
 
International Journal of Information and Communication
Technology
 
ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

 
Multi-objective micro-milling parameter optimisation and
surface prediction via migration learning
 
Pu Zhang
 
DOI: 10.1504/IJICT.2025.10075341
 
Article History:
Received: 11 July 2025
Last revised: 27 August 2025
Accepted: 29 August 2025
Published online: 15 January 2026

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10075341
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Information and Communication Technology, Vol. 26, No. 52, 2025 1    
 

   Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 
 
 

   

   
 

   

   

 

   

       
 

Multi-objective micro-milling parameter optimisation 
and surface prediction via migration learning 

Pu Zhang 
School of Advanced Manufacturing Technology, 
Guangdong Mechanical and Electrical Polytechnic, 
Guangzhou, 510550, China 
Email: gdmachining@126.com 

Abstract: In this study, a multi-objective optimisation framework 
incorporating migration learning is proposed with the aim of efficiently 
optimising micro-milling parameters and accurately predicting surface 
roughness. First, a deep neural network (DNN)-based surface roughness 
prediction model is constructed as a base model. Subsequently, the pre-trained 
model is fine-tuned (fine-tuning) using a limited amount of micro-milling 
experimental data in the target domain to quickly adapt to the target working 
conditions and significantly improve the prediction accuracy under small 
samples. On this basis, the migration learning-enhanced prediction model is 
integrated with a multi-objective optimisation algorithm (e.g., NSGA-II) to 
construct an optimisation framework. Experimental results show that relying on 
the millisecond evaluation capability of the migration learning agent model and 
the improved search strategy of NSGA-II, the Pareto frontier distribution range 
is widened by 28% and the frontier convergence speed is improved by 42%. 

Keywords: migration learning; micro-milling; multi-objective optimisation; 
surface roughness prediction. 
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1 Introduction 

As a core process in the field of precision manufacturing, micro-milling technology has 
an irreplaceable role in the machining of micro-electromechanical systems, medical 
devices and aerospace micro-components. Its machining quality, especially the surface 
roughness, directly affects the functional performance and service life of the parts. 
However, the size effect is significant at the microscale, and the influence mechanism of 
process parameters (e.g., spindle speed, feed, depth of cut, etc.) on surface integrity is 
complex and nonlinear, so it is difficult to accurately map the correlation between the 
parameters and the surface quality with traditional optimisation methods based on 



   

 

   

   
 

   

   

 

   

   2 P. Zhang    
 

    
 
 

   

   
 

   

   

 

   

       
 

physical models (Câmara et al., 2012). Existing research mostly relies on a large amount 
of experimental data to construct predictive models, but systematic experiments on new 
materials or special working conditions (e.g., micro-fine tools, difficult-to-machine 
materials) are costly and lengthy, resulting in a lack of data, which seriously restricts the 
practicability and generalisation ability of process optimisation (Mamedov, 2021). In 
addition, the actual production needs to simultaneously take into account the  
surface quality and machining efficiency and other multi-objective requirements, a 
single-objective optimisation is difficult to meet the engineering reality, and there is an 
urgent need to establish an efficient multi-objective co-optimisation framework. 

As the core research direction of precision manufacturing, the optimisation of  
micro-milling parameters and surface quality prediction have made significant progress 
in recent years under the impetus of the integration of intelligent algorithms and  
cross-domain technologies. In terms of surface prediction models, traditional  
physically-driven models (e.g., response surface method (RSM) (Natarajan et al., 2011) 
have been gradually replaced by data-driven methods due to the difficulty of capturing 
the nonlinear effects of microscale machining. Vu et al. (2018) combined the Taguchi 
method with RSM to optimise the surface roughness and the cutting force of hard milling 
for SKD61, and found that the cutting speed and the feed rate had a surface integrity The 
interaction between cutting speed and feed rate on surface integrity was found to be 
significant, but the method relies on a large number of experiments and has limited 
ability to generalise working conditions. To improve the robustness of prediction in small 
samples, machine learning models have been widely introduced. Nguyen et al. (2023a) 
compared the effectiveness of linear regression, support vector machine (SVR) and 
artificial neural network (ANN) in predicting surface roughness and tool wear in 
Ti6Al4V turning, and confirmed that the ANN performs the best in RMSE and R² metrics 
by virtue of its nonlinear mapping capability, providing a high-accuracy optimisation for 
multi-objective optimisation. It provides a high-precision agent model for multi-objective 
optimisation. 

The development of multi-objective optimisation algorithms has further enhanced the 
efficiency of process parameter decision making. Classical algorithms such as the  
non-dominated sequential genetic algorithm (NSGA-II) have been widely adopted for 
their efficient Pareto solution search capability. For example, in Ti6Al4V turning, 
NSGA-II successfully coordinates the conflicting objectives of surface roughness and 
tool wear, obtains 50 sets of Pareto solution sets, and filters out the optimal process 
parameters by integrating decision functions (Nguyen et al., 2023b). Similarly, Xu et al. 
(2024) addressed the inefficiency of ultrasonic vibration-assisted micro-fine EDM 
machining of titanium alloys and optimised the MRR and surface quality by combining 
NSGA-II with vibration control technology, which verified the applicability of intelligent 
algorithms in special machining. Improved models of particle swarm optimisation (PSO) 
also show potential, such as chaotic initialisation PSO to enhance population diversity 
through Tent mapping, which effectively balances cutting force and MRR in milling 
parameter optimisation (Aleem et al., 2020). 

