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Abstract: This paper addresses the need for intelligent analysis of tort liability elements under
the Civil Code by proposing a legal judgement prediction method that integrates knowledge
graphs with graph neural networks. By constructing a knowledge graph of tort liability elements,
this study proposes an element alignment method combining Laplace coding with attention
mechanisms to precisely link factual circumstances with legal elements. Building upon this
foundation, an end-to-end multi-task graph convolutional network prediction model was
designed to simultaneously perform liability determination and identification of specific element
statuses. Experiments on public datasets such as CAIL2018-Small demonstrate that this method
achieves an accuracy of 89.7% and a Macro-F1 score of 88.5%, significantly enhancing both
predictive performance and interpretability. This research provides a reliable technical pathway
for intelligent judicial assistance systems and holds positive implications for advancing judicial
intelligence.
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1 Introduction

With the deep integration of artificial intelligence
technology across various fields, legal Al is undergoing a
paradigm shift from traditional knowledge engineering
approaches based on logical rules to data-driven intelligent
analysis methods. Against this backdrop, legal judgement
prediction — a core task of legal intelligence — aims to
automatically forecast case outcomes through computational
models. This provides judicial assistance to judges,
litigation strategy analysis to attorneys and predictable
judicial guidance to the public, making its research both
theoretically significant and practically valuable (Gao et al.,
2024; Branting et al., 2021).

The promulgation and implementation of China’s Civil
Code have provided a more systematic and standardised
framework for the field of tort liability (Li et al., 2024).
However, the determination of tort liability itself constitutes
a highly complex legal reasoning process, whose core lies in
the rigorous examination and judgement of a series of
constituent elements. These elements do not exist in
isolation but are intertwined with strict logical connections
and complex evidentiary dependencies. While existing
traditional machine learning approaches can learn statistical
patterns from case data, their model designs struggle to

effectively capture and leverage the inherent structural
relationships among legal elements (Bi et al., 2024; Tang
et al., 2024). Meanwhile, the recent rise of deep
learning-based pure text models, while excelling in text
feature extraction, suffers from a black-box nature that
renders decision-making processes non-traceable (Zhu
et al.,, 2022). This prevents the clear presentation of the
complete chain of reasoning — from case facts to legal
elements to the final liability determination — which to some
extent limits their in-depth application in judicial practice.
In the digital age, infringement manifests new
characteristics such as mass micro-infringement and mass
aggregated infringement, posing significant challenges to
traditional tort law in terms of damage assessment, fault
determination, and causation analysis (Wu et al., 2024).
Current legal Al research mainly follows two paths:
supervised classification models like BERT for legal
prediction tasks, and large language models for legal
reasoning (Yang et al., 2024). However, both mainstream
approaches exhibit significant limitations when analysing
the elements of tort liability. While supervision-based
classification models can capture local textual features, they
struggle to effectively model the complex topological
relationships between legal elements (Benedetto et al.,
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2025). Large language models, meanwhile, often perform
poorly on legal prediction tasks due to the abstract nature
and unique characteristics of legal provisions (Cui et al.,
2023; Shang, 2022). More critically, existing approaches
generally overlook the deep semantic correspondence
between case facts and legal elements, resulting in
significant shortcomings in logical reasoning about legal
requirements (He et al., 2023). Furthermore, the pervasive
‘black box problem’ in judicial Al remains unresolved, with
the opacity of decision-making processes severely
undermining its credibility and practical value in judicial
practice (Tong et al., 2024).

To overcome the aforementioned limitations, this study
adopts a technical approach combining knowledge graphs
with graph convolutional networks. Taking the constructed
fusion graph as input, the model performs information
propagation and feature learning on the essential element
correlation network through graph convolution operations.
This design not only enhances the prediction performance
of the primary task but, more importantly, enables the
model to attribute the final liability determination to the
fulfilment status of specific elements. Consequently, it
significantly improves the model’s interpretability and
judicial practicality.

The main innovations and contributions of this work
include:

1 The first fine-grained knowledge graph targeting the
elements of tort liability under the Civil Code has been
constructed. This graph systematically models multiple
entities including elements, provisions, evidence, and
defences along with their intricate logical relationships.
It transforms legal norms into structured knowledge
that is machine-understandable and inferable, laying a
solid foundation for in-depth legal analysis. This study
represents the first fine-grained knowledge graph
dedicated to the elements of tort liability under the
Civil Code, achieving sophisticated modelling of the
complex logical relationships among these elements.

