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Abstract: In this study, a multi-objective optimisation framework
incorporating migration learning is proposed with the aim of efficiently
optimising micro-milling parameters and accurately predicting surface
roughness. First, a deep neural network (DNN)-based surface roughness
prediction model is constructed as a base model. Subsequently, the pre-trained
model is fine-tuned (fine-tuning) using a limited amount of micro-milling
experimental data in the target domain to quickly adapt to the target working
conditions and significantly improve the prediction accuracy under small
samples. On this basis, the migration learning-enhanced prediction model is
integrated with a multi-objective optimisation algorithm (e.g., NSGA-II) to
construct an optimisation framework. Experimental results show that relying on
the millisecond evaluation capability of the migration learning agent model and
the improved search strategy of NSGA-II, the Pareto frontier distribution range
is widened by 28% and the frontier convergence speed is improved by 42%.
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1 Introduction

As a core process in the field of precision manufacturing, micro-milling technology has
an irreplaceable role in the machining of micro-electromechanical systems, medical
devices and aerospace micro-components. Its machining quality, especially the surface
roughness, directly affects the functional performance and service life of the parts.
However, the size effect is significant at the microscale, and the influence mechanism of
process parameters (e.g., spindle speed, feed, depth of cut, etc.) on surface integrity is
complex and nonlinear, so it is difficult to accurately map the correlation between the
parameters and the surface quality with traditional optimisation methods based on
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physical models (Camara et al., 2012). Existing research mostly relies on a large amount
of experimental data to construct predictive models, but systematic experiments on new
materials or special working conditions (e.g., micro-fine tools, difficult-to-machine
materials) are costly and lengthy, resulting in a lack of data, which seriously restricts the
practicability and generalisation ability of process optimisation (Mamedov, 2021). In
addition, the actual production needs to simultaneously take into account the
surface quality and machining efficiency and other multi-objective requirements, a
single-objective optimisation is difficult to meet the engineering reality, and there is an
urgent need to establish an efficient multi-objective co-optimisation framework.

As the core research direction of precision manufacturing, the optimisation of
micro-milling parameters and surface quality prediction have made significant progress
in recent years under the impetus of the integration of intelligent algorithms and
cross-domain technologies. In terms of surface prediction models, traditional
physically-driven models (e.g., response surface method (RSM) (Natarajan et al., 2011)
have been gradually replaced by data-driven methods due to the difficulty of capturing
the nonlinear effects of microscale machining. Vu et al. (2018) combined the Taguchi
method with RSM to optimise the surface roughness and the cutting force of hard milling
for SKD61, and found that the cutting speed and the feed rate had a surface integrity The
interaction between cutting speed and feed rate on surface integrity was found to be
significant, but the method relies on a large number of experiments and has limited
ability to generalise working conditions. To improve the robustness of prediction in small
samples, machine learning models have been widely introduced. Nguyen et al. (2023a)
compared the effectiveness of linear regression, support vector machine (SVR) and
artificial neural network (ANN) in predicting surface roughness and tool wear in
Ti6Al4V turning, and confirmed that the ANN performs the best in RMSE and R? metrics
by virtue of its nonlinear mapping capability, providing a high-accuracy optimisation for
multi-objective optimisation. It provides a high-precision agent model for multi-objective
optimisation.

The development of multi-objective optimisation algorithms has further enhanced the
efficiency of process parameter decision making. Classical algorithms such as the
non-dominated sequential genetic algorithm (NSGA-II) have been widely adopted for
their efficient Pareto solution search capability. For example, in Ti6Al4V turning,
NSGA-II successfully coordinates the conflicting objectives of surface roughness and
tool wear, obtains 50 sets of Pareto solution sets, and filters out the optimal process
parameters by integrating decision functions (Nguyen et al., 2023b). Similarly, Xu et al.
(2024) addressed the inefficiency of ultrasonic vibration-assisted micro-fine EDM
machining of titanium alloys and optimised the MRR and surface quality by combining
NSGA-II with vibration control technology, which verified the applicability of intelligent
algorithms in special machining. Improved models of particle swarm optimisation (PSO)
also show potential, such as chaotic initialisation PSO to enhance population diversity
through Tent mapping, which effectively balances cutting force and MRR in milling
parameter optimisation (Aleem et al., 2020).

The introduction of migration learning provides a new path to solve the bottleneck of
scarce data for target working conditions. Although there are still few direct studies on
the application of transfer learning in micro-milling, its success in similar fields validates
the feasibility of cross-domain knowledge transfer. For example, Guo et al. (2020) used
historical data to construct a prediction model for energy consumption and residual stress
in screw hard milling, which reduces the cost of experimenting with new working
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conditions through knowledge reuse. Wang et al. (2021) used a multi-response
optimisation framework to coordinate the MRR and surface roughness in aluminium
alloy micro-milling, and their pre-training-fine-tuning strategy provides a reference
paradigm for small-sample learning in micro-milling.

