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Abstract: The energy industry is characterised by strong cyclicality, network 
infection risk, and multi-source data heterogeneity, making it difficult for 
traditional static assessment models of supply chain finance to meet dynamic 
early warning needs. To address these challenges, this paper proposes a 
dynamic heterogeneous graph neural network (DHGNN) model, which 
integrates a dynamic graph structure with cross-modal fusion of multi-source 
time series data, including finance, logistics, and public opinion. The core 
innovations of the model include a spatiotemporal attention mechanism, a 
dynamic graph construction module, and an industry-specific indicator system. 
Verification on the energy industry dataset demonstrates that the early warning 
accuracy reaches 96.2% (F1 = 0.974, AUC (area under the ROC curve) = 
0.962), with an average early warning time of 6.8 months ahead of schedule, 
which is 40% higher than existing models, and the risk transmission path 
identification accuracy increased by 32%. 
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dynamic prediction; energy supply chain finance. 
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1 Introduction 

The supply chain finance of energy companies is facing severe triple challenges. First, 
the risk is extremely dynamic and vulnerable to the impact of many factors. On the one 
hand, commodity prices are constantly fluctuating; on the other hand, policy regulations 
such as the ‘double carbon’ policy are constantly advancing, coupled with the invasion of 
natural disasters; these factors make the risk extremely unstable, which may have an 
impact on supply chain finance at any time (Gu et al., 2023). Secondly, the network 
contagion effect is prominent. The supply chain is not an isolated collection of 
individuals but a closely connected whole. Once the core enterprise has credit risk, this 
risk will spread quickly in the supply chain like ripples. Judging from past cases, due to 
supplier default, the risk of a central enterprise was transmitted along the supply chain, 
which eventually led to the indirect break of its capital chain. This also fully exposed that 
the traditional single-point assessment model has failed when dealing with the financial 
risks of complex supply chains, and it is impossible to control the whole picture of risks 
(Hu et al., 2024) accurately. Third, the data presents a complex state of multi-source 
heterogeneity. The ERP system within the enterprise carries detailed financial time series 
data, and a large amount of GPS trajectory data is generated in logistics and 
transportation links (Chen et al., 2025). In addition, public opinion text data is also 
generated at all times. Due to diverse sources and different structures, these multi-modal 
data have not been effectively integrated for a long time, resulting in numerous 
information islands, which cannot provide comprehensive and accurate data support for 
risk assessment and decision-making of supply chain finance, which seriously restricts 
the efficient development and stable operation of supply chain finance for energy 
enterprises (Wojewska et al., 2024). 

The existing methods have obvious limitations in risk management, which are mainly 
reflected in the following three aspects: First, the BP neural network model relies too 
much on the single data source of enterprise financial statements but completely ignores 
real-time operating data (such as sales orders, inventory turnover, capital flow, etc.), 
resulting in lag risk perception and difficulty in capturing dynamic risk changes (Qiu and 
Gao, 2025); secondly, the traditional risk control framework does not model and analyse 
complex enterprise relationships, such as guarantee network, capital exchange, 
counterparty map, etc. A large bank once suffered a loss of more than 10 million Yuan in 
supply chain financing because it failed to identify the hidden fraud of affiliated 
enterprise clusters (Gou et al., 2025). Third, multi-source time series data (such as 
equipment operating rate, logistics, transportation index, public opinion popularity, etc.) 
and supply chain topology have not been effectively integrated (Li et al., 2024), resulting 
in the data separation of time series dimension and relationship dimension, and a 
complete risk portrait cannot be formed. For example, separate enterprise import and 
export data analysis cannot reveal key node risks in the supply chain when monitoring 
trade financing risks. In contrast, the lack of map analysis of upstream and downstream 
enterprise transaction relationships may lead to misjudgment of systemic risks (Wang  
et al., 2023). 

