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Abstract: This paper explores green logistics network optimisation and
carbon emission reduction through blockchain technology, IoT, and big data.
A blockchain-based logistics model was developed, incorporating smart
contracts for automated carbon management and IoT devices for real-time
emission monitoring. Big data analysis enabled logistics path optimisation.
Experimental results showed that using ant colony optimisation reduced
transportation time by 20%, fuel consumption by 15%, and carbon emissions
by 18%. The proposed method enhances logistics efficiency and reduces
environmental impact, offering practical solutions and theoretical support for
sustainable logistics networks.

Keywords: blockchain technology; green logistics; carbon emissions; path
optimisation; smart contracts; IoT; Internet of Things; ACO; ant colony
optimisation.

Reference to this paper should be made as follows: Liu, S. and Wang, B.
(2025) ‘Green logistics network optimisation and carbon emission reduction
using blockchain technology’, Int. J. Data Science, Vol. 10, No. 7, pp.73-92.

Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)



74 S. Liu and B. Wang

Biographical notes: Sitong Liu received her PhD from Nanjing University,
China. Now, she is an Associate Professor in Guilin University of Aerospace
Technology. Her research interests low-carbon economy and big data analysis
and decision-making.

Bo Wang is studying for his Master’s degree at the Business School of Guilin
University of Electronic Technology. His research interests include logistics
network optimisation and big data mining.

1 Introduction

In the face of escalating global warming and environmental pollution, reducing carbon
emissions has become a universal goal across industries. Blockchain technology, known
for its decentralisation, immutability, and high transparency, is increasingly popular in
logistics network management. Traditional methods suffer from issues such as data
transparency, trust mechanisms, and information delays, leading to poor carbon
emissions management (Kumar et al., 2021). Blockchain can mitigate operational risks
and enhance the transparency and credibility of logistics networks, enabling real-time
monitoring and management of carbon emissions and ensuring data authenticity (Issaoui,
2020). This paper proposes a green logistics network optimisation method based on
blockchain, integrating IoT and big data analysis. The method monitors and manages
carbon emissions in real-time through a blockchain logistics network model and verifies
its effectiveness experimentally. The findings promote blockchain’s application in green
logistics, offering theoretical support and technical solutions for the industry’s low-
carbon transformation, and providing valuable references for researchers in related fields.
Green logistics network optimisation methods use the Internet of Things (IoT),
blockchain and big data analysis to improve the transparency, credibility and efficiency
of traditional logistics management data. The blockchain-based logistics network model
also improves the transparency and credibility of data. Smart contracts are designed to
achieve automated carbon emission management and carbon credit trading mechanisms,
reducing human intervention and operational risks, and ensuring real-time recording and
management of carbon emission data. IoT devices such as GPS locators, temperature
sensors, and fuel sensors are used for real-time monitoring and recording of key
parameters in logistics processes, ensuring the timeliness and accuracy of data, and
providing a reliable data foundation for subsequent carbon emission management and
optimisation. Big data analysis technology identifies carbon emission sources and
optimisation spaces in logistics networks through clustering analysis, regression analysis,
and time series analysis, and proposes methods for optimising logistics paths and
transportation scheduling. The experimental results show that after adopting the method
proposed in this paper, transportation time is reduced by about 20%; fuel consumption is
reduced by 15%; carbon emissions are reduced by 18%. The method presented in this
paper not only validates its effectiveness, but also provides strong support for the
practical application of green logistics networks, providing new technical means and
theoretical support for achieving green logistics and sustainable development goals.
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2 Related work

There is a close relationship between optimising green logistics networks and reducing
carbon emissions, which mutually promote the achievement of sustainable development
and environmental protection goals. Dzwigol et al. (2021) proposed that circular
economy is an innovative logistics organisation method, identified the obstacles to its
implementation, and suggested improving the efficiency and environmental safety level
of green logistics management through organisational economic mechanisms to achieve
sustainable development. Al-Minhas et al. (2020) developed an integrated model by
conducting a comprehensive review of existing literature on green human resource
management and sustainable green logistics, identifying key driving factors for
sustainable green logistics and corporate environmental management, and achieving
balanced performance in social and environmental well-being. Tian et al. (2023)
proposed that in the context of increasingly severe environmental problems, low-carbon
development has become an inevitable choice. By constructing the overall structure of
multi-criteria decision-making (MCDM) technology in the fields of green logistics and
carbon emission reduction, relevant improvement suggestions and research directions
were proposed. Agyabeng-Mensah et al. (2021) found through a survey data analysis of
152 manufacturing small and medium-sized enterprise managers in Ghana that green
logistics practices significantly improved social performance, financial performance, and
green competitiveness, and played a mediating role between green human capital and
these performance indicators, providing new insights into the role of green human capital
in the implementation of green logistics. Khan (2019) found that logistics operations
lacking green technologies and low-carbon practices mainly rely on fossil fuels, leading
to high carbon emissions. He suggested improving environmental sustainability by
reducing poverty and promoting green logistics technologies and low-carbon practices.
However, these studies mostly focus on the application of a single technology, failing to
fully integrate multiple technical means for comprehensive optimisation, and insufficient
consideration is given to data transparency and system complexity in practical
applications.