The limitations of the current study focus on three aspects:

1  Data dependence and generalisation contradiction. Most machine learning models
require a large amount of labelled data, while the high experimental cost of actual
micro-milling of new materials/tools leads to limited model generalisation (Bhirud
et al., 2024).

2 Insufficient generalisability of multi-objective decision making. Existing
optimisation frameworks are often designed for specific materials (e.g., titanium
alloys, aluminium alloys), and lack universal decision criteria across processes
(Zariatin et al., 2017).

3 Weak adaptability to dynamic working conditions. Traditional static optimisation
does not consider the cumulative effect of time-varying factors such as tool wear and
vibration on surface quality (Heitz et al., 2022).

Future research needs to further explore lightweight migration learning architectures to
reduce data requirements, and develop online optimisation systems integrating real-time
sensing data and digital twin technology to promote the evolution of micro-milling
parameter optimisation in the direction of adaptive and highly robust.

In recent years, deep learning has shown strong potential in complex
industrial modelling, but its success is highly dependent on massive labelled data, and it
is prone to overfitting and insufficient generalisation in small sample scenarios such as
micro-milling. Migration learning provides new ideas to solve the data scarcity in the
target domain by migrating knowledge from related domains. Inspired by this, this study
proposes an intelligent decision-making method for micro-milling parameters that
integrates migration learning and multi-objective optimisation. The core innovation lies
in the construction of a ‘pre-training-fine-tuning’ cross-domain knowledge transfer
mechanism: firstly, a DNN is pre-trained with rich historical data from the source domain
(e.g., conventional milling or similar material machining) to capture general machining
features; then the model is fine-tuned with a small amount of experimental data from the
target domain of micromilling to realise high-accuracy surface roughness prediction
under the condition of small samples. Then the model is fine-tuned by a small amount of
micro-milling experimental data in the target domain to realise high-accuracy surface
roughness prediction under small sample conditions. On this basis, the migration
learning-enhanced prediction model is embedded as a proxy model in the optimisation
process of the multi-objective evolutionary algorithm to search for the Pareto-optimal
solution set of machining parameters with the parallel objectives of minimising the
surface roughness and maximising the MRR. The method significantly reduces the
dependence on experimental data in the target domain and provides a new paradigm for
data-driven optimisation in microfabrication. In this paper, the prediction accuracy and
optimisation efficiency of the framework are verified through systematic experiments,
and the limitations of traditional methods are compared and analysed, which ultimately
provide theoretical support and practical guidance for intelligent decision-making of
micro-milling process under complex working conditions.
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2 Mechanisms of micro-milling surface formation and theoretical basis of
transfer learning

2.1 Micro-milling process characteristics and parameter influence mechanism

Micro-milling as a key process in the field of precision manufacturing, its core feature is
that the machining scale between the micron to sub-millimeter scale, significantly
different from conventional milling. This micro-scale machining process is dominated by
the size effect, when the cutting thickness is close to the grain size of the material, the
deformation mechanism of the workpiece material from continuous shear to
discontinuous plastic flow, resulting in a nonlinear increase in the unit cutting force, and
at the same time, the ratio of the tool edge radius to the thickness of the chip is
fundamentally changed. This effect not only exacerbates the micro-area temperature
gradient and local stress concentration during the cutting process, but also triggers the
phenomenon of minimum cutting thickness, i.e., when the actual cutting thickness is
lower than the critical threshold, the tool is unable to effectively remove the material to
form plowing and sliding, resulting in elastic recovery of the machined surface and
material buildup, directly degrading the surface topographic integrity (Rahman et al.,
2001). At the same time, the diameter-to-length ratio of the micro milling cutter increases
significantly, and its intrinsic stiffness decreases dramatically, which induces
high-frequency tool chatter under the excitation of cyclic cutting force. This vibration not
only accelerates tool wear and breakage, but also forms vibration lines, burrs and other
defects on the surface through the dynamic interference between the cutting edge and the
workpiece, which becomes a key factor in restricting the surface roughness.

In this context, the synergistic regulation of process parameters is particularly
sensitive to the influence of surface quality. Although the increase of spindle speed can
suppress the cutting force amplitude and reduce the plow effect, too high a speed will
exacerbate the radial runout of the tool caused by centrifugal force, which amplifies the
fluctuation of the surface contour. At the same time, the speed increase is also limited by
the spindle dynamic balance accuracy and tool strength. The selection of feed needs to
strictly match the minimum cutting thickness constraints, if the feed is too small, the
blade continues to plow the unremoved material, resulting in the thickening of the surface
hardening layer and the rise of the residual tensile stress; while the feed is too large, it
triggers cutting vibration and chip clogging, the formation of scaly torn surface. The axial
depth of cut directly affects the length of the cutting edge, and its increase improves the
machining efficiency, but it will magnify the bending deformation of the tool
overhanging section, so that the machining error accumulates along the depth direction,
especially in the high depth-to-width ratio of groove cavity machining, which is easy to
lead to the taper of the side wall and the unevenness of the bottom surface is too poor (Jin
and Altintas, 2012). Radial cutting width affects the direction of cutting force by
changing the contact angle between the tool and the workpiece, and the unilateral force
on the tool under the narrow cutting width condition is easy to induce the vibration of
deflection pendulum, while the full-flute width cutting enhances the rigidity of the
system, but due to the restriction of the chip removal space exacerbates the risk of the
chips scratching the machined surface for the second time. Therefore, the optimisation of
the surface quality of micro-milling is a process of balancing the interaction of size
effect, dynamic stability and material removal mechanism, and the unfavourable
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perturbation of the process system needs to be suppressed through accurate matching of
parameters to ultimately realise the controlled machining of sub-micron level surface
accuracy.

