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Abstract: This paper presents an agent-driven multi-scale simulation framework for efficiently
and accurately predicting the catalytic activity of complexes. This framework constructs the
reaction path search as a Markov decision process, adopts hierarchical reinforcement learning
agents to actively explore the potential energy surface, and combines the equivariant graph neural
network potential function to ensure quantum accuracy. Experiments on the open catalyst project
(OC20) dataset show that the average absolute error of this framework in adsorption energy
prediction is significantly reduced to 0.291 eV, the force prediction error is 0.072 eV/A, and it
can converge to a stable configuration in an average of only 18.3 steps. It is superior to the
existing mainstream methods in both accuracy and efficiency. This research provides a new
paradigm of intelligent computing for catalyst design and promotes the development of
multi-scale simulation towards autonomous decision making and efficient exploration.
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1 Introduction

1.1 Catalytic science: an era of coexisting
opportunities and challenges

Heterogeneous catalysis is the cornerstone of modern
chemical industry, energy conversion and environmental
pollution control. From ammonia synthesis to vehicle
exhaust purification, and to the key reactions in the future
hydrogen economy — water cracking and carbon dioxide
reduction, the design and development of efficient catalysts
have always been the core driving force (Greeley et al.,
2006; Greeley, 2016). Traditionally, the discovery of new
catalysts has relied heavily on ‘trial-and-error’ experimental
screening, a process that not only costs a huge amount of
money but also takes a long time.

With the rapid development of theoretical chemistry and
computing power, the design of computationally driven new
catalysts is highly anticipated and regarded as the ‘holy
grail’ for accelerating material research and development.
First-principles  calculations represented by density
functional theory (DFT) can reveal the mechanism of
catalytic reactions and predict the adsorption behaviour of
intermediates with quantum mechanical precision, thereby
providing a microscopic perspective Nerskov et al. (2011)
for understanding the origin of catalytic activity. However,
the high computational cost of DFT calculation itself makes
it inadequate when exploring the vast space of catalyst
composition and structure. The computational cost of DFT
increases cubic or even higher with the number of atoms in
the system. When catalyst components, surface structures,
and adsorption sites are systematically screened, the number
of possible configurations explodes in combination, making
DFT calculations for each candidate structure infeasible in
practice, thus severely limiting the scope of exploration.
This computational ‘curse’ severely restricts our systematic
exploration of complex catalytic systems, especially the
actual catalytic processes involving multiple sites and
complex reaction networks.

1.2 From quantum scale to macroscopic
performance: the construction and limitations of
descriptor bridges

To bridge the gap between DFT calculations and the
macroscopic  performance prediction of catalysts,
researchers are committed to establishing effective
‘descriptors’, with the aim of simplifying complex
electronic structure information into key physical quantities
associated with catalytic activity. Pioneering works such as
the D-band centre theory have successfully correlated the
electronic structure of transition metal surfaces with the
adsorption strength for simple small molecules, laying a
theoretical foundation for understanding the trend of
catalytic activity (Hammer and Nerskov, 1995). Based on

this, the Nerskov team further extended the ‘scaling
relations’ based on the adsorption free energy of reaction
intermediates and, in combination with microscopic kinetic
analysis, proposed effective descriptors for screening
catalysts. For instance, the adsorption energy of
oxygen-containing species widely used in oxygen reduction
reactions (ORR) and oxygen evolution reactions (OER)
(Nerskov et al., 2004). These descriptor methods have
greatly promoted the development of computational
catalysis and given rise to high-throughput computational
screening strategies.

However, the inherent simplification of such descriptors
based on a single or a few static adsorption energies also
brings inevitable limitations: they often fail to capture the
dynamic evolution of transition states in complex reaction
pathways, have difficulty accurately describing the complex
elementary steps involved in bond breaking and formation,
and their prediction accuracy will significantly decline when
dealing with non-ideal surfaces with complex local
environments such as alloys, oxides, and single-atom
catalysts (Seh et al., 2017).

1.3 The rise of machine learning potential functions
and static property prediction

In recent years, the wave of machine learning (ML) has
swept through computational materials science, bringing
new hope for breaking through the computational bottleneck
of DFT. By training neural networks or other ML models to
fit the potential energy surface (PES) calculated by DFT,
the generated machine learning potential function (MLP)
can maintain an accuracy close to that of DFT. Increase the
simulation speed of molecular dynamics (MD) by several
orders of magnitude (Behler and Parrinello, 2007). In
particular, architectures based on graph neural networks
(GNNs), such as SchNet, SphereNet and GemNet, by
naturally representing atomic systems as graph structures
and introducing equivariant designs, it can efficiently and
precisely learn the potential energy and atomic force of the
system, demonstrating outstanding performance in
numerous benchmark tests (Schiitt et al., 2017; Unke and
Meuwly, 2019; Batzner et al., 2022). These models have
been successfully applied to predict the energy and charge
distribution of molecules as well as the stability of crystal
materials. However, we must clearly recognise that the vast
majority of current MLP applications still remain at the
stage of predicting ‘static properties’. They are essentially
extremely fast and accurate ‘energy and force calculators’
but do not change the way we explore the PES, which still
relies on researchers to preset reaction coordinates or
capture rare events through expensive enhanced sampling
methods. It is like having a supercar and still using it to
follow a predetermined, possibly suboptimal route.
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Figure 1 Schematic of the agent-driven multi-scale simulation framework (see online version for colours)