Under this background, this paper has made three innovative achievements in the 
field of risk prediction in the energy industry: First, a unified framework based on 
dynamic heterogeneous graph neural network (DHGNN) is proposed (Ouyang et al., 
2025), which for the first time deeply integrates the construction of dynamic transaction 
relationships of enterprises with the extraction of multi-source time series features (such 
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as equipment operating rate and logistics index), breaking the traditional fragmented 
mode of ‘static diagrams + independent timing’ (Sang et al., 2025). Secondly, a  
cross-modal feature fusion module is designed to effectively integrate structured financial 
data, unstructured text information, and sensor time series data in the energy field 
through a multi-level attention mechanism, solving the industry’s long-standing problem 
of data heterogeneity. Finally, a specific risk indicator system for the energy industry 
covering seven dimensions – including policy sensitivity, environmental compliance 
risks, and supply chain stability – is built to provide the model with an assessment basis 
that aligns more closely with industry characteristics and significantly improves the 
accuracy and forward-lookingness of risk identification. 

In the context of supply chain finance, especially within the energy industry, several 
critical questions arise regarding the effective management and early warning of financial 
risks. Firstly, how can we simultaneously capture the temporal evolution and topological 
contagion of supply chain financial risk? This is crucial given the dynamic nature of 
financial risks and their potential to propagate through complex network structures. 
Secondly, how can we effectively fuse heterogeneous modal data, which often have 
inconsistent sampling rates and distributions? This challenge is particularly pertinent in 
the energy sector, where data sources such as financial records, logistics information, and 
public opinion vary significantly in their characteristics. Lastly, how can we ensure the 
model’s interpretability and early-warning lead time in real-world energy finance 
scenarios? Addressing these questions is essential for developing robust and practical 
solutions that can provide actionable insights and timely alerts. 

2 Related theoretical and technical basis 

2.1 Characteristics of supply chain finance risk 

Supply chain finance presents significant risk characteristics in the energy industry, such 
as market risk (Guo and Yao, 2024; Liu and Zheng, 2024; Wu et al., 2024). Fluctuations 
(e.g., price swings of over 0%) can easily lead to redemption crises. Typical cases include 
Shanxi coal companies that experienced batch debt defaults due to large coal price 
fluctuations. The contagion risk is that for every 1% increase in the core enterprise’s bad 
debt rate, the overall supply chain risk rises by 5% (Corbet and Gurdgiev, 2019; 
Chaudhry et al., 2022; Fang et al., 2025). The core enterprise collapses when its credit 
crisis is transmitted to upstream and downstream players. Policy compliance risks are 
reflected in measures like the ‘dual control’ policy, which may cause a 50% drop in 
corporate production capacity (Guo and Fang, 2024; Zhen and Lu, 2024; Xu et al., 2024). 
For example, local energy companies once faced collective credit tightening due to policy 
tightening. These risks are interrelated, highlighting the complexity and conductivity of 
energy supply chain financial risks. Dynamic monitoring and multi-dimensional 
prevention are essential for managing supply chain finance risks in business operations. 

The ‘dynamic risks’ referred to in this paper simultaneously exhibit temporal 
evolution and sudden shock characteristics: the former emphasises the continuous change 
of risk indicators over time, while the latter highlights structural mutations triggered by 
external sudden events. Together, these two factors drive instantaneous shifts in supply 
chain topology and node states. 
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2.2 Graph neural network applications 

The application of graph neural networks (GNN) in supply chain finance covers diverse 
aspects such as risk assessment, fraud detection, credit risk forecasting, demand 
forecasting, supply chain interruption management, and supply chain optimisation. This 
provides financial institutions with powerful tools to support refined risk management 
and decision-making. However, the complexity and interconnectivity of supply chain 
networks pose significant challenges. To address these, enterprises must leverage 
technological innovation, process optimisation, risk management, personnel training, and 
international cooperation to enhance resilience and efficiency (Abbas et al., 2025; 
Baghbani et al., 2025). 

The common definition standards of supply chain node and edge characteristics are as 
follows: nodes represent enterprises or entities in the supply chain, and the  
demand-supply relationship forms a network chain structure. Features include location, 
function, and connection mode, such as degree and centrality. The degree is divided into 
undirected and directed and can be quantified by edge weights, such as transaction 
volume. Edge represents the relationship between logistics and information flow between 
nodes, divided into directed and undirected (flow direction and bidirectional), and the 
weight table relationship strength. The length of the edge in complex networks is defined 
as equation (1). 

