‘/@}NDERSCIENCE PUBLISHERS

Linking academia, business and industry through research

| ——
Information and
Communication

ik International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Design and practice of artificial intelligence-driven piano
improvisation accompaniment teaching system introduction

Xiang Wei

DOI: 10.1504/1JICT.2025.10075323

Article History:

Received: 28 August 2025
Last revised: 14 September 2025
Accepted: 16 September 2025
Published online: 15 January 2026

Copyright © 2025 Inderscience Enterprises Ltd.


https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10075323
http://www.tcpdf.org

56 Int. J. Information and Communication Technology, Vol. 26, No. 52, 2025

Design and practice of artificial intelligence-driven
piano improvisation accompaniment teaching system
introduction

Xiang Wei

College of Architecture and Arts,
Taiyuan University of Technology,
Taiyuan, Shanxi, 030024, China
Email: weixiang@tyut.edu.cn

Abstract: In this study, we provide a system that shows students how to play
piano with improvisation and accompaniment using cloud computing, deep
learning, and CNN. Automatic evaluation of performance aspects, such as
pitch, timbre, articulation, rhythm, and dynamics, is one way the suggested
approach enhances piano lessons. Applying a hybrid approach that combines a
matched filter with a rapid guided filter optimises preprocessing for music
feature extraction. To further improve the accuracy of piano performance
analysis, attention-induced multi-head CNNs and perceptual evaluation datasets
are employed. In adaptive and remote learning settings, the technique shows
better dependability and scalability. The model successfully integrates visual
and aural methods of teaching piano, supports multilevel perceptual feature
analysis, by providing a novel framework that enhances learning outcomes,
enables tailored instruction, and adapts to the diverse needs of learners, this
research contributes to the expanding field of intelligent music education.
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1 Introduction

Engineering, Al, internet technology, music, and numerous other fields have all begun to
incorporate computer music technology into their work in recent years. Composers are
motivated to create music in unique ways when they use computers to freely compose
music with the help of algorithms in songwriting programs (Li, 2022). Additionally,
computer music technology can provide a pervasive and inexpensive music tutoring
service. An automated system that can assess a pianist’s performance on several factors
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(e.g., rhythm, articulation, expressiveness, timbre, pitch, and chords) is our goal in doing
this research. If the system can determine the user’s current skill level and provide them
with timely feedback on how to improve, it would be beneficial for piano students
(Alzubaidi et al., 2021). It is essential to consider a wide range of talents when evaluating
a student’s progress in piano lessons, especially for younger children. Consequently,
there are issues in education and learning that can be addressed, and abilities in
face-to-face instruction at various levels can be enhanced through the use of
computer-based techniques (Phanichraksaphong and Tsai, 2023). We include timbre- and
pitch-based evaluation tools, as playing the piano requires a multifaceted set of skills,
including control over volume and dynamics, as well as rhythms, techniques, body
language, and facial expressions.

Due to its demanding nature, playing the piano is an excellent way to develop
stronger hand-eye and motor skills. When playing the piano, it’s essential to use both
your left and right hands. But you can’t rely on one hand to play the melody or rhythms
alone; for example, you may play the melody with your right hand and the
accompaniment with your left, giving the impression that both hands are acting
separately. The independence of the hands provides the pianist with greater leeway to
express themselves while playing. In addition, you can use both of your feet to press
down on the pedals at the same time. There has been a diverse trend in the development
of computer-assisted composition over the last half-century. Artificial neural networks,
genetic algorithms, music grammar rules, and other similar techniques are the mainstays
of automatic composition. While these approaches can address some of the requirements
of autonomous composition, they are not without their flaws (Pefialver Vilar and
Valles Grau, 2020). Take a recurrent neural network music, for example. It lacks overall
musical coherence and attempts to correct the melody and harmony using a genetic
algorithm, only to end up creating meaningless local optimal regions in the harmonic
search space problem.

