
 
International Journal of Reasoning-based Intelligent
Systems
 
ISSN online: 1755-0564 - ISSN print: 1755-0556
https://www.inderscience.com/ijris

 
A multi-agent reinforcement learning framework for educational
resource management optimisation
 
Yuanyuan Feng
 
DOI: 10.1504/IJRIS.2026.10075912
 
Article History:
Received: 01 November 2025
Last revised: 24 November 2025
Accepted: 24 November 2025
Published online: 28 January 2026

Powered by TCPDF (www.tcpdf.org)

Copyright © 2026 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijris
https://dx.doi.org/10.1504/IJRIS.2026.10075912
http://www.tcpdf.org


32 Int. J. Reasoning-based Intelligent Systems, Vol. 18, No. 7, 2026 

Copyright © The Author(s) 2026. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the CC BY 
license. (http://creativecommons.org/licenses/by/4.0/) 

A multi-agent reinforcement learning framework for 
educational resource management optimisation 
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Abstract: This paper addresses the challenges of dynamic adaptation and multi-objective 
optimisation in educational resource management by proposing a novel multi-agent 
reinforcement learning framework. The framework utilises centralised teacher agents for global 
coordination and decentralised student agents for personalised recommendations. It incorporates 
an integrated optimisation mechanism to balance learning effectiveness, fairness, and efficiency, 
enhanced by a curriculum learning strategy that progressively trains agents from basic to 
complex tasks. Comprehensive experiments on the Junyi academy and assessments public 
datasets demonstrate that this approach improves knowledge mastery by 18% and enhances 
resource allocation fairness by 22% compared to traditional baseline methods, effectively 
narrowing the achievement gap among learners with different initial capabilities. The study 
provides an innovative and effective solution for next-generation intelligent education systems. 
The framework is designed to be applicable across various educational stages, including K-12 
and higher education, to ensure broad relevance. 
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1 Introduction 
With the gradual promotion of process of educational 
informatisation, large amounts of various kinds of 
educational resources are accumulated in intelligent 
learning platform gradually (Ostrovska, 2022). The ongoing 
advancement of educational informatisation has 
fundamentally transformed the traditional modes of 
knowledge dissemination, thereby facilitating the systematic 
accumulation of diverse digital resources. This includes 
interactive video content and adaptive exercise modules, 
which collectively serve to significantly broaden and enrich 
the learning opportunities available to students across 
various domains. How to achieve efficient, fair, and 
personalised management of these resources within a  
large-scale, heterogeneous resource environment has 
become a key issue in current intelligent education field 
(Khudhur et al., 2024). Conventional educational resource 
allocation methods primarily rely on static rule filtering, 
collaborative filtering (CF) or content based 
recommendation method (Han and Guo, 2025). Although 

above methods gained certain achievements at initial stage, 
they still have intrinsic defects such as bad dynamic 
adaptation, ignoring resource interconnectivity and hard to 
balance multi-objective optimisation requirements (Da’U 
and Salim, 2020). Especially in large scale, multi-role and 
multi-task educational scene, conventional method can’t 
deeply analyse and mining the dynamic changing 
knowledge state and cognition demand of learners (Kong  
et al., 2025). These limitations result in suboptimal learning 
outcomes, with studies showing that traditional methods can 
lead to performance gaps of up to 30% between different 
learner groups (Farhadi and Winton, 2024). All above 
problems show that the current educational resource 
management system should adopt new method which more 
intelligent, adaptive and collaborative (Boubaker et al., 
2025). 

In recent years, reinforcement learning technologies, 
particularly multi-agent reinforcement learning (MARL) has 
provided new solutions for the management of educational 
resources due to its obvious advantages in the distribution of 
perception, decision-making and collaboration in the 
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environment with multiple uncertain factors. Taking various 
educational resources (such as exercises, videos, 
courseware) or teaching roles (such as teachers, teaching 
assistants, peer students) as independent agents, MARL 
constructs multiple roles in actual teaching environment for 
simulation and collaboration interactions, and continuously 
optimises the allocation strategy of educational resources 
(Kaya and Nder, 2025). The MARL framework operates 
under the partially observable Markov decision process 
framework, where each agent maintains its own policy 
while coordinating through centralised training. There are 
some typical applications as follows: Tsinghua university’s 
Massive AI empowered Course (MAIC) system uses large 
models and multi-agent technology to build a complete 
scenario of fully AI empowered classroom, including 
teachers (Sheikh et al., 2025), teaching assistants and peers. 
It simulates teaching paths of different levels according to 
the learning situation of students, which improves students’ 
learning motivation and greatly improves learning 
efficiency (Tsai et al., 2015). AI counsellor of Chongqing 
University ‘Runxin’ uses multi-agent cross-system 
collaboration platform to realise deep connection and 
integration between multiple business systems, including 
academic affairs, student service and logistics, to break 
through data isolation and provide accurate service for 
students in the whole development process. In addition, 
based on the educational AI platform developed by Xi’an 
Jiaotong University, ‘JiaoXiaoZhi’, the teachers can 
customise their own personalised AI children. Nearly 100 
intelligent modules and plugins are integrated, and the 
teaching management burden has been reduced by more 
than half in practice (Jin and Feng, 2014). These 
applications show that the MARL technology has potential 
in the dynamic allocation of educational resources and 
personalised services (Zhang, 2024). The referenced 
application cases, such as the Tsinghua MAIC system, are 
widely regarded as pioneering initiatives within the field of 
AI-enhanced education. They are considered representative 
due to their demonstrated capacity to showcase the 
scalability and adaptability of MARL in addressing 
complex, real-world educational challenges and dynamic 
learning environments. 

