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Abstract: This paper addresses the need for intelligent analysis of tort liability elements under 
the Civil Code by proposing a legal judgement prediction method that integrates knowledge 
graphs with graph neural networks. By constructing a knowledge graph of tort liability elements, 
this study proposes an element alignment method combining Laplace coding with attention 
mechanisms to precisely link factual circumstances with legal elements. Building upon this 
foundation, an end-to-end multi-task graph convolutional network prediction model was 
designed to simultaneously perform liability determination and identification of specific element 
statuses. Experiments on public datasets such as CAIL2018-Small demonstrate that this method 
achieves an accuracy of 89.7% and a Macro-F1 score of 88.5%, significantly enhancing both 
predictive performance and interpretability. This research provides a reliable technical pathway 
for intelligent judicial assistance systems and holds positive implications for advancing judicial 
intelligence. 
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1 Introduction 
With the deep integration of artificial intelligence 
technology across various fields, legal AI is undergoing a 
paradigm shift from traditional knowledge engineering 
approaches based on logical rules to data-driven intelligent 
analysis methods. Against this backdrop, legal judgement 
prediction – a core task of legal intelligence – aims to 
automatically forecast case outcomes through computational 
models. This provides judicial assistance to judges, 
litigation strategy analysis to attorneys and predictable 
judicial guidance to the public, making its research both 
theoretically significant and practically valuable (Gao et al., 
2024; Branting et al., 2021). 

The promulgation and implementation of China’s Civil 
Code have provided a more systematic and standardised 
framework for the field of tort liability (Li et al., 2024). 
However, the determination of tort liability itself constitutes 
a highly complex legal reasoning process, whose core lies in 
the rigorous examination and judgement of a series of 
constituent elements. These elements do not exist in 
isolation but are intertwined with strict logical connections 
and complex evidentiary dependencies. While existing 
traditional machine learning approaches can learn statistical 
patterns from case data, their model designs struggle to 

effectively capture and leverage the inherent structural 
relationships among legal elements (Bi et al., 2024; Tang  
et al., 2024). Meanwhile, the recent rise of deep  
learning-based pure text models, while excelling in text 
feature extraction, suffers from a black-box nature that 
renders decision-making processes non-traceable (Zhu  
et al., 2022). This prevents the clear presentation of the 
complete chain of reasoning – from case facts to legal 
elements to the final liability determination – which to some 
extent limits their in-depth application in judicial practice. 
In the digital age, infringement manifests new 
characteristics such as mass micro-infringement and mass 
aggregated infringement, posing significant challenges to 
traditional tort law in terms of damage assessment, fault 
determination, and causation analysis (Wu et al., 2024). 

Current legal AI research mainly follows two paths: 
supervised classification models like BERT for legal 
prediction tasks, and large language models for legal 
reasoning (Yang et al., 2024). However, both mainstream 
approaches exhibit significant limitations when analysing 
the elements of tort liability. While supervision-based 
classification models can capture local textual features, they 
struggle to effectively model the complex topological 
relationships between legal elements (Benedetto et al., 
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2025). Large language models, meanwhile, often perform 
poorly on legal prediction tasks due to the abstract nature 
and unique characteristics of legal provisions (Cui et al., 
2023; Shang, 2022). More critically, existing approaches 
generally overlook the deep semantic correspondence 
between case facts and legal elements, resulting in 
significant shortcomings in logical reasoning about legal 
requirements (He et al., 2023). Furthermore, the pervasive 
‘black box problem’ in judicial AI remains unresolved, with 
the opacity of decision-making processes severely 
undermining its credibility and practical value in judicial 
practice (Tong et al., 2024). 

To overcome the aforementioned limitations, this study 
adopts a technical approach combining knowledge graphs 
with graph convolutional networks. Taking the constructed 
fusion graph as input, the model performs information 
propagation and feature learning on the essential element 
correlation network through graph convolution operations. 
This design not only enhances the prediction performance 
of the primary task but, more importantly, enables the 
model to attribute the final liability determination to the 
fulfilment status of specific elements. Consequently, it 
significantly improves the model’s interpretability and 
judicial practicality. 

The main innovations and contributions of this work 
include: 

1 The first fine-grained knowledge graph targeting the 
elements of tort liability under the Civil Code has been 
constructed. This graph systematically models multiple 
entities including elements, provisions, evidence, and 
defences along with their intricate logical relationships. 
It transforms legal norms into structured knowledge 
that is machine-understandable and inferable, laying a 
solid foundation for in-depth legal analysis. This study 
represents the first fine-grained knowledge graph 
dedicated to the elements of tort liability under the 
Civil Code, achieving sophisticated modelling of the 
complex logical relationships among these elements. 

