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Abstract: This paper presents an agent-driven multi-scale simulation framework for efficiently 
and accurately predicting the catalytic activity of complexes. This framework constructs the 
reaction path search as a Markov decision process, adopts hierarchical reinforcement learning 
agents to actively explore the potential energy surface, and combines the equivariant graph neural 
network potential function to ensure quantum accuracy. Experiments on the open catalyst project 
(OC20) dataset show that the average absolute error of this framework in adsorption energy 
prediction is significantly reduced to 0.291 eV, the force prediction error is 0.072 eV/Å, and it 
can converge to a stable configuration in an average of only 18.3 steps. It is superior to the 
existing mainstream methods in both accuracy and efficiency. This research provides a new 
paradigm of intelligent computing for catalyst design and promotes the development of  
multi-scale simulation towards autonomous decision making and efficient exploration. 
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1 Introduction 
1.1 Catalytic science: an era of coexisting 

opportunities and challenges 
Heterogeneous catalysis is the cornerstone of modern 
chemical industry, energy conversion and environmental 
pollution control. From ammonia synthesis to vehicle 
exhaust purification, and to the key reactions in the future 
hydrogen economy – water cracking and carbon dioxide 
reduction, the design and development of efficient catalysts 
have always been the core driving force (Greeley et al., 
2006; Greeley, 2016). Traditionally, the discovery of new 
catalysts has relied heavily on ‘trial-and-error’ experimental 
screening, a process that not only costs a huge amount of 
money but also takes a long time. 

With the rapid development of theoretical chemistry and 
computing power, the design of computationally driven new 
catalysts is highly anticipated and regarded as the ‘holy 
grail’ for accelerating material research and development. 
First-principles calculations represented by density 
functional theory (DFT) can reveal the mechanism of 
catalytic reactions and predict the adsorption behaviour of 
intermediates with quantum mechanical precision, thereby 
providing a microscopic perspective Nørskov et al. (2011) 
for understanding the origin of catalytic activity. However, 
the high computational cost of DFT calculation itself makes 
it inadequate when exploring the vast space of catalyst 
composition and structure. The computational cost of DFT 
increases cubic or even higher with the number of atoms in 
the system. When catalyst components, surface structures, 
and adsorption sites are systematically screened, the number 
of possible configurations explodes in combination, making 
DFT calculations for each candidate structure infeasible in 
practice, thus severely limiting the scope of exploration. 
This computational ‘curse’ severely restricts our systematic 
exploration of complex catalytic systems, especially the 
actual catalytic processes involving multiple sites and 
complex reaction networks. 

1.2 From quantum scale to macroscopic 
performance: the construction and limitations of 
descriptor bridges 

To bridge the gap between DFT calculations and the 
macroscopic performance prediction of catalysts, 
researchers are committed to establishing effective 
‘descriptors’, with the aim of simplifying complex 
electronic structure information into key physical quantities 
associated with catalytic activity. Pioneering works such as 
the D-band centre theory have successfully correlated the 
electronic structure of transition metal surfaces with the 
adsorption strength for simple small molecules, laying a 
theoretical foundation for understanding the trend of 
catalytic activity (Hammer and Nørskov, 1995). Based on 

this, the Nørskov team further extended the ‘scaling 
relations’ based on the adsorption free energy of reaction 
intermediates and, in combination with microscopic kinetic 
analysis, proposed effective descriptors for screening 
catalysts. For instance, the adsorption energy of  
oxygen-containing species widely used in oxygen reduction 
reactions (ORR) and oxygen evolution reactions (OER) 
(Nørskov et al., 2004). These descriptor methods have 
greatly promoted the development of computational 
catalysis and given rise to high-throughput computational 
screening strategies. 

However, the inherent simplification of such descriptors 
based on a single or a few static adsorption energies also 
brings inevitable limitations: they often fail to capture the 
dynamic evolution of transition states in complex reaction 
pathways, have difficulty accurately describing the complex 
elementary steps involved in bond breaking and formation, 
and their prediction accuracy will significantly decline when 
dealing with non-ideal surfaces with complex local 
environments such as alloys, oxides, and single-atom 
catalysts (Seh et al., 2017). 

1.3 The rise of machine learning potential functions 
and static property prediction 

In recent years, the wave of machine learning (ML) has 
swept through computational materials science, bringing 
new hope for breaking through the computational bottleneck 
of DFT. By training neural networks or other ML models to 
fit the potential energy surface (PES) calculated by DFT, 
the generated machine learning potential function (MLP) 
can maintain an accuracy close to that of DFT. Increase the 
simulation speed of molecular dynamics (MD) by several 
orders of magnitude (Behler and Parrinello, 2007). In 
particular, architectures based on graph neural networks 
(GNNs), such as SchNet, SphereNet and GemNet, by 
naturally representing atomic systems as graph structures 
and introducing equivariant designs, it can efficiently and 
precisely learn the potential energy and atomic force of the 
system, demonstrating outstanding performance in 
numerous benchmark tests (Schütt et al., 2017; Unke and 
Meuwly, 2019; Batzner et al., 2022). These models have 
been successfully applied to predict the energy and charge 
distribution of molecules as well as the stability of crystal 
materials. However, we must clearly recognise that the vast 
majority of current MLP applications still remain at the 
stage of predicting ‘static properties’. They are essentially 
extremely fast and accurate ‘energy and force calculators’ 
but do not change the way we explore the PES, which still 
relies on researchers to preset reaction coordinates or 
capture rare events through expensive enhanced sampling 
methods. It is like having a supercar and still using it to 
follow a predetermined, possibly suboptimal route. 
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Figure 1 Schematic of the agent-driven multi-scale simulation framework (see online version for colours) 
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1.4 The current research gap and the starting point 