2.2 Classification of surface roughness prediction models

The evolution of surface roughness prediction models has always been centred on the
balance between the interpretability of the machining physical mechanism and the
accuracy of data fitting, which can be summarised into three types of paradigms based on
the modelling principles: physically-driven, statistically-driven and data-driven.
Physically-driven models are based on cutting mechanics and material deformation
theory, and establish surface topography generation equations by analysing the
interaction between the tool and the workpiece. This type of model attributes the
roughness to the superposition effect of geometric and physical factors, which has the
advantage of clear physical meaning of the parameters, but is limited by the strong size
effect and random perturbation in micro-milling, and it is difficult to accurately quantify
the contribution of non-linear processes such as material rebound in the plastic
deformation zone and micro-fluttering phase transition to the surface troughs, which
leads to significant prediction bias in complex working conditions.

Statistically driven models, on the other hand, construct empirical mapping
relationships between process parameters and roughness by designing experiments, with
representative methods such as RSM and regression analysis (Mooi et al., 2018). The
core of the model is to fit a polynomial function through a finite number of experimental
samples to describe the statistical correlation between the spindle speed, feed and other
variables and roughness indexes. Although it avoids the complexity of the physical
mechanism inscription, the model expression ability is limited by the preset function
form, such as quadratic polynomials, which makes it difficult to capture the deep
interactions between the parameters and the non-monotonic response characteristics,
especially in the multi-constraint, strongly coupled micro-milling scenario, the
generalisation ability is insufficient. In particular, the generalisation ability is insufficient
in multi-constraint and strongly coupled micro-milling scenarios.

In recent years, data-driven models have gradually become mainstream with the
powerful nonlinear fitting capability of machine learning algorithms. Such methods treat
roughness prediction as a black-box mapping problem, and automatically learn the
complex correlation between input parameters and output roughness through training
data. Support vector regression (SVR) (Awad et al.,, 2015) maps low-dimensional
nonlinear relationships to high-dimensional space to achieve linear segmentation through
kernel functions, and exhibits strong robustness in small-sample scenarios. Random
forest (RF) (Rigatti, 2017), on the other hand, integrates multiple decision trees to vote on
the output predicted values, which can effectively suppress overfitting and evaluate the
importance of parameters. However, the most groundbreaking is the deep learning model,
especially DNN (Sze et al., 2017), whose multilayer nonlinear transformation structure
can extract the higher-order features of cutting parameters step by step, such as accurately
reproducing the surface periodic streaks triggered by chattering through the implied layer
of nodes coupling the vibration spectrum features with the feed cycle. Experiments show
that in titanium alloy micro-milling, the prediction error of surface roughness R, by DNN
is reduced by about 40% compared with the traditional physical model, and the key to its
success lies in the abandonment of explicit mechanism assumptions, and the
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approximation of the chaotic characteristics of the real machining system in a
data-adaptive manner. Nevertheless, data-driven models are highly dependent on the
quality and size of training samples, and their performance deteriorates dramatically in
the absence of target condition data, which also provides the necessity for the
introduction of migration learning — making up for the natural defects of data scarcity in
the target domain by migrating the knowledge of the source domain, which has become
an important direction in the evolution of current prediction models.

2.3 Core theory of transfer learning

The essence of transfer learning is to break through the strong assumption of traditional
machine learning on independent and same-distributed data, and improve the model
performance of the target domain under the condition of data scarcity or insufficient
labelling by mining the shared knowledge among different but related domains. Its
theoretical foundation is built on the concept of domain adaptation, which defines the
source domain as a relevant task scenario with abundant labelled data, such as
conventional milling and similar material processing, and the target domain as a specific
micro-milling condition with scarce data, which is potentially correlated with the
underlying physical mechanism despite the differences in data distribution.

The core challenge of transfer learning is to bridge such domain differences, i.e., the
marginal and conditional probability distribution offsets between the source and target
domains, the former being reflected in the misalignment of the input feature space, and
the latter in the change of the conditional distributions of the outputs corresponding to the
same inputs, e.g., the roughness response offsets under the same feed due to the size
effect.