The inability of computer-assisted composition to keep up with the ever-evolving
nature of musical materials is currently its biggest challenge (Stiin and Ozer, 2020). From
one angle, music is simply a combination of various musical parts, and computers excel
at mathematical calculations. Contrarily, computers lack human emotions and thought
processes, and music is an art form. Therefore, computer-assisted composition
necessitates more assistance from Al technology, in addition to more diverse programs.
As it stands, the music programs at public and private schools make excellent use of
technological resources. The compatibility of their music classroom setting with various
social cultures is also undergoing minor alterations as a result of the shift in
communication style between instructors and students (Li, 2020). School administrators
can, on the one hand, utilise big data analysis to pinpoint inefficiencies in the current
instructional method and refine it. As an alternative, innovative education has introduced
new approaches to teaching and learning, including the intelligent piano, and various
forms of music learning software have altered the way people study music (Liu and
Huang, 2021). There is potential for intelligent piano instruction to leverage deep
learning (DL). Take, for example, DL-based automatic music transcription. To provide
an unbiased justification for the accuracy of performance, let students quickly identify
their mistakes, and improve learning efficiency, it is beneficial to compare the played
music to a standard score. Piano grading tests and computer-assisted piano instruction are
two areas that could benefit from this technology. The study’s first section includes an
analysis of the literature on intelligent music instruction (Li, 2022). Using the cognitive
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and motor growth of preschoolers as a lens, the second segment delves more into the
features and capabilities of intelligent pianos.

This serves as the basis for building a convolutional neural network (CNN) that
detects the onset of piano notes. Additionally, to determine people’s opinions on the
educational and popular effects of intelligent pianos, we surveyed parents and
preschoolers. This can be used as a realistic basis for intelligent piano promotion and
instruction. The poll’s findings and the CNN model’s performance are covered in the
fourth part. The structure of this manuscript is as follows: Section 1 introduces the
research background and motivation. Section 2 reviews relevant literature on Al-driven
piano design and teaching practices. Section 3 describes the study’s methodology and the
improvisation accompaniment teaching system. Section 4 reports the experimental
findings and discusses their implications. Finally, Section 5 summarises the conclusions
and outlines directions for future research.

1.1 Paper contribution

Incorporating cloud computing, artificial intelligence (Al), and DL into a unified
framework for training and evaluation, this study contributes to the growing body of
research in intelligent piano education. At its core, the program is an Al-driven
improvisation and piano accompaniment system that can assess students’ progress along
multiple dimensions and tailor its feedback to each individual’s strengths and areas for
improvement. The study employs a hybrid preprocessing strategy that combines matched
filters with quick guided filters to enhance the accuracy of music feature extraction and
ensure reliable assessment across rhythm, dynamics, articulation, and pitch. Thirdly,
attention-induced multi-head CNNs integrate visual and auditory teaching methods by
enabling a more comprehensive investigation of perceptual performance traits. The
research concludes that the system can be easily scaled, made accessible, and adapted to
various learning contexts (such as remote and tailored education) by implementing it
within a cloud -based architecture. Taken as a whole, these papers provide light on the
state of intelligent music education and propose new ways to teach piano with the help of
technology, both theoretically and practically.

2 Related work

2.1 Conflicts in teaching approaches to early piano education

The master-apprentice method, in which a student learns an instrument and its repertoire
by emulating the actions and intonation of a more experienced player, is one of the
inventive approaches to music education that McPherson and Gabriel’s son recalled.
Nonetheless, the majority of contemporary method books use a visual approach that
connects the fingers to notation rather than sound, thereby enhancing the mathematical
correlations between scale degrees. They frequently divide the process of learning
technical competence from learning to play actual music, prioritising note identification
and theoretical concepts over gaining perceptual comprehension. Teachers may use
visual aids, such as fingerings, letter names, and hand posture, to help students learn the
C scale, for instance. As an additional illustration, consider how pre-staff notation teaches
high and low registers using visual connections rather than auditory cues (Kan, 2022).
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Early piano instruction currently centres on visual musical notation literacy, according to
Bunting, Williams, and Arshinova.

Piano method books cover the fundamentals of the instrument, and it looks like music
reproduction is the primary focus of early piano lessons. Concepts like black and white
keys, instructions, geography, letter names, and number and letter ranges are better
understood by students when they see them illustrated in method books. They also help
students with concepts like hand and finger positioning and recognition. Good tools for
teaching piano to children typically incorporate note reading into the very first lesson,
along with the fundamentals of music theory and the instrument’s mechanics, and utilise
eye-catching visuals to pique the interest of young learners (Pang, 2024a). The fact that
these resources are attractive to piano teachers is not surprising. Nevertheless, to achieve
the objective of music reproduction, this encourages a theory-driven understanding of
music. However, this does not rule out the use of auditory methods in the early stages of
piano training. On the contrary, such events are often overlooked. Books such as Music
Little Mozart’s: Books like Music Lessons: Book 1 and Prep Course for Young
Beginners: Lesson Book, Level A, both have short musical parts that teach kids how to
incorporate their voices and bodies into singing and percussion.