Scale One: Quantum accurate environments

.

Atomic force

Status

. oE
ML Potential == R s5,={R,,Z,E E}
X Scale two: The Agent Decision core
Rewards Action
- Tt Rel Hierarchical
Reward function RL
R, controller

Sub-objective

Scale three: Macro activity prediction

atalytic Conversion
activity frequency
index TOF

Minimum Energy Path MEP

e

dynamics
model

1.4 The current research gap and the starting point
of this article

To sum up, the current field of catalytic activity prediction
is at a crucial crossroads. On the one hand, the
physics-based descriptor method faces a precision
bottleneck due to its simplification; on the other hand,
although the emerging MLP has solved the problem of
computing speed, its ‘static’ and ‘passive’ characteristics
make it difficult for it to actively and intelligently explore
complex reaction paths and dynamic processes. The real
challenge lies in how to organically and intelligently
integrate microscopic electronic structure information,
atomic-scale dynamic evolution and mesoscopic-scale
reaction path search. The existing methods lack a
computational framework that can make autonomous
decisions, actively learn, and reason across multiple
spatiotemporal scales.

In this paper, ‘autonomous decisions’ means that the
agent can decide the next atomic action based on the current
state without artificial preset reaction coordinates. ‘Actively
learn’ refers to the agent’s ability to strategically formulate
reaction path hypotheses and wvalidate them. Decision
making is the basis of exploration, and exploration is the
goal of decision making. Together, the two constitute an
intelligent behaviour that replaces the traditional
trial-and-error search. Specifically, we urgently need an
intelligent system that can replace the traditional
trial-and-error path search. It should be able to understand
the fundamental physical rules of catalytic reactions and, on
this basis, like an experienced chemist, proactively propose
hypotheses (possible reaction paths), conduct computational
experiments (simulations), and learn from the results.
Ultimately, efficiently and accurately locate the key reaction
channels and transition states. This gap is precisely the core

starting point and foothold of the research work in this
paper. This paper aims to explore a brand-new paradigm,
namely agent-driven multi-scale simulation, with the
expectation of constructing an intelligent bridge with
autonomous decision-making capabilities that connects
quantum precision computing and macroscopic catalytic
activity prediction. The core components of this framework
are shown in Figure 1.

2 Related work

Precise and efficient computational prediction of catalytic
activity has long been a core objective in the fields of
computational chemistry and materials science. The current
research mainly proceeds along three interrelated but each
with its own focus: catalytic descriptors based on physical
experience, data-driven MLP, and the application of
reinforcement learning (RL) for intelligent decision making
in scientific computing. This section will systematically
review the milestone work and inherent limitations in these
three directions, laying the foundation for the agent-driven
multi-scale simulation framework proposed in this study.

2.1 Catalytic descriptors: a bridge from electronic
structure to macroscopic performance

Establishing correlations between catalytic activity and
computable physical quantities is a classical paradigm for
understanding and predicting catalyst performance. Early
pioneering work was done by Hammer and Nerskov (1995),
who proposed the D-band centre theory, which successfully
linked the electronic structural characteristics of transition
metal surfaces to the adsorption strength of simple small
molecules, providing an intuitive electron-level picture for
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understanding the differences in catalytic activity of
different metal surfaces. On this basis, Nerskov et al. (2004)
discovered a universal ‘scaling relations’ by analysing the
adsorption energies of a range of key reaction intermediates,
moreover, the complex catalytic cycle is further simplified
to one or several key descriptors, for example, the
difference between the adsorption energy of the
intermediate OH and O in the ORR has been proved to be
an effective index to predict the activity. This line of work
gave birth to the paradigm of high-throughput
computational screening and greatly promoted the process
of catalyst design.

However, this class of descriptors based on
thermodynamic adsorption energies is essentially a static
and simplified approximation. In their prospective review,
Seh et al. (2017) make it clear that such descriptors struggle
to accurately capture complex reaction processes dominated
by dynamics, such as those involving C-C bond breaking or
formation. For catalysts with complex active centres (e.g.,
defects, interfaces, or single-atomic sites), small changes in
the local environment may significantly affect the reaction
path and transition state energy barrier, and the prediction
ability of a single descriptor will be greatly reduced,
exposing its inherent limitations in dealing with multi-step,
dynamic reaction networks.