1 /ij ijd e=  (1) 

Among them, eij is the edge weight, which can also represent the hierarchical relationship 
of the supply chain. The characteristic definition of supply chain nodes and edges is 
usually based on network science theory, combined with the complexity, dynamics, and 
network chain structure characteristics of the supply chain, and the attributes of nodes 
and edges are described by indicators such as degree, centrality, weight, and path length. 
The supply chain also has topological indexes; node degree i ijD e=  represents the 
connection strength, and the shortest path dij = 1/eij represents the risk conduction 
distance. 

This paper employs graph sample and aggregate (GraphSAGE) rather than graph 
attention network (GAT) as the graph channel aggregation function. The dynamic graph 
structure adaptation mechanism is introduced (Zheng et al., 2025). When enterprise 
relationships are added or deleted, the adjacency matrix is dynamically reconstructed, 
incremental training is triggered, and the graph structure is reconstructed within the 
specified time (Holagh and Kobti, 2025). GNN shows significant advantages and 
empirical effects in supply chain applications. When conducting systematic risk 
assessment, it can identify key nodes by node centrality and simulate risk transmission 
(Ho et al., 2025); it has dynamic scene adaptability, which can optimise fresh food 
distribution and guide supply chain recovery after disasters (Zhang et al., 2024); it can 
integrate cross-modal data, combine blockchain to ensure data credibility, and integrate 
NLP to analyse public opinion to supplement unstructured signals (Liu and Wang, 2025). 

2.3 Multi-source timing fusion technology 

Multi-source time series fusion technology refers to integrating and analysing time series 
data from different sources to obtain more comprehensive and accurate insights, thereby 
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enabling better prediction of dynamic risks in energy supply chain finance. Energy 
supply chain finance involves multiple links and entities (such as energy producers, 
suppliers, financial institutions, and logistics enterprises), all of which generate a vast 
amount of multi-source time series data – including energy prices, transaction volumes, 
inventory levels, interest rates, exchange rates, and transportation data (Liu et al., 2024; 
Duan et al., 2025). 

In feature-level fusion, CNN-LSTM extracts the timing characteristics of equipment 
sensors, achieving a fault prediction error of < 5%. During the feature-level fusion 
process (Jiang et al., 2025), the data processing stage normalises time series data from 
different device sensors to align their value ranges, facilitating subsequent processing. In 
the CNN feature extraction stage, pre-processed data is input into the CNN, and local 
spatio-temporal features are extracted via the convolution and pooling layers. The 
convolution layer uses kernels to slide over time series data, capturing local patterns (e.g., 
periodic equipment operation trends); the pooling layer downsamples convolved features 
to reduce dimensionality and enhance model robustness (Li and Shi, 2025). In the LSTM 
feature extraction stage, the CNN-extracted feature sequence is fed into the LSTM to 
capture long-term dependencies in time series features. The LSTM’s forgetting, input, 
and output gates collaborate to control information flow, enabling the model to learn 
long-term trends and short-term fluctuations. In the feature fusion stage, CNN and LSTM 
features are combined to form a comprehensive feature vector, achievable through 
splicing or weighted summation. The splicing fusion formula is expressed as follows in 
equation (2). 

[ ],CNN LSTMF F F=  (2) 

Among them, F is the feature vector after fusion, which are the feature vectors extracted 
by FCNN and FLSTM respectively. The weighted summation fusion is shown in equation (3). 

CNN LSTMF F F= +α β  (3) 

where α and β are the weight coefficients used to adjust the degree of contribution of the 
different features. In the dynamic risk prediction of supply chain finance of energy 
enterprises, feature-level fusion through CNN-LSTM can make full use of CNN’s ability 
to extract local features and LSTM’s ability to model time series dependencies to more 
accurately describe the time series data of equipment sensors. Risk characteristics, 
thereby improving the accuracy of risk prediction. 

In decision-level integration, an attention mechanism weighs public opinion and 
financial data, thereby reducing the false alarm rate by 28%. The attention score is 
calculated using equation (4). 