Despite promising applications, MARL implementation 
in educational resource management faces four critical 
technical challenges: partial observability limits global 
optimisation, multi-objective trade-offs lack systematic 
coordination, sparse reward signals hinder policy learning, 
and computational complexity constraints real-world 
deployment. Firstly, the challenge of partial observability 
remains (Mladenovici et al., 2024). In actual educational 
scenarios, each resource agent can only observe part of the 
system state (e.g., the learning record of one student) and 
has no idea about the global distribution of resources and 
the collective learning process. This limits the perspective 
for making decisions, which hinders the possibility of 
reaching globally optimal resource allocation solutions 
(Lambiase et al., 2025). Second, the problem of multi-
objective trade-offs still needs to be solved. Educational 

resource management itself involves many conflicting 
goals, such as learning effectiveness, the fairness of 
resource allocation and system operation, and personalised 
satisfaction. Most existing MARL algorithms have focused 
on optimising one reward function and lack systematic 
designs for multi-objective collaborative optimisation  
(He et al., 2024). Third, sparse rewards and delayed 
feedback greatly limit the learning efficiency of policies. 
Especially in long-term learning path planning, agents only 
get reward signals at some specific teaching moments (such 
as exams, submission of assignments), which leads to slow 
model convergence and unstable policy. Moreover,  
existing systems still have many drawbacks in terms of  
cross-scenario generalisation capability and controlling 
computational overhead, which make them not suitable for 
meeting various demands of disciplines, stages of education, 
and teaching models (Guimares Iglesias et al., 2024). 

In order to solve these problems, this study aims at 
theoretical and applied innovations of MARL in educational 
resource scheduling. Specifically, it is explored how to 
construct an efficient, scalable and fair resource allocation 
framework under partially-observable, multi-objective and 
sparse reward constraints (Ge et al., 2018). The main 
innovation of this study includes: To design a MARL 
framework with centralised teacher agents and decentralised 
student agents. Through introducing centralised teacher 
agents to perceive global states and distribute rewards, it 
can guide decentralised student agents (resource agents) to 
execute personalised resource recommendation based on 
local observations. This design enhances the global 
coordination efficiency of the entire system while 
preserving the decentralised decision-making of the student 
agents. To design a training mechanism based on 
curriculum learning and multi-objective optimisation. By 
designing curriculums in different stages, it reinforces the 
learning of basic resource allocation, personalised 
recommendation and multi-objective trade-off strategies for 
agents in a reinforcement way. This mechanism effectively 
alleviates the sparse reward problem, and further introduces 
the theory of constraint optimisation to balance learning 
effectiveness, fairness and efficiency; Deep adaptation and 
validation on open educational datasets to ensure reliable 
generalisation and reproducibility of the model under  
real-world data. Through the above innovations, this 
research aims to provide a novel, reliable and scalable 
resource management paradigm to promote the deep 
cooperation of ‘AI + Education’, and build a future 
educational ecosystem that is smarter, more personalised 
and more fair. 

2 Related research 
2.1 The evolution and current state of educational 

resource management 
The evolution of educational resource management systems 
has undergone a significant transformation from static 
repositories to dynamic recommendation systems.  
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Early systems primarily relied on manual annotation and 
classification, gradually evolving into automated 
recommendation methods based on content filtering and CF 
(Zhang et al., 2025). To illustrate the concept of static 
repositories in their historical context, early educational 
resource management systems often functioned essentially 
as digital libraries. In these systems, resources were 
typically manually categorised, stored, and retrieved, 
operating without the dynamic, algorithm-driven updates 
and personalisation capabilities characteristic of 
contemporary intelligent platforms. Among these, CF 
achieves recommendations by calculating similarity within 
user-resource interaction matrices. User similarity can be 
expressed as: 
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while resource similarity is calculated as: 
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However, these traditional methods face significant  
cold-start problems and cannot adapt to the dynamic 
changes in learners’ knowledge states. In recent years, with 
the advancement of artificial intelligence technology, 
intelligent learning resources have begun to exhibit new 
characteristics such as evolution, sharing, and adaptability. 
The generative multi-agent guided learning system 
proposed. Employs a ‘teaching-learning-guiding’ triadic 
agent structure to organically integrate direct and indirect 
experiences. Its system utility function can be formalised as: 

( ) ( )
1

, , ,
n

t t i i t t
i

U s a ω R s a
=

=  

where ωi denotes the weight coefficient for each objective, 
and Ri(st, at) denotes the corresponding reward function. 
conducted an in-depth study on the evolutionary framework 
of intelligent learning resources from a multi-objective 
optimisation perspective, formalising the optimisation 
objective as: 

[ ]1 2max ( ), ( ),..., ) ,( T
x X mf x f x f x∈  

where fi(x) denotes the ith optimisation objective 
encompassing multiple dimensions such as learner cognitive 
level matching, media type preference alignment, learning 
content preference matching, and learning time expectation 
alignment. 

