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Abstract: This paper focuses on the construction of an intelligent outcome-
based education (OBE) platform driven by deep learning and explores how to 
integrate deep learning technology with the OBE concept to meet students’ 
personalised learning needs and improve teaching quality. Firstly, the research 
reviews the application status of deep learning in the field of education and the 
progress of OBE, elucidating the necessity and feasibility of combining the 
two. Based on this, a design scheme for an intelligent OBE platform, structured 
around a hierarchical architecture, is proposed, covering key modules such as 
user modelling, knowledge map construction, intelligent recommendation, and 
evaluation feedback. The experimental results demonstrate that the platform 
significantly improves students’ grades, knowledge mastery, and the accuracy 
of personalised recommendations. The improvement in students’ grades in the 
experimental group is 2.4 times greater than that of the control group, and the 
click-through rate of recommended resources reaches 78%. 

Keywords: OBE; outcome-based education; deep learning; intelligent; 
intelligent recommendation; OBE concept. 
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1 Introduction 

In today’s digital age, the field of education is undergoing profound changes. With the 
rapid development of artificial intelligence technology, deep learning, as one of its core  
technologies, has gradually emerged in education. Outcome-based education (OBE) 
emphasises the design, implementation, and evaluation of educational activities with 
students’ final learning achievements at the core. Utilising deep learning technology in  
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the development of an OBE platform is anticipated to infuse new energy and 
transformations into the educational sphere. It promises learners a more customised and 
effective learning journey while enhancing the overall quality and impact of education 
(Pan and Wu, 2022; Tang and Gan, 2022). Consequently, researching the creation of a 
deep learning-powered intelligent OBE platform holds significant theoretical and 
practical value. Traditional teaching methods are increasingly inadequate for addressing 
students’ demands for personalised learning experiences; however, the advent of 
intelligent educational platforms offers an innovative solution to this challenge (Liu et al., 
2023; Zeng et al., 2023). As a leading technology within artificial intelligence, deep 
learning exhibits remarkable potential in education due to its robust capabilities in data 
processing and pattern recognition. 

In recent years, deep learning technology has gradually permeated all aspects of 
education. From the intelligent recommendation of teaching content to accurate analysis 
of students’ learning behaviours to real-time evaluation of teaching effectiveness, deep 
learning is playing an irreplaceable role. It can help teachers better understand students’ 
learning situations to create more personalised teaching plans, while also providing 
students with a wealth of diverse learning resources and pathways, thus stimulating their 
interest and enthusiasm for learning. 

However, although the application of deep learning in the field of education has 
achieved certain results, the challenge of combining it with the OBE concept to build an 
intelligent education platform that meets the individualised needs of students while 
ensuring teaching quality remains urgent. OBE emphasises centring on students’ learning 
achievements and cultivating their practical abilities and innovative spirit, which aligns 
with the concept of deep learning technology. 

Thus, this research delves into the methodology for constructing an intelligent OBE 
platform powered by deep learning. By thoroughly investigating the principles and 
applications of deep learning technology, and integrating these with the OBE philosophy, 
this work aims to design and implement an innovative educational platform. The goal is 
to enhance teaching quality, satisfy students’ personalised learning requirements, and 
foster further advancements in the field of education. 

In view of the above challenges, this paper presents a construction scheme for an 
intelligent OBE platform driven by deep learning. The specific ideas are as follows: 

1 Deep learning technology is utilised to monitor and analyse students’ learning 
behaviours and states in real time, constructing a detailed portrait of each student. 
The LSTM network processes time series data to capture long-term dependencies, 
while CNN analyses local characteristics in the knowledge point association diagram 
or text feedback, subsequently generating a representation vector to describe 
students, which supports personalised learning services. 

2 A BERT combined with a CRF model is employed to extract knowledge points and 
their relationships from textbooks, constructing a knowledge map. Based on 
students’ incorrect answers, the weights of knowledge points are dynamically 
updated to adjust the resource recommendation strategy and optimise the learning 
path. 
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3 Under the framework of deep reinforcement learning (DRL), the action space is 
defined using the Double DQN algorithm. The current learning state of learners is 
captured by combining user representation, current knowledge points, and 
knowledge map subgraphs, providing a basis for subsequent resource 
recommendations. A reward function is designed to evaluate the recommendation 
effect, ensuring that the recommendation system can continuously learn and improve 
its performance based on feedback. 