( )T
i a q k i ae w tanh W q +W k +b=  (4) 

where ei is the attention score of the ith data (public opinion or financial data), which 
reflects the importance of the data in the current decision-making, wa attention weight 
vector, which is used to perform the final weighted summation of the attention score, and 
its dimension is the same as that of the hidden layer, wq query matrix, which converts the 
query vector q into the same space as the key vector ki, which is convenient for 
subsequent calculation. 

When the attention weights are normalised, the calculation is shown in equation (5). 
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where αi is the attention weight of the ith data, indicating the proportion of the data in the 
fusion process, and the sum of all weights is 1. n represents the number of data 
participating in the fusion. 

The data weighted fusion is shown in equation (6), and the risk prediction is shown in 
equation (7). 

1

n

i i
i

f v
=

=α  (6) 

where f represents the fused feature vector, which contains the key information of public 
opinion and financial data, and vi is the value vector of the ith data, representing the data’s 
specific content or feature value. 

( )T
o oy σ w f b= +  (7) 

where y represents the predicted risk value, the output is limited to (0, 1) by activating the 
function σ, which represents the probability of risk occurrence, wo represents the output 
weight vector, which is used to map the fused feature vector to the final risk prediction 
value, and bo represents the output bias term. 

The attention mechanism weights unstructured public opinion data and structured 
financial data in decision-level fusion through the above formulas and parameters. This 
enables the model to prioritise key information relevant to risk prediction, significantly 
improving prediction accuracy. 

The fused feature is obtained as i i ii
z W x= α ,where αi are cross-modal attention 

weights and Wi denotes the modality-specific projection matrix. At the decision level, a 
1-D temporal convolution is applied to z to output the risk probability. 

3 Construction of dynamic risk prediction model based on dynamic 
heterogeneous graph neural network 

3.1 Model overall architecture planning 

This paper proposes a dynamic risk prediction framework based on a DHGNN model. 
The framework aims to integrate multi-source time series data (covering key fields such 
as finance, logistics, and public opinion) with the complex topology of the supply chain 
through DHGNN. Deeply integrating these structures enables accurate and dynamic risk 
prediction. The model comprises six modules: input layer, dynamic graph construction 
layer, spatiotemporal feature extraction layer, cross-modal fusion layer, multi-source data 
combination layer, and risk warning layer. The model architecture is illustrated in  
Figure 1. 
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Figure 1 Model architecture (see online version for colours) 
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The input layer collects and pre-processes heterogeneous data from finance, logistics, 
public opinion, and production, converting them into a model-readable format for 
subsequent analysis. The dynamic graph construction module transforms these data into 
graph structures, visually depicting complex relationships and dynamic changes among 
elements, laying the foundation for feature extraction. In the spatiotemporal feature 
extraction module, technologies such as CNN and LSTM extract association patterns 
between nodes and long-term temporal dependencies from dynamic graphs, enhancing 
the capture of key data features. The cross-modal fusion module integrates features via 
strategies like weighted fusion or feature splicing, solving the data heterogeneity problem 
and forming a comprehensive feature vector to reflect supply chain states. The risk early 
warning module receives fused feature vectors, uses a risk assessment model to predict 
risks, and issues timely warnings when thresholds are exceeded, enabling enterprises to 
take proactive countermeasures 
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1 Missing value treatment: missing financial indicators were imputed using the 
average of the two most recent periods for the same company; missing logistics GPS 
data were handled with linear interpolation; missing sentiment text data were 
excluded outright. 

2 Standardisation: continuous variables underwent Z-score normalisation; price-related 
variables additionally underwent log-differencing to eliminate units of measurement 
and heteroskedasticity. 

We design a dual-channel architecture: the time series channel employs an improved 
Informer model to leverage the model’s long-sequence processing capabilities. In 
contrast, the graph channel uses GraphSAGE to demonstrate its applicability in  
financial networks. By integrating dynamic heterogeneous graph construction with an 
attention-based fusion mechanism, the architecture enhances its capability to predict 
financial risk states. 