2.2 Applications of MARL in education 
MARL provides effective solutions for decision-making 
problems in complex environments through collaborative 
and competitive mechanisms among agents. Within the 
Markov game framework, a multi-agent system can be 

rigorously defined as the tuple <N, S, A, P, R, O, γ>, where 
N = 1,2,…,n denotes the set of agents, S denotes the global 
state space, A = A1 × A2 ×…× An forms the joint action 
space, P: S × A → S is the state transition probability 
function, R = [R1, R2,…,Rn] represents the set of reward 
functions, O = [O1, O2,…,On] denotes the set of observation 
functions, and γ ∈ [0, 1] is the discount factor. In 
educational applications, empirical research. Shows that the 
multi-agent system can effectively improve students’ 
reasoning and evaluation ability in incentive-based learning 
activities. the learning effect gain of 
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can be calculated as follows: i
prep  and i

postp  represent 
students’ score in the pre-test and post-test. A fundamental 
distinction from single-agent models lies in this 
framework’s inherent capacity to enable multiple 
autonomous agents to interact and learn collaboratively 
within a shared environment. This design more accurately 
mimics the complex, interactive nature of real-world 
educational settings, where multiple stakeholders and 
resources coexist and influence each other. As for learning 
path recommendation, through the cooperation between 
teacher and student agent, the recommendation process is 
decomposed into two levels. teacher agent makes the 
planning for knowledge point sequence at the macro level, 
whose value function is defined as 
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Student agent makes the recommendation for certain 
exercise at the micro level, whose q-function is updated as 

( )( , ) ( , ) max , ( , ) .S S a S SQ s a Q s a r γ Q s a Q s a′ ′ ′← +  + −  α  

This hierarchical design can not only greatly reduce 
exploration space, but also guarantee that all precedence 
constraints between knowledge points are satisfied. The 
state transition probability satisfies 

( ) ( ) ( )
1

, , , , ,
k

T S S
i i i

i
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=

′ ′= = ∏  

where k represents the total amount of knowledge points. 
However, current marl methods still confront serious 
problems of partial observability in educational application. 
Different from professional games, the observation space Oi 
of each agent is only a subset of global state S. This 
information asymmetry will bring certain biases to the 
decision-making of agents, and further needs more effective 
communication and coordination mechanism design to 
improve the performance of the system. 
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2.3 Challenges of multi-objective optimisation in 
educational resource allocation 

Actually a tricky multi-objective optimisation issue that 
should take care of a lot of competing targets. Traditional 
single objective optimisation strategies are usually invalid in 
resolving this issue, and thus the multi-target optimisation 
concept is particularly important in this field (Saxena and 
Deb, 2007). The multi-objective optimisation problem of 
educational resource allocation can be formalised as 

[ ]Ω 1 2min ( ), ( ),..., ) ,( T
x kf x f x f x∈  

where Ω denotes the feasible domain of decision variables, 
and fi(x) represents the ith objective function. Common 
objectives include maximising learning effectiveness: 
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optimising resource allocation fairness: 

2 ( ) (Φ);f x Gini=  

and maximising resource utilisation efficiency 
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where final
jk  denotes learner j’s final knowledge mastery 

level, Φ = [ϕ1, ϕ2,…, phim] denotes the resource value vector 
obtained by each learner, ci is the cost of resource i, and bj is 
the budget constraint for learner j. The concept of pareto 
optimality is crucial in this multi-objective optimisation 
problem. A solution x* ∈ Ω is called pareto optimal if and 
only if there exists no other solution x ∈ Ω such that for all  
i = 1,2,…,k holds fi(x) ≤ fi(x), and there exists at least one j 
such that fj(x) < fj(x). The weighted sum method is a classic 
technique for handling multi-objective optimisation 
problems by transforming the multi-objective problem into 
a single-objective problem: 

Ω
1
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k

x i i
i

w f x∈
=
  

where wi is the weight of the ith objective, satisfying wi ≥ 0 

and 
1

1.
k

i
i

w
=

=  While it is acknowledged that other 

important objectives, such as enhancing learner engagement 
and promoting long-term knowledge retention, are highly 
relevant in educational contexts, the present work 
deliberately focuses on the core triumvirate of learning 
effectiveness, fairness, and efficiency. This focused 
approach ensures analytical clarity and facilitates a more in-
depth investigation into balancing these primary, and often 

competing, goals. However, this approach struggles to 
identify non-convex Pareto fronts, necessitating more 
advanced multi-objective optimisation algorithms to address 
the complex challenges in educational resource allocation 
(Kazmi et al., 2025). 

3 Technology and methods 
3.1 Problem modelling 
We therefore articulate all of the educational resource 
manager system in a Markov video game approach, 
formulated as the set <N, S, A, P, R, O, γ>. Where  
N = 1,2,…,n represents the collection of resource brokers, 
i.e., all kinds of educational source recommendation 
brokers; S represents the global state space, i.e., all learners’ 
understanding states, resource usage, learners’ traits and 
different related details; A = A1 × A2 ×...× An represents the 
joint action space, where Ai is the individual action space for 
agent i; P: S × A → S denotes the state transition probability 
function, describing the dynamic evolution of the system 
state under action influence; R = [R1, R2,…, Rn] represents 
the reward function set, where Ri: S × A →ℝ is the 
individual reward function of agent i; O = [O1, O2,…, On] 
denotes the set of observation functions, where Oi: S → Oi 
is the local observation function for agent i; γ ∈ [0, 1] is the 
discount factor, used to balance the importance of 
immediate rewards versus future rewards. The state space S 
comprises three meticulously designed components: 
knowledge states Kt tracking 15 distinct mathematical 
competencies across a [0, 1] proficiency scale, resource 
utilisation patterns Ut recording temporal engagement 
metrics, and learner profiles Ft encompassing cognitive 
styles (visual/auditory/kinesthetic), prior achievement 
levels, and learning pace indicators. This comprehensive 
state representation enables the system to capture both 
immediate learning needs and longitudinal development 
trajectories. 