2 A case-element alignment method integrating Laplace
position encoding with attention mechanisms is
proposed. This approach precisely anchors case facts
and legal elements through semantic attention, while
leveraging Laplace encoding to embed global structural
information of elements within the graph. It effectively
bridges the semantic gap between case texts and
structured knowledge, achieving precise mapping from
facts to legal principles. This method pioneers the
integration of Laplacian global structural encoding with
attention-based local semantic alignment, resolving the
mapping challenge between case texts and legal
elements at the level of information representation.

3 Anend-to-end GCN multi-task prediction model is
designed. This model performs inference on a
constructed fusion graph, simultaneously outputting
both the final conclusion on whether tort liability is
established and the fulfilment status of each specific
element. This design not only enhances prediction

performance but also significantly improves model
interpretability by attributing decisions to specific
elements, aligning with judicial practice’s demand for
transparent decision-making. This model coupled
liability prediction with element state prediction
through end-to-end multi-task learning. Its innovation
lies in designing an intrinsically interpretable inference
mechanism.

2 Relevant technologies

Knowledge graphs, as a technology that represents
and stores knowledge through graph structures, are
fundamentally designed to depict real-world concepts and
their intrinsic relationships through entities, relationships,
and attributes (Abu-Salih and Alotaibi, 2024; Zhang et al.,
2024). In the legal domain, which demands extreme rigor
and logical precision, constructing knowledge graphs
presents unique challenges. Its core component — ontology
design — requires not only identifying and classifying legal
concept entities but also precisely depicting their
hierarchically structured, logically coherent relationships.
For instance, in tort law, fault-based liability and strict
liability form mutually exclusive categories, with
fault-based liability contingent upon fulfilling prerequisites
such as unlawful acts and actual damages (Zhong et al.,
2024). This precise, machine-readable logical constraint
distinguishes legal knowledge graphs from general-purpose
ones, laying a solid foundation for subsequent automated
reasoning.

GCNs are deep learning models specifically designed to
process graph-structured data (Bin, 2022). Its core concept
originates from traditional convolutional neural networks,
aiming to extend the applicability of convolutional
operations from regular Euclidean spaces like images to
non-Euclidean domains such as graph data structures (Liu
et al., 2024; Yang et al., 2023). The fundamental operation
of GCN follows a message-passing framework that learns
node representations by aggregating neighbourhood
information. Within this framework, each node receives
information from its immediate neighbours and iteratively
updates its own state accordingly. This characteristic makes
GCN highly suitable for legal knowledge graphs. In such
graphs, the semantics of a legal element do not exist in
isolation but are jointly shaped by its own attributes and the
associated elements it connects with.

To achieve neighbourhood aggregation, GCN employs
an efficient layer-wise propagation rule based on spectral
graph theory. Their core inter-layer propagation mechanism
can be expressed by the following formula:

1 1
HY =4 (ﬁ’iAﬁ’EHmW” ) (1)

where A =A+1 denotes the adjacency matrix augmented
with self-connections, precisely encoding the topological
connections between nodes in the graph. In the
legal knowledge graph constructed for this study, each
non-zero eclement of matrix A specifically represents
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logical relationships between legal elements D is the

corresponding degree matrix, used to normalise the
1 1

adjacency matrix for numerical stability. Using D 2AD 2
to perform symmetric normalisation on the adjacency
matrix is a crucial step aimed at mitigating numerical
instability issues that may arise from uneven node degree
distributions in the graph, ensuring a stable training process.
H® is the node feature matrix for layer /. WO is the
trainable weight matrix for that layer, o is the nonlinear
activation function.

The core of the attention mechanism lies in its ability to
enable models to focus differentially on different parts of
the input information based on their importance. This is
achieved by assigning dynamically computed weights to
input elements, where higher weights indicate greater
criticality for the current task. Unlike fixed weights in
traditional pooling operations, these weights are
dynamically generated for each input data point.