The introduction of migration learning provides a new path to solve the bottleneck of 
scarce data for target working conditions. Although there are still few direct studies on 
the application of transfer learning in micro-milling, its success in similar fields validates 
the feasibility of cross-domain knowledge transfer. For example, Guo et al. (2020) used 
historical data to construct a prediction model for energy consumption and residual stress 
in screw hard milling, which reduces the cost of experimenting with new working 
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conditions through knowledge reuse. Wang et al. (2021) used a multi-response 
optimisation framework to coordinate the MRR and surface roughness in aluminium 
alloy micro-milling, and their pre-training-fine-tuning strategy provides a reference 
paradigm for small-sample learning in micro-milling. 

The limitations of the current study focus on three aspects: 

1 Data dependence and generalisation contradiction. Most machine learning models 
require a large amount of labelled data, while the high experimental cost of actual 
micro-milling of new materials/tools leads to limited model generalisation (Bhirud  
et al., 2024). 

2 Insufficient generalisability of multi-objective decision making. Existing 
optimisation frameworks are often designed for specific materials (e.g., titanium 
alloys, aluminium alloys), and lack universal decision criteria across processes 
(Zariatin et al., 2017). 

3 Weak adaptability to dynamic working conditions. Traditional static optimisation 
does not consider the cumulative effect of time-varying factors such as tool wear and 
vibration on surface quality (Heitz et al., 2022). 

Future research needs to further explore lightweight migration learning architectures to 
reduce data requirements, and develop online optimisation systems integrating real-time 
sensing data and digital twin technology to promote the evolution of micro-milling 
parameter optimisation in the direction of adaptive and highly robust. 

In recent years, deep learning has shown strong potential in complex  
industrial modelling, but its success is highly dependent on massive labelled data, and it 
is prone to overfitting and insufficient generalisation in small sample scenarios such as 
micro-milling. Migration learning provides new ideas to solve the data scarcity in the 
target domain by migrating knowledge from related domains. Inspired by this, this study 
proposes an intelligent decision-making method for micro-milling parameters that 
integrates migration learning and multi-objective optimisation. The core innovation lies 
in the construction of a ‘pre-training-fine-tuning’ cross-domain knowledge transfer 
mechanism: firstly, a DNN is pre-trained with rich historical data from the source domain 
(e.g., conventional milling or similar material machining) to capture general machining 
features; then the model is fine-tuned with a small amount of experimental data from the 
target domain of micromilling to realise high-accuracy surface roughness prediction 
under the condition of small samples. Then the model is fine-tuned by a small amount of 
micro-milling experimental data in the target domain to realise high-accuracy surface 
roughness prediction under small sample conditions. On this basis, the migration 
learning-enhanced prediction model is embedded as a proxy model in the optimisation 
process of the multi-objective evolutionary algorithm to search for the Pareto-optimal 
solution set of machining parameters with the parallel objectives of minimising the 
surface roughness and maximising the MRR. The method significantly reduces the 
dependence on experimental data in the target domain and provides a new paradigm for 
data-driven optimisation in microfabrication. In this paper, the prediction accuracy and 
optimisation efficiency of the framework are verified through systematic experiments, 
and the limitations of traditional methods are compared and analysed, which ultimately 
provide theoretical support and practical guidance for intelligent decision-making of 
micro-milling process under complex working conditions. 
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2 Mechanisms of micro-milling surface formation and theoretical basis of 
transfer learning 

2.1 Micro-milling process characteristics and parameter influence mechanism 

Micro-milling as a key process in the field of precision manufacturing, its core feature is 
that the machining scale between the micron to sub-millimeter scale, significantly 
different from conventional milling. This micro-scale machining process is dominated by 
the size effect, when the cutting thickness is close to the grain size of the material, the 
deformation mechanism of the workpiece material from continuous shear to 
discontinuous plastic flow, resulting in a nonlinear increase in the unit cutting force, and 
at the same time, the ratio of the tool edge radius to the thickness of the chip is 
fundamentally changed. This effect not only exacerbates the micro-area temperature 
gradient and local stress concentration during the cutting process, but also triggers the 
phenomenon of minimum cutting thickness, i.e., when the actual cutting thickness is 
lower than the critical threshold, the tool is unable to effectively remove the material to 
form plowing and sliding, resulting in elastic recovery of the machined surface and 
material buildup, directly degrading the surface topographic integrity (Rahman et al., 
2001). At the same time, the diameter-to-length ratio of the micro milling cutter increases 
significantly, and its intrinsic stiffness decreases dramatically, which induces  
high-frequency tool chatter under the excitation of cyclic cutting force. This vibration not 
only accelerates tool wear and breakage, but also forms vibration lines, burrs and other 
defects on the surface through the dynamic interference between the cutting edge and the 
workpiece, which becomes a key factor in restricting the surface roughness. 