Figure 2 Flowchart (see online version for colours) 
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3.2 Core module design and index setting 

Nodes are restricted to three types of enterprises: energy production, trade, and  
financing; edges are categorised into three types: transactions, guarantees, and logistics, 
with weights determined by monthly transaction amounts, guarantee limits, and 
transportation frequency, respectively. A comparison between co-occurrence and cosine  
similarity-based graph construction resulted in a 3.1% decrease in AUC, thus the  
domain-based definition was retained. 

2 layers with neighbour sampling number 20; fusion layer output dimension is 128. 
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The model in this paper consists of six modules: input layer, dynamic graph 
construction layer, spatiotemporal feature extraction layer, cross-modal fusion layer, risk 
warning layer, and multi-source data integration layer. The dynamic heterogeneous graph 
construction module transforms various entities and relationships in energy enterprises’ 
supply chains into graph structures and realises dynamic updates of these structures. 
Nodes include three types of entities – energy companies, suppliers, and financial 
institutions – distinguished by different colours or labels. Edges represent relationships 
between entities, such as transactions, guarantees, and logistics, where the weight of a 
logistics edge is defined as logistics frequency. Dynamics are managed via a sliding time 
window (T = 30 days), with the adjacency matrix updated every 30 days to capture 
changes in supply chain topology. The flow diagram is shown in Figure 2. Note: Input 
layer output dimensions are informer encoder has 2 layers, 8 heads, and a hidden 
dimension of 256; GraphSAGE hasThe spatiotemporal feature extraction module extracts 
time series and graph structure features through the time series and graph channels, 
respectively. The time series channel employs an improved Informer model. It 
incorporates energy-specific indicators (e.g., equipment operating rates and electricity 
price fluctuations) to enhance its ability to capture energy industry-specific 
characteristics. The graph channel utilises the GraphSAGE algorithm to aggregate risk 
characteristics of neighbour nodes, using maximum pooling operations to capture 
extreme risks. The enhanced Informer employs a 2-layer encoder, 8-head self-attention, 
hidden dimension 256, feed-forward dimension 1,024, and dropout = 0.1. The specific 
formula for this process is provided in equation (8). 

{ }(( )( ) ( 1) ( 1), , ( )k k k
v v uh σW CONCAT h AGG h u N v− −= ⋅ ∈   (8) 

where AGG is the maximum pooling, capturing extreme risks. 
The cross-modal fusion module dynamically weights features from different 

modalities – including financial, public opinion, and logistics data – through a 
hierarchical attention mechanism. The attention mechanism dynamically assigns weights 
based on feature importance, and the specific formula is provided in equation (9). 

( )( )
( )( )

,i
i fused i i

j
j

exp MLP h
h h

exp MLP h
= = ⋅

α α  (9) 

where αi is the attention weight of the ith data, indicating the proportion of the data in the 
fusion process, and the sum of all weights is 1. Dynamic weighted financial weight 0.4, 
public opinion weight 0.3, logistics weight 0.3 characteristics. 

The risk prediction layer combines dynamic risk scoring with conduction path 
analysis for risk assessment and early warning. The dynamic risk score is calculated via 
the output layer, ranging from 0 to 1 – where 0 signifies no risk and 1 denotes the highest 
risk probability. The specific formula for this calculation is provided in equation (10). 

( )T
o oy σ w f b= +  (10) 

where wo denotes the output weight vector, which is used to map the fused eigenvector to 
the final risk prediction value, and bo denotes the output bias term. 
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4 Experiment and results analysis 

4.1 Evaluation of experimental design arrangement 

In the evaluation experiment design stage, the study constructs a multi-dimensional 
feature sample set based on multi-source time series data from energy enterprises’ supply 
chain finance, covering core indicators such as equipment sensor data, financial metrics, 
logistics information, and public opinion emotional tendencies. The stratified sampling 
method divides the training and test sets to ensure data distribution representativeness and 
balance. According to the characteristics of GNNs and multi-source time series fusion 
models, optimal hyperparameters (e.g., learning rate, batch size, number of hidden layer 
units, and others) are determined via grid search with cross-validation while comparing 
the impact of different graph convolutional layer aggregation methods on model 
performance. The experiment introduces feature standardisation to eliminate dimensional 
differences and designs a parameter sensitivity analysis module to explore how attention 
mechanism parameters affect feature weight distribution. To ensure model generalisation, 
k-fold cross-validation verifies the model, with classification performance quantitatively 
evaluated using methods like confusion matrices, ROC curves, and precision-recall 
curves. Indicators such as F1 score, accuracy, and recall are calculated to measure model 
effectiveness comprehensively. Divide the data into training, validation, and test sets in a 
7:2:1 ratio based on chronological order. Generate samples using a 30-day rolling 
window to ensure out-of-sample time generalisation. 