Specifically, the global state st ∈ S at time step t can be 
decomposed into three core components: st = [Kt, Ut, Ft]. 
Here, 1 2[ , ,..., ]t t t

t mK k k k=  represents the knowledge mastery 

vector for all m learners at time t, where [0,1]t
jk ∈  denotes 

learner j’s knowledge mastery level at time t; Ut is an m × n 
resource usage matrix recording historical resource 
allocation, where Ut(j, i) denotes learner j’s cumulative 
usage of resource i; Ft is the learner feature matrix 
containing static attributes such as cognitive level, learning 
style preferences, and media type preferences. The 
initialisation of the knowledge mastery vector, a critical 
component of the state space, is meticulously handled to 
establish a realistic baseline. This is achieved by utilising 
pre-assessment data where available; for new learners 
without historical data, a set of carefully chosen default 
values is employed to ensure a consistent and fair starting 
point for the learning process. 
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Figure 1 CTDS-MARL framework schematic diagram (see online version for colours) 

 

Algorithm 1 CTDS-MARL training loop 

Input: Environment, Teacher Agent, Student Agents, Curriculum Stages 
Initialise replay buffers, networks, and hyperparameters 
for each curriculum stage do: 

for episode = 1 to M do: 
Initialise environment state s 
for t = 1 to T do: 

Teacher computes global guidance Q_teacher(s) 
Each student agent i selects action a_i based on local observation o_i 
Execute joint action a, observe reward r, next state s’ 
Store transition (s, a, r, s’) in replay buffer 
Sample batch and update student networks 
Update teacher network with global loss 

end for 
end for 
if stage transition criteria met: proceed to next stage 

end for 

 
At time t, the action t

i ia A∈  of each resource agent i is 
defined as the probability distribution for recommending 
this resource to different learners, i.e., 

1 2, ,..., ,t t t t
i i i ima p p p =    

where [0,1]t
ijp ∈  represents the probability that agent i 

recommends the resource to learner j, satisfying 
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m

t
ij

j

p
=
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The joint action 1 2( , ,..., )t t t
t na a a a=  constitutes the collective 

decision of all agents at time t. The reward function is 
designed as a multi-objective form, where the reward  

Ri(st, at) for each agent i is obtained by the weighted sum of 
three core components: 

( ) ( ) ( )
( )

, , ,

,
i t t learn t t fair t t

efficiency t t
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γR s a
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+

α β
 (1) 

where α, β, γ ∈ [0, 1] are weighting hyperparameters 
satisfying α + β + γ = 1, used to balance the importance of 
different objectives; Rlearn(st, at) measures learning 
effectiveness improvement, Rfair(st, at) evaluates resource 
allocation fairness, and Refficiency(st, at) quantifies resource 
utilisation efficiency. 
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3.2 CTDS-MARL framework 
The proposed centralised teacher and decentralised  
student multi-agent reinforcement learning framework  
(CTDS-MARL) achieves an organic integration of global 
coordination and local decision-making through a two-layer 
architecture. The teacher agent takes the global state st as 
input to learn a team reward allocation strategy and 
generates personalised q-functions to guide each student 
agent. The teacher agent maintains a hybrid network to 
compute each agent’s contribution to the team reward, with 
its q-function defined as: 

( )
( ) ( )
( )

1 1 2 2, , , ,...,
,

, ;

t t
t t

teacher t t mix t
n t n t

Q s a Q s a
Q s a f

Q s a s


=


 
 
 

 (2) 

where fmix is a mixed function implemented by a multi-layer 
perceptron, comprising, the teacher agent’s hybrid network 
is a multi-layer perceptron (MLP) comprising two hidden 
layers, each with 128 neurons, using the ReLU activation 
function, using the rectified linear unit activation function. 
This architecture was chosen through empirical validation 
on a held-out validation set, where it provided a balance 
between representational capacity and computational 
efficiency. The MLP structure was selected for 
implementing the teacher agent’s hybrid network based on a 
balanced consideration of its functional capabilities and 
computational demands. MLPs are well-known for their 
strong capacity to approximate complex nonlinear 
relationships, which is essential for this task, while 
simultaneously maintaining manageable computational 
efficiency for large-scale applications. ( , )t

i t iQ s a  is the  
q-value estimate for agent i, representing the expected 
cumulative reward from executing action t

ia  in global  
state st. 

Student agents utilise distributed proximal policy 
optimisation with a clip range of ε = 0.2, a value commonly 
adopted in PPO implementations to ensure stable policy 
updates, and a value function coefficient of cvalue = 0.5 to 
balance policy and value learning. make decisions based on 
local observations ,t

io  but the learning of their q-functions 
is guided by the teacher agent. each student agent’s  
local observation t

io  comprises three components: 

[ , , ],t i i i
i t t to k u f=  where i

tk  is a subset of the learner’s 

knowledge state related to resource i, i
tu  is the historical 

usage of resource i, and i
tf  is a subset of learner features 

related to resource i. The objective of each learner agent i is 
to minimise the following loss function: 

( ) ( ) ( )( )21, , , ~ , ;t t t t t t t
i i i i i i i i i i iL θ o a r o D Q o a θ y+  = −    (3) 

where θi represents the q-network parameters of agent i; D 
denotes the experience replay buffer, storing historical 
experience tuples 1( , , , );t t t t t

i i i i io a r o y+ ; is the target q-value, 
computed as: The teacher agent employs a dual-stream 

network architecture processing global state information 
through separate feature extractors for cognitive states  
(3-layer CNN) and resource utilisation patterns (LSTM with 
64 hidden units). Student agents utilise distributed proximal 
policy optimisation with clip range ε = 0.2 and value 
function coefficient c_value = 0.5. We implement 
prioritised experience replay with importance sampling 
correction, using temporal difference error ε_fair for priority 
assignment with stochastic rank-based sampling. 