2.2 Application in intelligent electronic musical instruments

Technological advancements in Al over the last several years have enabled electronic
musical instruments to become more sophisticated, individualised, and intelligent,
ushering in a new era. In addition to storing a wide variety of musical instrument timbres,
the intelligent electronic instrument can also effectively combine timbres, allowing for
the execution of timbres in response to a variety of action instructions (Zheng, 2022).
Classical musical instruments clearly lack the functionality necessary to accomplish this
task. Because of these advantages, intelligent electronic instruments are slowly but surely
making their way into music classrooms. A new way of teaching music has emerged with
the advent of intelligent electronic musical instruments. Now more than ever, a solo
musician can inspire new ideas by experimenting with different combinations of
powerful sounds (Zhang, 2023). Students of music practice greatly benefit from music,
and they also achieve a greater level of instruction as a result. In today’s world, where
science and technology are advancing at a rapid pace, Al is becoming increasingly
significant, along with digital technology, online performances of electronic music, and
collaborative research on wireless networks. A system for making electronic music was
developed in the area of Al

Thanks to this technology, online schooling can now utilise both wireless networks
and electronic music (Yu and Ma, 2023). A new electronic musical instrument has
emerged due to technological advancements in computer sensor networks, intelligent
algorithms, and wireless networks. We can verify the degree of alignment between the Al
electronic music course materials and the objectives of online intelligent matching and
online education by running a simulation experiment. The information about the sound is
subsequently transformed into visual and auditory patterns using the oscilloscope.

2.3 Adaptive piano accompaniment

Adaptive piano accompaniment generative adversarial networks are an area where our
method excels, surpassing both competing GANs and innovative hybrid methods. The
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data processing capabilities of this tool are second to none when compared to mixing
technology, thanks to its utilisation of cutting-edge technology for information mining
and the provision of high-quality data to the model, which allows for considerably more
flexible accompaniment and melody generation (Kale and Altun, 2024). Due to issues
with gradient vanishing and other model-level problems common to typical GANSs, this
tool utilises adaptive ensemble methods to enhance training stability and employs
Gaussian mixture models to generate a diverse range of coherent accompaniments. This
technology utilises sentiment analysis and other techniques to make the melody and
accompaniment emotionally engaging, which distinguishes it from other GAN arts that
struggle with musical understanding and expression (Karamatli, 2024). In a nutshell, this
instrument spearheads the field’s development and accomplishes advances in numerous
dimensions. Environments can be changed via adaptive integration technology. While
block-based integration manages data in separate pieces, online integration handles
training instances without requiring storage.

Most adaptive weighted integration techniques use SEA or AWE when working with
data blocks (Zhou, 2025). While this kind of algorithm excels at handling gradual drifts
in concepts, it is notoriously slow to react to abrupt changes. Current ensemble
techniques that utilise blocks to train classifiers employ recently tagged data to inform the
categorisation of unlabelled data. On the other hand, the ensemble model might not give
reliable results if there is idea drift in the unlabelled data. Unlabelled data can include
valuable insights that current algorithms fail to capture. Consequently, they are unable to
adapt to the present environment by monitoring concept drift over time or by quickly
assigning appropriate weights to component classifiers.

3 Proposed methodology

Using cloud computing, AI, and machine learning, this study presents
RPT-AIMCNN-HPO, a system for distant piano instruction. Figure 1 illustrates the block
diagram of the RPT-AIMCNN-HPO method. Using AIMCNN in the cloud, the following
is a detailed example of remote piano instruction (Song, 2024).