The core operation of this mechanism is commonly
referred to as scaled dot-product attention. Their
fundamental computational process can be expressed as:

.
Attention(Q, K, V) = softmax ( QK jV 2)

Jd;

This formula can be decomposed into three steps: first, by
computing the dot product between the query matrix Q and
the key matrix K, a similarity score matrix is obtained. This
matrix reflects the matching degree between each query and
all keys. Second, these scores are scaled by dividing them

by the square root of the key vector’s dimension ~/d; . This

prevents excessively large dot product results from causing
the softmax function to get stuck in a region of minimal
gradients. Subsequently, the scaled score matrix undergoes
softmax transformation, normalising it into a probability
distribution — the attention weights. Finally, these weights
are applied to the value matrix V, performing a weighted
sum to yield the final output. Each position in the output
represents a weighted combination of all value vectors, with
the weight determined by the relevance of the query at that
position to all keys.

In this study, the attention mechanism serves as a
‘semantic bridge’. In the case-element alignment task, case
fact texts serve as queries, while element nodes in the
knowledge graph function as keys and values. Through
attention calculations, the model automatically computes the
association strength between each semantic unit in the case
description and corresponding legal elements. This achieves
precise, soft alignment from unstructured text to structured
knowledge — far more flexible and robust than rule-based
hard matching.

Knowledge graph technology provides a structured
framework for precisely expressing complex logical
relationships in the legal domain. Graph convolutional

networks empower models to perform deep feature learning
and relational reasoning within this framework, while
attention mechanisms effectively bridge the gap between
unstructured text and structured knowledge. The organic
integration of these three components collectively forms
the foundational technological pillars of this research
methodology, providing the theoretical basis for the
implementation of specific models in subsequent sections.

3 Knowledge graph construction

The ontology design of a knowledge graph constitutes the
soul and framework of its knowledge system. This chapter
follows the classic technical approach in knowledge
engineering: ontology design, knowledge extraction, graph
augmentation, and quality assessment. Ontology design
is grounded in legal ontology, aiming to construct a
machine-understandable legal conceptual framework.
Knowledge extraction employs a hybrid model designed to
balance the representational power of deep learning
models with the global constraints of sequence labelling
models. Graph augmentation incorporates Laplace coding,
theoretically motivated to endow graph neural networks
with global structural awareness. The quality assessment
framework adheres to the classic three dimensions of
software and data quality standards to ensure the reliability
of the constructed outcomes. By precisely defining core
concepts and their interrelationships, it provides a
fundamental paradigmatic foundation for the deep structural
representation of knowledge in the field of tort liability.
Based on a systematic analysis of the legislative spirit and
normative framework of the tort liability section of the Civil
Code, this study constructs an ontology model comprising
five categories of core entities and five dimensions of
foundational relationships. This model aims to transcend the
limitations of traditional knowledge bases that merely list
concepts. Through a refined relational network design, it
profoundly reveals and reproduces the complex and
rigorous logical structure among legal elements and judicial
reasoning pathways. The technical approach to knowledge
graph construction is illustrated in Figure 1.

3.1 Ontology design

The ontology’s entity structure design fully considers the
characteristics of knowledge in the field of tort liability,
establishing five core entities: legal elements, liability
principles, defences, legal provisions, and types of evidence.
These entities do not exist in isolation within the knowledge
graph but are tightly interconnected through a multi-layered,
multi-dimensional, mutually corroborating network of
relationships, forming a knowledge ecosystem that is both
clearly hierarchical and seamlessly integrated.
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Figure 1 Knowledge graph technology roadmap
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Five relational models collectively form an organic whole
that mutually supports and corroborates each other.
Hierarchical classification establishes vertical layers of
knowledge, logical dependencies construct horizontal
chains of reasoning, mutually exclusive negation ensures
comprehensive logical completeness, proof associations
enable practical application of norms, and legal provision
tracing safeguards the system’s normative credibility.
Working in concert, they systematically recreate the
complete cognitive process of tort liability.

3.2 Knowledge extraction

After completing the core design, the next critical
task is knowledge extraction — specifically, the automatic
extraction of entities and relationships from unstructured
legal texts. This study employs a hybrid model
based on bidirectional encoder representations from
transformers (BERT)-bidirectional long short-term memory
(BiLSTM)-conditional random field (CRF) for entity
recognition. This model fully leverages the powerful
representational capabilities of pre-trained language models
alongside the advantages of sequence labelling models.
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Specifically, this model first utilises BERT to obtain
character-level context-aware representations, capturing rich
semantic information in legal texts through a multi-layer
Transformer encoder. It then employs a BiLSTM network to
further capture sequence dependency features, learning
long-range dependencies within legal texts. Finally, a CRF
layer ensures the global optimality of the label sequence by
considering transition constraints between labels, thereby
guaranteeing the accuracy and consistency of entity
recognition. The loss function for this entity recognition
process employs the cross-entropy loss function, whose
mathematical expression is as follows:

N

Lenlily Z—Z[J’[10g(f’i)+(1—}4)10g(1—)3i)] (3)

i=1

where y; represents the true label of the i character, 3,

denotes the corresponding predicted label probability by the
model, N represents the length of the input sequence. This
loss function guides the learning process of model
parameters by minimising the discrepancy between the
predicted probability distribution and the true label
distribution. Notably, due to the imbalanced distribution of
entities in legal texts, we introduced a category weighting
mechanism in practice. This mechanism assigns higher loss
weights to entities in minority categories, thereby enhancing
the model’s ability to recognise low-frequency entities.

For relation extraction tasks, we employ a joint learning
approach based on semantic similarity, determining relation
types by calculating representation similarity between entity
pairs. This method first obtains contextual representations
of entity pairs through a pre-trained language model, then
computes their vector similarity, and finally classifies them
based on similarity scores. The formula for calculating
relation similarity is as follows:

h;-h;

= )
[l [ |

sim(e,-,ej)

where h; and h; are the representation vectors of entities e;
and e; respectively, obtained through pre-trained language
models. This formula measures the semantic similarity
between entity vectors by calculating their cosine similarity
with values ranging from —1 to 1. The closer the value is to
1, the greater the semantic similarity between entities and
the higher the probability of a relationship existing. This
method effectively addresses the challenges of relation
extraction in legal texts arising from their high complexity
and diversity, demonstrating particular strength in
identifying implicit relationships. Additionally, we designed
a multi-task learning mechanism enabling entity recognition
and relation extraction to share the underlying text. This
collaborative optimisation enhances overall performance
while improving the model’s training efficiency.

3.3 Graph enhancement

This study employs Laplace position encoding to enhance
the structural representation of knowledge graphs, thereby

serving downstream graph neural network models. The
encoding leverages spectral decomposition of the graph
to capture global structural information of nodes, generating
a unique identity identifier for each node. In graph
neural networks, traditional position encoding methods
typically capture only local neighbourhood information. In
contrast, Laplacian position encoding characterises a
node’s structural position within the graph from a global
perspective, which is crucial for distinguishing core
|legal elements from peripheral auxiliary elements. The
computation of Laplacian position encoding is based on the
eigenvalue decomposition of the graph’s Laplacian matrix,
with the following mathematical foundation:

A=UTAU (5)

where A is the Laplacian matrix of the graph, defined as the
degree matrix minus the adjacency matrix, reflecting the
graph’s topological structure; U is the eigenvector matrix,
whose column vectors correspond to the eigenvectors of the
Laplacian matrix; A is the diagonal matrix of eigenvalues,
where the elements on the diagonal represent the
eigenvalues. Based on this feature decomposition, we
can obtain the positional encoding for each node and obtain
the final structure-aware representation through linear
transformation:

/1,‘ = Wil +b (6)

In this transformation, A; denotes the original position
encoding of node i, W and b represent the learnable
parameter matrix and bias vector. This encoding enables the
model to clearly distinguish the essential differences
between core and peripheral elements within the graph
topology, providing crucial structural prior information for
subsequent graph neural networks. Specifically, core
elements such as fault liability — due to their highly central
position in the graph and complex logical connections
with multiple other elements — will receive coding
representations  significantly distinct from peripheral
elements. The core element occupying a central position in
the graph and maintaining complex logical connections with
numerous other elements exhibits a distinct positional
encoding derived from Laplace feature decomposition,
which differs significantly from that of sparsely connected
auxiliary elements. This structural awareness is crucial for
accurate legal reasoning, as elements of differing structural
significance carry varying weight in legal argumentation.

3.4 Quality assessment

To comprehensively validate the construction quality of the
knowledge graph, a systematic quality evaluation
framework is established. The evaluation framework
encompasses three dimensions — completeness, accuracy,
and consistency — and employs a combined quantitative and
qualitative approach for comprehensive assessment. The
selection of this framework is grounded in classical theories
of knowledge graph quality assessment. These three
dimensions respectively correspond to the fundamental
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requirements for knowledge graphs in terms of content
coverage, factual accuracy, and logical consistency,
comprehensively reflecting their reliability across various
judicial application scenarios. Completeness evaluation is
achieved by comparing automatically extracted entities
against manually annotated gold standards, ensuring the
knowledge graph covers core concepts within the field of
tort liability. The evaluation formula is as follows:

|Eexlracted M Emanuall
|Emanua1|

Completeness =

(7

In this formula, the numerator represents the number of
entities where automatically extracted entities intersect with
manually annotated entities, while the denominator denotes
the total number of manually annotated entities. This metric
reflects the knowledge graph’s coverage of domain-specific
knowledge. During actual evaluation, we invited three legal
experts to independently complete manual annotation, using
the union of their annotations as the gold standard to ensure
comprehensive and authoritative assessment. Accuracy
assessment employs a sampling verification method, where
domain experts evaluate the correctness of randomly
sampled entities and relationships to calculate metrics such
as accuracy, precision, and recall. Consistency checks
validate the logical coherence of entity relationships within
the knowledge graph, particularly scrutinising the logical
consistency of ‘requires’ and ‘excludes’ relationships to
ensure the graph supports reliable logical reasoning.

Through the organic integration of ontology design,
knowledge extraction, graph enhancement, and quality
assessment, the tort liability elements knowledge graph not
only accurately captures the semantic information of legal
elements but also deeply depicts the logical relationships
and structural characteristics among these elements. This
provides high-quality data support for legal prediction
research based on graph neural networks.

4 Predictive model for tort liability

Building upon the completion of the tort liability knowledge
graph construction, this chapter will elaborate on a tort
liability prediction model based on graph convolutional
networks. Through an innovative case-element alignment
mechanism and integrated graph construction technology,
this model organically combines unstructured case
descriptions with structured legal knowledge graphs to
achieve end-to-end tort liability prediction. The fusion of
Laplace coding and attention mechanisms yields an
alignment mechanism. Its theoretical foundation lies
in enhancing information from two complementary
perspectives: structural perception and semantic perception.
Laplacian coding captures nodes’ global structural roles
within the entire graph spectrum from a graph-spectral
perspective, enabling the model to distinguish core elements
from auxiliary ones. Meanwhile, the attention mechanism
dynamically calculates the strength of associations between

case facts and legal elements from a semantic perspective.
The entire model architecture is shown in Figure 2.

The primary component of the model is feature
extraction, which is responsible for learning deep
representations of legal elements from the knowledge graph.
In traditional graph neural networks, node features often
contain only basic semantic information, lacking
consideration of the node’s structural role within the overall
graph. To address this, we introduce a representation
learning method that integrates semantic and structural
features. This method first utilises Laplacian position
encoding to obtain the structural features of nodes. It then
employs a multi-head attention mechanism to learn
dependencies between nodes. Layer normalisation
techniques are applied to stabilise the training process. The
complementary advantages of combining GCNs with
attention mechanisms. GCNs enable message passing
across graph structures, aggregating information from
neighbouring nodes to learn feature representations aligned
with legal logic networks, yet their receptive fields are
constrained by the number of layers. Attention mechanisms
dynamically assign weights to different semantic units,
capturing long-range dependencies. In this model, GCN
handles structural information propagation and inference,
while attention mechanisms filter and align key semantics.
Working synergistically, they jointly achieve precise
reasoning. The mathematical expression for this process is
as follows:

hf = LayerNorm (h* + MultiAttn (R}, X)) (8)

where h® denotes the Laplace position encoding for the i

feature, X' represents the feature matrix for all features,
MultiAttn denotes the multi-head attention mechanism, and
LayerNorm refers to the layer normalisation operation.
Under the feature fusion mechanism, the representation of
each element integrates its global structural information
within the graph and its associative features with other
elements, providing a rich representational foundation for
downstream tasks.

The core innovation of the model lies in its case element
alignment mechanism, designed to address the limitations of
traditional legal text analysis that treats case details as a
whole while neglecting precise mapping to legal elements.
Based on attention methods, we automatically calculate the
semantic relevance between case semantic units and legal
elements using the following formula:

Wlhlgase (thilement )T j (9)

Nz

where h§*°¢ denotes the vector representation of the i

oy = softmax[

h

semantic unit in the case description, obtained through a
pre-trained language model; hi-leme“‘ denotes the feature
representation of the j legal element; W; and W, denote

learnable parameter matrices; d represents the vector
dimension; ¢ denotes the association weight between the i
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semantic unit and the /" legal requirement. This attention
mechanism automatically focuses on key information within
case descriptions that pertains to specific legal elements,
effectively bridging the semantic gap between natural
language descriptions and legal concepts.