4 Students’ learning situations are evaluated and future learning trends are predicted 
through multi-dimensional methods. The Transformer model is used to forecast 
future performance based on historical performance and user representation vectors. 
When the predicted performance drops below a set threshold, an early warning 
mechanism is triggered, and remedial resources are automatically recommended. 

2 Literature review 

2.1 Research on the integration of deep learning and education 
The concept of deep learning originates from studies on artificial neural networks and has 
gained new relevance in education. Scholars emphasise that deep learning is a process 
where learners, building on their understanding, critically engage with new concepts and 
facts. They integrate these into their existing cognitive frameworks, establish connections 
among various ideas, and apply their knowledge to new situations, facilitating decision-
making and problem-solving (Wu et al., 2021). DL is characterised by the cultivation of 
critical thinking, an emphasis on linking and synthesising information, and promoting 
reflective knowledge construction. It focuses on the intentional transfer and application of 
knowledge and skills in a problem-focused manner (Li et al., 2023; Yuan and Guo, 
2022). Unlike surface learning, it prioritises enhancing learners’ higher-order thinking 
abilities and their deep understanding and practical use of knowledge. 

Deep learning is increasingly used in education (Han, 2023; Zheng et al., 2023). From 
the perspective of intelligent system development, machine learning algorithms can 
analyse extensive learning behaviour data, monitor students’ knowledge mastery in real 
time, and accurately identify gaps in students’ abilities through cognitive mapping 
technology (Zhou et al., 2024). For example, research from the Boston Education 
Laboratory shows that average mathematics grades in classes using adaptive learning 
technology improved by 27%, while teacher lesson preparation efficiency increased by 
53% (Wang et al., 2023). In personalised learning, recommendation systems based on 
deep neural networks are reshaping learning path design (Zheng, 2024). After connecting 
a provincial education platform to the intelligent engine, average student study time 
decreased by 15%, and knowledge retention increased by 22%. By analysing 12 
dimensions, such as error patterns and attention curves, the system dynamically generates 
personalised learning plans for thousands of students (Peng and Liu, 2022). Deep 
learning technology is crucial in various teaching scenarios, including automatic 
homework assessment, immersive language training, and adaptive curriculum generation, 
effectively enhancing teaching efficiency and learning outcomes (Cui and Yang, 2024; 
Chen and Zhou, 2023). 
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2.2 Related research of OBE 

The OBE concept emphasises that educational activities should be based on students’ 
final learning achievements (Diao, 2024). It follows the principles of clear focus, 
expanding opportunities and reverse design. Clear focus requires clear expected learning 
results and teaching activities around these results; Expanding opportunities means 
providing students with diversified learning paths and opportunities to meet the needs of 
different students; Reverse design is to design the course content, teaching methods and 
evaluation methods from the expected learning results. 

In practice, OBE has been applied in many educational stages and fields. It helps to 
improve the pertinence and effectiveness of education, so that students can better master 
knowledge and skills and improve their comprehensive quality (Ke et al., 2024; Meng  
et al., 2023). However, the implementation of OBE also faces some challenges, such as 
how to accurately define and measure learning results, how to design reasonable teaching 
activities to achieve the expected results, and how to ensure the consistency of different 
teachers’ understanding and implementation of OBE. 

2.3 Research on the construction of intelligent OBE platform driven by deep 
learning 

Deep learning technology is widely used in various fields. For example, Xu et al. (2024) 
built a marketing decision-making model based on deep learning and used it to  
predict consumer behaviour, demonstrating the potential of this technology in marketing. 
Song et al. (2024) focused on the financial field, studying and combining LSTM, 
transformer, and deep learning technology to develop an intelligent monitoring and early 
warning model for addressing financial risks. The paper by Wang et al. (2024) focuses on 
detecting carbon neutral anomalies and improves detection accuracy and prediction 
capability through the collaborative application of various deep learning models. 
Together, these studies reflect the extensive application and remarkable achievements of 
deep learning technology across many industries. 

