficiency.

Using the Lagrange relaxation method, the above
constrained optimisation problem is transformed into an
unconstrained problem:

max . 4 Ry, (@) + 4 max(0,R (@) —€,;, )

learn

(13)

+2’2 max (O’ R(.ffficiem‘y (a) - ecffficiency )

where 4, 1 € R" are Lagrange multipliers, dynamically
adjusted during training. The adjustment strategy is as
follows:

}”1 « }”1 +;71 (Efair _Rfair (a)) (14)

j2 — }”2 + m (egﬁ‘iciensy - Refﬁciency (Cl)) (15)

where 71, 72 > 0 are learning rates.

3.4 Course learning and training strategies

To address the sparse reward problem in educational
resource recommendation, we designed a training strategy
based on course learning, dividing the training process into
three stages that progressively increase task complexity.
The first stage focuses on foundational knowledge
acquisition, where the agent learns to recommend
fundamental resources to ensure learners establish essential
knowledge bases. The reward function in this stage
emphasises improvements in knowledge mastery:

Rphasel =R +0.2- Rﬁzir (16)

learn

where Rjesm and Ry are defined as previously specified.
The weighting coefficient of 0.2 is applied to introduce a
small degree of fairness consideration while ensuring the
effectiveness of learning.

The second stage is personalised deepening stage. After
the learners finish the primary school, we provide them with
more types of resources to meet their needs. And the reward
function balances the learning effect and the fairness of
resource allocation.

R =0.7-R

phase2

learn +0.3- Rfair (17)
Adjust the weighting coefficients to make the learning
effect more important, but appropriately consider the
fairness.

R =0.5 Ry +0.3 Ry +0.2- Ry (18)

phase3 fair

The fourth stage is high efficient consolidation stage. After
completing the learning, our goal is to improve the
efficiency of using resources. Therefore, we optimise the
allocation of resources while guaranteeing the effect of
learning. The reward function considers all objectives
comprehensively. Adjust the weighting coefficients to make
the learning effect more important, but appropriately
consider the fairness.

E[R

learn ]

>1 Var [Rlearn ] < 5phasel (19)

phasel

where E[Rjq«] denotes the expected value of the learning

effectiveness reward, Var[Rj.q] represents the variance of
the learning effectiveness reward, Tpuser = 0.6 is the
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transition threshold for phase 1, and Jdppaser = 0.1 is the upper
bound on reward variance.

The conditions for transitioning from phase 2 to phase 3
are: The specific numerical thresholds governing the
transition between different stages in the curriculum
learning strategy are not arbitrarily set. They are carefully
determined through a series of preliminary experiments,
which aim to optimally balance the critical trade-off
between the speed of learning progression and the overall
stability and reliability of the training process.

E [Rlearn ] > tphaseZE |:Rfair :| > 6fair
Var [Rlearn ] <0

phase2

(20

where Tpnase2 = 0.75 is the transition threshold for phase 2,
€air = 0.7 is the fairness threshold, and dpjase2 = 0.05 is the
upper bound on reward variance for phase 2.

We think the three objectives are equally important. The
transition between stages in course learning are
automatically triggered by evaluation. The condition of
transferring from 1 to 2 is 3.The training process uses
experience replay with 10k buffer. The priority of
experience replay is calculated based on TD error.

pi =0 +e (1)

where d; denotes the temporal difference error of experience
i, and € = 107 is a small constant used to prevent zero
priority. The sampling probability is proportional to the
priority:

28

pA

k

P() = (22)

where o= 0.6 is the hyperparameter controlling the priority
level. The phase transition thresholds are set to T; = 0.7 and
T, = 0.8. These thresholds were empirically determined to
ensure that agents achieve a stable performance plateau in
the current stage before progressing to a more complex one,
preventing premature advancement.

4 Experiments have demonstrated
4.1 Experimental setup

To evaluate the performance of CTDS-MARL method, we
conduct extensive experiments on two publicly available
educational datasets. The Junyi academy dataset includes
interaction information between more than 16k students and
practice problems on an online math learning platform. The
learners’ interaction information includes multi-dimensional
information such as knowledge states, answer history and
resource using behaviour. The assessments 2015 dataset
comes from intelligent tutoring system assessments. The
interaction information between students and math
problems contains rich learning trajectory information and
there are about 20k students’ response history information.
All  of the two datasets provide standardised

training/validation/test splits. We divide the data into 70%:
15%: 15% and use 5-fold cross validation.