2.2 The revolution of ML in computational
chemistry: from potential functions to property
prediction

To break through the computational efficiency bottleneck of
first-principles calculations, MLP emerged, aiming to
achieve large-scale acceleration of MD simulations with
minimal accuracy loss. The pioneering work of Behler and
Parrinello (2007) demonstrated how to utilise neural
networks to construct high-dimensional PES, laying the
foundation for the entire field. Subsequently, the
introduction of GNN architectures marked a significant leap
in this field, as it can naturally model the topological
structure of atomic systems. For example, PhysNet
developed by Unke and Meuwly (2019) and the
E(3)-equivariant GNN proposed by Batzner et al. (2022) has
set new benchmarks in terms of accuracy and efficiency,
and is capable of simultaneously and accurately predicting
the total energy, atomic force, and multiple electronic
properties of the system. These models have become
powerful tools for long-time-scale MD and computational
vibrational spectroscopy.

However, despite the great success these MLP have
achieved in replacing DFT computations, they are still
essentially passive computing tools. They can quickly
provide the energy and force for a given configuration, but
they cannot independently decide which configuration to
simulate next or which reaction path to explore. The
exploration of PES, the search for transition states and
reaction paths still heavily rely on researchers’ preconceived
initial guesses or the calculation of expensive enhanced
sampling methods (such as meta-dynamics). This means

that although the current MLP provides a supercomputing
engine, it lacks an ‘intelligent driver’ capable of
independently planning exploration routes, thereby limiting
its ability to systematically discover new reaction
mechanisms. The reason lies in the fact that such descriptors
are usually globally or locally averaged electronic structure
features. For complex environments such as defects,
interfaces or single atomic sites, the electronic properties
and coordination environment of the active centres are
greatly different from the bulk phase or ideal surface. A
single descriptor is difficult to capture such highly localised
and specific electronic effects, resulting in failure of
prediction.

2.3 The cross-integration of RL and molecular
science

RL learns the optimal decision-making strategy through the
continuous interaction between the agent and the
environment, and its framework has a natural similarity to
the process by which scientists explore scientific problems
through experiments and simulations. In the field of
molecular science, RL was initially and most successfully
applied to reverse design, especially in the planning of drug
molecules and organic synthesis routes. The work of
Popova et al. (2018) demonstrated how to generate novel
molecular structures with specific pharmacological
properties using RL. In the field of catalysis, Xin (2022)
systematically expounded on the application prospects and
challenges of ML (including RL) in catalyst design.

However, directly applying RL to the simulation of
dynamic processes at the atomic scale remains a
cutting-edge and challenging field. Previous studies have
attempted to apply RL to accelerate the sampling of rare
events in MD or guide systems away from local energy
minima. Despite this, most of these applications regard RL
as an auxiliary sampling tool, whose goal is usually to
accelerate the convergence of known processes rather than
actively discover unknown paths. More importantly, the
existing work generally has the problem of ‘scale isolation’.
The decisions of RL agents are either completely based on
abstract, pre-defined reaction coordinates, or their action
spaces lack tight coupling with the precise calculations of
underlying quantum mechanics. An end-to-end RL
framework that can deeply integrate -electronic-scale
accuracy, atomic-scale dynamics and mesoscopic-scale path
search decision making is still a blank. This is precisely the
core issue that this article aims to address.

3 Methodology

This chapter elaborates in detail on the agent-driven
multi-scale simulation framework. The core innovation of
this framework lies in formalising the complex scientific
computing problem of catalytic reaction path search into a
hierarchical RL problem, enabling the agent to
autonomously and intelligently explore the PES. First, we
provide a strict mathematical definition of the problem, then
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delve into the three scale levels of the framework, and
finally elaborate on the implementation of the algorithm and
the training strategy.

3.1 Problem formalisation: path search as a Markov
decision process

We precisely model the path search process from the initial
reactants to the final products in the catalytic reaction as a
Markov decision process (MDP). Formalising path search
as an MDP enables a natural combination of continuous
states and actions at the atomic scale with sequential
decision processes. It enables the agent not only to use the
instantaneous gradient information, but also to make
strategic exploration based on the estimation of long-term
reward, thus overcoming the ‘myopic’ problem of
traditional optimisation methods that are easy to fall into
local optima. This framework provides a mathematical basis
for the interaction between agents and atomic simulation
environments.