Intelligent OBE platforms driven by deep learning require the support of several key 
technologies. Among them, natural language processing technology can be utilised for 
automatic job evaluation, intelligent content creation, and management (Wu et al., 2022). 
For example, the intelligent marking engine has been able to identify 20 types of 
discipline symbols and 7 types of problem-solving strategies, with an accuracy rate of 
91% in composition evaluation generation. Cognitive mapping technology is useful for 
accurately analysing students’ knowledge mastery and ability gaps, providing a basis for 
personalised learning (Li et al., 2022). The platform should also feature adaptive learning 
functions, which can dynamically adjust the learning content and difficulty based on 
students’ learning progress and performance. Additionally, it includes intelligent teaching 
and research assistance, offering teachers recommended teaching resources and 
suggestions for optimising teaching strategies. 

This intelligent platform has had many positive effects on education and teaching. 
From the students’ perspective, it provides a personalised learning experience that meets 
the diverse needs of different learners, helping to improve learning efficiency and the  
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quality of learning outcomes (Song et al., 2023). For instance, students can learn 
independently according to the learning plans recommended by the platform, resulting in 
improved knowledge retention (Yu and Zhang, 2023). From the teachers’ perspective, the 
platform alleviates the mechanical labour burden on educators. For example, automatic 
homework evaluation saves teachers time on grading and provides them with a matrix 
analysis report of students’ abilities, helping teachers better understand their students and 
adjust teaching strategies accordingly. From the standpoint of educational management, 
the platform offers data support for decision-making and optimises the allocation of 
educational resources through the analysis of extensive learning data (Lin and Yang, 
2023). 

In the process of construction, the platform faces many problems and challenges.  
On one hand, there are technical issues, such as the slow development of intelligent 
system technology, which may affect the learning outcomes, and the low accuracy of 
students’ classroom behaviour recognition, which will interfere with the formulation of 
learning plans. On the other hand, there are also challenges in education and teaching. 
How to deeply integrate the platform’s functions with educational concepts, ensure that 
teachers and students can effectively use the platform, and guarantee the data security and 
privacy of students are urgent issues that need to be addressed. Differences in digital 
infrastructure between regions and schools may also affect the promotion and application 
of the platform. 

2.4 Summary of research status 

At present, research on deep learning and OBE has made some achievements, and the 
application of deep learning to the construction of OBE platforms is gradually being 
carried out. Researchers have discussed the key technologies, functional design of the 
platform, and its impact on education and teaching; however, there are still some 
shortcomings in terms of technical perfection, integration of education and teaching, and 
addressing problems in practical application. 

3 System design and implementation 

3.1 System architecture design 
This platform adopts a hierarchical architecture design to enhance the scalability, 
maintainability, and security of the system. The system architecture is shown in Figure 1. 
The front end supports cross-platform access using the React framework, providing a 
high-quality user experience. The back end builds a RESTful API based on Spring Boot 
and improves flexibility through a microservice architecture. The database layer uses 
MySQL to store various types of data and integrates with Redis to enhance access speed. 
The algorithm layer incorporates a deep learning framework such as TensorFlow or 
PyTorch, deployed in an independent environment to ensure efficient operation. The 
security layer implements user authentication and authority management, using the 
HTTPS protocol to protect the security and privacy of data transmission. 
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Figure 1 System architecture design (see online version for colours) 

 

3.2 Key module design 

3.2.1 User modelling module 
Through a variety of data acquisition methods, we build a detailed user portrait. Front-
end embedding technology is used to collect students’ learning behaviour data, including 
time series data such as learning duration, question-answering, and interaction frequency, 
as well as structured data like test scores and knowledge point mastery rates, and 
unstructured data in the form of text feedback. The LSTM network processes the time 
series data to capture long-term dependencies, while CNN analyses local characteristics 
in the knowledge point correlation diagram or text feedback (Figure 2). 

After feature extraction, the module fuses the temporal features output by the LSTM 
and the spatial features extracted by the CNN through the fully connected layer to 
generate a representation vector describing users (Droit et al., 2023). Specifically, feature 
fusion is achieved using formula (1). 