2 A case-element alignment method integrating Laplace 
position encoding with attention mechanisms is 
proposed. This approach precisely anchors case facts 
and legal elements through semantic attention, while 
leveraging Laplace encoding to embed global structural 
information of elements within the graph. It effectively 
bridges the semantic gap between case texts and 
structured knowledge, achieving precise mapping from 
facts to legal principles. This method pioneers the 
integration of Laplacian global structural encoding with 
attention-based local semantic alignment, resolving the 
mapping challenge between case texts and legal 
elements at the level of information representation. 

3 An end-to-end GCN multi-task prediction model is 
designed. This model performs inference on a 
constructed fusion graph, simultaneously outputting 
both the final conclusion on whether tort liability is 
established and the fulfilment status of each specific 
element. This design not only enhances prediction 

performance but also significantly improves model 
interpretability by attributing decisions to specific 
elements, aligning with judicial practice’s demand for 
transparent decision-making. This model coupled 
liability prediction with element state prediction 
through end-to-end multi-task learning. Its innovation 
lies in designing an intrinsically interpretable inference 
mechanism. 

2 Relevant technologies 
Knowledge graphs, as a technology that represents  
and stores knowledge through graph structures, are 
fundamentally designed to depict real-world concepts and 
their intrinsic relationships through entities, relationships, 
and attributes (Abu-Salih and Alotaibi, 2024; Zhang et al., 
2024). In the legal domain, which demands extreme rigor 
and logical precision, constructing knowledge graphs 
presents unique challenges. Its core component – ontology 
design – requires not only identifying and classifying legal 
concept entities but also precisely depicting their 
hierarchically structured, logically coherent relationships. 
For instance, in tort law, fault-based liability and strict 
liability form mutually exclusive categories, with  
fault-based liability contingent upon fulfilling prerequisites 
such as unlawful acts and actual damages (Zhong et al.,  
2024). This precise, machine-readable logical constraint 
distinguishes legal knowledge graphs from general-purpose 
ones, laying a solid foundation for subsequent automated 
reasoning. 

GCNs are deep learning models specifically designed to 
process graph-structured data (Bin, 2022). Its core concept 
originates from traditional convolutional neural networks, 
aiming to extend the applicability of convolutional 
operations from regular Euclidean spaces like images to 
non-Euclidean domains such as graph data structures (Liu  
et al., 2024; Yang et al., 2023). The fundamental operation 
of GCN follows a message-passing framework that learns 
node representations by aggregating neighbourhood 
information. Within this framework, each node receives 
information from its immediate neighbours and iteratively 
updates its own state accordingly. This characteristic makes 
GCN highly suitable for legal knowledge graphs. In such 
graphs, the semantics of a legal element do not exist in 
isolation but are jointly shaped by its own attributes and the 
associated elements it connects with. 

To achieve neighbourhood aggregation, GCN employs 
an efficient layer-wise propagation rule based on spectral 
graph theory. Their core inter-layer propagation mechanism 
can be expressed by the following formula: 

( )1 1
( +1) ( ) ( )2 2ˆˆ ˆl l lσ

− −
=H D AD H W  (1) 

where ˆ +=A A I  denotes the adjacency matrix augmented 
with self-connections, precisely encoding the topological 
connections between nodes in the graph. In the  
legal knowledge graph constructed for this study, each  
non-zero element of matrix A specifically represents  
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logical relationships between legal elements D̂  is the 
corresponding degree matrix, used to normalise the 

adjacency matrix for numerical stability. Using 
1 1
2 2ˆˆ ˆ− −D AD  

to perform symmetric normalisation on the adjacency 
matrix is a crucial step aimed at mitigating numerical 
instability issues that may arise from uneven node degree 
distributions in the graph, ensuring a stable training process. 
H(l) is the node feature matrix for layer l. W(l) is the 
trainable weight matrix for that layer, σ is the nonlinear 
activation function. 

The core of the attention mechanism lies in its ability to 
enable models to focus differentially on different parts of 
the input information based on their importance. This is 
achieved by assigning dynamically computed weights to 
input elements, where higher weights indicate greater 
criticality for the current task. Unlike fixed weights in 
traditional pooling operations, these weights are 
dynamically generated for each input data point. 

The core operation of this mechanism is commonly 
referred to as scaled dot-product attention. Their 
fundamental computational process can be expressed as: 

, ,Attention( ) softmax
kd

 =  
 

QK
Q K V V


 (2) 

This formula can be decomposed into three steps: first, by 
computing the dot product between the query matrix Q and 
the key matrix K, a similarity score matrix is obtained. This 
matrix reflects the matching degree between each query and 
all keys. Second, these scores are scaled by dividing them 
by the square root of the key vector’s dimension .kd  This 
prevents excessively large dot product results from causing 
the softmax function to get stuck in a region of minimal 
gradients. Subsequently, the scaled score matrix undergoes 
softmax transformation, normalising it into a probability 
distribution – the attention weights. Finally, these weights 
are applied to the value matrix V, performing a weighted 
sum to yield the final output. Each position in the output 
represents a weighted combination of all value vectors, with 
the weight determined by the relevance of the query at that 
position to all keys. 