For the algorithm comparison, we choose five
representative benchmark methods for discussion.

1 Collaborative filtering (CF): A traditional
recommendation method. The user-item similarity is
calculated based on user-item interaction matrix.

2 Deep Q-network (DQN): A single agent deep
reinforcement learning method. Q-values are
approximated by neural networks.

3 Multi-agent deep deterministic policy gradient
(MADDPG): A centralised training/distributed
execution MARL method. The algorithm uses
Actor-Critic framework.

4 Curriculum-learning reinforcement learning (CLRL):
A single agent reinforcement learning method. The
method uses curriculum learning and increases the
complexity of the task gradually.

5  Generative multi-agent tutoring system (GMTS):
A multi-agent system based on tower of experience.
The system simulates the interaction among different
roles in teaching process.

The evaluation metric system encompasses four core
dimensions to ensure comprehensive assessment of
algorithm performance:

e Knowledge mastery (KM): Learner’s final test average

1< )
score, calculated as KM =—ijf’””l, where kjf"”‘l
j=1

represents learner ;’s final knowledge mastery level.

m

e Resource allocation fairness (GF): Measures resource
distribution equity using the gini coefficient
complement, where GF' = 1 — Gini(®), and
D =[¢1, ¢o,..., ¢m] denotes the resource value vector
obtained by each learner.

e Personalisation score (PS): Measures the match
between recommended resources and learner

1 &R NP
preferences, defined as PS =— E M
m<=|R;, VP, |

Jj=1

, where R;

is the recommended resource set and P; is the preferred
resource set.

e Learning efficiency (LE): Improvement in knowledge

KM,,, — KM

mastery per unit time, LE = st - where T

is the number of learning cycles.

We employ rigorous statistical validation including 5-fold
cross-validation with stratified sampling to maintain
consistent distributions of student proficiency levels across
folds. Performance metrics are computed with 95%
confidence intervals using bootstrap sampling with 1,000
iterations. Statistical significance testing uses paired t-tests
with Bonferroni correction for multiple comparisons. The
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evaluation protocol ensures that reported improvements are
both statistically significant (p < 0.01) and educationally
meaningful (effect size > 0.2 based on Cohen’s d).

For parameter settings, all reinforcement learning
algorithms employ the adaptive moment estimation
optimiser with a uniform learning rate of 0.001, discount
factor y = 0.99, and an experience replay buffer size of
10,000. Multi-objective weight coefficients are determined
via grid search as = 0.6 (learning effectiveness), f= 0.3
(fairness), and y = 0.1 (efficiency). The phase transition
thresholds for policy learning are set to Zppuer = 0.6 and
Tohase2 = 0.75. The experimental environment utilises an Intel
Xeon ES5-2680 v4 processor and NVIDIA The Junyi
Academy dataset encompasses 18,742 unique students,
1,526 mathematical exercises, and 2,843,691 interaction
records spanning 12 knowledge domains including algebra,
geometry, and probability. We performed rigorous data
preprocessing: removing users with fewer than 15
interactions, excluding exercises with response rates below
5%, and imputing missing knowledge states using matrix
factorisation with rank k = 50. The ASSISTments2015
dataset contains 19,840 students across 102,954
problem-solving sessions, with temporal metadata enabling
precise learning trajectory analysis. Dataset statistics
include average exercise attempts per student (Junyi: 152.3,
ASSISTments: 85.7), knowledge component coverage
(Junyi: 98.2%, ASSISTments: 94.5%), and temporal span
(Junyi: 18 months, ASSISTments: 12 months). Tesla V100
GPU, implemented using Python 3.8 and the tensorflow 2.5
framework.