of this article 
To sum up, the current field of catalytic activity prediction 
is at a crucial crossroads. On the one hand, the  
physics-based descriptor method faces a precision 
bottleneck due to its simplification; on the other hand, 
although the emerging MLP has solved the problem of 
computing speed, its ‘static’ and ‘passive’ characteristics 
make it difficult for it to actively and intelligently explore 
complex reaction paths and dynamic processes. The real 
challenge lies in how to organically and intelligently 
integrate microscopic electronic structure information, 
atomic-scale dynamic evolution and mesoscopic-scale 
reaction path search. The existing methods lack a 
computational framework that can make autonomous 
decisions, actively learn, and reason across multiple 
spatiotemporal scales. 

In this paper, ‘autonomous decisions’ means that the 
agent can decide the next atomic action based on the current 
state without artificial preset reaction coordinates. ‘Actively 
learn’ refers to the agent’s ability to strategically formulate 
reaction path hypotheses and validate them. Decision 
making is the basis of exploration, and exploration is the 
goal of decision making. Together, the two constitute an 
intelligent behaviour that replaces the traditional  
trial-and-error search. Specifically, we urgently need an 
intelligent system that can replace the traditional  
trial-and-error path search. It should be able to understand 
the fundamental physical rules of catalytic reactions and, on 
this basis, like an experienced chemist, proactively propose 
hypotheses (possible reaction paths), conduct computational 
experiments (simulations), and learn from the results. 
Ultimately, efficiently and accurately locate the key reaction 
channels and transition states. This gap is precisely the core 

starting point and foothold of the research work in this 
paper. This paper aims to explore a brand-new paradigm, 
namely agent-driven multi-scale simulation, with the 
expectation of constructing an intelligent bridge with 
autonomous decision-making capabilities that connects 
quantum precision computing and macroscopic catalytic 
activity prediction. The core components of this framework 
are shown in Figure 1. 

2 Related work 
Precise and efficient computational prediction of catalytic 
activity has long been a core objective in the fields of 
computational chemistry and materials science. The current 
research mainly proceeds along three interrelated but each 
with its own focus: catalytic descriptors based on physical 
experience, data-driven MLP, and the application of 
reinforcement learning (RL) for intelligent decision making 
in scientific computing. This section will systematically 
review the milestone work and inherent limitations in these 
three directions, laying the foundation for the agent-driven 
multi-scale simulation framework proposed in this study. 

2.1 Catalytic descriptors: a bridge from electronic 
structure to macroscopic performance 

Establishing correlations between catalytic activity and 
computable physical quantities is a classical paradigm for 
understanding and predicting catalyst performance. Early 
pioneering work was done by Hammer and Nørskov (1995), 
who proposed the D-band centre theory, which successfully 
linked the electronic structural characteristics of transition 
metal surfaces to the adsorption strength of simple small 
molecules, providing an intuitive electron-level picture for 
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understanding the differences in catalytic activity of 
different metal surfaces. On this basis, Nørskov et al. (2004) 
discovered a universal ‘scaling relations’ by analysing the 
adsorption energies of a range of key reaction intermediates, 
moreover, the complex catalytic cycle is further simplified 
to one or several key descriptors, for example, the 
difference between the adsorption energy of the 
intermediate OH and O in the ORR has been proved to be 
an effective index to predict the activity. This line of work 
gave birth to the paradigm of high-throughput 
computational screening and greatly promoted the process 
of catalyst design. 

However, this class of descriptors based on 
thermodynamic adsorption energies is essentially a static 
and simplified approximation. In their prospective review, 
Seh et al. (2017) make it clear that such descriptors struggle 
to accurately capture complex reaction processes dominated 
by dynamics, such as those involving C-C bond breaking or 
formation. For catalysts with complex active centres (e.g., 
defects, interfaces, or single-atomic sites), small changes in 
the local environment may significantly affect the reaction 
path and transition state energy barrier, and the prediction 
ability of a single descriptor will be greatly reduced, 
exposing its inherent limitations in dealing with multi-step, 
dynamic reaction networks. 