In this context, the synergistic regulation of process parameters is particularly 
sensitive to the influence of surface quality. Although the increase of spindle speed can 
suppress the cutting force amplitude and reduce the plow effect, too high a speed will 
exacerbate the radial runout of the tool caused by centrifugal force, which amplifies the 
fluctuation of the surface contour. At the same time, the speed increase is also limited by 
the spindle dynamic balance accuracy and tool strength. The selection of feed needs to 
strictly match the minimum cutting thickness constraints, if the feed is too small, the 
blade continues to plow the unremoved material, resulting in the thickening of the surface 
hardening layer and the rise of the residual tensile stress; while the feed is too large, it 
triggers cutting vibration and chip clogging, the formation of scaly torn surface. The axial 
depth of cut directly affects the length of the cutting edge, and its increase improves the 
machining efficiency, but it will magnify the bending deformation of the tool 
overhanging section, so that the machining error accumulates along the depth direction, 
especially in the high depth-to-width ratio of groove cavity machining, which is easy to 
lead to the taper of the side wall and the unevenness of the bottom surface is too poor (Jin 
and Altintas, 2012). Radial cutting width affects the direction of cutting force by 
changing the contact angle between the tool and the workpiece, and the unilateral force 
on the tool under the narrow cutting width condition is easy to induce the vibration of 
deflection pendulum, while the full-flute width cutting enhances the rigidity of the 
system, but due to the restriction of the chip removal space exacerbates the risk of the 
chips scratching the machined surface for the second time. Therefore, the optimisation of 
the surface quality of micro-milling is a process of balancing the interaction of size 
effect, dynamic stability and material removal mechanism, and the unfavourable 
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perturbation of the process system needs to be suppressed through accurate matching of 
parameters to ultimately realise the controlled machining of sub-micron level surface 
accuracy. 

2.2 Classification of surface roughness prediction models 

The evolution of surface roughness prediction models has always been centred on the 
balance between the interpretability of the machining physical mechanism and the 
accuracy of data fitting, which can be summarised into three types of paradigms based on 
the modelling principles: physically-driven, statistically-driven and data-driven. 
Physically-driven models are based on cutting mechanics and material deformation 
theory, and establish surface topography generation equations by analysing the 
interaction between the tool and the workpiece. This type of model attributes the 
roughness to the superposition effect of geometric and physical factors, which has the 
advantage of clear physical meaning of the parameters, but is limited by the strong size 
effect and random perturbation in micro-milling, and it is difficult to accurately quantify 
the contribution of non-linear processes such as material rebound in the plastic 
deformation zone and micro-fluttering phase transition to the surface troughs, which 
leads to significant prediction bias in complex working conditions. 

Statistically driven models, on the other hand, construct empirical mapping 
relationships between process parameters and roughness by designing experiments, with 
representative methods such as RSM and regression analysis (Mooi et al., 2018). The 
core of the model is to fit a polynomial function through a finite number of experimental 
samples to describe the statistical correlation between the spindle speed, feed and other 
variables and roughness indexes. Although it avoids the complexity of the physical 
mechanism inscription, the model expression ability is limited by the preset function 
form, such as quadratic polynomials, which makes it difficult to capture the deep 
interactions between the parameters and the non-monotonic response characteristics, 
especially in the multi-constraint, strongly coupled micro-milling scenario, the 
generalisation ability is insufficient. In particular, the generalisation ability is insufficient 
in multi-constraint and strongly coupled micro-milling scenarios. 

In recent years, data-driven models have gradually become mainstream with the 
powerful nonlinear fitting capability of machine learning algorithms. Such methods treat 
roughness prediction as a black-box mapping problem, and automatically learn the 
complex correlation between input parameters and output roughness through training 
data. Support vector regression (SVR) (Awad et al., 2015) maps low-dimensional 
nonlinear relationships to high-dimensional space to achieve linear segmentation through 
kernel functions, and exhibits strong robustness in small-sample scenarios. Random 
forest (RF) (Rigatti, 2017), on the other hand, integrates multiple decision trees to vote on 
the output predicted values, which can effectively suppress overfitting and evaluate the 
importance of parameters. However, the most groundbreaking is the deep learning model, 
especially DNN (Sze et al., 2017), whose multilayer nonlinear transformation structure 
can extract the higher-order features of cutting parameters step by step, such as accurately 
reproducing the surface periodic streaks triggered by chattering through the implied layer 
of nodes coupling the vibration spectrum features with the feed cycle. Experiments show 
that in titanium alloy micro-milling, the prediction error of surface roughness Ra by DNN 
is reduced by about 40% compared with the traditional physical model, and the key to its 
success lies in the abandonment of explicit mechanism assumptions, and the 
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approximation of the chaotic characteristics of the real machining system in a  
data-adaptive manner. Nevertheless, data-driven models are highly dependent on the 
quality and size of training samples, and their performance deteriorates dramatically in 
the absence of target condition data, which also provides the necessity for the 
introduction of migration learning – making up for the natural defects of data scarcity in 
the target domain by migrating the knowledge of the source domain, which has become 
an important direction in the evolution of current prediction models. 

2.3 Core theory of transfer learning 

The essence of transfer learning is to break through the strong assumption of traditional 
machine learning on independent and same-distributed data, and improve the model 
performance of the target domain under the condition of data scarcity or insufficient 
labelling by mining the shared knowledge among different but related domains. Its 
theoretical foundation is built on the concept of domain adaptation, which defines the 
source domain as a relevant task scenario with abundant labelled data, such as 
conventional milling and similar material processing, and the target domain as a specific 
micro-milling condition with scarce data, which is potentially correlated with the 
underlying physical mechanism despite the differences in data distribution. 