In this study, the attention mechanism serves as a 
‘semantic bridge’. In the case-element alignment task, case 
fact texts serve as queries, while element nodes in the 
knowledge graph function as keys and values. Through 
attention calculations, the model automatically computes the 
association strength between each semantic unit in the case 
description and corresponding legal elements. This achieves 
precise, soft alignment from unstructured text to structured 
knowledge – far more flexible and robust than rule-based 
hard matching. 

Knowledge graph technology provides a structured 
framework for precisely expressing complex logical 
relationships in the legal domain. Graph convolutional 

networks empower models to perform deep feature learning 
and relational reasoning within this framework, while 
attention mechanisms effectively bridge the gap between 
unstructured text and structured knowledge. The organic 
integration of these three components collectively forms  
the foundational technological pillars of this research 
methodology, providing the theoretical basis for the 
implementation of specific models in subsequent sections. 

3 Knowledge graph construction 
The ontology design of a knowledge graph constitutes the 
soul and framework of its knowledge system. This chapter 
follows the classic technical approach in knowledge 
engineering: ontology design, knowledge extraction, graph 
augmentation, and quality assessment. Ontology design  
is grounded in legal ontology, aiming to construct a  
machine-understandable legal conceptual framework. 
Knowledge extraction employs a hybrid model designed to 
balance the representational power of deep learning  
models with the global constraints of sequence labelling  
models. Graph augmentation incorporates Laplace coding, 
theoretically motivated to endow graph neural networks 
with global structural awareness. The quality assessment 
framework adheres to the classic three dimensions of 
software and data quality standards to ensure the reliability 
of the constructed outcomes. By precisely defining core 
concepts and their interrelationships, it provides a 
fundamental paradigmatic foundation for the deep structural 
representation of knowledge in the field of tort liability. 
Based on a systematic analysis of the legislative spirit and 
normative framework of the tort liability section of the Civil 
Code, this study constructs an ontology model comprising 
five categories of core entities and five dimensions of 
foundational relationships. This model aims to transcend the 
limitations of traditional knowledge bases that merely list 
concepts. Through a refined relational network design, it 
profoundly reveals and reproduces the complex and 
rigorous logical structure among legal elements and judicial 
reasoning pathways. The technical approach to knowledge 
graph construction is illustrated in Figure 1. 

3.1 Ontology design 
The ontology’s entity structure design fully considers the 
characteristics of knowledge in the field of tort liability, 
establishing five core entities: legal elements, liability 
principles, defences, legal provisions, and types of evidence. 
These entities do not exist in isolation within the knowledge 
graph but are tightly interconnected through a multi-layered, 
multi-dimensional, mutually corroborating network of 
relationships, forming a knowledge ecosystem that is both 
clearly hierarchical and seamlessly integrated. 
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Figure 1 Knowledge graph technology roadmap 
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Figure 2 Model architecture diagram (see online version for colours) 
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Five relational models collectively form an organic whole 
that mutually supports and corroborates each other. 
Hierarchical classification establishes vertical layers of 
knowledge, logical dependencies construct horizontal 
chains of reasoning, mutually exclusive negation ensures 
comprehensive logical completeness, proof associations 
enable practical application of norms, and legal provision 
tracing safeguards the system’s normative credibility. 
Working in concert, they systematically recreate the 
complete cognitive process of tort liability. 

3.2 Knowledge extraction 
After completing the core design, the next critical  
task is knowledge extraction – specifically, the automatic 
extraction of entities and relationships from unstructured 
legal texts. This study employs a hybrid model  
based on bidirectional encoder representations from  
transformers (BERT)-bidirectional long short-term memory  
(BiLSTM)-conditional random field (CRF) for entity 
recognition. This model fully leverages the powerful 
representational capabilities of pre-trained language models 
alongside the advantages of sequence labelling models. 