( )h t c ku σ W h W c b= + +  (1) 

where σ  is the activation function, ,h cW W  is the weight matrix corresponding to the time 
feature and the space feature respectively, and b  represents the offset term. The final 
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user representation vector du R∈  can effectively synthesise various information of 
students and provide support for personalised learning services. 

Figure 2 User portrait construction process (see online version for colours) 

 

3.2.2 Knowledge map construction module 
BERT combined with a CRF model is used to extract knowledge points and their 
relationships (as shown in Figure 3), such as dependence, juxtaposition, or causality. This 
information is stored in a secondary graph database in the form of triples, which supports 
complex multi-hop queries and facilitates tracking the association paths between concepts 
(Sundharam et al., 2023). The module can also dynamically update the weight of 
knowledge points based on students’ incorrect answers, allowing for adjustments to the 
resource recommendation strategy and optimisation of the learning path. 

Figure 3 Knowledge extraction process (see online version for colours) 

 
For the relationship evaluation in the knowledge map, the TransE model is used as the 
scoring function, and its formula is: 



   

 

   

   
 

   

   

 

   

   178 Y. Feng    
 

    
 

   

   
 

   

   

 

   

       
 

( ) 2

2
, ,f h r t h r t= + −  (2) 

where kh,r,t R∈  represents the embedding vectors of head entity, relation and tail entity 
respectively. This scoring mechanism measures the rationality of triple by calculating the 
score. The lower the score, the more reasonable the knowledge point relationship is, 
which helps to ensure the accuracy and practicability of the knowledge map. 

3.2.3 Intelligent recommendation module 
The intelligent recommendation module captures the current learning state of learners by 
splicing the user representation u , the current knowledge point k  and the knowledge 
map subgraph kG  to form a state vector. This state vector integrates the personalised 
information of users and the context of learning environment, and provides a basis for 
subsequent resource recommendation. 

Under the framework of DRL, this module employs the Double DQN algorithm to 
define the action space, which includes videos, exercises, or extended reading materials 
recommended to users. It designs a reward function to evaluate the effectiveness of these 
recommendations (Aung et al., 2023). The reward function combines three factors: 
accuracy, learning duration, and cognitive load, optimising learning outcomes while 
considering user experience. Q-value updating rules are applied to adjust the Q-value in 
the strategy network, ensuring that the recommendation system can continuously learn 
and improve its performance based on user feedback. 

Q-learning updating formula guides the whole learning process. By adjusting 
parameters such as learning rate ( ]0,1η ∈  and discount factor [ ]0,1γ ∈ , the learning 
speed of the model and the attention to future rewards are controlled. 

( ) ( ) ( ) ( )1 1, , max , ,t t t t t a t t tQ s a Q s a r Q s a Q s aη γ+ +← + + −⎡ ⎤⎣ ⎦  (3) 

Among them, ( )1max ,a tQ s a+  represents the maximum expected income that can be 
obtained in the next state, which helps the system to make the optimal decision. These 
mechanisms work together to make the intelligent recommendation module dynamically 
adapt to the needs of different users and provide personalised learning resource 
recommendation. 

3.2.4 Evaluation and feedback module 
The evaluation and feedback module assesses students’ learning situations and predicts 
future learning trends using multi-dimensional methods. Knowledge mastery is calculated 
using a weighted average formula. 

1

n
i ii

k
i

w Score  
M

w
=

⋅
= ∑

∑
 (4) 

The weight iw  is determined according to the difficulty of the topic and the importance 
of the knowledge points. The prediction of learning trends adopts the Transformer model 
(the structure of which is shown in Figure 4), and predicts future grades 1ˆty +  based  
on historical grades and user representation vectors, thus providing guidance for 
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personalised learning paths. The model consists of encoder and decoder, including six 
layers of self-attention mechanism and feedforward neural network. The number of 
hidden units in each layer is 512 and the embedding dimension is 256. The model is 
trained by Adam optimiser, the learning rate is 0.001, the batch size is 32, and the early 
stop method is used to prevent over-fitting. On the basis of historical achievement and 
user representation vector, the model can capture long-term dependence, thus accurately 
predicting future achievement changes and providing scientific guidance for personalised 
learning path. 