( ) ( )1 1 1, 1t t
i i t t teacher ty r γQteacher s a at π s+ + += + + =  (4) 

where 

( ) ( )1 1arg max ,teacher t a teacher tπ s Q s a+ +=  

represents the teacher agent’s optimal action selection 
policy at state st+1. 

The teacher agent is trained by minimising the following 
loss function: 
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where 
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t

t
teacher t a teacher t t teachery r γ Q s a θ

+

−
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where teacherθ−  represents the target network parameters 
periodically cloned from the current network parameters 
θteacher to stabilise training. 

3.3 Multi-objective optimisation mechanism 
To balance multiple competing objectives in the allocation 
of educational resources, we designed a multi-objective 
optimisation mechanism based on constraint optimisation 
theory. First, we explicitly defined the three core reward 
functions as follows: 

Learning effectiveness reward measures the impact of 
resource recommendations on learners’ knowledge mastery, 
calculated as: 

( ) ( )1

1

1,
m

t t
learn t t j j

j

R s a k k
m

+

=

= −  (6) 

where 1t
jk +  and t

jk  denote learner j’s knowledge mastery 
levels at time t + 1 and t, respectively, where m represents 
the total number of learners. 

Fairness reward evaluation assesses the equity of 
resource allocation across different learner groups, defined 
based on the Gini coefficient: 

( ), 1 (Φ)fair t tR s a Gini= −  (7) 
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where Φ = [ϕ1, ϕ2,…, ϕm] denotes the total resource value 

vector obtained by each learner, 
1

n
t

j i ij
i

v a
=

= ⋅φ  represents 

the total value of all resources acquired by learner j, and vi is 
the intrinsic value of resource i; Gini(Φ) is the Gini 
coefficient, calculated as. The Gini coefficient is a  
well-established and robust metric borrowed from 
economics, where it has been extensively used to quantify 
levels of inequality within distributions, most famously for 
income and wealth. Its proven theoretical foundation and 
interpretability make it particularly appropriate for 
evaluating fairness in the distribution of educational 
resources among a diverse population of learners. 
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The gini coefficient ranges from [0, 1], with lower values 
indicating more equitable distribution. Efficiency rewards 
measure the cost-benefit ratio of resource utilisation: 
Efficiency rewards measure the cost-benefit ratio of 
resource utilisation: 
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where II denotes the indicator function, returning 1 when 
the condition holds and 0 otherwise; τ represents the 
knowledge threshold is set to 0.7, indicating a ‘proficient’ 
level of understanding, a standard benchmark in educational 
assessment, ci is the allocation cost of resource i; t

ija  is a 
binary variable indicating whether resource i is 
recommended to learner j. 

The multi-objective optimisation problem is formulated 
as follows: 

max ( ), ( ), ( ) T
a A learn fair efficiencyR a R a R a∈     (10) 

To address this multi-objective optimisation problem, we 
employ a constrained optimisation approach, incorporating 
fairness and efficiency as constraints while prioritising 
learning effectiveness as the primary optimisation objective: 

max ( )a A learnR a∈  (11) 

subject to ( ) , ( )fair fair efficiency efficiencyR a R a≥ ≥   (12) 

where ϵfair and ϵefficiency represent the constraint thresholds for 
fairness and efficiency. 

Using the Lagrange relaxation method, the above 
constrained optimisation problem is transformed into an 
unconstrained problem: 

( )
( )

1

2

max ( ) max 0, ( )

max 0, ( )
a A learn fair fair

efficiency efficiency

R a λ R a

λ R a
∈ + −

+ −




 (13) 

where λ1, λ2 ∈ ℝ+ are Lagrange multipliers, dynamically 
adjusted during training. The adjustment strategy is as 
follows: 

( )1 1 1 ( )fair fairλ λ η R a← + −  (14) 

( )2 2 2 ( )efficiency efficiencyλ λ η R a← + −  (15) 

where η1, η2 > 0 are learning rates. 

3.4 Course learning and training strategies 
To address the sparse reward problem in educational 
resource recommendation, we designed a training strategy 
based on course learning, dividing the training process into 
three stages that progressively increase task complexity. 
The first stage focuses on foundational knowledge 
acquisition, where the agent learns to recommend 
fundamental resources to ensure learners establish essential 
knowledge bases. The reward function in this stage 
emphasises improvements in knowledge mastery: 

1 0.2phase learn fairR R R= + ⋅  (16) 

where Rlearn and Rfair are defined as previously specified. 
The weighting coefficient of 0.2 is applied to introduce a 
small degree of fairness consideration while ensuring the 
effectiveness of learning. 

The second stage is personalised deepening stage. After 
the learners finish the primary school, we provide them with 
more types of resources to meet their needs. And the reward 
function balances the learning effect and the fairness of 
resource allocation. 