Blockchain technology, with its characteristics of decentralisation, openness, and
security, provides higher transparency and traceability for green logistics networks.
Zhu et al. (2024) proposed that blockchain supported carbon offset information and
transportation options can enhance consumer trust in retailers and logistics service
providers, and concluded that blockchain can effectively reduce carbon emissions in the
logistics process. Koh et al. (2020) proposed that blockchain technology can
revolutionise data and business process management, emphasised the application
demonstration of blockchain in supply chain, manufacturing, and service industries, and
pointed out the need for close coordination between transportation infrastructure and
digital infrastructure to enhance trade relations and transform global supply chains. Under
the carbon tax policy, Manupati et al. (2020) proposed that blockchain technology can
revolutionise supply chain processes by monitoring supply chain performance, optimising
emission levels and operating costs, and achieving better supply chain effects, providing
support for policy makers and supply chain executives. Ahmed et al. (2022) explained the
important role of blockchain and artificial intelligence in intelligent and sustainable IoT
applications, proposed a conceptual framework that combines cloud computing, IoT
devices, and artificial intelligence, and used blockchain technology to store results in
decentralised cloud storage, thereby promoting the development of various applications.
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Humayun et al. (2020) explored the potential of [oT and blockchain technology in smart
logistics and transportation, and proposed a layered framework that integrates IoT and
blockchain technology to provide intelligent logistics and transportation systems,
demonstrating their application contributions in logistics and transportation. However,
most of these studies remain at the theoretical level, lacking practical applications and
experimental verification, and there are shortcomings in system integration and
operational complexity.

3 Experimental data

3.1 Data sources and collection

The experimental data sources of this paper mainly include three parts: IoT devices,
blockchain networks, and logistics management systems. These data are sourced from
actual logistics operations, covering information on transportation paths, cargo status,
fuel consumption, and other aspects, ensuring the comprehensiveness and authenticity of
the data (Samir et al., 2019). In order to verify the effectiveness of the research method,
this paper records 5000 data records.

During the data collection process, the sampling frequency of the GPS locator and
fuel sensor is set to once every 15 min, and the sampling frequency of the temperature
sensor is once every 5 min to balance the real-time nature of the data and the storage
pressure. For abnormal data (such as sensor signal loss or sudden value change), the
sliding window mean filter method is used for cleaning, and outliers are eliminated by the
triple standard deviation principle.

IoT devices are deployed at various nodes in the logistics network to monitor and
record key parameters in real-time during the logistics process. GPS locator records the
real-time position, driving path, and transportation time of the vehicle; temperature
sensors monitor the environmental temperature of goods during storage and
transportation; fuel sensors measure the fuel consumption of the vehicle during
transportation. Providing detailed energy usage data through sensors is crucial for
calculating carbon emissions (Wang et al., 2019). The specific data is shown in Table 1.

Table 1 IoT device data

Temperature  Fuel consumption

Vehicle 1D Timestamp Latitude Longitude () (L)
V001 2024/5/1 8:00 34.0522 —118.2437 20.5 10.2
V002 2024/5/1 8:15 36.1699 —115.1398 22 9.8
V003 2024/5/1 8:30 35.6895 139.6917 19 10
V004 2024/5/1 8:45 40.7128 —74.006 18.5 11.2
V5000 2024/5/15 18:30  37.7749 —122.4194 21 9.5

In Table 1, ‘vehicle ID’ represents the unique identifier of a specific vehicle; the
‘timestamp’ records the specific time of data collection; ‘latitude’ and ‘longitude’ display
the specific geographic location of the vehicle; ‘temperature’ monitors the environmental
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temperature during storage or transportation; the ‘fuel consumption’ records the fuel
usage of the vehicle during that time period.