State space S: At any times step s. State s, €S

comprehensively characterises the instantaneous

configuration of the atomic system. We define:

St:{Rt,Z,Ft,Et} (D

where R, e RM3 s the three-dimensional Cartesian

coordinate matrix of N atoms in the system. Ze NV is the
atomic number vector of each atom, which remains
unchanged during the simulation process and defines the
chemical identity of the system. F, e RV3 is the force
matrix acting on each atom calculated from the PES.
E, e R is the total potential energy of the system under
configuration R, This state space ensures that the agent’s
decisions are based on physically complete quantum
mechanical information.

Action space A: the action @, € A performed by the
agent in the s, state is designed to drive the evolution of the
system. We define a continuous action space
a, = AR, € RM3, That is, the agent assigns a displacement
vector to each atom. To ensure numerical stability and
prevent unreasonable atomic movement, we have trimmed
the amplitude of the action:

JAR, || < e )

where dmax 1S a preset maximum step length hyperparameter.

Reward function R(s, a;, s:+1): the reward function is the
‘compass’ that guides the agent to learn the correct
behavioural strategy. We have designed a composite reward
function that integrates immediate physical feedback with
long-term goals:

R = wlRenergy + a)2Rﬁ)rce + Rgual (3)

where Renergy = — (Er1 — Ey) 18 the energy drop reward. If the
action leads to a decrease (£ < E;) in the system’s energy,
a positive reward will be given to encourage the agent to
find energy depressions. Ry = —||F,41]]? is the force mode

reward, which encourages the agent to push the system
towards a stable or transitional state configuration where the
atomic force approaches zero. Ry 1S a sparse reward.
When the system reaches a predefined criterion (such as a
root mean square deviation from the product structure
RMSD < & or energy below a certain threshold) and is
identified as a product or a key transition state, a large
positive reward Rguccess 1S given. w; and w, are weight
coefficients used to balance the magnitudes of different
reward items.

State transition dynamics P(s..1|s;, a;): the environment

updates its status based on the actions a, of the agent. The
new atomic coordinates are calculated as Rq = R/ + a;.
Subsequently, the new states of the system s;+ (particularly
E+1 and F+1) are calculated by a high-precision MLP, which
acts as the physical engine of the environment:

S = MLP (R4, Z) 4)

3.2 Construction of a multi-scale simulation
framework

Our framework consists of three scale levels that are closely
coupled in information and control flows, achieving a
seamless transition from quantum precision microscopic
simulation to macroscopic performance prediction.

3.2.1 Scale 1: quantum-precise machine earning
potential function (environmental simulator)

To achieve high efficiency in MD simulation while ensuring
accuracy close to DFT, we adopt a pre-trained equivariant
GNN as the potential function £ = MLP(s). We adopt the
architecture proposed by Batzner et al. (2022), which
strictly adheres to SE(3)-isotropy, ensuring the invariance of
model predictions with respect to rotation and translation,
which is a fundamental requirement for the physical PES.
SE(3) invariance ensures that the potential function model is
invariant to the global rotation and translation
transformations of the system, which is consistent with the
symmetry requirements of real physical systems. This
property ensures that the prediction of energy and force
does not depend on the artificially chosen coordinate system
and is the basis for obtaining physically reasonable PES.
This GNN regards the atomic system as a graph, with
nodes being atoms and edges composed of atomic pairs
within the truncation radius. Message passing is carried out
through multi-layer interaction modules to update atomic
features. Ultimately, the total energy of the system is
obtained by summing up the contributions of all atoms:

N
E= ZE,- (5)
i=1

where E; represents the energy contribution of the 7 atom.
Atomic forces are calculated through automatic
differentiation:
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o
JdR;

(6)

i

where F; represents the force vector on the i atom. R,

$represents the coordinate vector of the i atom. 9E

1
represents the partial derivative (gradient) of the total
energy of the system with respect to the i atomic coordinate.
This MLP constitutes the environment in our MDP and is
responsible for providing new, physically consistent states
and immediate rewards after the agent performs actions.

3.2.2 Scale 2: hierarchical RL agents
(decision-making core)

To address the inherent long-term credit allocation issue in
reaction path search and achieve more abstract strategic
planning, we have designed a hierarchical RL architecture,
which includes a high-level meta-controller and a low-level
executor.

High-level meta-controller (meta-controller): this
controller operates on a coarse time granularity. Every ¢
bottom steps (i.e., an option), it observes the current state s;
and outputs a sub-target g, € G. This sub-objective can be

understood as an abstract representation of the intermediate
state expected to be achieved within the next ¢ steps in the
potential space, such as ‘moving from the reactant region to
the vicinity of the first transition state’. The strategy of the
meta-controller Zyew(giss; Ome) 1S defined by the parameter
Ometa, and its goal is to maximise the expected cumulative
discount return:

K
J (emeta ) = ]E‘twr,,,em |:z yth=k«C':| (7)
k=0

where y € [0, 1] is the discount factor, quantifying the
degree of emphasis on future rewards, and K is the
advanced step count in the plot.