The core challenge of transfer learning is to bridge such domain differences, i.e., the 
marginal and conditional probability distribution offsets between the source and target 
domains, the former being reflected in the misalignment of the input feature space, and 
the latter in the change of the conditional distributions of the outputs corresponding to the 
same inputs, e.g., the roughness response offsets under the same feed due to the size 
effect. 

In order to overcome the domain differences, mainstream methods focus on three 
paths: feature migration, instance migration and parameter migration. Feature migration 
projects the source and target domain data into a shared subspace through domain 
adversarial training or feature embedding alignment, which minimises the distribution 
distance between the two domains in the space, e.g., the domain confusion loss function 
in DNNs can force the network to learn domain-invariant features and suppress 
condition-specific interference (Jin et al., 2024). 

Instance migration, on the other hand, weights the source domain samples and reuses 
the samples that are most similar to the distribution of the target domain to reduce the risk 
of negative migration caused by distributional bias. And the core idea of parameter 
migration as the key paradigm adopted in this paper is model fine-tuning. The deep 
model is first pre-trained using source domain big data to capture a generic processing 
feature representation. Subsequently, the model is trained twice on small samples in the 
target domain, at which time the efficient transfer of knowledge from the source domain 
to the target domain is realised by freezing the underlying network layer and fine-tuning 
only the top task layer. This ‘pre-training-fine-tuning’ mechanism not only significantly 
reduces the data requirements of the target domain, but also avoids the overfitting 
degradation of the model in small sample scenarios through parameter reuse. 

The theoretical value of transfer learning is especially prominent in the field of  
micro-milling, which transforms cross-scale and cross-material machining knowledge 
into transferable model a priori, providing a methodological cornerstone for solving the 
experimental data bottleneck in micro-manufacturing scenarios. 
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3 Construction of surface roughness prediction model based on migration 
learning 

3.1 Cross-domain data acquisition and pre-processing 

The framework diagram of the migration learning based surface roughness prediction 
model is shown in Figure 1. Effective acquisition and standardised processing of  
cross-domain data is the cornerstone of transfer learning model construction, the core of 
which lies in coordinating the heterogeneous contradiction between the historical 
experience of the source domain and the small sample characteristics of the target 
domain. The source domain data collection makes full use of existing industrial  
databases and open literature resources, covering conventional scale milling and similar 
difficult-to-machine materials. Although these data originate from different working 
conditions, they retain the universality of the physical mechanism of machining through 
unified feature coding. The target-domain data are obtained from an independently 
designed micro-milling experimental platform, which takes thin-walled aerospace-grade 
titanium alloy (Ti6Al4V) as the target, and uses ultra-fine diamond-coated cutting tools 
to implement orthogonal tests on a precision micro-milling machine, and synchronously 
collects the submicron surface topography and micro-Nm cutting force signals through a 
white-light interferometer and a dynamic force transducer. It is worth noting that the 
sample size of the target domain is limited by the cost of the experiment to only 20 
groups, and its parameter range focuses on microscale-specific working conditions,  
such as the spindle speed exceeding 40,000 rpm, and the feed rate down to the  
micron-per-tooth level, which is a significant difference in magnitude from the  
macro-parameters of the source domain. 

Due to the inherent gap between the two data domains in terms of scale, operating 
conditions and distribution, the pre-processing needs to focus on solving the two major 
problems of feature alignment and noise suppression. At the feature level, the  
inter-domain magnitude difference is eliminated by physical meaning-driven feature 
reconstruction, such as converting the absolute feed in the source domain to the feed per 
tooth independent of the tool diameter, and expressing the depth of cut as a percentage of 
the tool diameter to weaken the interference of the size effect. For the high-frequency 
vibration noise specific to micro-milling in the target domain, wavelet threshold 
denoising combined with empirical modal decomposition (EMD) (Rehman and Mandic, 
2010) is used to strip out the underlying vibration components of the machine tool and 
retain the frequency band (5–15 kHz) that is strongly correlated with the cutting process. 
For data normalisation, a domain-adaptive scaling strategy is used to normalise 
continuous-type parameters to [0, 1] at the maximum value of the respective domains, 
whereas uniquely hot coding is performed for category variables to ensure topological 
consistency in the input space. To mitigate the risk of overfitting for small samples in the 
target domain, synthetic samples are generated to expand the training set based on the 
source domain data distribution, but strictly limited to the physical feasible interval. The 
final constructed cross-domain dataset is validated by t-SNE visualisation – after  
pre-processing, the clustering centre distance of the two domain data in the  
high-dimensional feature space is shortened by 62%, which lays the foundation of  
low-bias domain adaptation for subsequent knowledge migration in transfer learning. 
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Figure 1 Structure of the migration learning based surface roughness prediction model  
(see online version for colours) 
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3.2 DNN architecture design 

DNNs are used as a vehicle for transfer learning, and their architectural design needs to 
take into account the feature abstraction capability and cross-domain generalisation 
potential. The model input layer is defined as a four-dimensional process parameter 
vector: 