Blockchain network data is collected by recording every transaction and event,
ensuring the authenticity and immutability of the data. Specifically, the operation records
of each logistics node, including the loading and unloading of cargoes, transportation
time, and cargo status, are recorded on the blockchain. The data on transportation paths
and tool types records detailed information for each transportation path, including the
type of transportation tool used, which can help analyse the impact of different
transportation methods on carbon emissions. Energy consumption data is integrated with
fuel sensor data from IoT devices to record fuel usage and carbon emissions during each
transportation process. The transparency and immutability of these data are guaranteed
through blockchain technology, ensuring that every record is trustworthy (Liang et al.,
2020). The specific data is shown in Table 2.

Table 2 Blockchain network data

Fuel Carbon

Transaction  Vehicle Operation Transportation  consumption  emission

ID ID Timestamp  type mode (L) (kg)

T001 Vo001 2024/5/1  Loading Truck 10.2 26.5
8:00

T002 V002 2024/5/1 Shipping Train 9.8 25.2
8:15

T003 V003 2024/5/1  Unloading Truck 10 26
8:30

T004 V004 2024/5/1  Loading Train 11.2 28.4
8:45

T5000 V5000  2024/5/15 Unloading Truck 9.5 24
18:30

In Table 2, ‘transaction ID’ represents a unique identifier for a specific transaction;
‘vehicle ID’ represents the vehicle performing the operation; the ‘timestamp’ records the
specific time of the transaction; ‘operation type’ displays the specific content of logistics
operations; the ‘transportation mode’ records the transportation method used; ‘fuel
consumption’ records the amount of fuel used in the operation; the ‘carbon emission’ is
the carbon dioxide emission calculated based on fuel consumption.

Logistics management system data is relevant data extracted from existing logistics
management systems. These data include order ID, type of cargoes, weight, destination,
transportation distance, and estimated transportation time. As shown in Table 3, these
data provide the basis for the overall analysis of the logistics network (Winkelhaus and
Grosse, 2020).

In Table 3, ‘Order ID’ is the unique identifier of the logistics order; ‘Cargo Type’
indicates the category of the transported cargo; ‘Weight’ indicates the total weight of the
cargo; ‘Destination’ indicates the final destination of the cargo; ‘Transportation Distance’
indicates the transportation distance from the starting point to the destination; ‘Estimated
Transportation Time’ indicates the time required to complete the transportation.
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Table 3 Logistics management system
Expected
Transportation transportation
Order ID Cargo type Weight (kg)  Destination distance (km) time (h)
0001 Electronics 500 Los Angeles 1200 10
0002 Food 300 Las Vegas 400 4
0003 Clothing 200 Tokyo 1500 12
0004 Furniture 800 New York 2500 20
05000 Medicine 1000 San Francisco 3000 25

It should be pointed out that the experimental data of this study mainly comes from [oT
devices, blockchain networks and logistics management systems in a simulated
environment. Although the integrity and reliability of the data are ensured through
precise alignment and merging, it still needs to be further verified in combination with
the dynamic characteristics of actual logistics scenarios. For example, unexpected road
conditions, equipment failures or data heterogeneity problems that may exist in a real
transportation environment may place higher requirements on the robustness of the
model. Subsequent research will obtain real business data through cooperation with
logistics companies to enhance the practicality and adaptability of the method.

3.2 Data processing

3.2.1 Data alignment

This paper accurately aligns data from different sources. Data alignment involves
operations such as time window alignment, timestamp normalisation, and key field
matching (Katoh et al., 2019). This includes synchronising records from different sources
based on key fields such as time and vehicle ID. Timestamp normalisation converts all
timestamps to ISO 8601 format, ensuring to second precisely. Key field matching uses
fields such as vehicle ID to ensure that related data is aligned at the same point in time. In
logistics data, vehicle ID uniquely identifies a vehicle. When timestamps do not match
exactly, time window alignment allows records with small time differences to be treated
as simultaneous. This can solve the problem of inconsistent timestamps caused by
different data collection frequencies while ensuring data continuity (Biancalani et al.,
2021).

3.2.2 Data merge

Data merge refers to the integration of aligned data from different data sources to form a
comprehensive dataset. The specific operations include determining the merge key,
merging data sources, handling missing values, and constructing a comprehensive data
table.

The merge key is confirmed to select the key fields for merging, ensuring consistency
across all data sources to ensure that the data can be merged correctly. Data sources are
merged using the outer join merge method, merging data from different sources together
to ensure that each record contains relevant information from all data sources. The
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external connection method can ensure that even if some records are missing from a
certain data source, records from other data sources are not lost (Gruber et al., 2019).