During training, the validation loss stabilised below 0.02 after approximately 35 
epochs, with the training loss decreasing concurrently. No significant overfitting 
occurred, indicating model convergence. The model was trained using the AdamW 
optimiser with an initial learning rate of 1 × 10–3 and cosine annealing for learning rate 
scheduling. The training was conducted with a batch size of 64 and a maximum of 100 
epochs. Early stopping was implemented with a patience of 10 epochs to prevent 
overfitting. The training process was performed on a single RTX-3090 GPU, with the 
total training time approximately 2.3 hours. 

4.2 Key points of evaluation results analysis 

Here, PCA/LLE/UMAP are introduced as non-structural baselines to validate that even 
with nonlinear dimensionality reduction, transmission effects cannot be captured when 
graph relationships are missing. PR-AUC 0.941 (+3.7% vs. ST-GNN), VaR@95% 
coverage rate 97.2%, indicating the model maintains high sensitivity even under extreme 
tail risk conditions. 

Table 1 records the performance of the DHGNN model. The data show that the F1 
value of the DHGNN classifier is 0.98, indicating that the multi-source time series 
information samples processed by the DHGNN algorithm in this paper can be nearly 
completely identified. DHGNN outperformed random forest-genetic algorithm-back 
propagation neural network (RF-GA-BPNN) and the time-series LSTM model in terms 
of test scores, training scores, F1 score, and recall. 

Figure 3 shows that the model excels in time series prediction and demonstrates 
strong capabilities in capturing spatial dependencies and dynamically adapting to 
multidimensional structural changes. These experimental results further verify the 
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model’s excellent performance in addressing the spatiotemporal characteristics of 
complex energy enterprise supply chain systems. 
Table 1 Evaluation results of DHGNN vs. RF-GA-BPNN 

 RF-GA-BPNN DHGNN Percentage of model improvement 
Test score 97.6384% 98.5231% 0.0906% 
Train score 96.0000% 97.6745% 0.1744% 
Accuracy 94.6265% 96.1561% 1.6164% 
F1-score 96.7370% 97.4124% 0.0698% 
FPR 0.0000% 0.7914% 0.7914% 
Precision 96.6711% 99.5254% 2.8543% 

Compared to the state-of-the-art temporal graph convolutional network (T-GCN) (AUC 
0.921) and ST-GNN (AUC 0.935), our DHGNN achieves AUC improvements of 4.1% 
and 2.7% respectively on the same dataset, validating the effectiveness of the dynamic 
heterogeneous graph and multi-source fusion strategy. When the batch size increased 
from 32 to 128, the training time per epoch decreased from 185 seconds to 52 seconds, 
but the validation AUC dropped by 0.9%. Considering both memory usage and 
generalisation performance, 64 was found to be the optimal compromise. 

Figure 3 Dynamic changes of importance and edge weight of multi-source time series nodes and 
commodity value forecast (see online version for colours) 
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Figure 4(a) demonstrates the model’s ability to distinguish between customer transaction 
types. In each round, diverse transaction data samples are input, and activation values of 
neurons in the first DA layer are recorded. Results show neuron activation values are 
typically < 0.5 for A-book customer transactions, whereas those for B-book customers 
are ≥ 0.5. This confirms that the model discriminates between customer transaction data 
and generates distinct activation responses, enabling neurons to differentiate transaction 
types and accurately evaluate risks. 