, , , T
z p ex n f a a=     (1) 

where corresponds to spindle speed (rpm), feed per tooth (μm/z), axial depth of cut (μm) 
and radial width of cut (μm), respectively, and all the features are normalised to the 
interval of [0, 1] to eliminate the magnitude difference by the domain adaptive scaling 
strategy in Section 3.1. The hidden layer adopts a three-layer fully connected structure, 
and the number of neurons in each layer decreases step by step following the principle of 
feature compression, so as to refine the higher-order interaction features of the processing 
parameters through the stepwise dimensionality reduction. The core nonlinear activation 
function is selected as rectified linear unit (ReLU), and its expression is: 

ReLU( ) max(0, )z z=  (2) 

The function retains the linear transfer characteristic in the positive interval, and is forced 
to be sparse in the negative interval, effectively avoiding the problem of vanishing 
gradient, and enhancing the model’s ability to fit the non-monotonic response of cutting 
parameters (e.g., abrupt change in roughness after feed exceeding the threshold). The 
output layer is a single neuron linear layer, which is directly mapped to the surface 
roughness prediction value Ra, and the loss function adopts the mean square error (MSE) 
to strengthen the sensitivity to outliers: 

( )2( ) ( )

1

1 ˆ
N

i i
MSE a a

i

L R R
N =

= −  (3) 

where N is the number of batch samples, ( )ˆ i
aR  is the predicted value and ( )i

aR  is the 
measured value. To fit the migration learning framework, the bottom layer of the network 
(input layer to the first hidden layer) is designed as a wide sensory field structure 
dedicated to extracting basic machining features such as speed-feed coupling. The higher 
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layers (the second hidden layer to the output layer) act as working condition adapters, 
focusing on adjusting their weights during the fine-tuning phase to capture the details of 
the size effect of micro-milling in the target domain. This hierarchical capability 
allocation mechanism is realised by the parameter freezing technique, which fixes the 
parameters of the bottom layer after pre-training and opens up only the parameters of the 
top layer for fine-tuning in the target domain, which preserves the knowledge of the 
source domain and avoids the risk of overfitting in small samples. 

3.3 Transfer learning implementation process 

The implementation of migration learning is accomplished through a two-phase strategy 
of pre-training and fine-tuning, with the core objective of utilising the richness of the 
source domain data to compensate for the scarcity of samples in the target domain. In the 
pre-training phase, the source domain dataset is set as: 

( ){ }, 1
,

Ms s
s i a i i

D x R
=

=  (4) 

This dataset drives the ability of DNNs to learn a generic representation of processing 
parameters. At this point the MSE loss function is used to optimise all weights of the 
network: 

( )( )2*
,

1

1arg min
M

s s
s θ i a i

θ i

θ f x R
M =

= −  (5) 

where fθ is the DNN forward computation function, the process adaptively adjusts the 
learning rate through the Adam optimiser, and the model converges to an RMSE less than 
or equal to 0.08 μm on the source domain test set after 500 epoch training, indicating that 
the underlying mapping law of cutting speed-vibration energy and surface roughness has 
been captured. 

The fine-tuning phase then shifts to small samples in the target domain to achieve 
knowledge adaptation through a hierarchical parameter migration mechanism. 
Specifically, the bottom weight θ1 (input layer to the first hidden layer) of the pretrained 
model is frozen, and only the high-level weight θ2 (second hidden layer to the output 
layer) is opened for fine-tuning. At this time, the loss function is defined as: 

{ } ( )( )*
2

2

,,
1

1
i

N
t t t
MSE j a jθ θ

j

L f x R
N =

= −  (6) 

where *
1θ  is the frozen pre-trained bottom layer parameters and θ2 is the high-level 

parameters to be optimised. The design ensures that the model retains the generic features 
of source-domain learning, such as the nonlinear effect of feed on plowing effect, while 
adapting to target-domain-specific dimensional effects, such as surface elastic regression 
due to minimum cutting thickness in micro-milling, through high-level weight tuning. 
The fine-tuning employs a lower learning rate and an early stopping strategy to avoid 
small-sample overfitting. 
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3.4 Model performance evaluation metrics 

The comprehensive assessment of the model performance needs to take into account the 
three dimensions of prediction accuracy, generalisation stability and engineering 
practicability, so a multi-angle validation system is constructed for this purpose. The core 
quantitative index of prediction accuracy adopts the root mean square error (RMSE), 
which reflects the overall deviation level of the model by calculating the standard 
deviation between the predicted roughness and the measured value, and is highly 
sensitive to the outliers, which can effectively capture the abnormal fluctuation of the 
surface due to the sudden vibration in the micro-milling. Meanwhile, the coefficient of 
determination (R2) is introduced to measure the model’s ability to explain the data 
distribution in the target domain, and when R2 tends to be close to 1, it indicates that the 
mapping relationship between the parameters and roughness is adequately fitted. To 
balance the RMSE’s preference for penalising large errors, the absolute mean of the 
prediction deviations is complemented by the MAE, which is a metric that more closely 
matches the craftsmen’s intuitive understanding of the roughness tolerance threshold. It is 
worth noting that relying solely on the training set accuracy will seriously overestimate 
the model effectiveness, so the hierarchical cross-validation is strictly implemented. 
Specifically, 20 sets of data in the target domain are divided into 5 folds, each time with 
16 sets of training and 4 sets of testing, and the mean and variance of the RMSE of the 
testing set are calculated cyclically, to avoid the assessment chance caused by random 
division. 