After merging, there are missing values. If there are too many missing values, the
direct deletion is selected. If there are fewer missing values, the mean is selected to fill in
and ensure data integrity. The specific formula is shown in formula (1).

N
x_n;x[ (1)

Among them, X is the mean of variable x; n is the number of non-missing values; x, is
the i th non missing value.

Based on the above information, a comprehensive data table is constructed, which
should include all necessary fields: vehicle ID, timestamp, latitude and longitude,
temperature, fuel consumption, operation type, cargo status, transportation method,
carbon emissions, order ID, cargo type, weight, destination, transportation distance, and
estimated transportation time. It is necessary to ensure that each record provides
comprehensive logistics information.

This paper conducts experiments on loT devices, blockchain networks, and logistics
management systems. These data are collected through different channels and ultimately
integrated into a central database for optimising green logistics networks and managing
carbon emissions, as shown in Figure 1.

Figure 1 Data integration process
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IoT devices include GPS locators, temperature sensors, and fuel sensors, which monitor
and record key parameters such as vehicle location, environmental temperature, and fuel
consumption in real-time; the blockchain network ensures the authenticity and
immutability of data by recording every transaction and operation log, as well as
executing smart contracts; the logistics management system provides detailed order
information, cargo information, and transportation details. All data flows to the central
database for integration and analysis, forming a comprehensive and accurate logistics
dataset, providing solid data support for subsequent analysis and optimisation.

4 Optimisation of green logistics network

4.1 Construction of blockchain logistics network model

This paper studies a green logistics network optimisation method that combines
blockchain technology, the 10T, and big data analysis technology. The construction of a
blockchain logistics network model includes path optimisation and scheduling. Through



80 S. Liu and B. Wang

path optimisation and reasonable design of scheduling plans, transportation distance and
time are reduced, thereby reducing fuel consumption and carbon emissions.

In terms of path optimisation, this paper uses the vehicle routing problem (VRP)
model as the basis to optimise the transportation path, with the objective function of
minimising the total transportation distance or total transportation time (Mor and
Speranza, 2022). The formula is as follows.

n o n

minZZc,.jx,.j 2)

i=l j=1

In the formula (2), the transportation cost from node i to node j is represented by ¢;,
and x, is a binary variable.

ACO is a common heuristic search algorithm that randomly distributes a certain
number of ants on the path, and each ant represents a solution. Each ant selects the next
path based on the pheromone concentration and heuristic information on the path. When
the ant completes a path selection, it releases pheromones on the path, and the pheromone
concentration decreases over time. Therefore, this paper uses ACO to solve the
combinatorial optimisation problem in scheduling planning (Singh et al., 2020), as shown
in formula (3):

7, =(1-p)7, +A1, (3)

In formula (3), the concentration of pheromones on path i — j is 7;; p is the volatility
coefficient of pheromones; A7, is the increment of pheromones.

Finally, path selection and pheromone update operations are repeated until the
optimal path is found or the maximum number of iterations is reached.

4.2 Smart contracts

A smart contract is an automated program that automatically executes protocol terms
when predetermined conditions are met. Smart contract design is used to achieve carbon
emission calculation and carbon credit trading, which helps to reduce carbon emissions.
The smart contract in this paper includes two aspects: carbon emission calculation
contract and carbon credit trading contract.

The carbon emission calculation contract automatically calculates carbon emissions
based on fuel consumption data during transportation and records them on the
blockchain. Smart contracts ensure transparency and immutability of all operations
(Wang and Ouyang, 2019). The formula for calculating carbon emissions is as follows:

X=WxC 4)

Among them, X represents carbon emissions (kg); W is the fuel consumption (L); C is the
carbon emission factor (kg/L). The carbon emission factor is determined based on the
type of fuel, and the factor varies for different fuels. The carbon emission factor for diesel
is 2.68 kg/L.

Carbon credit trading contracts are automatic carbon credit transactions based on
carbon emissions, incentivising logistics participants to adopt low-carbon transportation
methods. The carbon credit trading mechanism enhances the environmental awareness
and enthusiasm of logistics participants by rewarding low-carbon emission operations.
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In the specific implementation of the carbon credit trading mechanism, the allocation
of carbon credits is based on the difference between the baseline emissions of the
transportation task and the actual emission reduction. The smart contract automatically
triggers the issuance and settlement of carbon credits by real-time monitoring of carbon
emission data, forming a positive incentive cycle. Experiments have shown that this
mechanism has increased the selection rate of low-carbon transportation routes, verifying
its guiding role in the behaviour of logistics participants.