 Knowledge graph construction and GCN prediction model for tort liability elements in the Civil Code 5 

Specifically, this model first utilises BERT to obtain 
character-level context-aware representations, capturing rich 
semantic information in legal texts through a multi-layer 
Transformer encoder. It then employs a BiLSTM network to 
further capture sequence dependency features, learning 
long-range dependencies within legal texts. Finally, a CRF 
layer ensures the global optimality of the label sequence by 
considering transition constraints between labels, thereby 
guaranteeing the accuracy and consistency of entity 
recognition. The loss function for this entity recognition 
process employs the cross-entropy loss function, whose 
mathematical expression is as follows: 

( ) ( ) ( )
1

log +ˆ log ˆ1 1
N

entity i i i i
i

L y y y y
=

 = − − −   (3) 

where yi represents the true label of the ith character, ˆiy  
denotes the corresponding predicted label probability by the 
model, N represents the length of the input sequence. This 
loss function guides the learning process of model 
parameters by minimising the discrepancy between the 
predicted probability distribution and the true label 
distribution. Notably, due to the imbalanced distribution of 
entities in legal texts, we introduced a category weighting 
mechanism in practice. This mechanism assigns higher loss 
weights to entities in minority categories, thereby enhancing 
the model’s ability to recognise low-frequency entities. 

For relation extraction tasks, we employ a joint learning 
approach based on semantic similarity, determining relation 
types by calculating representation similarity between entity 
pairs. This method first obtains contextual representations 
of entity pairs through a pre-trained language model, then 
computes their vector similarity, and finally classifies them 
based on similarity scores. The formula for calculating 
relation similarity is as follows: 

( )sim , i j
i j

i j
e e

⋅
=

⋅
h h

h h
 (4) 

where hi and hj are the representation vectors of entities ei 
and ej respectively, obtained through pre-trained language 
models. This formula measures the semantic similarity 
between entity vectors by calculating their cosine similarity 
with values ranging from –1 to 1. The closer the value is to 
1, the greater the semantic similarity between entities and 
the higher the probability of a relationship existing. This 
method effectively addresses the challenges of relation 
extraction in legal texts arising from their high complexity 
and diversity, demonstrating particular strength in 
identifying implicit relationships. Additionally, we designed 
a multi-task learning mechanism enabling entity recognition 
and relation extraction to share the underlying text. This 
collaborative optimisation enhances overall performance 
while improving the model’s training efficiency. 

3.3 Graph enhancement 
This study employs Laplace position encoding to enhance 
the structural representation of knowledge graphs, thereby 

serving downstream graph neural network models. The 
encoding leverages spectral decomposition of the graph  
to capture global structural information of nodes, generating 
a unique identity identifier for each node. In graph  
neural networks, traditional position encoding methods 
typically capture only local neighbourhood information. In 
contrast, Laplacian position encoding characterises a  
node’s structural position within the graph from a global 
perspective, which is crucial for distinguishing core  
|legal elements from peripheral auxiliary elements. The 
computation of Laplacian position encoding is based on the 
eigenvalue decomposition of the graph’s Laplacian matrix, 
with the following mathematical foundation: 

Δ Λ= U U  (5) 

where ∆ is the Laplacian matrix of the graph, defined as the 
degree matrix minus the adjacency matrix, reflecting the 
graph’s topological structure; U is the eigenvector matrix, 
whose column vectors correspond to the eigenvectors of the 
Laplacian matrix; Λ is the diagonal matrix of eigenvalues, 
where the elements on the diagonal represent the 
eigenvalues. Based on this feature decomposition, we  
can obtain the positional encoding for each node and obtain 
the final structure-aware representation through linear 
transformation: 

+i iλ λ= W b  (6) 

In this transformation, λi denotes the original position 
encoding of node i, W and b represent the learnable 
parameter matrix and bias vector. This encoding enables the 
model to clearly distinguish the essential differences 
between core and peripheral elements within the graph 
topology, providing crucial structural prior information for 
subsequent graph neural networks. Specifically, core 
elements such as fault liability – due to their highly central 
position in the graph and complex logical connections  
with multiple other elements – will receive coding 
representations significantly distinct from peripheral 
elements. The core element occupying a central position in 
the graph and maintaining complex logical connections with 
numerous other elements exhibits a distinct positional 
encoding derived from Laplace feature decomposition, 
which differs significantly from that of sparsely connected 
auxiliary elements. This structural awareness is crucial for 
accurate legal reasoning, as elements of differing structural 
significance carry varying weight in legal argumentation. 