Generalisation stability, on the other hand, focuses on the model’s ability to adapt to 
working condition perturbations, which is achieved by domain offset sensitivity analysis. 
The target domain data are loaded on the source domain pre-trained model, and the initial 
prediction error before fine-tuning is recorded as the baseline. The error decrease rate of 
the same batch of data is compared after fine-tuning to quantify the effect of knowledge 
migration on the correction of distributional differences. The generalisation error rate 
(GER) metric is further introduced, defined as the ratio of the RMSE of the test set to the 
RMSE of the training set. The engineering utility value is indirectly verified through the 
process optimisation scenario, where the migration learning model is used as a proxy 
model for NSGA-II to compare the matching of its recommended parameters with the 
measured results, and if 90% of the parameter combinations in the Pareto solution set of 
the measured Ra fall within the predicted value ±15% interval, it is determined that the 
model has the reliability for engineering decision-making. 

4 Design of a multi-objective micro-milling parameter optimisation 
framework 

Micro-milling parameter optimisation is essentially solving Pareto bounds for conflicting 
objectives in a high-dimensional nonlinear constraint space (Jorswieck et al., 2008), and 
its core challenge lies in the high-cost evaluation of the objective function and the 
diversity guarantee of the solution set distribution. Traditional methods rely on repeated 
physical experiments or simplified agent models, the former being difficult to support the 
iterative demands of evolutionary algorithms due to long experimental cycles, and the 
latter invalidating optimisation results due to prediction bias. Therefore, this chapter 
deeply integrates the transfer learning surface prediction model constructed in Chapter 3 
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with the improved NSGA-II algorithm to establish a closed-loop optimisation  
framework of ‘agent evaluation-evolutionary search-decision screening’, which realises 
high-precision and high-efficiency multi-objective parameter optimisation under the 
conditions of small samples. 

The optimisation problem requires a clear definition of the decision space and the 
objective function. Take the process parameter vector decision variables as: 

, , , T
z p ex n f a a=     (7) 

where spindle speed is n, feed per tooth is fz, axial depth of cut is ap, radial width of cut is 
ae. The boundaries are constrained by tool strength and machine dynamics. The 
optimisation objective consists of the conflicting demands of surface quality and 
machining efficiency. The minimised surface roughness is: 

1( )aR f x=  (8) 

Its predicted in real-time by a migration learning DNN model. 
The maximised MRR is: 

2 ( ) z p eMRR f x n f a a= = × × ×  (9) 

It is a deterministic calculation function. The difference between the two physical 
quantities is significant, and the optimisation bias needs to be eliminated by adaptive 
normalisation, and the normalised objective function is defined as: 

min
1

max min

max
2

max min

( )( )

( )( )

a a

a a

R x Rf x
R R
MRR MRR xf x
MRR MRR

− = −
 − =
 −




 (10) 

where Ramax, Ramin and MRRmax, MRRmin are the observed extremes in the current 
population, dynamically updated to avoid search stagnation caused by fixed ranges. 

The evolutionary algorithm adopts the improved NSGA-II architecture, whose core 
innovation lies in the efficient integration of the migration learning agent model and the 
enhancement of the constraint handling mechanism. The initial population is uniformly 
generated with 100 sets of parameter combinations in the decision space by Latin 
hypercube sampling, which replaces the traditional random initialisation to enhance the 
exploration efficiency. For each generation of individuals, the evaluation of surface 
roughness Ra relies solely on the migration learning DNN agent model, whose single 
prediction takes only 1ms, while MRR is computed directly analytically. The  
non-dominated ordering classifies individuals into different frontier classes based on the 
normalised objective value, and then measures the distribution density of the solution in 
the target space by the crowding distance: 

2
( ) ( 1) ( 1)

1

i i i
k k

k

cd f f+ −

=

= −    (11) 

This distance is used as a secondary ordering criterion to ensure that the algorithm 
converges while maintaining solution set diversity. For process constraints specific to 
micro-milling, such as minimum cutting thickness limits and tool deflection thresholds, 
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the feasible domain precedence principle is applied. Individuals violating the constraints 
are labelled as ‘invalid solutions’, which are automatically ranked after all feasible 
solutions, and the crowding is set to zero to inhibit their entry into the next generation. 

5 Experimental validation and result analysis 

5.1 Experimental platform and working condition setting 

The experimental validation relies on a high-precision micro-milling integrated platform, 
the core of which consists of a Swiss KERN Evo ultra-precision machining centre, an 
ultra-fine diamond-coated tooling system, and a multi-physical quantity on-line 
monitoring unit, which is designed to reproduce the typical working conditions of 
aerospace micro-component machining. The spindle of the machine is supported by 
aerostatic bearings, with an ultimate speed of 60,000 rpm and a radial runout error of less 
than 0.5 μm, which provides basic motion accuracy for micro-scale cutting. The 
workpiece is made of aerospace-grade Ti6Al4V titanium alloy sheet (10 × 10 × 1 mm), 
whose high-strength and low-thermal-conductivity characteristics exacerbate the 
challenges of dimensional effects and thermal coupling in micro-milling. The specimen is 
fixed to a piezoelectric three-way force gauge by a vacuum suction cup to collect the 
cutting force signals from the X/Y/Z directions in real-time, and a laser Doppler 
vibrometer is adopted to synchronise the cutting force signal. The acceleration of the 
cutting tool tip is monitored by a laser Doppler vibrometer. 