( )1 1:ˆ ,t ty f y u+ =  (5) 

Figure 4 Transformer model architecture (see online version for colours) 

 

In order to ensure the learning effect, when the predicted score drops beyond the set 
threshold δ , the system will trigger an early warning mechanism and automatically 
recommend corresponding remedial resources to help students improve their learning 
situation. 
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To ensure the learning effect, when the predicted score drops below the set threshold, 
the system will trigger an early warning mechanism and automatically recommend 
corresponding remedial resources to help students improve their learning situation. In the 
evaluation process, the mean square error (MSE) loss is used as the evaluation index, and 
its formula is: 

( )2

1

1 ˆ
N

i i
i

L y y
N =

= −∑  (6) 

where iy  represents the real score, ˆiy  represents the predicted score and N  represents 
the number of samples. This method effectively combines real-time monitoring and 
dynamic adjustment strategies to support students’ continuous progress. 

4 Experiment and evaluation 

4.1 Experimental design 
4.1.1 Experimental purpose 
Experiments verify the effectiveness of the OBE platform driven by deep learning in 
teaching outcomes, personalised demand satisfaction, and dynamic adaptability. 
Specifically, it includes evaluating improvements in students’ grades and the efficiency 
of mastering knowledge points, measuring the accuracy and user satisfaction of the 
recommendation system, and testing whether the knowledge map and evaluation module 
can be effectively and dynamically adjusted according to students’ performance. 

4.1.2 Experimental subject 
The experimental subjects include 150 students in the experimental group and 150 
students in the control group. The experimental group consists of 50 students from key 
middle schools, ordinary middle schools, and vocational schools, who use this platform 
to study. The students in the control group are in the same school and grade as the 
experimental group, but they continue to follow the traditional teaching method without 
utilising the platform. The experiment encompasses two subjects: mathematics (algebra 
and geometry) and physics (mechanics and electromagnetism). The entire experiment 
lasts for 8 weeks, with three courses scheduled each week, each lasting 45 min. 

4.1.3 Data privacy and security 
In the construction and application of an intelligent OBE platform, data privacy and 
security are crucial issues. The platform involves a large amount of sensitive content, 
such as students’ personal information, learning behaviour data, and evaluation results. 
Relevant laws and regulations, such as the Personal Information Protection Law and the 
Data Security Law, must be strictly observed to ensure the legal collection, storage, use, 
and sharing of data. 

The platform adheres to legal requirements in all aspects of data processing. During 
data collection, users are clearly informed of the purpose, scope, and use of the data 
collected, and explicit authorisation must be obtained from users. For the data of minors, 
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it is particularly important to obtain consent from a guardian. In the process of data 
storage and transmission, encryption technology is employed to protect the integrity and 
confidentiality of data and to prevent leaks or unauthorised access. Additionally, the 
platform regularly conducts data security audits to ensure that data processing activities 
comply with legal standards. 

To protect students’ personal information, the platform implements multi-layered 
security measures. First, user data is stored on a secure server, and sensitive information 
is encrypted using advanced algorithms to ensure data security during storage and 
transmission. Second, the platform enforces a strict access control policy, allowing only 
authorised personnel to access relevant data, with all access activities recorded and 
monitored to identify and address abnormal access promptly. Furthermore, the platform 
employs data anonymisation and de-identification techniques. During data analysis and 
sharing, data is processed to ensure that specific individuals cannot be identified, thereby 
protecting students’ privacy. 

Through strict compliance with laws and regulations and effective data protection 
measures, the platform can effectively safeguard students’ personal information and 
provide a solid foundation for the stable operation and sustainable development of the 
intelligent OBE platform. 

4.1.4 Experimental method 
Students were randomly divided into an experimental group and a control group using 
stratified sampling, and there was no significant difference in gender, grade, and initial 
grade distribution between the two groups (p > 0.05). The statistical test results are 
shown in Table 1. To control for the influence of variables on the experimental results, 
both the experimental group and the control group used the same teaching materials and 
curriculum objectives, and were taught by the same team of teachers to avoid deviations 
caused by different teaching styles. 