3.4 Quality assessment 
To comprehensively validate the construction quality of the 
knowledge graph, a systematic quality evaluation 
framework is established. The evaluation framework 
encompasses three dimensions – completeness, accuracy, 
and consistency – and employs a combined quantitative and 
qualitative approach for comprehensive assessment. The 
selection of this framework is grounded in classical theories 
of knowledge graph quality assessment. These three 
dimensions respectively correspond to the fundamental 
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requirements for knowledge graphs in terms of content 
coverage, factual accuracy, and logical consistency, 
comprehensively reflecting their reliability across various 
judicial application scenarios. Completeness evaluation is 
achieved by comparing automatically extracted entities 
against manually annotated gold standards, ensuring the 
knowledge graph covers core concepts within the field of 
tort liability. The evaluation formula is as follows: 

extracted manual

manual
Completeness E E

E
∩=  (7) 

In this formula, the numerator represents the number of 
entities where automatically extracted entities intersect with 
manually annotated entities, while the denominator denotes 
the total number of manually annotated entities. This metric 
reflects the knowledge graph’s coverage of domain-specific 
knowledge. During actual evaluation, we invited three legal 
experts to independently complete manual annotation, using 
the union of their annotations as the gold standard to ensure 
comprehensive and authoritative assessment. Accuracy 
assessment employs a sampling verification method, where 
domain experts evaluate the correctness of randomly 
sampled entities and relationships to calculate metrics such 
as accuracy, precision, and recall. Consistency checks 
validate the logical coherence of entity relationships within 
the knowledge graph, particularly scrutinising the logical 
consistency of ‘requires’ and ‘excludes’ relationships to 
ensure the graph supports reliable logical reasoning. 

Through the organic integration of ontology design, 
knowledge extraction, graph enhancement, and quality 
assessment, the tort liability elements knowledge graph not 
only accurately captures the semantic information of legal 
elements but also deeply depicts the logical relationships 
and structural characteristics among these elements. This 
provides high-quality data support for legal prediction 
research based on graph neural networks. 

4 Predictive model for tort liability 
Building upon the completion of the tort liability knowledge 
graph construction, this chapter will elaborate on a tort 
liability prediction model based on graph convolutional 
networks. Through an innovative case-element alignment 
mechanism and integrated graph construction technology, 
this model organically combines unstructured case 
descriptions with structured legal knowledge graphs to 
achieve end-to-end tort liability prediction. The fusion of 
Laplace coding and attention mechanisms yields an 
alignment mechanism. Its theoretical foundation lies  
in enhancing information from two complementary 
perspectives: structural perception and semantic perception. 
Laplacian coding captures nodes’ global structural roles 
within the entire graph spectrum from a graph-spectral 
perspective, enabling the model to distinguish core elements 
from auxiliary ones. Meanwhile, the attention mechanism 
dynamically calculates the strength of associations between 

case facts and legal elements from a semantic perspective. 
The entire model architecture is shown in Figure 2. 

The primary component of the model is feature 
extraction, which is responsible for learning deep 
representations of legal elements from the knowledge graph. 
In traditional graph neural networks, node features often 
contain only basic semantic information, lacking 
consideration of the node’s structural role within the overall 
graph. To address this, we introduce a representation 
learning method that integrates semantic and structural 
features. This method first utilises Laplacian position 
encoding to obtain the structural features of nodes. It then 
employs a multi-head attention mechanism to learn 
dependencies between nodes. Layer normalisation 
techniques are applied to stabilise the training process. The 
complementary advantages of combining GCNs with 
attention mechanisms. GCNs enable message passing  
across graph structures, aggregating information from 
neighbouring nodes to learn feature representations aligned 
with legal logic networks, yet their receptive fields are 
constrained by the number of layers. Attention mechanisms 
dynamically assign weights to different semantic units, 
capturing long-range dependencies. In this model, GCN 
handles structural information propagation and inference, 
while attention mechanisms filter and align key semantics. 
Working synergistically, they jointly achieve precise 
reasoning. The mathematical expression for this process is 
as follows: 

( )( )lap lapfuse lapLayerNorm + MultiAttn ,i i i=h h h X  (8) 

where lap
ih  denotes the Laplace position encoding for the ith 

feature, Xlap represents the feature matrix for all features, 
MultiAttn denotes the multi-head attention mechanism, and 
LayerNorm refers to the layer normalisation operation. 
Under the feature fusion mechanism, the representation of 
each element integrates its global structural information 
within the graph and its associative features with other 
elements, providing a rich representational foundation for 
downstream tasks. 

The core innovation of the model lies in its case element 
alignment mechanism, designed to address the limitations of 
traditional legal text analysis that treats case details as a 
whole while neglecting precise mapping to legal elements. 
Based on attention methods, we automatically calculate the 
semantic relevance between case semantic units and legal 
elements using the following formula: 

( )case element
1 2

softmax i j
ij

d

 
 =  
 

W h W h 

α  (9) 

where case
ih  denotes the vector representation of the ith 

semantic unit in the case description, obtained through a 
pre-trained language model; element

jh  denotes the feature 
representation of the jth legal element; W1 and W2 denote 
learnable parameter matrices; d represents the vector 
dimension; αij denotes the association weight between the ith 



 Knowledge graph construction and GCN prediction model for tort liability elements in the Civil Code 7 

semantic unit and the jth legal requirement. This attention 
mechanism automatically focuses on key information within 
case descriptions that pertains to specific legal elements, 
effectively bridging the semantic gap between natural 
language descriptions and legal concepts. 