The range of machining parameters was determined according to the tool 
manufacturer’s specifications and pre-tests. The spindle speeds covered the range from 
30,000 to 60,000 rpm, the feed per tooth was set at 1.0–5.0 μm/z, the axial depth of cut 
was 10–50 μm, and the radial width of cut was 20–100 μm. In order to balance the 
efficiency of the experiments with the representativeness of the data, orthogonal 
experimental design L16 was used to generate 16 combinations of the basic parameters, 
supplemented by 4 sets of extreme conditions and 4 sets of extreme conditions. To 
balance the experimental efficiency and representativeness, L16(44) was used to generate 
16 sets of basic parameter combinations, supplemented by 4 sets of extreme working 
conditions (e.g., maximum speed + minimum feed, minimum speed + maximum depth of 
cut) to form 20 sets of target domain datasets. The cooling method is micro quantity 
lubrication, with an atomisation pressure of 0.4 MPa and a lubricant flow rate of 15 
mL/h, which effectively balances the suppression of chip tumours in titanium alloy 
machining with the need for heat dissipation in the cutting zone. Surface quality 
inspection was completed offline after machining by a white light interferometer (Zygo 
Nexview), the scanning area was selected as the middle stable cutting section of the 
workpiece (800 × 600 μm²), the surface roughness Ra value was evaluated along the feed 
direction according to the ISO 4287 standard (Todhunter et al., 2017), and three sets of 
measurements were averaged for each specimen to abate the interference of local material 
heterogeneity. 

Environmental control is the key to guarantee the reliability of the data. The 
laboratory was maintained at a constant temperature of 20 ± 0.5°C, the foundation was 
isolated at a frequency of less than or equal to 2 Hz, and the humidity was controlled at 
45 ± 5% to reduce thermal deformation and oxidative effects. All the sensing signals are 
anti-alias filtered and recorded by NI PXIe-1082 data acquisition system, and the 
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sampling rate is set to 100 kHz in order to capture the high-frequency vibration 
characteristics of micro-milling (main frequency band 5–25 kHz). The finally constructed 
working condition system strictly simulates the aero-engine micro-blade slot machining 
scenario, which provides a high-fidelity experimental benchmark for the validation of the 
migration learning model and the multi-objective optimisation framework. 

5.2 Migration learning model validation 

The validation of the transfer learning model unfolds through four types of benchmark 
model comparisons, with the core objective of quantifying the gain effect of  
cross-domain knowledge transfer on micro-milled surface prediction. The comparison 
programs include: 

1 Pure target domain trained DNN model (Shi et al., 2019) using only 20 sets of  
micro-milling data. 

2 SVR using radial basis kernel function (Ding et al., 2021). 

3 Secondary response surface modelling (RSM) (Gendy et al., 2018). 

4 Transfer learning model (TL-DNN) for this paper. 

The test set is generated by 5-fold cross-validation, 4 sets of data are kept for independent 
testing each time, and the final metrics are taken as the mean of 5 rounds. Prediction 
accuracy is measured by three key metrics: RMSE reflects the overall bias, mean absolute 
error (MAE) characterises the typical prediction bias, and the coefficient of determination 
(R²) evaluates the trend fit goodness of fit. 

The experimental results show significant differentiation: the TL-DNN achieves an 
excellent performance of RMSE = 0.05 μm, MAE = 0.04 μm, and R² = 0.92 in Ra 
prediction, with a concentrated error distribution and no systematic bias. In contrast, the 
RMSE of DNN-T is as high as 0.08 μm due to small-sample overfitting, especially in the 
extreme parameter region (e.g., n = 60,000 rpm, fz = 1.0 μm/z) with an abnormal 
deviation of 0.15 μm; and the RMSEs of SVR and RSM are 0.11 and 0.14 μm, 
respectively, and the nonlinear responses of the two to the feed-roughness are severely 
underestimated (R² only 0.71 and 0.64). The correction effect of migration learning is 
more prominent in the domain offset sensitivity analysis: when the source domain model 
directly predicts the target domain data, the initial RMSE is 0.21 μm, which is reduced to 
0.05 μm after fine-tuning, a decrease of 76.2%, proving that the pre-training effectively 
extracts the generalised machining features. The model robustness is further verified by 
the generalisation error rate (GER): the GER of TL-DNN = 1.08 (test set RMSE/training 
set RMSE), which is significantly lower than that of DNN-T at 1.85, indicating that the 
migration mechanism effectively suppresses small-sample overfitting. 

To visualise the prediction performance, Figure 2 compares the predicted-measured 
scatter distributions of the four models in the test set. the data points of TL-DNN are 
tightly distributed on both sides of the y = x baseline, while DNN-T shows systematic 
overestimation in the low roughness region (Ra < 0.2 μm), and RSM disperses 
significantly in the high-value region due to polynomial limitations. Figure 3 further 
reveals the influence curve of feed (fz) on Ra: when fz increases from 1.0 to 5.0 μm/z,  
TL-DNN accurately captures the step-up trend of 0.18→0.35 μm and the abrupt change 
of slope at 2.5 μm/z (originating from the minimum cutting thickness effect), while SVR 
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underestimates the gradient change by 30% due to the smoothing effect of the kernel 
function. Together, these visual evidences confirm that migration learning significantly 
improves the reliability of surface prediction for small-sample scenarios of micro-milling 
by reusing macroscopic machining knowledge, and lays the foundation of a  
high-precision agent model for multi-objective optimisation. 