2.2 The revolution of ML in computational 
chemistry: from potential functions to property 
prediction 

To break through the computational efficiency bottleneck of 
first-principles calculations, MLP emerged, aiming to 
achieve large-scale acceleration of MD simulations with 
minimal accuracy loss. The pioneering work of Behler and 
Parrinello (2007) demonstrated how to utilise neural 
networks to construct high-dimensional PES, laying the 
foundation for the entire field. Subsequently, the 
introduction of GNN architectures marked a significant leap 
in this field, as it can naturally model the topological 
structure of atomic systems. For example, PhysNet 
developed by Unke and Meuwly (2019) and the  
E(3)-equivariant GNN proposed by Batzner et al. (2022) has 
set new benchmarks in terms of accuracy and efficiency, 
and is capable of simultaneously and accurately predicting 
the total energy, atomic force, and multiple electronic 
properties of the system. These models have become 
powerful tools for long-time-scale MD and computational 
vibrational spectroscopy. 

However, despite the great success these MLP have 
achieved in replacing DFT computations, they are still 
essentially passive computing tools. They can quickly 
provide the energy and force for a given configuration, but 
they cannot independently decide which configuration to 
simulate next or which reaction path to explore. The 
exploration of PES, the search for transition states and 
reaction paths still heavily rely on researchers’ preconceived 
initial guesses or the calculation of expensive enhanced 
sampling methods (such as meta-dynamics). This means 

that although the current MLP provides a supercomputing 
engine, it lacks an ‘intelligent driver’ capable of 
independently planning exploration routes, thereby limiting 
its ability to systematically discover new reaction 
mechanisms. The reason lies in the fact that such descriptors 
are usually globally or locally averaged electronic structure 
features. For complex environments such as defects, 
interfaces or single atomic sites, the electronic properties 
and coordination environment of the active centres are 
greatly different from the bulk phase or ideal surface. A 
single descriptor is difficult to capture such highly localised 
and specific electronic effects, resulting in failure of 
prediction. 

2.3 The cross-integration of RL and molecular 
science 

RL learns the optimal decision-making strategy through the 
continuous interaction between the agent and the 
environment, and its framework has a natural similarity to 
the process by which scientists explore scientific problems 
through experiments and simulations. In the field of 
molecular science, RL was initially and most successfully 
applied to reverse design, especially in the planning of drug 
molecules and organic synthesis routes. The work of 
Popova et al. (2018) demonstrated how to generate novel 
molecular structures with specific pharmacological 
properties using RL. In the field of catalysis, Xin (2022) 
systematically expounded on the application prospects and 
challenges of ML (including RL) in catalyst design. 

However, directly applying RL to the simulation of 
dynamic processes at the atomic scale remains a  
cutting-edge and challenging field. Previous studies have 
attempted to apply RL to accelerate the sampling of rare 
events in MD or guide systems away from local energy 
minima. Despite this, most of these applications regard RL 
as an auxiliary sampling tool, whose goal is usually to 
accelerate the convergence of known processes rather than 
actively discover unknown paths. More importantly, the 
existing work generally has the problem of ‘scale isolation’. 
The decisions of RL agents are either completely based on 
abstract, pre-defined reaction coordinates, or their action 
spaces lack tight coupling with the precise calculations of 
underlying quantum mechanics. An end-to-end RL 
framework that can deeply integrate electronic-scale 
accuracy, atomic-scale dynamics and mesoscopic-scale path 
search decision making is still a blank. This is precisely the 
core issue that this article aims to address. 

3 Methodology 
This chapter elaborates in detail on the agent-driven  
multi-scale simulation framework. The core innovation of 
this framework lies in formalising the complex scientific 
computing problem of catalytic reaction path search into a 
hierarchical RL problem, enabling the agent to 
autonomously and intelligently explore the PES. First, we 
provide a strict mathematical definition of the problem, then 
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delve into the three scale levels of the framework, and 
finally elaborate on the implementation of the algorithm and 
the training strategy. 

3.1 Problem formalisation: path search as a Markov 
decision process 

We precisely model the path search process from the initial 
reactants to the final products in the catalytic reaction as a 
Markov decision process (MDP). Formalising path search 
as an MDP enables a natural combination of continuous 
states and actions at the atomic scale with sequential 
decision processes. It enables the agent not only to use the 
instantaneous gradient information, but also to make 
strategic exploration based on the estimation of long-term 
reward, thus overcoming the ‘myopic’ problem of 
traditional optimisation methods that are easy to fall into 
local optima. This framework provides a mathematical basis 
for the interaction between agents and atomic simulation 
environments. 

State space :� At any times step st. State ts ∈  
comprehensively characterises the instantaneous 
configuration of the atomic system. We define: 

{ }, , ,t t t ts E= R Z F  (1) 

where 3N
t

×∈R   is the three-dimensional Cartesian 
coordinate matrix of N atoms in the system. N∈Z   is the 
atomic number vector of each atom, which remains 
unchanged during the simulation process and defines the 
chemical identity of the system. 3N

t
×∈F   is the force 

matrix acting on each atom calculated from the PES. 
tE ∈  is the total potential energy of the system under 

configuration Rt. This state space ensures that the agent’s 
decisions are based on physically complete quantum 
mechanical information. 