After obtaining the alignment relationship between case 
elements and knowledge graph features, the next critical 
step is to construct a fusion graph and perform graph 
convolutional inference. The fusion graph construction aims 
to incorporate the current case being processed as a special 
node into the existing knowledge graph, forming a new 
dynamic inference graph. Specifically, we fuse the aligned 
features of case descriptions with the element features in the 
knowledge graph through a multi-layer perceptron to 
generate the initial representation of the case node: 

( )fusion element caseMLPfi i i=h h h  (10) 

where || denotes vector concatenation, and MLPf represents 
a multilayer perceptron network. This operation enables 
case nodes to incorporate both prior knowledge of legal 
requirements and the specific characteristics of the current 
case. Building upon this foundation, we construct an 
extended adjacency matrix containing case nodes and utilise 
a multi-layer graph convolutional network for information 
propagation and feature learning. 

The feature aggregation process for image convolutions 
is as follows: 

( )1 1
( +1) ( ) ( ) ( )2 2 +l l l lσ

− −
=X D AD X W b   (11) 

where A  is the adjacency matrix for adding  
self-connections, D  is the corresponding degree matrix, X(l) 
is the node feature matrix for layer l, W(l) and b(l) are 
learnable weight and bias parameters, with σ representing 
the nonlinear activation function. Through multi-layer graph 
convolutional operations, the model enables information 
exchange between case nodes and legal requirement nodes, 
allowing case representations to progressively integrate 
legal knowledge while simultaneously adapting legal 
requirement representations to specific case contexts. 

The model simultaneously accomplishes two related 
tasks – predicting liability for infringement and determining 
the fulfilment of essential elements – through a multi-task 
prediction head. This multi-task learning design not only 
enhances the performance of the primary task but also 
improves the model’s interpretability. For the primary task 
of predicting whether liability for infringement is 
established, we perform pooling on the final representations 
of all nodes and then classify them using a softmax 
function: 

total 1 pred 2 element 3 relation+ +λ λ λ=     (12) 

where pred element relationand    represent the cross-entropy 
loss for the main task, the loss for the feature recognition 
task, and the loss for the relationship prediction task, 
respectively. λ1 λ2 and λ3 represent the weighting 
coefficients for each task, with optimal values determined 

through grid search. This multi-task learning mechanism 
enables the model to learn shared feature representations 
from multiple supervisory signals. During training, the 
model is forced to learn the causal relationships between the 
states of input factors and the final responsibility 
determination. During inference, decision-makers can view 
the final conclusion and trace back to the specific states of 
individual factors that collectively led to this conclusion, 
transforming the decision into a transparent chain of 
reasoning. This approach not only enhances the model’s 
generalisation capabilities but also allows predictions to be 
traced back to the specific conditions under which they were 
established, significantly improving the model’s legal 
interpretability. 

5 Experiments and results analysis 
5.1 Dataset construction and selection 
Regarding dataset selection, this study employed three 
representative public legal datasets to ensure the  
reliability and reproducibility of experimental results. The  
CAIL2018-Small dataset, sourced from the China AI for 
justice challenge, encompasses ten categories of criminal 
charges with a total of 10,000 legal cases. With an average 
text length of 512 characters, it features authentic  
cases and diverse criminal charges. The JEC-QA dataset,  
released by Tsinghua University, comprises 6,000 training 
samples covering five types of legal questions. Its  
question-answering format closely mirrors real-world legal 
consultation scenarios. For legal reasoning benchmarks, this 
study uses the legal-bench dataset. It comprises 5,000 
training samples and offers cross-language testing 
capabilities. Multiple internal sub-datasets each focus on 
distinct aspects, enabling comprehensive evaluation of 
model performance across various legal tasks. 

In knowledge graph construction, we systematically 
built a specialised legal knowledge graph based on the tort 
liability section of the Civil Code. This graph comprises 
1,045 entity nodes and 2,387 relationship edges, with entity 
types covering multiple core legal concepts. The 
construction process combined automated extraction with 
manual verification: entities and relationships were 
extracted from legal texts, then reviewed and refined by 
legal experts. This approach not only ensures knowledge 
quality but also provides a clear, reproducible technical 
pathway for subsequent research. 

5.2 Experimental setup and baseline model selection 
The experiments were conducted on a hardware 
environment comprising Tesla V100s GPUs and Intel Xeon 
Silver 4216 CPUs, utilising the PyTorch 1.9.0 and PyTorch 
Geometric 2.0.4 deep learning frameworks. A fixed random 
seed was set to ensure result consistency. All relevant code 
and scripts have been open-sourced to guarantee the 
reproducibility of the experiments. 