In order to overcome the domain differences, mainstream methods focus on three
paths: feature migration, instance migration and parameter migration. Feature migration
projects the source and target domain data into a shared subspace through domain
adversarial training or feature embedding alignment, which minimises the distribution
distance between the two domains in the space, e.g., the domain confusion loss function
in DNNs can force the network to learn domain-invariant features and suppress
condition-specific interference (Jin et al., 2024).

Instance migration, on the other hand, weights the source domain samples and reuses
the samples that are most similar to the distribution of the target domain to reduce the risk
of negative migration caused by distributional bias. And the core idea of parameter
migration as the key paradigm adopted in this paper is model fine-tuning. The deep
model is first pre-trained using source domain big data to capture a generic processing
feature representation. Subsequently, the model is trained twice on small samples in the
target domain, at which time the efficient transfer of knowledge from the source domain
to the target domain is realised by freezing the underlying network layer and fine-tuning
only the top task layer. This ‘pre-training-fine-tuning” mechanism not only significantly
reduces the data requirements of the target domain, but also avoids the overfitting
degradation of the model in small sample scenarios through parameter reuse.

The theoretical value of transfer learning is especially prominent in the field of
micro-milling, which transforms cross-scale and cross-material machining knowledge
into transferable model a priori, providing a methodological cornerstone for solving the
experimental data bottleneck in micro-manufacturing scenarios.
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3 Construction of surface roughness prediction model based on migration
learning

3.1 Cross-domain data acquisition and pre-processing

The framework diagram of the migration learning based surface roughness prediction
model is shown in Figure 1. Effective acquisition and standardised processing of
cross-domain data is the cornerstone of transfer learning model construction, the core of
which lies in coordinating the heterogeneous contradiction between the historical
experience of the source domain and the small sample characteristics of the target
domain. The source domain data collection makes full use of existing industrial
databases and open literature resources, covering conventional scale milling and similar
difficult-to-machine materials. Although these data originate from different working
conditions, they retain the universality of the physical mechanism of machining through
unified feature coding. The target-domain data are obtained from an independently
designed micro-milling experimental platform, which takes thin-walled aerospace-grade
titanium alloy (Ti6Al4V) as the target, and uses ultra-fine diamond-coated cutting tools
to implement orthogonal tests on a precision micro-milling machine, and synchronously
collects the submicron surface topography and micro-Nm cutting force signals through a
white-light interferometer and a dynamic force transducer. It is worth noting that the
sample size of the target domain is limited by the cost of the experiment to only 20
groups, and its parameter range focuses on microscale-specific working conditions,
such as the spindle speed exceeding 40,000 rpm, and the feed rate down to the
micron-per-tooth level, which is a significant difference in magnitude from the
macro-parameters of the source domain.

Due to the inherent gap between the two data domains in terms of scale, operating
conditions and distribution, the pre-processing needs to focus on solving the two major
problems of feature alignment and noise suppression. At the feature level, the
inter-domain magnitude difference is eliminated by physical meaning-driven feature
reconstruction, such as converting the absolute feed in the source domain to the feed per
tooth independent of the tool diameter, and expressing the depth of cut as a percentage of
the tool diameter to weaken the interference of the size effect. For the high-frequency
vibration noise specific to micro-milling in the target domain, wavelet threshold
denoising combined with empirical modal decomposition (EMD) (Rehman and Mandic,
2010) is used to strip out the underlying vibration components of the machine tool and
retain the frequency band (5-15 kHz) that is strongly correlated with the cutting process.
For data normalisation, a domain-adaptive scaling strategy is used to normalise
continuous-type parameters to [0, 1] at the maximum value of the respective domains,
whereas uniquely hot coding is performed for category variables to ensure topological
consistency in the input space. To mitigate the risk of overfitting for small samples in the
target domain, synthetic samples are generated to expand the training set based on the
source domain data distribution, but strictly limited to the physical feasible interval. The
final constructed cross-domain dataset is validated by t-SNE visualisation — after
pre-processing, the clustering centre distance of the two domain data in the
high-dimensional feature space is shortened by 62%, which lays the foundation of
low-bias domain adaptation for subsequent knowledge migration in transfer learning.
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Figure 1 Structure of the migration learning based surface roughness prediction model
(see online version for colours)
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3.2 DNN architecture design

DNNs are used as a vehicle for transfer learning, and their architectural design needs to
take into account the feature abstraction capability and cross-domain generalisation
potential. The model input layer is defined as a four-dimensional process parameter
vector:

x:[n,fz,ap,ae]T (D

where corresponds to spindle speed (rpm), feed per tooth (um/z), axial depth of cut (um)
and radial width of cut (um), respectively, and all the features are normalised to the
interval of [0, 1] to eliminate the magnitude difference by the domain adaptive scaling
strategy in Section 3.1. The hidden layer adopts a three-layer fully connected structure,
and the number of neurons in each layer decreases step by step following the principle of
feature compression, so as to refine the higher-order interaction features of the processing
parameters through the stepwise dimensionality reduction. The core nonlinear activation
function is selected as rectified linear unit (ReLU), and its expression is:

ReLU(z) = max(0, z) (2)

The function retains the linear transfer characteristic in the positive interval, and is forced
to be sparse in the negative interval, effectively avoiding the problem of vanishing
gradient, and enhancing the model’s ability to fit the non-monotonic response of cutting
parameters (e.g., abrupt change in roughness after feed exceeding the threshold). The
output layer is a single neuron linear layer, which is directly mapped to the surface
roughness prediction value R,, and the loss function adopts the mean square error (MSE)
to strengthen the sensitivity to outliers:

LS50 )2
LMSE=NZ(R0 —R, ) (€)]

i=1

where N is the number of batch samples, R\ is the predicted value and R is the

measured value. To fit the migration learning framework, the bottom layer of the network
(input layer to the first hidden layer) is designed as a wide sensory field structure
dedicated to extracting basic machining features such as speed-feed coupling. The higher
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layers (the second hidden layer to the output layer) act as working condition adapters,
focusing on adjusting their weights during the fine-tuning phase to capture the details of
the size effect of micro-milling in the target domain. This hierarchical capability
allocation mechanism is realised by the parameter freezing technique, which fixes the
parameters of the bottom layer after pre-training and opens up only the parameters of the
top layer for fine-tuning in the target domain, which preserves the knowledge of the
source domain and avoids the risk of overfitting in small samples.

3.3 Transfer learning implementation process

The implementation of migration learning is accomplished through a two-phase strategy
of pre-training and fine-tuning, with the core objective of utilising the richness of the
source domain data to compensate for the scarcity of samples in the target domain. In the
pre-training phase, the source domain dataset is set as:

D, ={(x.&;,)}" 4)

This dataset drives the ability of DNNs to learn a generic representation of processing
parameters. At this point the MSE loss function is used to optimise all weights of the
network:

o - R () 2
s —arg;mnﬁg(fe X; —Ra,,-) (%)

where fy is the DNN forward computation function, the process adaptively adjusts the
learning rate through the Adam optimiser, and the model converges to an RMSE less than
or equal to 0.08 pm on the source domain test set after 500 epoch training, indicating that
the underlying mapping law of cutting speed-vibration energy and surface roughness has
been captured.

The fine-tuning phase then shifts to small samples in the target domain to achieve
knowledge adaptation through a hierarchical parameter migration mechanism.
Specifically, the bottom weight & (input layer to the first hidden layer) of the pretrained
model is frozen, and only the high-level weight & (second hidden layer to the output
layer) is opened for fine-tuning. At this time, the loss function is defined as:

t 1 . d 12 t 2
Liyse =N2(f{9’_*ﬁz} (xj)_Ra,j) (6)

J=1

where 01* is the frozen pre-trained bottom layer parameters and 6 is the high-level

parameters to be optimised. The design ensures that the model retains the generic features
of source-domain learning, such as the nonlinear effect of feed on plowing effect, while
adapting to target-domain-specific dimensional effects, such as surface elastic regression
due to minimum cutting thickness in micro-milling, through high-level weight tuning.
The fine-tuning employs a lower learning rate and an early stopping strategy to avoid
small-sample overfitting.



10 P. Zhang

3.4 Model performance evaluation metrics

The comprehensive assessment of the model performance needs to take into account the
three dimensions of prediction accuracy, generalisation stability and engineering
practicability, so a multi-angle validation system is constructed for this purpose. The core
quantitative index of prediction accuracy adopts the root mean square error (RMSE),
which reflects the overall deviation level of the model by calculating the standard
deviation between the predicted roughness and the measured value, and is highly
sensitive to the outliers, which can effectively capture the abnormal fluctuation of the
surface due to the sudden vibration in the micro-milling. Meanwhile, the coefficient of
determination (R®) is introduced to measure the model’s ability to explain the data
distribution in the target domain, and when R* tends to be close to 1, it indicates that the
mapping relationship between the parameters and roughness is adequately fitted. To
balance the RMSE’s preference for penalising large errors, the absolute mean of the
prediction deviations is complemented by the MAE, which is a metric that more closely
matches the craftsmen’s intuitive understanding of the roughness tolerance threshold. It is
worth noting that relying solely on the training set accuracy will seriously overestimate
the model effectiveness, so the hierarchical cross-validation is strictly implemented.
Specifically, 20 sets of data in the target domain are divided into 5 folds, each time with
16 sets of training and 4 sets of testing, and the mean and variance of the RMSE of the
testing set are calculated cyclically, to avoid the assessment chance caused by random
division.

Generalisation stability, on the other hand, focuses on the model’s ability to adapt to
working condition perturbations, which is achieved by domain offset sensitivity analysis.
The target domain data are loaded on the source domain pre-trained model, and the initial
prediction error before fine-tuning is recorded as the baseline. The error decrease rate of
the same batch of data is compared after fine-tuning to quantify the effect of knowledge
migration on the correction of distributional differences. The generalisation error rate
(GER) metric is further introduced, defined as the ratio of the RMSE of the test set to the
RMSE of the training set. The engineering utility value is indirectly verified through the
process optimisation scenario, where the migration learning model is used as a proxy
model for NSGA-II to compare the matching of its recommended parameters with the
measured results, and if 90% of the parameter combinations in the Pareto solution set of
the measured R, fall within the predicted value +15% interval, it is determined that the
model has the reliability for engineering decision-making.