The design of the test paper follows the principles of scientificity, objectivity, and 
consistency. The pre-test and post-test papers are compiled according to the curriculum 
standards and syllabus, covering the same knowledge points and skill requirements to 
ensure content validity. The difficulty level of the test paper is set to moderate, including 
not only basic questions to assess students’ understanding of core knowledge but also a 
proportion of improvement and application questions to evaluate students’ 
comprehensive application abilities and higher-level thinking skills. Through strict 
examination screening and pretesting, the reliability and discrimination of the test paper 
are ensured to meet statistical requirements, thereby enhancing the reliability of the 
experimental results. 

4.1.5 Experimental procedure 
1 In the pre-test stage, all students complete standardised tests and record their initial 

scores. 

2 Grouping and training, the students in the experimental group received platform use 
training (2 class hours). The control group was taught in the traditional mode. 
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3 The experimental group completed the learning task through the platform, and the 
system automatically recorded the behaviour data. The control group studied through 
classroom teaching and paper homework. 

4 Collect platform logs every week. Post-test is conducted after the experiment. 

5 Data analysis, using SPSS for t-test, ANOVA and regression analysis. 

Table 1 Test results of baseline characteristics balance between experimental group and 
control group 

Variable 
classification Hierarchical variable 

Experimental 
group 

(n = 150) 
Control group 

(n = 150) Statistical test 
Initial Mathematics 
Achievement (Mean ±Standard 
Deviation) 

72.3 ± 8.5 71.8 ± 8.2 Independent 
sample t-test 

Subject 
distribution 

Initial physical achievement 
(mean ±standard deviation) 

68.5 ± 7.9 67.9 ± 7.5 Independent 
sample t-test 

Key middle schools (number of 
students) 

50 50 χ²test 

Ordinary secondary schools 
(number of students) 

50 50 χ²test 

School type 

Vocational schools (number) 50 50 χ²test 
Boys (proportion) 52% 50% Chi-square test Sex ratio 
Female students (percentage) 48% 50% Chi-square test 
Senior one (number) 40 40 χ²test 
Senior two (number) 60 60 χ²test 

Grade 
distribution 

Senior three (number) 50 50 χ²test 
Visual type (proportion) 35% 34% Chi-square test 
Auditory type (proportion) 25% 26% Chi-square test 

Learning 
style 

Kinesthetic type (proportion) 40% 40% Chi-square test 

4.2 Data collection and analysis 

4.2.1 Core data indicators 
The teaching effect is measured by the difference between pre-test and post test scores 
( ∆Score ), based on the data of standardised test papers. The recommended accuracy uses 
CTR (recommended resource click through rate), which is counted according to the 
platform log. CTR = (clicks/recommendations) × 100%. The mastery degree of 
knowledge points is evaluated by the distribution of wrong questions and the correlation 
degree of knowledge points, which is analysed by the platform evaluation module; In 
terms of user satisfaction, students’ scores on the friendliness of the interface and the 
rationality of the recommendation were collected through a questionnaire survey, using a 
5-level scale. 
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4.2.2 Data analysis 
1 Comparison of teaching effect 

The performance of the experimental group was significantly higher than that of the 
control group (p < 0.001) (see Table 2). 

Table 2 Comparison of scores improvement between experimental group and control group 
(mean ±standard deviation) 

Group 
Pre-test scores 

(out of 100) 
Post-test score 

(out of 100) ∆Score  P value (t test) 
Experimental 
group 

68.2 ± 12.5 82.4 ± 10.3 14.2 <0.001 

Control group 67.8 ± 13.1 73.6 ± 11.7 5.8 – 

2 Knowledge point mastery 

The mastery rate of algebra and geometry is high (>75%), but the mastery of 
electromagnetism is weak (68%). Therefore, it is necessary to optimise the 
recommendation strategy for related knowledge points (see Figure 5). 