2 0.7 0.3phase learn fairR R R= ⋅ + ⋅  (17) 

Adjust the weighting coefficients to make the learning 
effect more important, but appropriately consider the 
fairness. 

3 0.5 0.3 0.2phase learn fair efficiencyR R R R= ⋅ + ⋅ + ⋅  (18) 

The fourth stage is high efficient consolidation stage. After 
completing the learning, our goal is to improve the 
efficiency of using resources. Therefore, we optimise the 
allocation of resources while guaranteeing the effect of 
learning. The reward function considers all objectives 
comprehensively. Adjust the weighting coefficients to make 
the learning effect more important, but appropriately 
consider the fairness. 

[ ] [ ]1 1Varlearn phase learn phaseR τ R δ> <  (19) 

where [Rlearn] denotes the expected value of the learning 

effectiveness reward, Var[Rlearn] represents the variance of 
the learning effectiveness reward, τphase1 = 0.6 is the 
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transition threshold for phase 1, and δphase1 = 0.1 is the upper 
bound on reward variance. 

The conditions for transitioning from phase 2 to phase 3 
are: The specific numerical thresholds governing the 
transition between different stages in the curriculum 
learning strategy are not arbitrarily set. They are carefully 
determined through a series of preliminary experiments, 
which aim to optimally balance the critical trade-off 
between the speed of learning progression and the overall 
stability and reliability of the training process. 

[ ]
[ ]

2

2Var
learn phase fair fair

learn phase

R τ R

R δ

> >  
<

  
 (20) 

where τphase2 = 0.75 is the transition threshold for phase 2, 
ϵfair = 0.7 is the fairness threshold, and δphase2 = 0.05 is the 
upper bound on reward variance for phase 2. 

We think the three objectives are equally important. The 
transition between stages in course learning are 
automatically triggered by evaluation. The condition of 
transferring from 1 to 2 is 3.The training process uses 
experience replay with 10k buffer. The priority of 
experience replay is calculated based on TD error. 

i ip δ= +   (21) 

where δi denotes the temporal difference error of experience 
i, and ϵ = 10–5 is a small constant used to prevent zero 
priority. The sampling probability is proportional to the 
priority: 

( ) i

k
k

p
P i

p
=


α

α  (22) 

where α = 0.6 is the hyperparameter controlling the priority 
level. The phase transition thresholds are set to T1 = 0.7 and 
T2 = 0.8. These thresholds were empirically determined to 
ensure that agents achieve a stable performance plateau in 
the current stage before progressing to a more complex one, 
preventing premature advancement. 

4 Experiments have demonstrated 
4.1 Experimental setup 
To evaluate the performance of CTDS-MARL method, we 
conduct extensive experiments on two publicly available 
educational datasets. The Junyi academy dataset includes 
interaction information between more than 16k students and 
practice problems on an online math learning platform. The 
learners’ interaction information includes multi-dimensional 
information such as knowledge states, answer history and 
resource using behaviour. The assessments 2015 dataset 
comes from intelligent tutoring system assessments. The 
interaction information between students and math 
problems contains rich learning trajectory information and 
there are about 20k students’ response history information. 
All of the two datasets provide standardised 

training/validation/test splits. We divide the data into 70%: 
15%: 15% and use 5-fold cross validation. 

For the algorithm comparison, we choose five 
representative benchmark methods for discussion. 

1 Collaborative filtering (CF): A traditional 
recommendation method. The user-item similarity is 
calculated based on user-item interaction matrix. 

2 Deep Q-network (DQN): A single agent deep 
reinforcement learning method. Q-values are 
approximated by neural networks. 

3 Multi-agent deep deterministic policy gradient 
(MADDPG): A centralised training/distributed 
execution MARL method. The algorithm uses  
Actor-Critic framework. 

4 Curriculum-learning reinforcement learning (CLRL):  
A single agent reinforcement learning method. The 
method uses curriculum learning and increases the 
complexity of the task gradually. 

5 Generative multi-agent tutoring system (GMTS):  
A multi-agent system based on tower of experience. 
The system simulates the interaction among different 
roles in teaching process. 

The evaluation metric system encompasses four core 
dimensions to ensure comprehensive assessment of 
algorithm performance: 

• Knowledge mastery (KM): Learner’s final test average 

score, calculated as 
1

1 ,
m

final
j

j

KM k
m =

=   where final
jk  

represents learner j’s final knowledge mastery level. 

• Resource allocation fairness (GF): Measures resource 
distribution equity using the gini coefficient 
complement, where GF = 1 – Gini(Φ), and  
Φ = [ϕ1, ϕ2,…, ϕm] denotes the resource value vector 
obtained by each learner. 

• Personalisation score (PS): Measures the match 
between recommended resources and learner 

preferences, defined as 
1

| |1 ,
| |

m
j j

j jj

R P
PS

m R P=

∩
=

∪  where Rj 

is the recommended resource set and Pj is the preferred 
resource set. 

• Learning efficiency (LE): Improvement in knowledge 

mastery per unit time, ,end startKM KM
LE

T
−

=  where T 

is the number of learning cycles. 

We employ rigorous statistical validation including 5-fold 
cross-validation with stratified sampling to maintain 
consistent distributions of student proficiency levels across 
folds. Performance metrics are computed with 95% 
confidence intervals using bootstrap sampling with 1,000 
iterations. Statistical significance testing uses paired t-tests 
with Bonferroni correction for multiple comparisons. The 
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evaluation protocol ensures that reported improvements are 
both statistically significant (p < 0.01) and educationally 
meaningful (effect size > 0.2 based on Cohen’s d). 