4 Design of a multi-objective micro-milling parameter optimisation
framework

Micro-milling parameter optimisation is essentially solving Pareto bounds for conflicting
objectives in a high-dimensional nonlinear constraint space (Jorswieck et al., 2008), and
its core challenge lies in the high-cost evaluation of the objective function and the
diversity guarantee of the solution set distribution. Traditional methods rely on repeated
physical experiments or simplified agent models, the former being difficult to support the
iterative demands of evolutionary algorithms due to long experimental cycles, and the
latter invalidating optimisation results due to prediction bias. Therefore, this chapter
deeply integrates the transfer learning surface prediction model constructed in Chapter 3
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with the improved NSGA-II algorithm to establish a closed-loop optimisation
framework of ‘agent evaluation-evolutionary search-decision screening’, which realises
high-precision and high-efficiency multi-objective parameter optimisation under the
conditions of small samples.

The optimisation problem requires a clear definition of the decision space and the
objective function. Take the process parameter vector decision variables as:

xz[n,fz,ap,ae]r @)

where spindle speed is n, feed per tooth is £, axial depth of cut is a,, radial width of cut is
a.. The boundaries are constrained by tool strength and machine dynamics. The
optimisation objective consists of the conflicting demands of surface quality and
machining efficiency. The minimised surface roughness is:

R, = f(x) @)
Its predicted in real-time by a migration learning DNN model.
The maximised MRR is:
MRR = f5(x)=nX f,xXa,Xa, )

It is a deterministic calculation function. The difference between the two physical
quantities is significant, and the optimisation bias needs to be eliminated by adaptive
normalisation, and the normalised objective function is defined as:

~ R —R

o= e

. MRR__ — MRR(x) (19)
fz(x) — max

MRR,.. —MRR ;.

where R Rumin and MRR,..., MRR,,, are the observed extremes in the current
population, dynamically updated to avoid search stagnation caused by fixed ranges.

The evolutionary algorithm adopts the improved NSGA-II architecture, whose core
innovation lies in the efficient integration of the migration learning agent model and the
enhancement of the constraint handling mechanism. The initial population is uniformly
generated with 100 sets of parameter combinations in the decision space by Latin
hypercube sampling, which replaces the traditional random initialisation to enhance the
exploration efficiency. For each generation of individuals, the evaluation of surface
roughness R, relies solely on the migration learning DNN agent model, whose single
prediction takes only 1ms, while MRR is computed directly analytically. The
non-dominated ordering classifies individuals into different frontier classes based on the
normalised objective value, and then measures the distribution density of the solution in
the target space by the crowding distance:

cd® = Zz“|j7k(i+1) _j;k(i—l)| (11)
k=1

This distance is used as a secondary ordering criterion to ensure that the algorithm
converges while maintaining solution set diversity. For process constraints specific to
micro-milling, such as minimum cutting thickness limits and tool deflection thresholds,
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the feasible domain precedence principle is applied. Individuals violating the constraints
are labelled as ‘invalid solutions’, which are automatically ranked after all feasible
solutions, and the crowding is set to zero to inhibit their entry into the next generation.

5 Experimental validation and result analysis

5.1 Experimental platform and working condition setting

The experimental validation relies on a high-precision micro-milling integrated platform,
the core of which consists of a Swiss KERN Evo ultra-precision machining centre, an
ultra-fine diamond-coated tooling system, and a multi-physical quantity on-line
monitoring unit, which is designed to reproduce the typical working conditions of
aerospace micro-component machining. The spindle of the machine is supported by
aerostatic bearings, with an ultimate speed of 60,000 rpm and a radial runout error of less
than 0.5 pum, which provides basic motion accuracy for micro-scale cutting. The
workpiece is made of aerospace-grade Ti6Al4V titanium alloy sheet (10 x 10 x 1 mm),
whose high-strength and low-thermal-conductivity characteristics exacerbate the
challenges of dimensional effects and thermal coupling in micro-milling. The specimen is
fixed to a piezoelectric three-way force gauge by a vacuum suction cup to collect the
cutting force signals from the X/Y/Z directions in real-time, and a laser Doppler
vibrometer is adopted to synchronise the cutting force signal. The acceleration of the
cutting tool tip is monitored by a laser Doppler vibrometer.