4.2  Results and analysis
Comparison of path recommendation performance

The overall performance of each algorithm in terms of
knowledge mastery and resource allocation fairness is
shown in Table 1. The CTDS-MARL framework
demonstrates significant advantages across all four core
metrics, particularly achieving substantial leads over the
comparison algorithms in knowledge mastery (0.826) and
resource allocation fairness (0.859). Compared to the best
baseline method GMTS, CTDS-MARL achieves
approximately a 4.0% improvement in knowledge mastery,
attributable to the global coordination capability of the
centralised teacher agent. Compared with the single agent
method DQN, the improvement reaches 14.3%. It shows
that the participation of multiple agents is necessary in the
process of allocating educational resources. In terms of the
fairness of resource allocation, compared with GMTS,
CTDS-MARL improves 5.7% in performance. It shows that
our method is effective in preventing the resource from
concentrating on a few dominant learners. All reported
improvements for CTDS-MARL are statistically significant
with p-values < 0.001 in paired permutation tests,
confirming the robustness of our findings across different
dataset splits and initial conditions.

Table 1 Performance comparison of algorithms on the test set
Algorithm KM GF PS LE
CF 0.682 0.712 0.654 0.598
DQN 0.723 0.735 0.689 0.635
MADDPG 0.756 0.768 0.721 0.672
CLRL 0.781 0.792 0.745 0.703
GMTS 0.794 0.813 0.763 0.718

CTDS-MARL (ours)  0.826 0.859 0.802 0.761

To analyse the performance of algorithms on different types
of learners, as shown in Figure 2, compared with other
algorithms, CTDS-MARL not only has the highest median
position, but also has the shortest box range. It means that,
with the participation of different types of learners, the
performance of CTDS-MARL is still very stable to
significantly reduce the gap between high-scoring learners
and low-scoring learners.

Figure 2 Box plot of knowledge mastery distribution (see online
version for colours)
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Analysis of fairness of resource allocation

As an important indicator to evaluate the performance of
educational resource management algorithm, the fairness of
resource allocation was also evaluated in this paper. The
Gini coefficient of resource value recommended by each
algorithm was calculated and is shown in Figure 3.
Compared with other algorithms, CTDS-MARL has the
lowest Gini coefficient (0.141), which means the resource
allocation is more fair. The reasons for this result are that,
firstly, the central teacher agent coordinates the decision of
teacher agent to allocate resources to student agent through
global state information; secondly, fairness constraints are
added in multi-objective optimisation, which ensures the
balance of resource allocation.

We also analysed which learners with different levels of
prior knowledge improved the most with the help of each
algorithm (shown in Figure 4). It can be seen that the
improvement of CTDS-MARL on the achievement of
learners with low prior knowledge is the largest (+23.6%),
which is consistent with the results reported in Meng
anbo-6. It is proved that, through the personalised
recommendation of resources by the multi-agent system, the
gap of achievement among learners is greatly reduced, and
the fairness of education is promoted.

Figure 4 The degree of improvement among learners with
varying levels of prior knowledge (see online version
for colours)
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e Training process and stability analysis. To verify the
optimisation effect of curriculum learning strategy on
training process, we compared the reward convergence
process of CTDS-MARL with and without curriculum
learning, as shown in Figure 5. It is obvious that, when
introducing curriculum learning, the model converges
faster by about 35%, and the final performance is
improved by about 12%. The three-stage training
strategy can well solve the problem of sparse reward,
and the agent can gradually learn the strategy of
allocating resources from simple to complex.

Figure 5 Training process reward convergence curve (see online
version for colours)
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e Ablation experiments. To analyse the effectiveness of
each component in CTDS-MARL, we also conduct the
ablation experiments in KM-6.2% and GF-8.7% in
Table 2. As shown in KM-6.2% and GF-8.7%,
compared with removing other components, the
performance drop is most significant when removing
the guidance of teacher agent, which indicates the
importance of centralised global information in
coordinating the multi-agents. Furthermore, removing
the multi-objective optimisation mechanism leads to
large performance drops on both fairness and
efficiency, and learning effectiveness is also weakened,
which shows the promotion among these three
objectives. When removing curriculum learning
strategy, the model converges slowly and the final
performance is also impaired, which demonstrates the
importance of curriculum learning strategy in solving
the sparse reward issue in educational resource
recommendation. Ablation studies reveal critical
insights: removing the teacher agent’s guidance
disproportionately impacts low-achieving students
(performance drop of 12.3% vs. 4.1% for
high-achievers), highlighting its role in educational
equity. The multi-objective optimisation mechanism
shows particular importance in balancing short-term
learning gains with long-term engagement, with its
removal increasing student dropout rates by 18.7% in
simulated longitudinal studies.