Figure 4(b) illustrates the classification accuracy of different methods for risk 
transaction spillovers. Compared with GGNN, the graph isomorphism network (GIN) 
stabilises at > 90% accuracy after ~187 training epochs, while the graph network requires 
223 epochs to reach the same threshold. By the 250th epoch, GraphSAGE achieves 
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99.93% validation accuracy. These results show that when the data scale is sufficient, 
GraphSAGE effectively models complex nonlinear relationships in financial transaction 
networks and accurately captures risk characteristics. This discrepancy confirms that 
DHGNN can distinguish between high-risk B-book and low-risk A-book transactions, 
providing a basis for subsequent capital allocation. All indicators represent the mean of 
five independent experiments, with a standard deviation < 0.3%. Error bars are not shown 
in the figure due to minimal value fluctuations. 

Figure 4 Customer capabilities of different types of trading and accuracy of different methods 
(see online version for colours) 

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

2.5

D
ek

ns
ity

(%
)

Activation Value 

A-book
B-book

 

Ac
cu

ra
cy

(%
)

0 50 100 150 200 250
30

40

50

60

70

80

90

100

GraphSAGE
GGNN

GIN
GCN
GAT

Epoch  
(a)     (b) 

Figure 5 Training and verification losses of different models of spatiotemporal sensory neural 
network (see online version for colours) 
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In this study, AUC (area under the ROC curve) measures the model’s comprehensive 
discriminant ability. The higher the value, the stronger the ability of the model to 
distinguish risk samples; early warning advance rate (EAR) reflects the timeliness of the 
warning, and the higher the value, the earlier the warning; number of correctly identified 
conduction paths to total paths (NCC) is used to evaluate network risk coverage. The 
higher the value, the stronger the model’s ability to capture risk conduction paths. 
Together, these indicators are used to evaluate the performance of different risk control 
models. The higher the model, the better the model performs. MTGNN-LA converges 
fastest, and verification shows that introducing locally adaptive adjacency accelerates 
gradient propagation in energy supply chain scenarios. All indicators represent the mean 
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of five independent experiments, with a standard deviation < 0.3%. Error bars are not 
shown in the figure due to minimal value fluctuations. 

Figure 5 shows the training and validation losses for all four spatiotemporal neural 
networks over 40 durations. It is worth noting that the loss convergence of MTGNN-LA, 
MTGNN-TAttLA, and ASTGCN is faster than SGA-TCN, and the training loss is lower. 
Furthermore, MTGNN-LA and MTGNN-TAttLA reach the lowest validation error, 
highlighting their superior performance in time series classification tasks. All indicators 
represent the mean of five independent experiments, with a standard deviation < 0.3%. 
Error bars are not shown in the figure due to minimal value fluctuations. 

Figure 6 Model loss change diagram and comparison of predicted and actual values of products 
(a) training model loss change graph (b) forecast of demand for products (see online 
version for colours) 

0 10 20 30 40 50 60 70 80 90 100
0
1
2
3

4
5
6
7

8
LOSS VAL LOSS

Epochs

M
AE

 

Actual value

Predictive value

0

5

10

15

Next week Next month

3 3

10
12
R

eq
ui

re
m

en
t(N

um
)

 
(a)     (b) 

Figure 7 Energy consumption and forecast convergence of short-term energy forecast 
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Figure 6(a) shows that univariate and multivariate regression losses stabilise as training 
epochs increase. Loss fluctuations are minimal, with univariate regression mean absolute 
error (MAE) converging to 4.8 and multivariate regression MAE to 1.0, indicating stable 
training convergence. Figure 6(b) demonstrates the model’s superior short-term demand 
forecasting accuracy. For certain products within financial indicators, logistics 
information, and public opinion emotional tendencies, next-week forecast accuracy 
reaches 100%. The multivariate MAE is as low as 1.0, indicating that the model becomes 
more sensitive to sudden demand inflection points after integrating logistics data with 
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public sentiment. All indicators represent the mean of five independent experiments, with 
a standard deviation < 0.3%. Error bars are not shown in the figure due to minimal value 
fluctuations. 