Low-level executors: the underlying actuator receives
the subgoal g; from the meta-controller and performs
atomic-level actions at a faster frequency (per step). Its
policy mwiow(ais:, gi; Giow) not only depends on the current
atomic configuration s, but also is regulated by the subgoal
g The goal is to maximise an intrinsic reward R
associated with a subgoal. We define it as the negative value
of the distance between the current state representation ¢(s;)
and the subgoal representation ¢(g)):

Ry =—|0(s:)-0(g.)], ®)

This hierarchical structure effectively breaks down the task
difficulty: the high-level learns complex multi-step
strategies, while the low-level focuses on executing specific
tactical actions to achieve short-term goals. Thanks for your
comments. The meta-controller operates at a coarse time
granularity, periodically setting an abstract subgoal in the
potential energy space based on the current system state.
According to the subgoal and the current atomic

configuration, the underlying actuator executes the specific
atomic displacement action, and its intrinsic reward function
drives the system state to the subgoal representation.

3.2.3 Scale 3: macro catalytic activity prediction
(performance output)

Once the agent has explored a complete episode and found
the minimum energy path (MEP) from the initial reactant to
the final product, we can extract key physical quantities
from this path for macro activity prediction. The most
critical quantity is the activation energy barrier of each
primitive step:

AE} = Erg; — Egs.; )

where Ers; and Ejs; are the transition and initial state
energies of step i, respectively.

Subsequently, we constructed a micro-dynamics model
to link the atomic-scale simulation results with macroscopic
experimental observations. Assuming the reaction follows
the Langmuir-Hinshelwood mechanism, the turnover
frequency (TOF) of the catalyst can be estimated by the
following formula (Haynes, 2005):

AG!
TOF =v-exp| ——& |.9, (10)
kT

where v is the attempt frequency (usually taken as kzT7/h),
AG:, is the Gibbs free energy barrier of the rt-determined

step, ks is the Boltzmann constant, 7 is the reaction
temperature, and 4 is the Planck constant. 8+ is the surface
coverage of the rate-determining step reactants. In this way,
we directly and quantitatively link the dynamic paths
explored by the agent at the atomic scale to the
experimentally observable macroscopic catalytic
performance.

3.3 Algorithm implementation and training strategy

We adopted a variant of the proximal policy optimisation
(PPO) algorithm Wu et al. (2021) to train our hierarchical
strategy in parallel. The main consideration is that PPO
algorithm shows excellent stability and sample efficiency
when dealing with continuous action space and
high-dimensional state space. It optimises the alternative
objective function by cutting the policy probability ratio and
fitting the value function, which helps to stabilise the
training process of the hierarchical policy.

PPO updates the policy parameter 6 by optimising an
alternative objective function that includes policy
probability ratio clipping and value function fitting:

47 (0) = B, [ min (11 (0) A, clip (5 (0), 1-e,1+¢) 4) | (11)

o (ayls;)

Togq (a1]s:

where 7,(0)= represents the probability ratio,

zzlt is the dominance function estimation at time step ¢,
which is usually calculated through generalised advantage
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estimation (GAE), and ¢ is a hyperparameter used to limit
the extent of each policy update.

The agent’s policy network 7y and value network Vy
both employ graph attention network (GAT)-based encoders
in order to directly model the topology and interactions of
atomic systems. The training process was performed in an
environment consisting of diverse catalyst-sorbate systems
from the Open Catalyst Project dataset (Chanussot et al.,
2021). Through the curriculum learning strategy, we start
with a simple adsorption system and gradually increase the
complexity of the task (such as multi-step reaction) to
improve the stability of training and the generalisation
ability of the model. The ultimate goal of the framework is
to find the optimal policy parameter 8" and value function
parameter ¢ such that:

T
0°,¢" =argmaxy, B, _, {z y’R,} (12)
t=0

where 7 = (so, a0, R1, 51, ...) represents a complete state-Z.

4 Experimental verification

Our proposed agent-driven multi-scale simulation
framework, this framework combines cognitive load theory
(CLT) with RL and will be referred to as cognitive
load-adaptive reinforcement learning (CLARL) in the
following. To systematically evaluate the effectiveness and
advancement of CLARL, we design and conduct a series of
rigorous experiments. This section will elaborate on the
experimental setup, the baseline model employed, the
evaluation metrics, and provide a comprehensive analysis
and discussion of the results.