4.3 Carbon emission management

This paper adopts a carbon emission calculation method based on fuel consumption,
which monitors and records the fuel consumption of vehicles in real-time through IoT
devices, and accurately calculates the carbon emissions of each transportation segment.
Fuel sensors measure the fuel consumption of each vehicle and record it in [oT devices.
These IoT devices record carbon emissions on the blockchain, making the data
transparent and reliable. Blockchain technology ensures the immutability and high
transparency of data.

Smart contracts can automatically manage carbon emission data, achieving real-time
monitoring and management of carbon emissions. Smart contracts are executed on the
blockchain to ensure the immutability of carbon emission data. The carbon credit trading
mechanism is implemented to incentivise logistics participants to reduce carbon
emissions. Carbon credit trading enhances the environmental awareness and enthusiasm
of logistics participants by rewarding low-carbon emission operations.

4.4 Big data analysis

4.4.1 Data analysis and mining

Big data analysis plays a crucial role in the optimisation of green logistics networks in
this paper. Through big data analysis technology, transportation paths, fuel consumption,
and carbon emissions data in logistics networks are analysed. Cluster analysis, regression
analysis, and time series analysis are used to explore potential patterns and patterns in
logistics data. Cluster analysis is used to identify similar transportation paths and
operational patterns in logistics networks. The K-means clustering algorithm is used to
classify transportation paths into multiple classes and analyse the transportation
characteristics of different classes (Zhu et al., 2024; Wang et al., 2024). The formula is
shown in formula (5).

k n .
AN

i=1 j=1

2

®)

Among them, £ is the number of clusters; x(/.i) is the j th data point of class i; 4, is the
centre of class 7 .

Regression analysis is used to establish a relationship model between transportation
time and fuel consumption. The linear regression model is used to predict fuel
consumption, as shown in formula (6) (Maulud and Abdulazeez, 2020; Chen et al., 2024).

y:ﬂo+181x1+ﬂ2xz+"'+ﬂpxp+f (6)
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In the above formula, y represents the fuel consumption, and x, is the influencing
factor.

Time series analysis is used to predict future transportation demand and carbon
emission trends. The autoregressive integrated moving average (ARIMA) model is used
for time series prediction (Lai and Dzombak, 2020), as shown in formula (7).

V= a+ﬂ1yt—l +ﬁ2yt—2 +"'+:prt—p t6+6€ ,+0 ,++ (7

Among them, y, is the predicted value of time #; & is a constant term; J is the
autoregressive coefficient; @, is the moving average coefficient; ¢, is the error term.

4.4.2 Path optimisation and scheduling improvement

The optimisation and improvement of this paper are based on data analysis results,
improving transportation paths and scheduling plans, reducing transportation distance and
time. The combination of optimisation algorithms and big data analysis technology
continuously improves the operational efficiency of logistics networks. Using real-time
data analysis and dynamic optimisation techniques, transportation paths and scheduling
plans are adjusted in real-time to ensure the efficient operation of the logistics network.

4.4.3 Performance evaluation and optimisation

Based on the evaluation of logistics performance under different optimisation strategies,
including transportation time, fuel consumption, and carbon emissions, the effects of
different strategies are compared to determine the optimal logistics network operation
plan. According to the analysis results, the logistics strategy is adjusted and optimised to
ensure the optimal operation of the logistics network (Ismadiyorov and Sotvoldiyev,
2021; Ran et al., 2024).

5 Experiments

5.1 Experimental environment

In order to verify the effectiveness of the green logistics network optimisation method in
this paper, testing and evaluation are conducted in the following experimental
environment. In terms of hardware environment, the server is configured with an Intel
Xeon E5-2680 v4 CPU, 2.4 GHz, 128 GB of memory, and 2 TB of solid-state drive
storage, ensuring sufficient computing power and storage space. [oT devices include GPS
locators, temperature sensors, and fuel sensors installed on logistics vehicles, which are
used to collect real-time vehicle location, environmental temperature, and fuel
consumption data. Blockchain nodes are distributed in multiple geographical locations
and run in Docker containers, ensuring the distributed and decentralised characteristics of
the network while ensuring the independence and security of nodes.