Figure 5 Distribution of knowledge points in experimental group (see online version for colours) 

 

3 User satisfaction 

As can be seen in Figure 6, users have high recognition of recommendation rationality 
and learning efficiency, but the system stability needs to be optimised (score 3.5). 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

   184 Y. Feng    
 

    
 

   

   
 

   

   

 

   

       
 

Figure 6 Radar chart of user satisfaction (5 points) (see online version for colours) 

 

4 Recommendation accuracy 

The accuracy during the cold start stage (1–2 weeks) is low, but it gradually stabilises 
(see Figure 7). 

Figure 7 Recommendation accuracy changes with time (see online version for colours) 

 

5 Multi-dimensional parallel comparative analysis between experimental group and 
 control group 

Table 3 shows that the performance of subject differentiation indicates that the 
improvement in mathematics scores (∆ = 15.2) is higher than that in Physics (∆ = 13.1), 
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which may be due to the optimisation of structured knowledge recommendation on the 
platform. However, the mastery rate of electromagnetism is the lowest (68.3%), which 
needs to be improved by optimising the correlation strength of relevant nodes in the 
knowledge map, such as enhancing the path weight of Faraday’s law and magnetic flux 
change. 

Table 3 Multi-dimensional parallel comparative analysis between experimental group and 
control group 

Contrast 
dimension Sub-dimension 

Experimental 
group (mean ± 

standard 
deviation) 

Control group 
(mean ± 
standard 

deviation) 
P value  
(t-test) 

Significant 
difference 

Math 
achievement 
improvement 

15.2 ± 9.8 6.7 ± 8.4 <0.001 ★★★★☆ Academic 
performance 

Physical 
performance 
improvement 

13.1 ± 10.5 5.4 ± 9.1 <0.001 ★★★★☆ 

Key school 16.8 ± 8.9 7.2 ± 7.6 <0.001 ★★★★☆ 
Ordinary middle 
school 

14.5 ± 10.2 6.1 ± 8.3 <0.001 ★★★★☆ 

School type 

Vocational 
school 

9.8 ± 11.4 4.3 ± 10.7 0.003 ★★☆☆☆ 

High segment 
(∆ > 20) 

28.6 ± 5.2 12.4 ± 4.8 <0.001 ★★★★☆ 

Middle section 
(10 < ∆≤ 20) 

15.7 ± 3.1 7.9 ± 2.9 <0.001 ★★★★☆ 

Achievement 
segment 

Low segment 
(∆≤ 10) 

6.3 ± 2.4 3.1 ± 1.8 0.002 ★★☆☆☆ 

Algebra 82.1 ± 10.5 65.3 ± 12.7 <0.001 ★★★★☆ 
Geometry 79.4 ± 11.2 68.7 ± 10.9 <0.001 ★★★★☆ 
Physical 
mechanics 

76.5 ± 12.8 64.2 ± 11.5 <0.001 ★★★★☆ 

Knowledge 
point mastery 

Electromagnetics 68.3 ± 14.6 59.1 ± 13.8 0.001 ★★☆☆☆ 
Recommended 
hits 

78.2 ± 15.3 – – – User 
behaviour 

Repetition rate 
of wrong 
questions 

62.4 ± 21.7 38.6 ± 19.4 <0.001 ★★★★☆ 

Grade prediction 
error 

3.2 ± 1.8 – – – Learning trend 

Correlation 
degree of 
knowledge 
points 

0.72 ± 0.15 – – – 
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The analysis of school types and grades shows that the improvement range of students’ 
grades in Vocational Schools (∆ = 9.8) is lower than that in key middle schools 
(∆ = 16.8), likely due to differences in equipment conditions and learning habits. 
Although students with low grades have made significant progress (∆ = 6.3), the 
repetition rate of incorrect answers is high (62.4%), suggesting a need to reduce cognitive 
load. The click-through rate of high-segmentation students (78.2%) was strongly 
correlated with performance improvement (r = 0.82), reflecting the elite retention effect 
of the recommendation algorithm. 

The optimisation direction of the knowledge map indicates that the mastery rate of 
algebraic knowledge points (82.1%) is higher than that of Electromagnetics (68.3%). 
Bloom’s taxonomy should be introduced to reconstruct the electromagnetics level and 
add application layer nodes. The behavioural data correlation analysis found that the 
repetition rate of incorrect answers was strongly coupled with the recommended  
click-through rate (r = 0.76), which demonstrated that the dynamic adjustment strategy 
was effective, but the phenomenon of recommendation fatigue should be avoided (CTR 
decreased by 12%). 