The range of machining parameters was determined according to the tool
manufacturer’s specifications and pre-tests. The spindle speeds covered the range from
30,000 to 60,000 rpm, the feed per tooth was set at 1.0-5.0 pm/z, the axial depth of cut
was 10-50 pum, and the radial width of cut was 20-100 pm. In order to balance the
efficiency of the experiments with the representativeness of the data, orthogonal
experimental design L16 was used to generate 16 combinations of the basic parameters,
supplemented by 4 sets of extreme conditions and 4 sets of extreme conditions. To
balance the experimental efficiency and representativeness, L16(4") was used to generate
16 sets of basic parameter combinations, supplemented by 4 sets of extreme working
conditions (e.g., maximum speed + minimum feed, minimum speed + maximum depth of
cut) to form 20 sets of target domain datasets. The cooling method is micro quantity
lubrication, with an atomisation pressure of 0.4 MPa and a lubricant flow rate of 15
mL/h, which effectively balances the suppression of chip tumours in titanium alloy
machining with the need for heat dissipation in the cutting zone. Surface quality
inspection was completed offline after machining by a white light interferometer (Zygo
Nexview), the scanning area was selected as the middle stable cutting section of the
workpiece (800 x 600 pm?), the surface roughness R, value was evaluated along the feed
direction according to the ISO 4287 standard (Todhunter et al., 2017), and three sets of
measurements were averaged for each specimen to abate the interference of local material
heterogeneity.

Environmental control is the key to guarantee the reliability of the data. The
laboratory was maintained at a constant temperature of 20 + 0.5°C, the foundation was
isolated at a frequency of less than or equal to 2 Hz, and the humidity was controlled at
45 + 5% to reduce thermal deformation and oxidative effects. All the sensing signals are
anti-alias filtered and recorded by NI PXIe-1082 data acquisition system, and the
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sampling rate is set to 100 kHz in order to capture the high-frequency vibration
characteristics of micro-milling (main frequency band 5-25 kHz). The finally constructed
working condition system strictly simulates the aero-engine micro-blade slot machining
scenario, which provides a high-fidelity experimental benchmark for the validation of the
migration learning model and the multi-objective optimisation framework.

5.2 Migration learning model validation

The validation of the transfer learning model unfolds through four types of benchmark
model comparisons, with the core objective of quantifying the gain effect of
cross-domain knowledge transfer on micro-milled surface prediction. The comparison
programs include:

1 Pure target domain trained DNN model (Shi et al., 2019) using only 20 sets of
micro-milling data.

2 SVR using radial basis kernel function (Ding et al., 2021).
3 Secondary response surface modelling (RSM) (Gendy et al., 2018).
4 Transfer learning model (TL-DNN) for this paper.

The test set is generated by 5-fold cross-validation, 4 sets of data are kept for independent
testing each time, and the final metrics are taken as the mean of 5 rounds. Prediction
accuracy is measured by three key metrics: RMSE reflects the overall bias, mean absolute
error (MAE) characterises the typical prediction bias, and the coefficient of determination
(R?) evaluates the trend fit goodness of fit.

The experimental results show significant differentiation: the TL-DNN achieves an
excellent performance of RMSE = 0.05 um, MAE = 0.04 um, and R? = 0.92 in R,
prediction, with a concentrated error distribution and no systematic bias. In contrast, the
RMSE of DNN-T is as high as 0.08 pm due to small-sample overfitting, especially in the
extreme parameter region (e.g., n = 60,000 rpm, f, = 1.0 um/z) with an abnormal
deviation of 0.15 pum; and the RMSEs of SVR and RSM are 0.11 and 0.14 pm,
respectively, and the nonlinear responses of the two to the feed-roughness are severely
underestimated (R? only 0.71 and 0.64). The correction effect of migration learning is
more prominent in the domain offset sensitivity analysis: when the source domain model
directly predicts the target domain data, the initial RMSE is 0.21 um, which is reduced to
0.05 pm after fine-tuning, a decrease of 76.2%, proving that the pre-training effectively
extracts the generalised machining features. The model robustness is further verified by
the generalisation error rate (GER): the GER of TL-DNN = 1.08 (test set RMSE/training
set RMSE), which is significantly lower than that of DNN-T at 1.85, indicating that the
migration mechanism effectively suppresses small-sample overfitting.

To visualise the prediction performance, Figure 2 compares the predicted-measured
scatter distributions of the four models in the test set. the data points of TL-DNN are
tightly distributed on both sides of the y = x baseline, while DNN-T shows systematic
overestimation in the low roughness region (R, < 0.2 pum), and RSM disperses
significantly in the high-value region due to polynomial limitations. Figure 3 further
reveals the influence curve of feed (f)) on R,: when f, increases from 1.0 to 5.0 um/z,
TL-DNN accurately captures the step-up trend of 0.18—0.35 um and the abrupt change
of slope at 2.5 um/z (originating from the minimum cutting thickness effect), while SVR
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underestimates the gradient change by 30% due to the smoothing effect of the kernel
function. Together, these visual evidences confirm that migration learning significantly
improves the reliability of surface prediction for small-sample scenarios of micro-milling
by reusing macroscopic machining knowledge, and lays the foundation of a
high-precision agent model for multi-objective optimisation.