4.1 Experimental setup

Our experiments are built on top of the Open Catalyst
Project (OC20) dataset (Tran et al., 2023), which contains
more than 1.3 million DFT relaxation trajectories for
different catalyst surface versus adsorbate configurations
and is a gold standard benchmark for evaluating catalytic
simulation methods. We strictly follow its official data split,
train with a ‘ALL’ subset of data containing multiple crystal
types, and report final performance on its challenging
test-challenge test set to ensure comparability with existing
literature. Our model is trained using the Adam optimiser
with an initial learning rate set to 1 x 10 and with cosine
annealing scheduling. All experiments were done on 8
NVIDIA A100 GPU and each experiment was run in
triplicate to obtain statistically significant results.

We selected three representative categories of
cutting-edge baseline methods for comparison to ensure the
comprehensiveness of the comparison:

1 Direct prediction models: represented by GemNet-T
(Gasteiger et al., 2021a), an equivariant GNN that
predicts the final relaxed structure and energy directly
from the initial configuration, without simulating
intermediate processes.

2 TIterative optimisation model: represented by
DimeNet++ (Gasteiger et al., 2021b; Tang et al., 2023),
it progressively optimises configurations by iteratively
updating atomic coordinates and utilising neural
networks to evaluate energy and forces.

3 Physics-based simulators: represented by SPINN (Unke
et al., 2021), a neural network potential function
incorporating a physical prior, we combine it with a
standard conjugate gradient method (CG) optimiser as a
modern representative of traditional numerical
optimisation methods.

The evaluation index covers two dimensions: accuracy and
efficiency. For accuracy, we report the mean absolute error
(MAE) of the adsorption energy prediction, in eV, and the
force MAE between the final configuration and the DFT
reference configuration, in eV/A. For efficiency, we report
the number of iteration steps required per relaxation
trajectory on average, with fewer steps representing faster
convergence.

4.2 Results and analysis

The performance comparison between our proposed
CLARL framework and all baseline methods on the OC20
test set is shown in Figure 2 by boxplot. Compared with
simply showing the mean, box plots can reveal the
distribution characteristics, stability, and anomalies of the
performance of each method more comprehensively. From
the overall distribution, CLARL not only has the lowest
median (0.291 eV), but also has the smallest interquartile
range (IQR) and the least outliers in the adsorption energy
prediction accuracy, indicating that it has the best
performance consistency and stability. Specifically,
compared with GemNet-T (median 0.381 eV), the strongest
direct prediction baseline, CLARL achieves a median error
reduction of about 23.6%, and its distribution is
significantly more concentrated.

Figure 2 Performance comparison box plot (see online version
for colours)
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Table 1 Performance breakdown of CLARL in different types of catalyst systems
Catalyst type System example Adv(;‘rgg)r(z:lzergy F o;;:le/ /%AE Aviet};iifi :;trsntle);; of Succ(eo;; rate
Metal surface Cu (111), Pt (111) 0.268 +0.011 0.065 £ 0.002 16.2+1.1 98.5
Oxide surface TiOz (110), Fe203(001) 0.305+0.016 0.079 + 0.004 20.1+1.8 95.2
Alloy system Pt3Ti, CuPd 0.312+0.018 0.081 £ 0.005 21.5+£22 93.8
Overall average - 0.291 £0.014 0.072 = 0.003 183+1.5 96.8

In the force prediction, CLARL also exhibits the optimal
distribution characteristics (median 0.072 eV/A), and its box
range is significantly narrower than that of the baseline
method, and there is no abnormal value, which indicates
that the agent-driven force prediction has excellent
reliability. In terms of convergence efficiency, CLARL has
the most obvious distribution advantage: its median number
of iteration steps is 18.3 steps, and the whole box is at a low
level, much better than SPINN+CG (median 28.5 steps,
scattered distribution) and DimeNet++ (median 42.1 steps,
with multiple high-step outliers). This compact and stable
efficiency distribution proves that the exploration policy
learned by the hierarchical RL agent can reach the optimal
region in fewer steps, showing excellent robustness to
different initial conditions.

To more deeply evaluate the generalisation ability of
CLARL under different chemical environments, we
conducted a detailed performance analysis on different
subsets of catalyst types in the OC20 dataset, and the results
are shown in Table 1. This analysis covers metal surfaces,
oxide surfaces and alloy systems, which are widely
representative in catalytic applications.

As can be seen from Table 1, CLARL performs best on
metal surfaces with relatively regular structures, with an
adsorption energy MAE as low as 0.268 eV. On average, it
only takes 16.2 steps to converge, and the success rate is as
high as 98.5%. On more complex oxide surfaces and alloy
systems, although the performance slightly declined, it still
maintained high precision and efficiency, with success rates
exceeding 93% in both cases. This result indicates that the
CLARL framework has good adaptability and robustness to
different chemical environments.