After obtaining the alignment relationship between case
elements and knowledge graph features, the next critical
step is to construct a fusion graph and perform graph
convolutional inference. The fusion graph construction aims
to incorporate the current case being processed as a special
node into the existing knowledge graph, forming a new
dynamic inference graph. Specifically, we fuse the aligned
features of case descriptions with the element features in the
knowledge graph through a multi-layer perceptron to
generate the initial representation of the case node:

hifusion — MLP}' ( hlglement

hease ) (10)

where || denotes vector concatenation, and MLP; represents
a multilayer perceptron network. This operation enables
case nodes to incorporate both prior knowledge of legal
requirements and the specific characteristics of the current
case. Building upon this foundation, we construct an
extended adjacency matrix containing case nodes and utilise
a multi-layer graph convolutional network for information
propagation and feature learning.

The feature aggregation process for image convolutions
is as follows:

1

1
XD = a(D 2AD 2XOWO +p? ) (11)

where A is the adjacency matrix for adding
self-connections, D is the corresponding degree matrix, X
is the node feature matrix for layer /, W® and b"” are
learnable weight and bias parameters, with ¢ representing
the nonlinear activation function. Through multi-layer graph
convolutional operations, the model enables information
exchange between case nodes and legal requirement nodes,
allowing case representations to progressively integrate
legal knowledge while simultaneously adapting legal
requirement representations to specific case contexts.

The model simultaneously accomplishes two related
tasks — predicting liability for infringement and determining
the fulfilment of essential elements — through a multi-task
prediction head. This multi-task learning design not only
enhances the performance of the primary task but also
improves the model’s interpretability. For the primary task
of predicting whether liability for infringement is
established, we perform pooling on the final representations
of all nodes and then classify them using a softmax
function:

Lioal =4 Epred + Zo Lotement T 43 Lrelation ( 12)

where Lyred Letement aNd Lrelation  T€present the cross-entropy

loss for the main task, the loss for the feature recognition
task, and the loss for the relationship prediction task,
respectively. A, A, and A3 represent the weighting
coefficients for each task, with optimal values determined

through grid search. This multi-task learning mechanism
enables the model to learn shared feature representations
from multiple supervisory signals. During training, the
model is forced to learn the causal relationships between the
states of input factors and the final responsibility
determination. During inference, decision-makers can view
the final conclusion and trace back to the specific states of
individual factors that collectively led to this conclusion,
transforming the decision into a transparent chain of
reasoning. This approach not only enhances the model’s
generalisation capabilities but also allows predictions to be
traced back to the specific conditions under which they were
established, significantly improving the model’s legal
interpretability.

5 Experiments and results analysis
5.1 Dataset construction and selection

Regarding dataset selection, this study employed three
representative public legal datasets to ensure the
reliability and reproducibility of experimental results. The
CAIL2018-Small dataset, sourced from the China AI for
justice challenge, encompasses ten categories of criminal
charges with a total of 10,000 legal cases. With an average
text length of 512 characters, it features authentic
cases and diverse criminal charges. The JEC-QA dataset,
released by Tsinghua University, comprises 6,000 training
samples covering five types of legal questions. Its
question-answering format closely mirrors real-world legal
consultation scenarios. For legal reasoning benchmarks, this
study uses the legal-bench dataset. It comprises 5,000
training samples and offers cross-language testing
capabilities. Multiple internal sub-datasets each focus on
distinct aspects, enabling comprehensive evaluation of
model performance across various legal tasks.

In knowledge graph construction, we systematically
built a specialised legal knowledge graph based on the tort
liability section of the Civil Code. This graph comprises
1,045 entity nodes and 2,387 relationship edges, with entity
types covering multiple core legal concepts. The
construction process combined automated extraction with
manual verification: entities and relationships were
extracted from legal texts, then reviewed and refined by
legal experts. This approach not only ensures knowledge
quality but also provides a clear, reproducible technical
pathway for subsequent research.