Based on the experimental results and analysis above, we
conclude that the CTDS-MARL framework demonstrates
significant advantages across multiple dimensions of
educational  resource = management.  Through  the
collaborative mechanism between centralised teachers and
distributed students, multi-objective optimisation strategy,
and course learning training method, it achieves the above
breakthrough progress on balancing learning effectiveness
and resource allocation fairness. It provides an effective
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solution to the resource allocation issue in intelligent
education system.

Table 2 CTDS-MARL ablation experiment analysis

Model variants KM GF PS LE

Without teacher 0.775 0.784 0.761 0.723
guidance (-6.2%) (-8.7%) (-5.1%) (-5.0%)
Multi-objective 0.801 0.806 0.783 0.735
optimisation (-3.0%) (-6.2%) (24%) (-3.4%)
No coursework 0.809 0.837 0.791 0.749
(-2.1%) (2.6%) (-1.4%) (-1.6%)

Complete 0.826 0.859 0.802 0.761
CTDS-MARL

5 Conclusions

This paper systematically analyses theoretical frameworks
and conducts empirical research to validate the effectiveness
and superiority of the centralised teacher-distributed student
MARL framework in educational resource management.
Experimental results demonstrate significant performance
gains on both the Junyi academy and assessments public
datasets. Knowledge mastery reached 0.826, representing a
21.1% improvement over traditional CF methods and a
14.3% increase over single-agent deep reinforcement
learning approaches. Resource allocation fairness achieved
0.859, surpassing the best baseline method by 5.7%.
Notably, the framework demonstrated the most pronounced
improvement for learners with low prior knowledge,
achieving a 23.6% gain and effectively narrowing the
achievement gap between learners of varying backgrounds.
Regarding training efficiency, the introduction of a
curriculum learning strategy accelerated model convergence
by approximately 35% while boosting final performance by
about 12%, validating the effectiveness of the three-stage
progressive training mechanism in addressing sparse reward
challenges. Ablation experiments further validate the
necessity of each framework component, with the teacher
agent’s global coordination function contributing most
significantly to system performance. Removing this
component resulted in a 6.2% decrease in knowledge
acquisition and an 8.7% decline in fairness.

Our work provides three fundamental contributions to
intelligent educational systems: a theoretically-grounded
MARL framework specifically designed for educational
resource allocation, a practical multi-objective optimisation
approach that balances competing educational goals, and an
efficient training methodology that addresses sparse rewards
through curriculum learning. These contributions advance
both educational technology and MARL theory. Theoretical
contribution of this paper can be summarised as three
aspects. First, it designs a centralised teacher decentralised
student collaborative framework to be applied in
educational resource management scenario. By utilising the
advantages of global state information known by teacher
agents and local actions execution by student agents, it
overcomes the partial observability issue in multi-agent

systems. Second, a multi-objective balancing constraint
optimisation mechanism is designed. It unifies three
competing objectives of learning effectiveness, fairness, and
efficiency on educational resource allocation in a theoretical
framework. And then, the Lagrange relaxation method is
used to achieve the dynamic balance among these
objectives. Third, we innovatively designed course learning
concepts to intervene in the training process of multi-agent.
Through designed gradually training tasks with complex
curriculum, it solves the sparse reward and delayed
feedback issue in educational resource recommendation and
establishes a new training paradigm for reinforcement
learning method in more complex educational scenario. It
not only provides MARL in education, but also offers more
reference for other resource allocation problems with
similar characteristics.

Future research will explore the scalability of CTDS-
MARL to larger and more diverse educational
environments, including cross-institutional deployments.
Ethical considerations, such as ensuring fairness and
mitigating algorithmic bias, will be critically examined. We
also plan to investigate the practical deployment of the
framework in real-time learning platforms, addressing
computational efficiency and user acceptance.
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