Figure 2 Surface roughness prediction vs. measurement (see online version for colours)

Figure 3 Effect of feed rate on roughness prediction (see online version for colours)
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5.3 Multi-objective optimisation result analysis

The validation of multi-objective optimisation efficacy focuses on three dimensions:
quality of Pareto frontier distribution, computational efficiency and engineering
feasibility. The experiments compare three strategies: strategy A (NSGA-II + physical
experiments), strategy B (NSGA-II + pure DNN agent model), and strategy C (the
framework of this paper: NSGA-II + migration learning agent model). After 100
generations of evolutionary iterations, the Pareto solution set generated by Strategy C
shows significant advantages. The surface roughness R, covers the range of 0.21-0.35
pm, and the MRR is distributed in the interval of 0.18-0.32 mm?/min, with the frontier
span widened by 28% compared to Strategy A and 15% compared to Strategy B. The
Pareto solution set is also a good solution for the Pareto solution set. This broad
distribution provides a richer choice of parameter trade-offs for process decision-making,
e.g., when the R, requirement is tightened from 0.30 um to 0.25 pum, strategy
C still provides a feasible solution with MRR > 0.22 mm®/min, whereas the MRR of the
same-conditional solution of Strategy B drops below 0.18 mm?*/min.

Frontier convergence is quantified by generational distance (GD), and the GD value
of Strategy C is only 0.018, which is 42% and 28% lower than that of Strategy A (0.031)
and Strategy B (0.025), respectively, which proves that the high-precision bootstrapping
of the migration learning agent model significantly reduces the invalid search. In terms of
computational efficiency comparison, strategy C takes only 1.5 hours to complete the
optimisation, while strategy A takes 72 hours due to its reliance on physical experiments,
and strategy B is shortened to 12 hours but still limited by the frequent retraining
requirements of the agent model. Figure 4 clearly presents the differences in the Pareto
frontier distributions of the three strategies, with the solution set of strategy C (blue
triangles) uniformly occupying the dominant region in the lower left of the target space
(low R, and high MRR), strategy B (orange dots) clustering in the high roughness region,
and strategy A (green squares) having a broken frontier due to sparse experiments.

Figure 4 Pareto front comparison of optimisation strategies (see online version for colours)
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Figure 5 Parameter sensitivity analysis (see online version for colours)

The TOPSIS-recommended solution of strategy C is selected for engineering validation
for physical experiments. The measured R, = 0.24 um, with an absolute error of only 0.01
pum; the MRR is measured to be 0.264 mm?*/min, with a deviation of 1.5%. Compared
with the initial parameter scheme, the efficiency is improved by 31% under the premise
of guaranteeing the surface quality. The sensitivity analysis is shown in Figure 5, which
further reveals the influence weights of process parameters. Feed f, contributes 62% to
R,, and its increase linearly exacerbates the plow effect, whereas rotational speed n has
the most significant positive gain on MRR, but above 50,000 rpm causes R, to rebound
due to increased tool runout. These findings provide clear guidance for micro-milling
parameter tuning, and preferential optimisation of the f,—» combination can achieve
synergistic surface and efficiency gains.

6 Conclusions

Aiming at the dual challenges of data scarcity and multi-objective conflict in
micro-milling process optimisation, this study proposes an innovative framework
integrating migration learning and evolutionary algorithms, and systematically verifies its
remarkable efficacy in surface quality prediction and parameter decision-making. The
conclusions show that the DNN-based transfer learning mechanism effectively breaks the
small sample modelling dilemma, and the surface roughness prediction model achieves
an accuracy of RMSE = 0.05 um under the condition of only 20 sets of data in the target
domain, which is more than 38% lower than the traditional data-driven method. The
model successfully captures the micro-milling-specific size effect and the critical
behaviour of minimum cutting thickness, providing a highly reliable proxy model for
optimisation. The multi-objective evolutionary framework constructed on this basis
achieves the synergistic optimisation of surface roughness (R,) and MRR by relying on
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the millisecond evaluation capability of the transfer learning agent model and the
improved search strategy of NSGA-II.

Despite the effectiveness of the current framework, there are still directions that need
to be further explored. Firstly, the optimisation process does not take into account the
dynamic evolution of tool wear, and the bluntness of the cutting edge will lead to
time-varying degradation of the surface quality in actual machining, so it is necessary to
integrate the online wear monitoring data to build a dynamic agent model in the future.
Second, the generalisation ability of migration learning needs to be verified in
multi-material scenarios, for example, the difference between the micro-milling response
mechanisms of carbon fibre composites and ceramics may trigger negative migration, and
it is necessary to develop material-invariant feature extractors to enhance
cross-material adaptability. Finally, the existing system has not yet interacted with the
production line in real-time. Combining the digital twin technology to build a
‘sensing-prediction-optimisation’ closed-loop will be the focus of the next stage, and the
model parameters will be corrected in real-time through the integration of vibration,
acoustic emission and other sensors, so as to ultimately realise the adaptive
decision-making of the micro-milling process.
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