Action space :  the action ta ∈  performed by the 
agent in the st state is designed to drive the evolution of the 
system. We define a continuous action space 

3.Δ N
t ta ×= ∈R   That is, the agent assigns a displacement 

vector to each atom. To ensure numerical stability and 
prevent unreasonable atomic movement, we have trimmed 
the amplitude of the action: 

maxΔ t δ∞ ≤R  (2) 

where δmax is a preset maximum step length hyperparameter. 
Reward function R(st, at, st+1): the reward function is the 

‘compass’ that guides the agent to learn the correct 
behavioural strategy. We have designed a composite reward 
function that integrates immediate physical feedback with 
long-term goals: 

1 2t energy force goalR ω R ω R R= + +  (3) 

where Renergy = – (Et+1 – Et) is the energy drop reward. If the 
action leads to a decrease (Et+1 < Et) in the system’s energy, 
a positive reward will be given to encourage the agent to 
find energy depressions. 2

1|| ||force tR += − F  is the force mode 

reward, which encourages the agent to push the system 
towards a stable or transitional state configuration where the 
atomic force approaches zero. Rgoal is a sparse reward. 
When the system reaches a predefined criterion (such as a 
root mean square deviation from the product structure 
RMSD < ε or energy below a certain threshold) and is 
identified as a product or a key transition state, a large 
positive reward Rsuccess is given. ω1 and ω2 are weight 
coefficients used to balance the magnitudes of different 
reward items. 

State transition dynamics 1 , )|( :t t ts s a+  the environment 
updates its status based on the actions at of the agent. The 
new atomic coordinates are calculated as Rt+1 = Rt + at. 
Subsequently, the new states of the system st+1 (particularly 
Et+1 and Ft+1) are calculated by a high-precision MLP, which 
acts as the physical engine of the environment: 

( )1 1,t ts MLP Z+ += R  (4) 

3.2 Construction of a multi-scale simulation 
framework 

Our framework consists of three scale levels that are closely 
coupled in information and control flows, achieving a 
seamless transition from quantum precision microscopic 
simulation to macroscopic performance prediction. 

3.2.1 Scale 1: quantum-precise machine earning 
potential function (environmental simulator) 

To achieve high efficiency in MD simulation while ensuring 
accuracy close to DFT, we adopt a pre-trained equivariant 
GNN as the potential function E = MLP(s). We adopt the 
architecture proposed by Batzner et al. (2022), which 
strictly adheres to SE(3)-isotropy, ensuring the invariance of 
model predictions with respect to rotation and translation, 
which is a fundamental requirement for the physical PES. 
SE(3) invariance ensures that the potential function model is 
invariant to the global rotation and translation 
transformations of the system, which is consistent with the 
symmetry requirements of real physical systems. This 
property ensures that the prediction of energy and force 
does not depend on the artificially chosen coordinate system 
and is the basis for obtaining physically reasonable PES. 

This GNN regards the atomic system as a graph, with 
nodes being atoms and edges composed of atomic pairs 
within the truncation radius. Message passing is carried out 
through multi-layer interaction modules to update atomic 
features. Ultimately, the total energy of the system is 
obtained by summing up the contributions of all atoms: 

1

N

i
i

E E
=

=  (5) 

where Ei represents the energy contribution of the i atom. 
Atomic forces are calculated through automatic 
differentiation: 
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i
i

E∂= −
∂

F
R

 (6) 

where Fi represents the force vector on the i atom. Ri 

$represents the coordinate vector of the i atom. 
i

E∂
∂R

 

represents the partial derivative (gradient) of the total 
energy of the system with respect to the i atomic coordinate. 
This MLP constitutes the environment in our MDP and is 
responsible for providing new, physically consistent states 
and immediate rewards after the agent performs actions. 

3.2.2 Scale 2: hierarchical RL agents  
(decision-making core) 

To address the inherent long-term credit allocation issue in 
reaction path search and achieve more abstract strategic 
planning, we have designed a hierarchical RL architecture, 
which includes a high-level meta-controller and a low-level 
executor. 

High-level meta-controller (meta-controller): this 
controller operates on a coarse time granularity. Every c 
bottom steps (i.e., an option), it observes the current state st 
and outputs a sub-target .tg ∈� This sub-objective can be 
understood as an abstract representation of the intermediate 
state expected to be achieved within the next c steps in the 
potential space, such as ‘moving from the reactant region to 
the vicinity of the first transition state’. The strategy of the 
meta-controller πmeta(gt|st; θmeta) is defined by the parameter 
θmeta, and its goal is to maximise the expected cumulative 
discount return: 

( ) ~
0

meta

K
k

meta τ π t k c
k

J θ γ R = ⋅
=

 
=  

  
  (7) 

where γ ∈ [0, 1] is the discount factor, quantifying the 
degree of emphasis on future rewards, and K is the 
advanced step count in the plot. 