For parameter settings, all reinforcement learning 
algorithms employ the adaptive moment estimation 
optimiser with a uniform learning rate of 0.001, discount 
factor γ = 0.99, and an experience replay buffer size of 
10,000. Multi-objective weight coefficients are determined 
via grid search as α = 0.6 (learning effectiveness), β = 0.3 
(fairness), and γ = 0.1 (efficiency). The phase transition 
thresholds for policy learning are set to τphase1 = 0.6 and 
τphase2 = 0.75. The experimental environment utilises an Intel 
Xeon E5-2680 v4 processor and NVIDIA The Junyi 
Academy dataset encompasses 18,742 unique students, 
1,526 mathematical exercises, and 2,843,691 interaction 
records spanning 12 knowledge domains including algebra, 
geometry, and probability. We performed rigorous data 
preprocessing: removing users with fewer than 15 
interactions, excluding exercises with response rates below 
5%, and imputing missing knowledge states using matrix 
factorisation with rank k = 50. The ASSISTments2015 
dataset contains 19,840 students across 102,954  
problem-solving sessions, with temporal metadata enabling 
precise learning trajectory analysis. Dataset statistics 
include average exercise attempts per student (Junyi: 152.3, 
ASSISTments: 85.7), knowledge component coverage 
(Junyi: 98.2%, ASSISTments: 94.5%), and temporal span 
(Junyi: 18 months, ASSISTments: 12 months). Tesla V100 
GPU, implemented using Python 3.8 and the tensorflow 2.5 
framework. 

4.2 Results and analysis 

Comparison of path recommendation performance 
The overall performance of each algorithm in terms of 
knowledge mastery and resource allocation fairness is 
shown in Table 1. The CTDS-MARL framework 
demonstrates significant advantages across all four core 
metrics, particularly achieving substantial leads over the 
comparison algorithms in knowledge mastery (0.826) and 
resource allocation fairness (0.859). Compared to the best 
baseline method GMTS, CTDS-MARL achieves 
approximately a 4.0% improvement in knowledge mastery, 
attributable to the global coordination capability of the 
centralised teacher agent. Compared with the single agent 
method DQN, the improvement reaches 14.3%. It shows 
that the participation of multiple agents is necessary in the 
process of allocating educational resources. In terms of the 
fairness of resource allocation, compared with GMTS, 
CTDS-MARL improves 5.7% in performance. It shows that 
our method is effective in preventing the resource from 
concentrating on a few dominant learners. All reported 
improvements for CTDS-MARL are statistically significant 
with p-values < 0.001 in paired permutation tests, 
confirming the robustness of our findings across different 
dataset splits and initial conditions. 

 

Table 1 Performance comparison of algorithms on the test set 

Algorithm KM GF PS LE 

CF 0.682 0.712 0.654 0.598 
DQN 0.723 0.735 0.689 0.635 
MADDPG 0.756 0.768 0.721 0.672 
CLRL 0.781 0.792 0.745 0.703 
GMTS 0.794 0.813 0.763 0.718 
CTDS-MARL (ours) 0.826 0.859 0.802 0.761 

To analyse the performance of algorithms on different types 
of learners, as shown in Figure 2, compared with other 
algorithms, CTDS-MARL not only has the highest median 
position, but also has the shortest box range. It means that, 
with the participation of different types of learners, the 
performance of CTDS-MARL is still very stable to 
significantly reduce the gap between high-scoring learners 
and low-scoring learners. 

Figure 2 Box plot of knowledge mastery distribution (see online 
version for colours) 
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Figure 3 Resource allocation Gini coefficient bar chart  
(see online version for colours) 
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Analysis of fairness of resource allocation 
As an important indicator to evaluate the performance of 
educational resource management algorithm, the fairness of 
resource allocation was also evaluated in this paper. The 
Gini coefficient of resource value recommended by each 
algorithm was calculated and is shown in Figure 3. 
Compared with other algorithms, CTDS-MARL has the 
lowest Gini coefficient (0.141), which means the resource 
allocation is more fair. The reasons for this result are that, 
firstly, the central teacher agent coordinates the decision of 
teacher agent to allocate resources to student agent through 
global state information; secondly, fairness constraints are 
added in multi-objective optimisation, which ensures the 
balance of resource allocation. 

We also analysed which learners with different levels of 
prior knowledge improved the most with the help of each 
algorithm (shown in Figure 4). It can be seen that the 
improvement of CTDS-MARL on the achievement of 
learners with low prior knowledge is the largest (+23.6%), 
which is consistent with the results reported in Meng  
anbo-6. It is proved that, through the personalised 
recommendation of resources by the multi-agent system, the 
gap of achievement among learners is greatly reduced, and 
the fairness of education is promoted. 

Figure 4 The degree of improvement among learners with 
varying levels of prior knowledge (see online version 
for colours) 
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• Training process and stability analysis. To verify the 
optimisation effect of curriculum learning strategy on 
training process, we compared the reward convergence 
process of CTDS-MARL with and without curriculum 
learning, as shown in Figure 5. It is obvious that, when 
introducing curriculum learning, the model converges 
faster by about 35%, and the final performance is 
improved by about 12%. The three-stage training 
strategy can well solve the problem of sparse reward, 
and the agent can gradually learn the strategy of 
allocating resources from simple to complex. 