8 B. Li  

Figure 3 Performance comparison of primary experimental categories (see online version for colours) 
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Figure 4 Loss on the CAIL2018-Small dataset (see online version for colours) 
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Table 1 Key metrics in the training process 

Training stage Iteration count Training loss Validation loss Validation accuracy (%) Learning rate 

Initial stage 0–150 1.200→0.672 1.232→0.734 72.3→83.5 0.001 
Rapid convergence 150–400 0.672→0.421 0.734→0.523 83.5→87.2 0.001 
Stability optimisation 400–1,100 0.421→0.243 0.523→0.367 87.2→89.1 0.0005 
Final fine-tuning 1,100–2,000 0.243→0.090 0.367→0.101 89.1→89.7 0.0002 

 
This study incorporates five representative models as a 
baseline. BERT-Base, as a general-purpose pre-trained 
model, provides a fundamental performance reference (Liao 
et al., 2024). Lawformer is a pre-trained model specifically 
optimised for long-text legal documents, better handling the 
peculiarities of legal texts (Xiao et al., 2021). GAT and 
TextGCN represent attention-based graph neural networks 
and word-document graph-based text classification 
methods, respectively (Lv et al., 2024; Aras et al., 2024). 
BERT+GCN validated the effectiveness of a simple fusion 
strategy (She et al., 2022). The selection of these baseline 
models represents several mainstream technical approaches 
in the current field of legal AI: BERT, as a general-purpose 
pre-trained language model, serves as a performance 
benchmark for numerous NLP tasks; Lawformer is a 

domain-specific pre-trained model optimised for lengthy 
legal texts, embodying the domain adaptation approach; 
GAT and TextGCN are graph-based models that 
respectively explore the role of attention mechanisms and 
document-word graphs in text classification; BERT+GCN 
demonstrates the effectiveness of simple hybrid strategies. 
The selection of these baseline models balances both 
technical representativeness and applicability within the 
legal domain, providing comprehensive comparative 
benchmarks for evaluating the model. 

Model parameters were meticulously tuned using the 
AdamW optimiser with an initial learning rate of 0.001, 
combined with a weight decay of 0.01 to prevent 
overfitting. The batch size was set to 32, with a maximum 
training cycle of 100 rounds. Training was terminated via 
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early stopping when validation set performance failed to 
improve for ten consecutive rounds. Specific parameters  
of the model include a two-layer GCN network,  
256-dimensional hidden layer representations, a dropout 
rate of 0.5, and an eight-head attention mechanism. All 
these parameters were determined through grid search to 
achieve optimal values. 

5.3 Experimental results and analysis 
To comprehensively evaluate the effectiveness of the 
proposed model in predicting legal judgements, this chapter 
designed systematic experiments to validate it from multiple 
perspectives. 

The main experimental results demonstrate that our 
model achieves optimal performance across two datasets. 
On the CAIL2018-Small dataset, the model achieves an 
accuracy of 89.7%, a Macro-F1 score of 88.5%, and an 
AUC of 94.3%, representing improvements of 6.2%, 6.4%, 
and 5.1% respectively over the BERT-Base model. From a 
judicial practice perspective, the 89.7% prediction accuracy 
demonstrates a high level of reliability. In the early stages of 
case adjudication, the system provides highly consistent 
preliminary assessments, effectively assisting judges in 
identifying logical inconsistencies. As an efficient  
decision-making support tool, it enhances judicial efficiency 
and maintains consistency in sentencing standards. This 
significant improvement is primarily attributed to the 
introduction of knowledge graphs. Structured legal 
knowledge provides the model with rich semantic 
constraints, effectively reducing ambiguity issues in  
text comprehension. Compared to the specialised legal  
pre-training model Lawformer, our model still maintains a 
4.0% accuracy advantage, indicating that purpose-built legal 
knowledge graphs capture the specificity of the legal 
domain more effectively than general-purpose legal  
pre-training models. 

On the JEC-QA dataset, our model achieved an 
accuracy of 91.2%, representing a significant improvement 
over baseline models. This outcome demonstrates the 
effectiveness of the case-element alignment mechanism, 
which precisely connects factual case descriptions with the 
legal conceptual framework, thereby enhancing the model’s 
legal reasoning capabilities. Particularly when addressing 
complex legal issues, the model employs multi-task learning 
to simultaneously predict both the establishment of liability 
and the fulfilment of specific elements. This design not only 
improves performance on the primary task but also 
enhances the model’s interpretability. 

Analysis of the training process reveals the model’s 
convergence characteristics on the CAIL2018-Small 
dataset. The training loss value changes with the number of 
iterations as shown in Figure 4. 