3.1 Trained model

Twenty-five human pianists and two ‘score’ performances make up the 1,202 musical
portions that make up PercePiano, which has 12,652 annotations. A total of 6,244
annotations, 10,219 annotations, and 1,809 annotations make up these portions. It was
possible to compare the two ‘score’ performances with the human performances because
they were taken directly from the original MusicXML score 4,647. Choose from ‘Score’
and ‘Score2’. In contrast to the mechanical quality of the latter, the former makes greater
use of musical notations (such as legato and dynamics) to mimic human performance. A
total of 53 separate annotators, each rating 19 distinct labels, have evaluated the
annotations. To be more precise, the following Schubert compositions have a combined
total of 4,076 annotations: D.960, mv2 (2nd movement), D.960, mv3 (3rd movement),
D.935, with 624 annotations, and Wo O.80 by Beethoven, which has 1,244 annotations.
With a standard variation of 3.62, each performance segment typically has 10.52
annotations. The average and standard deviation of annotator ratings across all 19 criteria
for each performance are displayed in Table 2. The pieces’ names span from Wo00.80 to
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D.950 mv2. An auxiliary file showing the mean and standard deviation is Figure S2
(Park et al., 2024).

Figure 1 Schematic representation of the RPT-AIMCNN-HPO method (see online version
for colours)

Piano Teaching Quality Analysis System

e [ """" Trained model ] """"" :
] i
| Data | J |
i i
! acquisiition I { Pre-processing !
i i
| . | !
! Piano Triads Wavesel Adaptive distorted :
: dataset Gausslan matched fiter |
: | | ;
Piano teaching quality analysis using Hunter prey
Attention induced Mulli Head Convoluti optimization algorithm
MNeural Network
Teaching quality analysis resuit Trained data

‘I do not know’ was appended to 921 of the 12,652 annotations, or 7.3% of the total. You
can find the exact total down below. We provide thorough statistics and data quality
checks for each musical composition in supplementary notes A. One popular descriptive
statistic for quantitative measures is the intraclass correlation coefficient (ICC), which
shows how similar different units are within the same group. In order to investigate the
level of agreement between annotators, we sort ICC evaluation models by the data and
annotators that were employed [ICC (1, 1) and ICC (1, k)]. When a separate group of k
randomly chosen annotators measures each subject, for instance, one-way random
evaluation is employed (ICC, 1, k). An random one-way assessment was determined to
be suitable49 after employing distinct sets of randomly selected annotators for each
section. To determine the reliability of the averages and individual evaluations, we
calculated the ICC (1, 1) and ICC (1, k) values for each label (Pang, 2024b). When
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examining average reliability, the ICC is ‘excellent’ (1, k), according to Table 2;
however, when considering single-measure dependability, it is ‘poor’ (1, 1). These results
suggest that people’s subjective views on music may not be comprehensive, but when
considered collectively, they tend to converge towards a more widely accepted
understanding of music.

3.2 Adaptive distorted Gaussian matched filter for pre-processing

In most cases, greyscale retinal pictures do not clearly show small blood vessels. Because
of the lack of contrast in local intensity, vessel segmentation is severely limited. The
intensity of the vessel’s width, which encompasses its borders, differs considerably
among photographs. Equally mixed with Gaussian noise are little vessels. Consequently,
the majority of the methods proposed in the literature for precisely identifying vessels
have been unsuccessful. Due to this limitation, vessel segmentation is a challenging task.
It is clear from the equation sets and the quick guided filter description that pixels in
regions with high variance will keep their values, while pixels in areas with even variance
will have their values smoothed out by nearby pixels. Therefore, with a frequency
defined by an averaging method, very few fine features in the virtually flat portions are
smoothed away (Dash, 2022). One easy and effective way to remove vessels is with a
matching filter. A matching filter can detect edges on vessels as well as those outside of
them. On the other hand, a guided filter is an operator that performs better at the edges,
exhibiting both smoothing and preserving qualities. Based on these characteristics,
combining a matched filter with a rapid guided filter in a single model will improve
vessels and allow for precise vessel extraction. Figure 2 depicts the three stages of the
proposed procedure.