Low-level executors: the underlying actuator receives 
the subgoal gt from the meta-controller and performs 
atomic-level actions at a faster frequency (per step). Its 
policy πlow(at|st, gt; θlow) not only depends on the current 
atomic configuration st, but also is regulated by the subgoal 
gt. The goal is to maximise an intrinsic reward Rlow 
associated with a subgoal. We define it as the negative value 
of the distance between the current state representation φ(st) 
and the subgoal representation φ(gt): 

( ) ( )low 2t tR s g= − −φ φ  (8) 

This hierarchical structure effectively breaks down the task 
difficulty: the high-level learns complex multi-step 
strategies, while the low-level focuses on executing specific 
tactical actions to achieve short-term goals. Thanks for your 
comments. The meta-controller operates at a coarse time 
granularity, periodically setting an abstract subgoal in the 
potential energy space based on the current system state. 
According to the subgoal and the current atomic 

configuration, the underlying actuator executes the specific 
atomic displacement action, and its intrinsic reward function 
drives the system state to the subgoal representation. 

3.2.3 Scale 3: macro catalytic activity prediction 
(performance output) 

Once the agent has explored a complete episode and found 
the minimum energy path (MEP) from the initial reactant to 
the final product, we can extract key physical quantities 
from this path for macro activity prediction. The most 
critical quantity is the activation energy barrier of each 
primitive step: 

‡
, ,Δ TS i IS iiE E E= −  (9) 

where ETS,i and EIS,i are the transition and initial state 
energies of step i, respectively. 

Subsequently, we constructed a micro-dynamics model 
to link the atomic-scale simulation results with macroscopic 
experimental observations. Assuming the reaction follows 
the Langmuir-Hinshelwood mechanism, the turnover 
frequency (TOF) of the catalyst can be estimated by the 
following formula (Haynes, 2005): 

‡Δexp rds

B

G
TOF θ

k T ∗
 

= ⋅ − ⋅ 
 

ν  (10) 

where ν is the attempt frequency (usually taken as kBT/h), 
‡Δ rdsG  is the Gibbs free energy barrier of the rt-determined 

step, kB is the Boltzmann constant, T is the reaction 
temperature, and h is the Planck constant. θ* is the surface 
coverage of the rate-determining step reactants. In this way, 
we directly and quantitatively link the dynamic paths 
explored by the agent at the atomic scale to the 
experimentally observable macroscopic catalytic 
performance. 

3.3 Algorithm implementation and training strategy 
We adopted a variant of the proximal policy optimisation 
(PPO) algorithm Wu et al. (2021) to train our hierarchical 
strategy in parallel. The main consideration is that PPO 
algorithm shows excellent stability and sample efficiency 
when dealing with continuous action space and  
high-dimensional state space. It optimises the alternative 
objective function by cutting the policy probability ratio and 
fitting the value function, which helps to stabilise the 
training process of the hierarchical policy. 

PPO updates the policy parameter θ by optimising an 
alternative objective function that includes policy 
probability ratio clipping and value function fitting: 

 ( )( )ˆ ˆ( ) min ( ) , clip ( ), 1 , 1CLIP t t t t tL θ r θ A r θ ε ε A = − +   (11) 

where 
old

( | )( )
( | )

θ t t
t

θ t t

π a sr θ
π a s

=  represents the probability ratio, 

ˆtA  is the dominance function estimation at time step t, 
which is usually calculated through generalised advantage 
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estimation (GAE), and ε is a hyperparameter used to limit 
the extent of each policy update. 

The agent’s policy network πθ and value network Vφ 
both employ graph attention network (GAT)-based encoders 
in order to directly model the topology and interactions of 
atomic systems. The training process was performed in an 
environment consisting of diverse catalyst-sorbate systems 
from the Open Catalyst Project dataset (Chanussot et al., 
2021). Through the curriculum learning strategy, we start 
with a simple adsorption system and gradually increase the 
complexity of the task (such as multi-step reaction) to 
improve the stability of training and the generalisation 
ability of the model. The ultimate goal of the framework is 
to find the optimal policy parameter θ* and value function 
parameter φ* such that: 

, ~
0

, arg max θ

T
t

θ τ π t
t

θ γ R∗ ∗

=

 
=  

  
φφ  (12) 

where τ = (s0, a0, R1, s1, …) represents a complete state-Z. 

4 Experimental verification 
Our proposed agent-driven multi-scale simulation 
framework, this framework combines cognitive load theory 
(CLT) with RL and will be referred to as cognitive  
load-adaptive reinforcement learning (CLARL) in the 
following. To systematically evaluate the effectiveness and 
advancement of CLARL, we design and conduct a series of 
rigorous experiments. This section will elaborate on the 
experimental setup, the baseline model employed, the 
evaluation metrics, and provide a comprehensive analysis 
and discussion of the results. 