In terms of software environment, the operating system chooses a stable Linux
distribution, Ubuntu 20.04 LTS, to ensure the stability and compatibility of the
experimental environment. The blockchain platform adopts Ethereum and writes smart
contracts using Solidity language to achieve carbon emission calculation and carbon
credit trading. The database uses MySQL to store consolidated data, providing reliable
data management and query capabilities. The data analysis tool uses Python



Green logistics network optimisation 83

programming language, combined with libraries such as Pandas, Numpy, Scikit-learn,
Pytorch, and Matplotlib, to implement the application of data analysis and path
optimisation algorithms. The optimisation algorithm mainly uses ant colony algorithm to
optimise and schedule VRP. In terms of network environment, IoT devices transmit data
to central servers through 4G networks to ensure the timeliness and accuracy of data.
Blockchain nodes synchronise and exchange data through the internet to ensure the
security and reliability of the blockchain network.

It should be pointed out that there is an initial cost investment for the deployment of
blockchain nodes and the hardware upgrade of IoT devices. Taking the experimental
environment of this paper as an example, the Docker container of a single blockchain
node requires a cloud service fee of about US$200 per year, and the hardware cost of
installing GPS and fuel consumption sensors on each vehicle is about US$500. However,
the economic benefits obtained through carbon credit trading (calculated at US$0.1 for
every 1 kg COLl emission reduction) can cover the initial investment in about 18 months,
forming a sustainable economic closed loop. In the future, the deployment cost can be
further reduced by optimising the lightweight node design.

In the experiment, the average block generation time of the blockchain network built
on Ethereum was 12 s, and the throughput reached 150 transactions per second (TPS),
which is higher than the Hyperledger Fabric (about 100 TPS) commonly used in
traditional supply chain systems. In addition, the median execution time of smart
contracts was 8.3 ms, which verified the feasibility of the system in high-frequency
logistics data processing. By adjusting the consensus mechanism (such as introducing
PoA instead of PoW), it is expected that the performance will be further improved in the
future to support larger-scale deployment.

5.2  Experimental parameter settings

This paper provides detailed settings for the experimental parameters. For path
optimisation, the parameter settings of the ant colony algorithm include 30 ants, a
pheromone volatility coefficient of 0.5, a pheromone increment of 1.0, a heuristic factor
of 2.0, and a maximum number of iterations of 500. As a comparison, the genetic
algorithm parameters are set to a population size of 50, a crossover probability of 0.8, a
mutation probability of 0.2, and a maximum number of iterations of 1000. In terms of
carbon emission calculation, real-time fuel consumption data is collected through IoT
devices. The carbon emission factor of diesel is 2.68 kg/L, and the carbon emission factor
of gasoline is 2.31 kg/L. The execution frequency of smart contracts is to execute
immediately after each transportation task is completed, and the carbon credit trading rule
is to obtain 1 unit of carbon credit for every 1 kg reduction in carbon emissions. In terms
of data analysis, K-means clustering algorithm is used for clustering analysis, and the
number of clusters is set to 5; the regression model adopts linear regression, and the
characteristic variables include transportation time, transportation distance, and cargo
weight; the use of ARIMA model in time series analysis provides a solid foundation for
verifying the effectiveness of green logistics network optimisation methods.

5.3 Comparison of different experimental models

In order to evaluate the effectiveness of different path optimisation models in green
logistics network optimisation, this paper compares traditional VRP models, ant colony
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algorithm (ACO) models, and genetic algorithm (GA) models (Sun et al., 2020).
A detailed comparison of the different experimental models on a number of dimensions,
including path optimisation efficiency, carbon emission calculation accuracy, data
processing capability, data transparency, and system scalability, is presented in Table 4.

Table 4 Comparison of different models

Traditional VRP ACO model (Based on  GA model (Based on

Indicator model VRP) VRP)
Path opt. efficiency Low efficiency High efficiency, High efficiency,
(POE) suitable for complex suitable for complex
paths paths
Carbon emission Low accuracy High accuracy with High accuracy with
accuracy (CEA) real-time data real-time data
integration integration
Data processing (DP)  Limited, manual High automation, High automation,
handling handles large-scale data handles large-scale data
Data transparency (DT) Moderate, partially ~ High transparency, High transparency,
manual blockchain-based blockchain-based
Algorithm adaptability =~ Poor adaptability Dynamic adjustment,  Dynamic adjustment,
(AA) good adaptability good adaptability
Smart contract Not supported Supported, automates  Supported, automates
integration (SCI) carbon emission and carbon emission and
credit trading credit trading

In Table 4, traditional VRP models have low POE and CEA, limited DP capabilities,
mainly relying on manual processing, moderate (DT, poor AA, and do not support SCI.
In contrast, ant colony algorithm and genetic algorithm models perform well in path
optimisation efficiency and carbon emission accuracy, can handle large-scale data, have
high automation, high data transparency, support smart contract integration, and can
dynamically adjust to different transportation scenarios. They are more suitable for large-
scale systems and can significantly improve the optimisation effect of green logistics
networks.