4.3 Result discussion 

The platform significantly improved the teaching effect, with the improvement rate of the 
experimental group being 2.4 times that of the control group, demonstrating the 
effectiveness of personalised recommendation and dynamic evaluation. In terms of 
personalised demand, the click-through rate of recommended resources reached 78%, 
particularly for high-grade students, with a CTR as high as 92%, indicating the system’s 
accuracy in matching students’ abilities. Regarding dynamic adaptability, by 
automatically adjusting the weight of the knowledge map according to the distribution of 
incorrect answers, the correct rate in the second test of the electromagnetics chapter 
increased from 68% to 76%. 

However, the platform also faces some problems. Students with low grades may feel 
frustrated because the recommended content is too difficult, and their interaction duration 
is significantly shorter than that of students with high grades (p = 0.03). Students in 
vocational schools have a low score (2.8 points) on system stability due to limited 
equipment conditions. Additionally, the platform has a cold start problem; the initial 
recommendation accuracy rate is only 65%, and it takes 1 to 2 weeks of data 
accumulation to improve to 82%. 

To address these issues, the following improvement directions are proposed: In terms 
of algorithm optimisation, a hierarchical mechanism for course difficulty, such as 
Bloom’s taxonomy, will be introduced to reduce the cognitive load for students with low 
grades, and the cold start cycle will be shortened by incorporating transfer learning. For 
technology adaptation, a lightweight client will be developed to accommodate low-end 
equipment, and an offline cache function will be increased to address network instability. 
In interactive design, visual elements of learning progress, such as a progress bar and 
achievement badges, will be added to enhance participation among students with low 
grades, while the error prompt mechanism will be optimised to provide detailed guidance 
on problem-solving steps rather than giving answers directly. Additionally, research will 
be conducted on the classification mechanism of course difficulty to better meet the 
learning needs of students at different grade levels and to optimise the recommendation 
algorithm to better serve these students. 
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5 Conclusion 

By constructing an intelligent OBE platform based on deep learning, this study examines 
how to integrate deep learning technology with the OBE concept to enhance teaching 
quality and meet students’ personalised learning needs. The main results are as follows: 

1 The improvement of students’ grades in the experimental group is 2.4 times greater 
than that in the control group, demonstrating the platform’s remarkable effects in 
personalised recommendation and dynamic evaluation. 

2 The click-through rate of recommended resources reaches 78%, especially for senior 
students, with a CTR as high as 92%, indicating the high accuracy of the system in 
matching students’ abilities. 

3 By automatically adjusting the weight of the knowledge map according to the 
distribution of error problems, the accuracy of the second test on the 
electromagnetics chapter improves from 68% to 76%. 

However, the platform also faces some challenges. For example, students with lower 
grades may be frustrated by the difficulty of the recommended content, and their 
interaction time is significantly shorter than that of higher-performing students. 
Vocational school students score low on system stability due to equipment limitations. 
Additionally, the cold start problem results in an initial recommendation accuracy of only 
65%, requiring 1–2 weeks of data accumulation to improve to 82%. 

Future research directions include: 

1 Introduce a hierarchical mechanism of course difficulty, such as Bloom’s 
classification, to reduce the cognitive load of students with low grades; Shorten the 
cold start cycle by combining transfer learning. 

2 Develop lightweight clients to adapt to low-end devices, and add an offline caching 
function to cope with network instability. 

3 Add visual elements such as a progress bar and achievement badges to improve the 
participation of students with low grades; optimise the error prompt mechanism and 
provide detailed instructions for solving problems rather than giving answers 
directly. 

4 Through more detailed user portraits and behaviour analysis, optimise the 
recommendation algorithm to reduce recommendation fatigue, while ensuring that 
the difficulty of recommended content matches the actual level of students. 

5 Strengthen data security and privacy protection measures to ensure the safety of 
student information; formulate flexible solutions according to the differences in 
digital infrastructure in various regions and schools to improve the popularity and 
application effectiveness of the platform. 
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