4.1 Experimental setup 
Our experiments are built on top of the Open Catalyst 
Project (OC20) dataset (Tran et al., 2023), which contains 
more than 1.3 million DFT relaxation trajectories for 
different catalyst surface versus adsorbate configurations 
and is a gold standard benchmark for evaluating catalytic 
simulation methods. We strictly follow its official data split, 
train with a ‘ALL’ subset of data containing multiple crystal 
types, and report final performance on its challenging  
test-challenge test set to ensure comparability with existing 
literature. Our model is trained using the Adam optimiser 
with an initial learning rate set to 1 × 10–4 and with cosine 
annealing scheduling. All experiments were done on 8 
NVIDIA A100 GPU and each experiment was run in 
triplicate to obtain statistically significant results. 

We selected three representative categories of  
cutting-edge baseline methods for comparison to ensure the 
comprehensiveness of the comparison: 

1 Direct prediction models: represented by GemNet-T 
(Gasteiger et al., 2021a), an equivariant GNN that 
predicts the final relaxed structure and energy directly 
from the initial configuration, without simulating 
intermediate processes. 

2 Iterative optimisation model: represented by 
DimeNet++ (Gasteiger et al., 2021b; Tang et al., 2023), 
it progressively optimises configurations by iteratively 
updating atomic coordinates and utilising neural 
networks to evaluate energy and forces. 

3 Physics-based simulators: represented by SPINN (Unke 
et al., 2021), a neural network potential function 
incorporating a physical prior, we combine it with a 
standard conjugate gradient method (CG) optimiser as a 
modern representative of traditional numerical 
optimisation methods. 

The evaluation index covers two dimensions: accuracy and 
efficiency. For accuracy, we report the mean absolute error 
(MAE) of the adsorption energy prediction, in eV, and the 
force MAE between the final configuration and the DFT 
reference configuration, in eV/Å. For efficiency, we report 
the number of iteration steps required per relaxation 
trajectory on average, with fewer steps representing faster 
convergence. 

4.2 Results and analysis 
The performance comparison between our proposed 
CLARL framework and all baseline methods on the OC20 
test set is shown in Figure 2 by boxplot. Compared with 
simply showing the mean, box plots can reveal the 
distribution characteristics, stability, and anomalies of the 
performance of each method more comprehensively. From 
the overall distribution, CLARL not only has the lowest 
median (0.291 eV), but also has the smallest interquartile 
range (IQR) and the least outliers in the adsorption energy 
prediction accuracy, indicating that it has the best 
performance consistency and stability. Specifically, 
compared with GemNet-T (median 0.381 eV), the strongest 
direct prediction baseline, CLARL achieves a median error 
reduction of about 23.6%, and its distribution is 
significantly more concentrated. 

Figure 2 Performance comparison box plot (see online version 
for colours) 
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Table 1 Performance breakdown of CLARL in different types of catalyst systems 

Catalyst type System example Adsorption energy 
MAE (eV) 

Force MAE  
(eV/Å) 

Average number of 
iteration steps 

Success rate  
(%) 

Metal surface Cu (111), Pt (111) 0.268 ± 0.011 0.065 ± 0.002 16.2 ± 1.1 98.5 
Oxide surface TiO2 (110), Fe2O3(001) 0.305 ± 0.016 0.079 ± 0.004 20.1 ± 1.8 95.2 
Alloy system Pt3Ti, CuPd 0.312 ± 0.018 0.081 ± 0.005 21.5 ± 2.2 93.8 
Overall average - 0.291 ± 0.014 0.072 ± 0.003 18.3 ± 1.5 96.8 

 
In the force prediction, CLARL also exhibits the optimal 
distribution characteristics (median 0.072 eV/Å), and its box 
range is significantly narrower than that of the baseline 
method, and there is no abnormal value, which indicates 
that the agent-driven force prediction has excellent 
reliability. In terms of convergence efficiency, CLARL has 
the most obvious distribution advantage: its median number 
of iteration steps is 18.3 steps, and the whole box is at a low 
level, much better than SPINN+CG (median 28.5 steps, 
scattered distribution) and DimeNet++ (median 42.1 steps, 
with multiple high-step outliers). This compact and stable 
efficiency distribution proves that the exploration policy 
learned by the hierarchical RL agent can reach the optimal 
region in fewer steps, showing excellent robustness to 
different initial conditions. 

To more deeply evaluate the generalisation ability of 
CLARL under different chemical environments, we 
conducted a detailed performance analysis on different 
subsets of catalyst types in the OC20 dataset, and the results 
are shown in Table 1. This analysis covers metal surfaces, 
oxide surfaces and alloy systems, which are widely 
representative in catalytic applications. 

As can be seen from Table 1, CLARL performs best on 
metal surfaces with relatively regular structures, with an 
adsorption energy MAE as low as 0.268 eV. On average, it 
only takes 16.2 steps to converge, and the success rate is as 
high as 98.5%. On more complex oxide surfaces and alloy 
systems, although the performance slightly declined, it still 
maintained high precision and efficiency, with success rates 
exceeding 93% in both cases. This result indicates that the 
CLARL framework has good adaptability and robustness to 
different chemical environments. 