In order to further verify the superiority of the ant colony algorithm, the subsequent
research plan of this paper introduces emerging algorithms such as reinforcement
learning for comparison. Reinforcement learning’s ability to adapt to complex
environmental changes through dynamic strategy adjustment may provide new
optimisation perspectives in path optimisation efficiency and carbon emission control.
By comparing the performance of ACO, GA and RL in multi-objective optimisation,
we can more comprehensively evaluate the applicability of different algorithms in
green logistics networks and provide more targeted technical choices for practical
applications.

6 Results

6.1 Predicting logistics data trends

This paper conducts a series of analyses on the collected data to verify the effectiveness
of the experimental method to understand the relationship between key logistics variables
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and predict future trends. Figure 2 shows the results of linear regression and time series
analysis, which uses transportation time, transportation distance and cargo weight as
feature variables to predict fuel consumption.

Figure 2 Scatter plot of fuel consumption prediction (see online version for colours)

Linear Regression: Measured vs Predicted
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In Figure 2, a scatter plot of the relationship between the linear regression model’s
predicted fuel consumption and the characteristic variables is shown. Ideally, the
predicted values are exactly the same as the actual values, but the clustering of points
close to the diagonal line indicates a high correlation between the predicted and actual
values. This shows that the linear regression model can accurately predict the relationship
between transportation time, transportation distance, and cargo weight.

Figure 3 Data analysis (see online version for colours)
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This section conducts time series analysis on logistics data using the ARIMA model.
Figure 3(a) represents the autocorrelation function (ACF), and Figure 3(b) shows the
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results of the partial autocorrelation function (PACF) (Chae et al., 2022; Surendra et al.,
2021).

Figure 3 shows the ACF and PACF plots of the time series data. Figure 3(a) shows
the correlation of the time series with its past values, while Figure 3(b) shows the
correlation after removing the effect of early lags. The obvious peak in the initial lags
indicates that the time series data has strong autocorrelation, which indicates that the
ARIMA model is able to capture this pattern to achieve the prediction goal.

6.2 Path optimisation effect

This paper compares traditional VRP, ACO and genetic algorithm (GA) models to
evaluate the performance of different path optimisation models in green logistics
network optimisation. The radar chart provides an intuitive way to compare and
analyse the performance of different models on these key indicators. It shows the impact
of these models in multiple dimensions, such as cost savings, system response time,
transportation time, carbon emissions, and fuel consumption. The details are shown in
Figure 4.

Figure 4 Comparison of path optimisation models (see online version for colours)
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As shown in Figure 4, the traditional VRP model performs poorly on all metrics. For
ACO model, the transportation time is 400 h; carbon emissions are 820 kg; the fuel
consumption is 850 1; cost savings are 11%; the system response time is 300 ms. The
genetic algorithm (GA) model performs well, and although slightly inferior to the ACO
model, it is still significantly better than the traditional VRP model, with a transportation
time of 440 h, carbon emissions of 850 kg, fuel consumption of 900 1, cost savings of 8%,
and system response time of 300 ms. This indicates that the path optimisation model
based on ACO and GA has significant advantages in green logistics network
optimisation.

The radar chart in Figure 4 adds a new dimension of comparison between traditional
VRP and ACO in terms of path complexity (measured by the number of intersections).
The data show that it has significant advantages in simplifying the topology of
transportation networks. This improvement not only reduces the difficulty of operation
for the driver, but also indirectly improves energy efficiency by reducing the number of
emergency braking and start-stop times.

6.3 Execution effect of smart contracts

In this paper, different parameters are varied to compare the execution effect of smart
contracts in ACO models to verify their accuracy and efficiency in carbon emission
calculation and carbon credit trading. The execution frequency, fuel type, and
transportation task complexity of smart contracts under different parameter
configurations are compared in detail in terms of execution frequency and success rate.
Figure 5 shows the number of executions and success rates of smart contracts under
different parameter configurations.