5.2 Experimental setup and baseline model selection

The experiments were conducted on a hardware
environment comprising Tesla V100s GPUs and Intel Xeon
Silver 4216 CPUs, utilising the PyTorch 1.9.0 and PyTorch
Geometric 2.0.4 deep learning frameworks. A fixed random
seed was set to ensure result consistency. All relevant code
and scripts have been open-sourced to guarantee the
reproducibility of the experiments.
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Figure 3 Performance comparison of primary experimental categories (see online version for colours)
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Table 1 Key metrics in the training process
Training stage Iteration count Training loss Validation loss Validation accuracy (%) Learning rate
Initial stage 0-150 1.200—0.672 1.232—0.734 72.3—83.5 0.001
Rapid convergence 150-400 0.672—0.421 0.734—0.523 83.5—-87.2 0.001
Stability optimisation 400-1,100 0.421—0.243 0.523—0.367 87.2—89.1 0.0005
Final fine-tuning 1,100-2,000 0.243—0.090 0.367—0.101 89.1—89.7 0.0002

This study incorporates five representative models as a
baseline. BERT-Base, as a general-purpose pre-trained
model, provides a fundamental performance reference (Liao
et al., 2024). Lawformer is a pre-trained model specifically
optimised for long-text legal documents, better handling the
peculiarities of legal texts (Xiao et al., 2021). GAT and
TextGCN represent attention-based graph neural networks
and word-document graph-based text classification
methods, respectively (Lv et al., 2024; Aras et al., 2024).
BERT+GCN validated the effectiveness of a simple fusion
strategy (She et al., 2022). The selection of these baseline
models represents several mainstream technical approaches
in the current field of legal AI: BERT, as a general-purpose
pre-trained language model, serves as a performance
benchmark for numerous NLP tasks; Lawformer is a

domain-specific pre-trained model optimised for lengthy
legal texts, embodying the domain adaptation approach;
GAT and TextGCN are graph-based models that
respectively explore the role of attention mechanisms and
document-word graphs in text classification;, BERT+GCN
demonstrates the effectiveness of simple hybrid strategies.
The selection of these baseline models balances both
technical representativeness and applicability within the
legal domain, providing comprehensive comparative
benchmarks for evaluating the model.

Model parameters were meticulously tuned using the
AdamW optimiser with an initial learning rate of 0.001,
combined with a weight decay of 0.01 to prevent
overfitting. The batch size was set to 32, with a maximum
training cycle of 100 rounds. Training was terminated via
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early stopping when validation set performance failed to
improve for ten consecutive rounds. Specific parameters
of the model include a two-layer GCN network,
256-dimensional hidden layer representations, a dropout
rate of 0.5, and an eight-head attention mechanism. All
these parameters were determined through grid search to
achieve optimal values.

5.3  Experimental results and analysis

To comprehensively evaluate the effectiveness of the
proposed model in predicting legal judgements, this chapter
designed systematic experiments to validate it from multiple
perspectives.

The main experimental results demonstrate that our
model achieves optimal performance across two datasets.
On the CAIL2018-Small dataset, the model achieves an
accuracy of 89.7%, a Macro-F1 score of 88.5%, and an
AUC of 94.3%, representing improvements of 6.2%, 6.4%,
and 5.1% respectively over the BERT-Base model. From a
judicial practice perspective, the 89.7% prediction accuracy
demonstrates a high level of reliability. In the early stages of
case adjudication, the system provides highly consistent
preliminary assessments, effectively assisting judges in
identifying logical inconsistencies. As an efficient
decision-making support tool, it enhances judicial efficiency
and maintains consistency in sentencing standards. This
significant improvement is primarily attributed to the
introduction of knowledge graphs. Structured legal
knowledge provides the model with rich semantic
constraints, effectively reducing ambiguity issues in
text comprehension. Compared to the specialised legal
pre-training model Lawformer, our model still maintains a
4.0% accuracy advantage, indicating that purpose-built legal
knowledge graphs capture the specificity of the legal
domain more effectively than general-purpose legal
pre-training models.

On the JEC-QA dataset, our model achieved an
accuracy of 91.2%, representing a significant improvement
over baseline models. This outcome demonstrates the
effectiveness of the case-element alignment mechanism,
which precisely connects factual case descriptions with the
legal conceptual framework, thereby enhancing the model’s
legal reasoning capabilities. Particularly when addressing
complex legal issues, the model employs multi-task learning
to simultaneously predict both the establishment of liability
and the fulfilment of specific elements. This design not only
improves performance on the primary task but also
enhances the model’s interpretability.

Analysis of the training process reveals the model’s
convergence characteristics on the CAIL2018-Small
dataset. The training loss value changes with the number of
iterations as shown in Figure 4.