To visually demonstrate the dynamic path and 
decision-making process of CLARL in the exploration of 
PES, we selected a typical case recorded in the OC20 
dataset for research: the adsorption process of a carbon 
monoxide (CO) molecule on the Cu (111) crystal plane. 
During the relaxation process of this system, there exists a 
local energy minimum caused by the migration of 
molecules from the top position to the bridge position, 
which is a typical scenario for testing whether the method 
can intelligently bypass the trap. The complete reaction path 
comparison of this case is shown in Figure 3. 

It can be clearly observed that the SPINN+CG optimiser 
based on the conjugate gradient method, due to the locality 
and short-sightedness of its gradient descent, is captured by 
a local minimum point with an energy of –0.35 eV at the 
reaction coordinate ≈0.4 and is unable to proceed further. 
Our CLARL agent, through its strategic exploration, has 

demonstrated remarkable long-term planning capabilities. It 
recognised that the local minimum was not the global 
optimum, actively crossed a small energy barrier of only 
0.05 eV, and ultimately successfully located the  
bridge-stable adsorption configuration with a lower energy 
(–0.41 eV), which was highly consistent with the true MEP 
calculated by DFT. This complete trajectory vividly 
interprets the core advantage of the agent-driven 
framework: it does not rely on local gradients but makes 
decisions based on the estimation of long-term returns, 
thereby surpassing the limitations of traditional optimisers. 
The core advantage is that CLARL’s agents learn to explore 
strategically based on long-term rewards, rather than 
following only local gradients. This allows it to actively 
cross small energy barriers and avoid local minima, thus 
converging to a globally more optimal configuration in 
fewer steps. 

Figure 3 Case study on the adsorption pathway of CO on the  
Cu (111) surface (see online version for colours) 
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Table 2 Experimental study of CLARL ablation 

Model variant 
Adsorption 

energy 
MAE (eV) 

Force 
MAE 

(eV/Å) 

Average 
number of 

iteration steps 

CLARL (complete) 0.291 0.072 18.3 
w/o meta-controller 0.337 0.085 25.7 
w/o force reward 0.305 0.101 20.4 
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To verify the necessity of the components within the 
CLARL framework, we performed a systematic ablation 
experiment and the results are summarised in Table 2. 

When we remove the hierarchical structure ‘w/o  
meta-controller’, i.e., using only the single-layer RL 
strategy, although it still outperforms some baselines, it is 
significantly worse than the full model in MAE of 
adsorption energy and number of convergence steps, which 
proves the importance of high-level strategic planning for 
complex path search. Moreover, when only the energy term 
‘w/o force reward’ is retained in the reward function, the 
MAE of the force rises significantly, indicating that force 
guidance is crucial to find a stable configuration for force 
equilibrium. 

4.3 Summary of experiments 
The experimental results strongly support the superiority of 
our proposed agent-driven framework. Its success can be 
attributed to two core factors: first, we formalise the 
problem as an MDP and employ hierarchical RL, which 
enables the model to learn and apply a long-term  
goal-oriented search strategy that transcends local gradient 
information. Second, the tight coupling with the high 
performance MLP ensures that the whole exploration 
process is always on the physically true PES. It is worth 
noting that the double improvement in accuracy and 
efficiency of CLARL makes it have great potential for 
application in high-throughput virtual screening that 
requires a large number of relaxation calculations and can 
significantly reduce the computational cost. However, we 
also observe that CLARL occasionally ‘gets lost’ in a few 
extremely complex regimes involving multiple possible 
reaction channels, suggesting that our future work could 
explore active exploration mechanisms that integrate 
uncertainty estimation to further improve its robustness in 
the most challenging scenarios. CLARL occasionally gets 
‘lost’ in extremely complex regions involving multiple 
possible reaction channels. This is due to the fact that its 
exploration strategy may tend to be conservative in some 
cases, and the current framework lacks an explicit 
perception mechanism for the prediction uncertainty of 
MLP, which makes it difficult to make an optimal decision 
in complex energy scenarios. 

5 Discussion 
The significant performance improvement achieved by the 
CLARL on the catalytic activity prediction task not only 
verifies the effectiveness of its method, but also reveals its 
deep significance in promoting the evolution of the 
computational catalysis paradigm. Our core contribution is 
to successfully transform the catalytic reaction path search 
from a passive numerical computation problem based on 
local gradient optimisation to an active sequential decision 
problem oriented to a global goal. As envisioned by Musa  
et al. (2022), one of the ultimate goals of ML is to become 

autonomous agents for scientific discovery, and this work is 
a substantial step towards that goal in the field of catalysis. 

The success of CLARL is firstly attributed to its 
architectural design of multi-scale fusion. Unlike traditional 
MLP (such as the work of Batzner et al. (2022)) that only 
serve as fast energy calculators, CLARL directs the 
computational power of MLP to the most informative 
region of the PES through RL agents. This is akin to 
equipping an assistant with a highly computational power 
(MLP) with an experienced strategist (RL agent), enabling it 
to bypass local minima and efficiently locate the globally 
optimal reaction path. The framework achieves balance 
through hierarchical RL and combined reward functions. 
The high-level controller is responsible for strategic 
exploration and setting long-term sub-goals. The underlying 
actuators are used tactically. The energy drop term in the 
reward function encourages exploitation, and the 
exploration of unreached final states is itself implicit in 
policy learning. Our ablation experiments clearly confirm 
the importance of this hierarchical decision mechanism, 
which addresses the ‘myopic’ problem inherent in 
traditional optimisation methods in complex energy barrier 
landscapes. 