During the first training epochs, the model converged 
rapidly. This accelerated convergence was driven by the 
strong semantic guidance provided by the knowledge graph, 
enabling the model to learn effective feature representations 
more efficiently. During subsequent training, the model 
entered a stable optimisation phase. Fine-tuning was 

achieved through gradual learning rate reduction, ultimately 
reaching a stable performance of 89.7%. The gap between 
training and validation losses remained within a reasonable 
range throughout, indicating strong generalisation 
capabilities and no significant overfitting. Key metrics in 
the training process are shown in Table 1. 

The ablation experiment conducted an in-depth analysis 
of each component’s contribution to the model’s 
performance, with the results shown in Table 2. On the 
CAIL2018-Small dataset, removing the knowledge graph 
component resulted in the most significant decline in model 
performance, with accuracy dropping by 7.6%. This fully 
demonstrates the pivotal role of structured legal knowledge 
in legal judgement prediction. The knowledge graph not 
only provides rich prior knowledge but also captures 
complex logical relationships among legal concepts through 
its entity-relationship network. Removing the case-element 
alignment mechanism resulted in a 4.5% performance drop. 
This mechanism achieves semantic alignment between case 
facts and legal elements through attention calculations, 
serving as a crucial bridge connecting textual descriptions to 
structured knowledge. The multi-task learning framework 
contributed a 2.4% performance boost by simultaneously 
optimising the primary task and the auxiliary legal element 
prediction task, providing additional supervisory signals that 
enhanced the model’s generalisation capability. Although 
Laplace position encoding contributed relatively less at 
1.6%, it played a crucial role in distinguishing the structural 
roles of core elements versus peripheral elements. 
Knowledge graphs make the most significant contribution 
because they infuse models with rich structural prior 
knowledge. Through entity-relationship networks, 
knowledge graphs explicitly define logical constraints 
between elements, providing models with inductive biases 
that transcend textual statistical patterns and align with legal 
reasoning. 

Table 2 Melting experiment results (CAIL2018-Small 
accuracy/%) 

Model Accuracy Macro-F1 
Decrease 

relative to full 
model 

Our 89.7 88.5 - 
W/o knowledge 
graph 

82.1 80.0 7.6 

W/o case – essential 
alignment 

85.2 83.9 4.5 

W/o multitask 
learning 

87.3 86.2 2.4 

W/o Laplace coding 88.1 87.0 1.6 

Cross-lingual experiments validated the model’s 
generalisation capability. On the English Legal-Bench 
dataset, the model achieved an accuracy of 86.7%, 
maintaining 96.7% of its performance relative to the 
Chinese dataset. This result demonstrates that despite 
linguistic differences, knowledge graph-based legal 
representations exhibit strong cross-lingual transferability. 
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Structured legal knowledge reduces reliance on specific 
linguistic expressions, enabling the model to better adapt to 
judgement prediction tasks across different legal systems. 

Through systematic experimental validation, the model 
demonstrates significant advantages in legal judgement 
prediction tasks. The integration of a knowledge graph 
endows the model with rich legal prior knowledge. The 
case-element alignment mechanism achieves effective 
fusion of textual data and knowledge, while the multi-task 
learning framework enhances the model’s generalisation 
capabilities. The synergistic interaction of these technical 
components not only renders the model highly valuable for 
practical applications but also offers novel insights and 
methodologies for legal AI research. All experimental code 
and dataset information has been made publicly available, 
ensuring complete reproducibility of the research findings 
and laying a solid foundation for subsequent studies. 

6 Conclusions 
This paper systematically explores a technical approach 
integrating knowledge graphs and graph neural networks to 
address the intelligent analysis requirements for tort liability 
elements under the Civil Code. The constructed  
knowledge graph of tort liability elements establishes a  
machine-understandable foundation for legal knowledge. 
The proposed case element alignment method bridges the 
semantic gap between textual descriptions and legal 
concepts. The multi-task prediction model not only ensures 
accuracy but also enhances the transparency and 
interpretability of the decision-making process. Experiments 
demonstrate the method’s outstanding performance in 
prediction tasks, validating the technical approach’s 
effectiveness while providing a practical solution for 
developing intelligent judicial assistance systems. 

Future research can be deepened in multiple dimensions: 
first, expanding the scope of knowledge graphs to 
encompass other legal domains to validate the method’s 
generalisation capabilities; second, exploring the integration 
of multimodal data such as evidentiary documents to 
enhance comprehensive analysis of complex cases; third, 
focusing on model efficiency optimisation and lightweight 
deployment – a critical step for moving beyond the 
laboratory. The continuous evolution of legal artificial 
intelligence will undoubtedly contribute more core 
technological strength to the modernisation of judicial 
practice. 
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