To visually demonstrate the dynamic path and
decision-making process of CLARL in the exploration of
PES, we selected a typical case recorded in the OC20
dataset for research: the adsorption process of a carbon
monoxide (CO) molecule on the Cu (111) crystal plane.
During the relaxation process of this system, there exists a
local energy minimum caused by the migration of
molecules from the top position to the bridge position,
which is a typical scenario for testing whether the method
can intelligently bypass the trap. The complete reaction path
comparison of this case is shown in Figure 3.

It can be clearly observed that the SPINN+CG optimiser
based on the conjugate gradient method, due to the locality
and short-sightedness of its gradient descent, is captured by
a local minimum point with an energy of —0.35 eV at the
reaction coordinate ~0.4 and is unable to proceed further.
Our CLARL agent, through its strategic exploration, has

demonstrated remarkable long-term planning capabilities. It
recognised that the local minimum was not the global
optimum, actively crossed a small energy barrier of only
0.05 eV, and ultimately successfully located the
bridge-stable adsorption configuration with a lower energy
(-0.41 eV), which was highly consistent with the true MEP
calculated by DFT. This complete trajectory vividly
interprets the core advantage of the agent-driven
framework: it does not rely on local gradients but makes
decisions based on the estimation of long-term returns,
thereby surpassing the limitations of traditional optimisers.
The core advantage is that CLARL’s agents learn to explore
strategically based on long-term rewards, rather than
following only local gradients. This allows it to actively
cross small energy barriers and avoid local minima, thus
converging to a globally more optimal configuration in
fewer steps.

Figure 3 Case study on the adsorption pathway of CO on the
Cu (111) surface (see online version for colours)
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Table 2 Experimental study of CLARL ablation
Adsorption  Force Average
Model variant energy MAE number of
MAE (eV)  (eV/A)  iteration steps
CLARL (complete) 0.291 0.072 18.3
w/o0 meta-controller 0.337 0.085 25.7
w/o force reward 0.305 0.101 20.4
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To verify the necessity of the components within the
CLARL framework, we performed a systematic ablation
experiment and the results are summarised in Table 2.

When we remove the hierarchical structure ‘w/o
meta-controller’, i.e., using only the single-layer RL
strategy, although it still outperforms some baselines, it is
significantly worse than the full model in MAE of
adsorption energy and number of convergence steps, which
proves the importance of high-level strategic planning for
complex path search. Moreover, when only the energy term
‘w/o force reward’ is retained in the reward function, the
MAE of the force rises significantly, indicating that force
guidance is crucial to find a stable configuration for force
equilibrium.

4.3  Summary of experiments

The experimental results strongly support the superiority of
our proposed agent-driven framework. Its success can be
attributed to two core factors: first, we formalise the
problem as an MDP and employ hierarchical RL, which
enables the model to learn and apply a long-term
goal-oriented search strategy that transcends local gradient
information. Second, the tight coupling with the high
performance MLP ensures that the whole exploration
process is always on the physically true PES. It is worth
noting that the double improvement in accuracy and
efficiency of CLARL makes it have great potential for
application in high-throughput virtual screening that
requires a large number of relaxation calculations and can
significantly reduce the computational cost. However, we
also observe that CLARL occasionally ‘gets lost’ in a few
extremely complex regimes involving multiple possible
reaction channels, suggesting that our future work could
explore active exploration mechanisms that integrate
uncertainty estimation to further improve its robustness in
the most challenging scenarios. CLARL occasionally gets
‘lost’ in extremely complex regions involving multiple
possible reaction channels. This is due to the fact that its
exploration strategy may tend to be conservative in some
cases, and the current framework lacks an explicit
perception mechanism for the prediction uncertainty of
MLP, which makes it difficult to make an optimal decision
in complex energy scenarios.

5 Discussion

The significant performance improvement achieved by the
CLARL on the catalytic activity prediction task not only
verifies the effectiveness of its method, but also reveals its
deep significance in promoting the evolution of the
computational catalysis paradigm. Our core contribution is
to successfully transform the catalytic reaction path search
from a passive numerical computation problem based on
local gradient optimisation to an active sequential decision
problem oriented to a global goal. As envisioned by Musa
et al. (2022), one of the ultimate goals of ML is to become

autonomous agents for scientific discovery, and this work is
a substantial step towards that goal in the field of catalysis.

The success of CLARL is firstly attributed to its
architectural design of multi-scale fusion. Unlike traditional
MLP (such as the work of Batzner et al. (2022)) that only
serve as fast energy calculators, CLARL directs the
computational power of MLP to the most informative
region of the PES through RL agents. This is akin to
equipping an assistant with a highly computational power
(MLP) with an experienced strategist (RL agent), enabling it
to bypass local minima and efficiently locate the globally
optimal reaction path. The framework achieves balance
through hierarchical RL and combined reward functions.
The high-level controller is responsible for strategic
exploration and setting long-term sub-goals. The underlying
actuators are used tactically. The energy drop term in the
reward function encourages exploitation, and the
exploration of unreached final states is itself implicit in
policy learning. Our ablation experiments clearly confirm
the importance of this hierarchical decision mechanism,
which addresses the ‘myopic’ problem inherent in
traditional optimisation methods in complex energy barrier
landscapes.