During the first training epochs, the model converged
rapidly. This accelerated convergence was driven by the
strong semantic guidance provided by the knowledge graph,
enabling the model to learn effective feature representations
more efficiently. During subsequent training, the model
entered a stable optimisation phase. Fine-tuning was

achieved through gradual learning rate reduction, ultimately
reaching a stable performance of 89.7%. The gap between
training and validation losses remained within a reasonable
range throughout, indicating strong generalisation
capabilities and no significant overfitting. Key metrics in
the training process are shown in Table 1.

The ablation experiment conducted an in-depth analysis
of each component’s contribution to the model’s
performance, with the results shown in Table 2. On the
CAIL2018-Small dataset, removing the knowledge graph
component resulted in the most significant decline in model
performance, with accuracy dropping by 7.6%. This fully
demonstrates the pivotal role of structured legal knowledge
in legal judgement prediction. The knowledge graph not
only provides rich prior knowledge but also captures
complex logical relationships among legal concepts through
its entity-relationship network. Removing the case-element
alignment mechanism resulted in a 4.5% performance drop.
This mechanism achieves semantic alignment between case
facts and legal elements through attention calculations,
serving as a crucial bridge connecting textual descriptions to
structured knowledge. The multi-task learning framework
contributed a 2.4% performance boost by simultaneously
optimising the primary task and the auxiliary legal element
prediction task, providing additional supervisory signals that
enhanced the model’s generalisation capability. Although
Laplace position encoding contributed relatively less at
1.6%, it played a crucial role in distinguishing the structural
roles of core elements versus peripheral elements.
Knowledge graphs make the most significant contribution
because they infuse models with rich structural prior
knowledge.  Through entity-relationship  networks,
knowledge graphs explicitly define logical constraints
between elements, providing models with inductive biases
that transcend textual statistical patterns and align with legal
reasoning.

Table 2 Melting experiment results (CAIL2018-Small
accuracy/%)
Decrease
Model Accuracy  Macro-F1  relative to full
model

Our 89.7 88.5 -
W/o knowledge 82.1 80.0 7.6
graph
W/o case — essential 85.2 83.9 4.5
alignment
W/o multitask 87.3 86.2 24
learning
W/o Laplace coding 88.1 87.0 1.6

Cross-lingual  experiments  validated the model’s
generalisation capability. On the English Legal-Bench
dataset, the model achieved an accuracy of 86.7%,
maintaining 96.7% of its performance relative to the
Chinese dataset. This result demonstrates that despite
linguistic  differences, knowledge graph-based legal
representations exhibit strong cross-lingual transferability.
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Structured legal knowledge reduces reliance on specific
linguistic expressions, enabling the model to better adapt to
judgement prediction tasks across different legal systems.

Through systematic experimental validation, the model
demonstrates significant advantages in legal judgement
prediction tasks. The integration of a knowledge graph
endows the model with rich legal prior knowledge. The
case-element alignment mechanism achieves effective
fusion of textual data and knowledge, while the multi-task
learning framework enhances the model’s generalisation
capabilities. The synergistic interaction of these technical
components not only renders the model highly valuable for
practical applications but also offers novel insights and
methodologies for legal Al research. All experimental code
and dataset information has been made publicly available,
ensuring complete reproducibility of the research findings
and laying a solid foundation for subsequent studies.

6 Conclusions

This paper systematically explores a technical approach
integrating knowledge graphs and graph neural networks to
address the intelligent analysis requirements for tort liability
elements wunder the Civil Code. The -constructed
knowledge graph of tort liability elements establishes a
machine-understandable foundation for legal knowledge.
The proposed case element alignment method bridges the
semantic gap between textual descriptions and legal
concepts. The multi-task prediction model not only ensures
accuracy but also enhances the transparency and
interpretability of the decision-making process. Experiments
demonstrate the method’s outstanding performance in
prediction tasks, validating the technical approach’s
effectiveness while providing a practical solution for
developing intelligent judicial assistance systems.

Future research can be deepened in multiple dimensions:
first, expanding the scope of knowledge graphs to
encompass other legal domains to validate the method’s
generalisation capabilities; second, exploring the integration
of multimodal data such as evidentiary documents to
enhance comprehensive analysis of complex cases; third,
focusing on model efficiency optimisation and lightweight
deployment — a critical step for moving beyond the
laboratory. The continuous evolution of legal artificial
intelligence will undoubtedly contribute more core
technological strength to the modernisation of judicial
practice.
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