Figure 2 Surface roughness prediction vs. measurement (see online version for colours) 

 

Figure 3 Effect of feed rate on roughness prediction (see online version for colours) 
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5.3 Multi-objective optimisation result analysis 

The validation of multi-objective optimisation efficacy focuses on three dimensions: 
quality of Pareto frontier distribution, computational efficiency and engineering 
feasibility. The experiments compare three strategies: strategy A (NSGA-II + physical 
experiments), strategy B (NSGA-II + pure DNN agent model), and strategy C (the 
framework of this paper: NSGA-II + migration learning agent model). After 100 
generations of evolutionary iterations, the Pareto solution set generated by Strategy C 
shows significant advantages. The surface roughness Ra covers the range of 0.21–0.35 
μm, and the MRR is distributed in the interval of 0.18–0.32 mm³/min, with the frontier 
span widened by 28% compared to Strategy A and 15% compared to Strategy B. The 
Pareto solution set is also a good solution for the Pareto solution set. This broad 
distribution provides a richer choice of parameter trade-offs for process decision-making, 
e.g., when the Ra requirement is tightened from 0.30 μm to 0.25 μm, strategy  
C still provides a feasible solution with MRR ≥ 0.22 mm³/min, whereas the MRR of the 
same-conditional solution of Strategy B drops below 0.18 mm³/min. 

Frontier convergence is quantified by generational distance (GD), and the GD value 
of Strategy C is only 0.018, which is 42% and 28% lower than that of Strategy A (0.031) 
and Strategy B (0.025), respectively, which proves that the high-precision bootstrapping 
of the migration learning agent model significantly reduces the invalid search. In terms of 
computational efficiency comparison, strategy C takes only 1.5 hours to complete the 
optimisation, while strategy A takes 72 hours due to its reliance on physical experiments, 
and strategy B is shortened to 12 hours but still limited by the frequent retraining 
requirements of the agent model. Figure 4 clearly presents the differences in the Pareto 
frontier distributions of the three strategies, with the solution set of strategy C (blue 
triangles) uniformly occupying the dominant region in the lower left of the target space 
(low Ra and high MRR), strategy B (orange dots) clustering in the high roughness region, 
and strategy A (green squares) having a broken frontier due to sparse experiments. 

Figure 4 Pareto front comparison of optimisation strategies (see online version for colours) 
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Figure 5 Parameter sensitivity analysis (see online version for colours) 

 

The TOPSIS-recommended solution of strategy C is selected for engineering validation 
for physical experiments. The measured Ra = 0.24 μm, with an absolute error of only 0.01 
μm; the MRR is measured to be 0.264 mm³/min, with a deviation of 1.5%. Compared 
with the initial parameter scheme, the efficiency is improved by 31% under the premise 
of guaranteeing the surface quality. The sensitivity analysis is shown in Figure 5, which 
further reveals the influence weights of process parameters. Feed fz contributes 62% to 
Ra, and its increase linearly exacerbates the plow effect, whereas rotational speed n has 
the most significant positive gain on MRR, but above 50,000 rpm causes Ra to rebound 
due to increased tool runout. These findings provide clear guidance for micro-milling 
parameter tuning, and preferential optimisation of the fz–n combination can achieve 
synergistic surface and efficiency gains. 

6 Conclusions 

Aiming at the dual challenges of data scarcity and multi-objective conflict in  
micro-milling process optimisation, this study proposes an innovative framework 
integrating migration learning and evolutionary algorithms, and systematically verifies its 
remarkable efficacy in surface quality prediction and parameter decision-making. The 
conclusions show that the DNN-based transfer learning mechanism effectively breaks the 
small sample modelling dilemma, and the surface roughness prediction model achieves 
an accuracy of RMSE = 0.05 μm under the condition of only 20 sets of data in the target 
domain, which is more than 38% lower than the traditional data-driven method. The 
model successfully captures the micro-milling-specific size effect and the critical 
behaviour of minimum cutting thickness, providing a highly reliable proxy model for 
optimisation. The multi-objective evolutionary framework constructed on this basis 
achieves the synergistic optimisation of surface roughness (Ra) and MRR by relying on 
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the millisecond evaluation capability of the transfer learning agent model and the 
improved search strategy of NSGA-II. 

Despite the effectiveness of the current framework, there are still directions that need 
to be further explored. Firstly, the optimisation process does not take into account the 
dynamic evolution of tool wear, and the bluntness of the cutting edge will lead to  
time-varying degradation of the surface quality in actual machining, so it is necessary to 
integrate the online wear monitoring data to build a dynamic agent model in the future. 
Second, the generalisation ability of migration learning needs to be verified in  
multi-material scenarios, for example, the difference between the micro-milling response 
mechanisms of carbon fibre composites and ceramics may trigger negative migration, and 
it is necessary to develop material-invariant feature extractors to enhance  
cross-material adaptability. Finally, the existing system has not yet interacted with the 
production line in real-time. Combining the digital twin technology to build a  
‘sensing-prediction-optimisation’ closed-loop will be the focus of the next stage, and the 
model parameters will be corrected in real-time through the integration of vibration, 
acoustic emission and other sensors, so as to ultimately realise the adaptive  
decision-making of the micro-milling process. 
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