At the theoretical level, our framework builds a reusable
bridge connecting cognitive theory and computational
models. CLT emphasises that effective learning requires the
management of intrinsic, extrinsic, and associative cognitive
load. Map this into our computational framework: the agent
gradually builds a ‘cognitive schema’ of PES (reducing the
internal load) through interaction with the environment
(MLP); the hierarchical design and reward function
optimise its ‘problem-solving strategy’ (reducing external
load), allowing it to focus cognitive resources on key
decision points (promoting associated load). This analogy is
not far-fetched, and it provides a general theory-technical
paradigm for solving complex optimisation problems in
other scientific computing (e.g., protein folding, new
material design) by managing the ‘computational load’ of
the search process through intelligent decisions. The
cognitive load theory is mapped to the computational
framework. The agent constructs a cognitive schema of the
potential energy surface through the interaction with the
environment to reduce the internal load. Hierarchical design
and reward functions optimise the problem solving strategy
to reduce extrinsic load, thereby focusing computational
resources on key decision points and facilitating associated
load.

From the perspective of practical application, CLARL
has demonstrated the advantages of efficiency and accuracy,
which paves the way for its deployment in industrial
catalyst high-throughput screening. Traditional DFT
calculations or simple MLP relaxations still have
bottlenecks in large-scale virtual screening due to their
computational cost or low first-pass success rate. CLARL
reduces the average number of convergence steps to nearly
half that of traditional optimisation methods while ensuring
or even improving the accuracy of the final configuration,
which means that more candidate catalysts can be evaluated
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under the same computational budget, thus accelerating the
discovery cycle of new materials. However, we must also be
honest about the limitations of the current framework. Its
dependence on the accuracy of MLP is a double-edged
sword. Despite our advanced equivariant GNN, the
prediction uncertainty of the MLP can cause the agent to
make wrong decisions under extreme configurations outside
the distribution of the training data. Moreover, the agent’s
exploration strategy may still be conservative in some cases,
failing to discover unconventional reaction channels.

Based on these findings, we outline several clear
directions for future research. First, it is crucial to integrate
uncertainty aware mechanisms into the agent’s decision
loop, e.g., to quantify the uncertainty of a prediction via
ensemble or Bayesian neural networks and adjust the
exploration-exploit strategy accordingly (Kendall and Gal,
2017; Sanchez-Lengeling and Aspuru-Guzik, 2018).
Ensemble uncertainty sensing (such as ensemble learning or
Bayesian neural networks) enables an agent to
quantify  prediction confidence. = Accordingly, the
exploration-exploitation strategy is dynamically adjusted to
strengthen exploration in uncertain regions and efficiently
utilise in certain regions, which is expected to further
improve its robustness in challenging scenarios. Second,
exploring cross-system and cross-task transfer learning is a
promising direction, aiming to enable agents pre-trained on
a large amount of general data to quickly adapt to a specific
catalytic system, thus greatly reducing the computational
cost for new reactions.

6 Conclusions

In this paper, we introduce CLARL, a multi-scale
simulation framework implemented through hierarchical RL
agents for accurate and efficient prediction of catalytic
activities of complexes. This study systematically
demonstrates that constructing the reaction path search as a
MDP and adopting a hierarchical strategy where the
meta-controller and actuators work together can effectively
overcome the local convergence and inefficiency problems
faced by traditional numerical optimisation methods on
complex PES. Experimental results on the large-scale public
dataset OC20 show that CLARL not only significantly
outperforms existing state-of-the-art methods in terms of the
prediction accuracy of adsorption energy (MAE =0.291 eV)
and atomic force (MAE = 0.072 eV/A), but more
importantly, CLARL is able to achieve a better prediction
accuracy than existing state-of-art methods. It reduces the
average number of iteration steps required to find a stable
configuration by about 50%, achieving a leap in accuracy
and efficiency.

The theoretical contribution of this work is to go beyond
the paradigm of viewing ML as a mere fitting tool,
demonstrating its potential as autonomous exploration and
discovery  agents, and providing a  reusable
‘theory-technology’ bridge for solving scientific computing
problems across scales. At the practical level, CLARL
provides a feasible solution to solve the computational

bottleneck of catalyst quantum simulation, which greatly
promotes the practical process of computation-driven
catalyst design. Ultimately, this work points the way for the
development of a new generation of intelligent scientific
computing systems, which unlock the ability to explore
deeper laws of nature by deeply integrating physical models
with learning decision-making intelligence.
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