Figure 5 Training process reward convergence curve (see online 
version for colours) 
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• Ablation experiments. To analyse the effectiveness of 
each component in CTDS-MARL, we also conduct the 
ablation experiments in KM-6.2% and GF-8.7% in 
Table 2. As shown in KM-6.2% and GF-8.7%, 
compared with removing other components, the 
performance drop is most significant when removing 
the guidance of teacher agent, which indicates the 
importance of centralised global information in 
coordinating the multi-agents. Furthermore, removing 
the multi-objective optimisation mechanism leads to 
large performance drops on both fairness and 
efficiency, and learning effectiveness is also weakened, 
which shows the promotion among these three 
objectives. When removing curriculum learning 
strategy, the model converges slowly and the final 
performance is also impaired, which demonstrates the 
importance of curriculum learning strategy in solving 
the sparse reward issue in educational resource 
recommendation. Ablation studies reveal critical 
insights: removing the teacher agent’s guidance 
disproportionately impacts low-achieving students 
(performance drop of 12.3% vs. 4.1% for  
high-achievers), highlighting its role in educational 
equity. The multi-objective optimisation mechanism 
shows particular importance in balancing short-term 
learning gains with long-term engagement, with its 
removal increasing student dropout rates by 18.7% in 
simulated longitudinal studies. 

Based on the experimental results and analysis above, we 
conclude that the CTDS-MARL framework demonstrates 
significant advantages across multiple dimensions of 
educational resource management. Through the 
collaborative mechanism between centralised teachers and 
distributed students, multi-objective optimisation strategy, 
and course learning training method, it achieves the above 
breakthrough progress on balancing learning effectiveness 
and resource allocation fairness. It provides an effective 
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solution to the resource allocation issue in intelligent 
education system. 

Table 2 CTDS-MARL ablation experiment analysis 

Model variants KM GF PS LE 

Without teacher 
guidance 

0.775  
(–6.2%) 

0.784  
(–8.7%) 

0.761  
(–5.1%) 

0.723  
(–5.0%) 

Multi-objective 
optimisation 

0.801  
(–3.0%) 

0.806  
(–6.2%) 

0.783  
(–2.4%) 

0.735  
(–3.4%) 

No coursework 0.809  
(–2.1%) 

0.837  
(–2.6%) 

0.791  
(–1.4%) 

0.749  
(–1.6%) 

Complete 
CTDS-MARL 

0.826 0.859 0.802 0.761 

5 Conclusions 
This paper systematically analyses theoretical frameworks 
and conducts empirical research to validate the effectiveness 
and superiority of the centralised teacher-distributed student 
MARL framework in educational resource management. 
Experimental results demonstrate significant performance 
gains on both the Junyi academy and assessments public 
datasets. Knowledge mastery reached 0.826, representing a 
21.1% improvement over traditional CF methods and a 
14.3% increase over single-agent deep reinforcement 
learning approaches. Resource allocation fairness achieved 
0.859, surpassing the best baseline method by 5.7%. 
Notably, the framework demonstrated the most pronounced 
improvement for learners with low prior knowledge, 
achieving a 23.6% gain and effectively narrowing the 
achievement gap between learners of varying backgrounds. 
Regarding training efficiency, the introduction of a 
curriculum learning strategy accelerated model convergence 
by approximately 35% while boosting final performance by 
about 12%, validating the effectiveness of the three-stage 
progressive training mechanism in addressing sparse reward 
challenges. Ablation experiments further validate the 
necessity of each framework component, with the teacher 
agent’s global coordination function contributing most 
significantly to system performance. Removing this 
component resulted in a 6.2% decrease in knowledge 
acquisition and an 8.7% decline in fairness. 

Our work provides three fundamental contributions to 
intelligent educational systems: a theoretically-grounded 
MARL framework specifically designed for educational 
resource allocation, a practical multi-objective optimisation 
approach that balances competing educational goals, and an 
efficient training methodology that addresses sparse rewards 
through curriculum learning. These contributions advance 
both educational technology and MARL theory. Theoretical 
contribution of this paper can be summarised as three 
aspects. First, it designs a centralised teacher decentralised 
student collaborative framework to be applied in 
educational resource management scenario. By utilising the 
advantages of global state information known by teacher 
agents and local actions execution by student agents, it 
overcomes the partial observability issue in multi-agent 

systems. Second, a multi-objective balancing constraint 
optimisation mechanism is designed. It unifies three 
competing objectives of learning effectiveness, fairness, and 
efficiency on educational resource allocation in a theoretical 
framework. And then, the Lagrange relaxation method is 
used to achieve the dynamic balance among these 
objectives. Third, we innovatively designed course learning 
concepts to intervene in the training process of multi-agent. 
Through designed gradually training tasks with complex 
curriculum, it solves the sparse reward and delayed 
feedback issue in educational resource recommendation and 
establishes a new training paradigm for reinforcement 
learning method in more complex educational scenario. It 
not only provides MARL in education, but also offers more 
reference for other resource allocation problems with 
similar characteristics. 

Future research will explore the scalability of CTDS-
MARL to larger and more diverse educational 
environments, including cross-institutional deployments. 
Ethical considerations, such as ensuring fairness and 
mitigating algorithmic bias, will be critically examined. We 
also plan to investigate the practical deployment of the 
framework in real-time learning platforms, addressing 
computational efficiency and user acceptance. 
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