Figure 5 The impact of different factors on the effectiveness of smart contract execution
(see online version for colours)
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As Figure 5, the frequency configuration of instant execution performs best, ensuring
real-time recording of carbon emission data and accurate execution of carbon credit
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transactions. Different fuel types have little effect on the number of smart contract
executions, but they differ in the accuracy of carbon emission calculations. Mixed fuel
and gasoline are the most stable, followed by diesel. The complexity of the transportation
task has a certain impact on the execution accuracy of the smart contract. The success
rate is slightly reduced under complex tasks, but it is still better overall.

6.4 Carbon emission reduction effect

This paper analyses variables such as transportation distance, transportation time, fuel
type, cargo weight, and path optimisation strategy to evaluate the impact of various
factors on carbon emissions. By comparing experimental data, the specific impact of each
factor on carbon emissions is analysed in detail and presented using a line chart. Figure 6
shows the impact of each factor on carbon emissions in three different scenarios
(Scenario A, Scenario B, and Scenario C).

Figure 6 Carbon emissions under different factors (see online version for colours)
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In Figure 6, the impact of various factors on carbon emissions is shown. In the three
scenarios, transportation distance and cargo weight are the main influencing factors.
Optimising these factors can significantly reduce carbon emissions during logistics
transportation. Fuel type and transportation time are also important factors, and choosing
cleaner fuels and optimising cargo loading can further reduce carbon emissions. Path
optimisation strategies have the most significant impact on carbon emissions because
they minimise transportation distance and time. The ACO model performs well in
optimising paths and reducing carbon emissions, providing effective technical means and
support for realising low-carbon logistics. By comprehensively considering and
optimising the above factors, carbon emissions during logistics transportation can be
significantly reduced, thereby promoting the sustainable development of green logistics
networks.
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In order to evaluate the sustainability of carbon emission reduction, this paper
designed a multi-period simulation experiment for three consecutive months. The results
show that the carbon emission reduction of the ACO model is stable in the range of
15—18% under the consideration of seasonal freight demand fluctuations, and the benefits
of route optimisation have not decayed over time. In addition, as the penetration rate of
new energy vehicles increases, carbon emissions can be further reduced by 7-10%,
indicating that the method in this paper has a synergistic effect with the clean energy
transition.

7 Conclusions

This paper proposes a green logistics network optimisation method that combines
blockchain technology, the IoT, and big data analysis. By constructing a blockchain-
based logistics network model, designing smart contracts to achieve automated carbon
emission management, and combining IoT devices to monitor fuel consumption and
carbon emission data in the logistics process in real time, the data is transparent and
cannot be tampered with. The research results show that the transportation time after
optimisation by the ant colony algorithm is shortened by about 20%, from 500 h in the
traditional model to 400 h; fuel consumption is reduced by 15%, from 10001 to 850 I;
carbon emissions are reduced by 18%, from 1000 kg to 820 kg. The application of smart
contracts improves the efficiency of carbon emission management, and the carbon credit
trading mechanism encourages logistics participants to adopt low-carbon transportation
methods, further promoting the optimisation of green logistics networks. Significant
results have been achieved in reducing carbon emissions, improving transportation
efficiency, and reducing logistics costs, providing effective technical means and
theoretical support for green logistics practice. The experimental data mainly come from
the simulation environment, and the complexity and variability in actual applications may
affect the effectiveness of the method. However, the implementation cost of blockchain
technology and smart contracts is high, which poses certain challenges to the widespread
application of small and medium-sized logistics enterprises. Future research should focus
on further verifying the effectiveness of the proposed method in actual logistics networks,
especially in logistics environments of different scales and complexities, optimising the
operating efficiency of blockchain networks and smart contracts, reducing
implementation costs, and improving the scalability and popularity of the system.
Although this method has been proven to be effective in a simulated environment, it still
faces challenges in promoting it in actual logistics scenarios. Cross-enterprise
deployment of blockchains requires coordination of the interests of multiple parties, and
data sharing poses a risk of privacy leakage; [oT devices in cross-border logistics are
susceptible to network delays; and small and medium-sized enterprises cannot afford
high hardware upgrade costs. The implementation threshold can be lowered by
introducing privacy computing modules, optimising edge computing architecture, and
establishing a government subsidy mechanism to enhance the adaptability and scalability
of the solution. The current average delay in data interaction between blockchain and IoT
is about 400 ms, which affects real-time scheduling. The average monthly storage
requirement of each node of the distributed ledger is 200MB, which puts pressure on the
computing power of edge devices. In the future, lightweight protocols (such as state
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channels) and data sharding storage strategies can be adopted to reduce resource
overhead and promote the practical application of multi-technology integration.
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