Figure 7 shows the consumption of different energy sources at different times. These 
quantitative observations provide valuable information for energy planning and 
management, enable policymakers and utilities to optimise energy allocation in summer 
better, and also provide data support for experiments. Figure 7 also shows the optimised 
convergence values for short-term energy forecasts, and the short-term energy forecast 
cost values derived with the proposed DHGNN model are significantly lower than those 
derived using IGPCA alone, based on the above case study. Therefore, the DHGNN 
model has achieved better convergence results in short-term energy forecasting, and the 
IGPCA algorithm has also shown certain advantages in related scenarios. The DHGNN 
model may be the main option to be prioritised in the short-term energy forecasting 
procedure. In conclusion, the recommended DHGNN model effectively forecasts energy 
and produces excellent results. The DHGNN curve closely matches actual energy 
consumption, indicating its ability to capture extreme scenarios of summer peak loads. 
All indicators represent the mean of five independent experiments, with a standard 
deviation < 0.3%. Error bars are not shown in the figure due to minimal value 
fluctuations. 

Figure 8 Comparison of DHGNN energy forecasts (see online version for colours) 
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Figure 8 shows the high accuracy of this model in predicting the value of commodities, 
with a high degree of overlap between predicted and actual values, and the DHGNN 
model is excellent in predicting financial dynamics, with greater economic and predictive 
value. All indicators represent the mean of five independent experiments, with a standard 
deviation < 0.3%. Error bars are not shown in the figure due to minimal value 
fluctuations. 

Table 2 shows the results of the comparative experiment. In the comparative 
experiment, the DHGNN (this paper) model showed a significant advantage, and its AUC 
reached 0.962, which was better than 0.912 of RF-GA-BPNN, 0.876 of time series  
LSTM and 0.885 of static GCN; EAR is as high as 0.94, which is higher than 0.72 for 
RF-GA-BPNN and 0.65 for timing LSTM; The NCC is 0.93. Although the NCC of static 
GCN is 0.61, DHGNN also performs better on this indicator, and its early warning 
months reach 6.8 months, compared with the 4.2 months of RF-GA-BPNN and the 3.8 
months of time series LSTM. There is a significant increase in months, indicating that 
DHGNN is superior to other comparative models in multiple key indicators and has 
stronger performance and early warning capabilities. 



   

 

   

   
 

   

   

 

   

   74 P. Wan and J. Jiang    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Comparative results 

Mould AUC EAR NCC Number of months 
ahead of warning 

RF-GA-BPNN 0.912 0.72 - 4.2 
Temporal LSTM 0.876 0.65 - 3.8 
Static GCN 0.885 - 0.61 - 
DHGNN (this paper) 0.962 0.94 0.93 6.8 

Ablation analysis:  

1 Removing the graph structure (retaining only the Informer temporal channel) 
resulted in a 7.8% decrease in AUC. 

2 Removing the temporal module (retaining only GraphSAGE) resulted in a 9.4% 
decrease in AUC. 

3 Removing the cross-attention fusion layer resulted in a 5.1% decrease in AUC. 

This demonstrates that the temporal module contributes the most, followed by the graph 
structure, while the fusion mechanism is also indispensable. 

DHGNN inference complexity ≈ ( )2E d V d+ , where |E| ≈ 1.2 × 104 and  
d = 256; single-sample forward latency is 4.7 ms (batch size 64), meeting real-time  
early-warning requirements. 

For defaulting enterprises (accounting for 3.1%), the minority category F1 = 0.92; for 
the 12 extreme price surge events during the 2022 European energy crisis window, 11 
were accurately predicted, achieving a hit rate of 91.7%. 

5 Conclusions 

The proposed DHGNN model effectively integrates dynamic graph construction with 
cross-modal fusion, overcoming the separation of time series dynamics and topological 
structures in energy enterprise supply chain finance. This integration enables accurate 
risk prediction and enhances early warning timeliness by 68% compared to traditional 
methods, providing financial institutions with an integrated ‘risk-transmission’ view. 
However, the current model does not account for cross-regional policy heterogeneity and 
asymmetric information, which are crucial for real-world applications. Future work will 
address these limitations by incorporating federated learning and multi-agent 
reinforcement learning to expand the model’s applicability in cross-border energy trade 
scenarios. 
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