At the theoretical level, our framework builds a reusable 
bridge connecting cognitive theory and computational 
models. CLT emphasises that effective learning requires the 
management of intrinsic, extrinsic, and associative cognitive 
load. Map this into our computational framework: the agent 
gradually builds a ‘cognitive schema’ of PES (reducing the 
internal load) through interaction with the environment 
(MLP); the hierarchical design and reward function 
optimise its ‘problem-solving strategy’ (reducing external 
load), allowing it to focus cognitive resources on key 
decision points (promoting associated load). This analogy is 
not far-fetched, and it provides a general theory-technical 
paradigm for solving complex optimisation problems in 
other scientific computing (e.g., protein folding, new 
material design) by managing the ‘computational load’ of 
the search process through intelligent decisions. The 
cognitive load theory is mapped to the computational 
framework. The agent constructs a cognitive schema of the 
potential energy surface through the interaction with the 
environment to reduce the internal load. Hierarchical design 
and reward functions optimise the problem solving strategy 
to reduce extrinsic load, thereby focusing computational 
resources on key decision points and facilitating associated 
load. 

From the perspective of practical application, CLARL 
has demonstrated the advantages of efficiency and accuracy, 
which paves the way for its deployment in industrial 
catalyst high-throughput screening. Traditional DFT 
calculations or simple MLP relaxations still have 
bottlenecks in large-scale virtual screening due to their 
computational cost or low first-pass success rate. CLARL 
reduces the average number of convergence steps to nearly 
half that of traditional optimisation methods while ensuring 
or even improving the accuracy of the final configuration, 
which means that more candidate catalysts can be evaluated 
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under the same computational budget, thus accelerating the 
discovery cycle of new materials. However, we must also be 
honest about the limitations of the current framework. Its 
dependence on the accuracy of MLP is a double-edged 
sword. Despite our advanced equivariant GNN, the 
prediction uncertainty of the MLP can cause the agent to 
make wrong decisions under extreme configurations outside 
the distribution of the training data. Moreover, the agent’s 
exploration strategy may still be conservative in some cases, 
failing to discover unconventional reaction channels. 

Based on these findings, we outline several clear 
directions for future research. First, it is crucial to integrate 
uncertainty aware mechanisms into the agent’s decision 
loop, e.g., to quantify the uncertainty of a prediction via 
ensemble or Bayesian neural networks and adjust the 
exploration-exploit strategy accordingly (Kendall and Gal, 
2017; Sanchez-Lengeling and Aspuru-Guzik, 2018). 
Ensemble uncertainty sensing (such as ensemble learning or 
Bayesian neural networks) enables an agent to  
quantify prediction confidence. Accordingly, the  
exploration-exploitation strategy is dynamically adjusted to 
strengthen exploration in uncertain regions and efficiently 
utilise in certain regions, which is expected to further 
improve its robustness in challenging scenarios. Second, 
exploring cross-system and cross-task transfer learning is a 
promising direction, aiming to enable agents pre-trained on 
a large amount of general data to quickly adapt to a specific 
catalytic system, thus greatly reducing the computational 
cost for new reactions. 

6 Conclusions 
In this paper, we introduce CLARL, a multi-scale 
simulation framework implemented through hierarchical RL 
agents for accurate and efficient prediction of catalytic 
activities of complexes. This study systematically 
demonstrates that constructing the reaction path search as a 
MDP and adopting a hierarchical strategy where the  
meta-controller and actuators work together can effectively 
overcome the local convergence and inefficiency problems 
faced by traditional numerical optimisation methods on 
complex PES. Experimental results on the large-scale public 
dataset OC20 show that CLARL not only significantly 
outperforms existing state-of-the-art methods in terms of the 
prediction accuracy of adsorption energy (MAE = 0.291 eV) 
and atomic force (MAE = 0.072 eV/Å), but more 
importantly, CLARL is able to achieve a better prediction 
accuracy than existing state-of-art methods. It reduces the 
average number of iteration steps required to find a stable 
configuration by about 50%, achieving a leap in accuracy 
and efficiency. 

The theoretical contribution of this work is to go beyond 
the paradigm of viewing ML as a mere fitting tool, 
demonstrating its potential as autonomous exploration and 
discovery agents, and providing a reusable  
‘theory-technology’ bridge for solving scientific computing 
problems across scales. At the practical level, CLARL 
provides a feasible solution to solve the computational 

bottleneck of catalyst quantum simulation, which greatly 
promotes the practical process of computation-driven 
catalyst design. Ultimately, this work points the way for the 
development of a new generation of intelligent scientific 
computing systems, which unlock the ability to explore 
deeper laws of nature by deeply integrating physical models 
with learning decision-making intelligence. 
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