Figure 2 Proposed method’s schematic diagram

Fast guided filter Mean global
for various values Extg:g;ﬁéleen Matched filter hysteresis
ofrands thresholding
Original J'

Image

MorphRylogical
cleahing
opefation

Segmented

3.2.1 Matched filter

It is possible to identify blood vessels using a Gaussian matching filter when the
vasculature’s grey-level profile approaches a Gaussian-shaped curve. Below is a
summary of the matching filter, and you can find its specifics in the documentation. Here
is a description of the matching filter that uses the Gaussian kernel function:

L
P(m, n)=exp(_m%02) Vinis S misid, (1)

Where the matched filter is defined as
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The vessel segment length, denoted as L, the intensity outline spreading, denoted as o,
and a constant ¢, fixed at 3, constitute smooth noise. The vessel identification process
involves maximising the filter bank’s response by rotating the kernel P(m, n) in different
orientations. Twelve kernels rotated at 15-degree intervals are sufficient to accurately
identify the vessels. In a Gaussian curve where the signals are infinitely long, the
two-sided tails are cut off at u =+ 3¢, and N is represented as

N= {(u, V), VuV <3a, VoW < %} 4)

The weights in the kernels i (where i ranges from 1 to 12, the total number of kernels) are
defined by.

2

p:(m, n) =—exp (;sz VZ,e N (5)
o

The following is the formula for determining the kernel mean value when 4 is a set of
points in NV:

St = ZzleNP](m’ n% (©)

Hence, this is the convolution mask:

P(m,n)=p;(m,n)—S, VZ;e N @)

3.2.2 Fast guided filter

Although it performs better near the edges, a directed filter is essentially a special case of
a bilateral filter. Theoretically, a directed filter might interact with the Laplacian matrix.
Moreover, guided filters can utilise structures to enhance the quality of the output image,
which is not the case with regular smoothing operators. The computational complexity is
independent of the filter’s kernel size because the guided filter uses a fast and
non-approximate linear-time technique. Noise reduction, HDR compression,
enhancement, haze removal, and joint upsampling are just a few of the many uses for
guided filters in computer vision, computer graphics, and computer science. A guided
filter takes input images /, uses guidance images P, and produces filtered output images
O using a basic linear model. Knowing that pixel k& is the centre of window my, it is
necessary to assert that the linear transform is Q of P.

See the kernel and guided filter definitions below:

O =Cly+di, Vieeg (8
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(ck, dk) are linear coefficients that are almost constant, and the wk square window has an
index of k and a radius of 7.

The output is the minimum reconstruction error between P and Q as determined by
equation (8) for input image P

1 _
m tewlt})t —/lkPk
Cy = 5 9
ol +e
dr = Cr i

The degree of smoothness is controlled by the regularisation parameter ¢, where uk
represents the mean and ok stands for the variance of / in the window. Following the
computation of (ck, dk) for each image patch wk, the following steps are taken to
determine the filter output:

1
o =mzm(ckpl +dy) (10)
Qt :a[t+d_t (11)

where ¢; =1|w| Zke wick and d; =1|w| Zke widk are the mean values of the

coefficients for all i-centred windows. The first algorithm shows the procedures that the
guided filter follows. When approaching O(N) time, Zmean represents the mean filter
with considerable variability. While conventional guided filters rely heavily on the
guiding image, they struggle to achieve fast computation when denoising images, which
is why you should use a rapid guided filter. The time complexity for a subsampling ratio
s can be reduced from O(N) to O(Ny2/) using a fast guided filter. A fast guided filter
outperforms the standard by a factor of ten in many cases, all without sacrificing
performance.

Algorithm 1  Algorithm for guided filter

Input parameters: 4 is the input filtering image, P is the guidance image, r is the radius, and ¢ is
the regularisation.

Output parameter: Q is the filtering output.
1 meanP = fmean(P)
meanA = fmean(A4)
corrP = finean(P x P)
corrPA = fmean(P % A)
2 varP = corrP — meanP * meanP
cosPA = corrPA — meanP * meanA
3 x=covPa./(varP+ €)
y =meanA — x. * meanP
4 meanx = finean(x)
meany = fimean(y)

5 Q= meanx. * P+ meany
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3.2.3 Preprocessing

The utilisation of retinal fundus images allowed for the automatic detection of eye
disorders in fundus images. The most challenging part of interpreting a fundus image,
though, is dealing with the image corruption, which can happen for a number of reasons.
The quality of a fundus image is diminished due to a cataract in a human lens, similar to
how a hazy camera lens reduces the clarity of a photograph. The contents and properties
of the photos are altered based on fundus images from various clinical circumstances
found in different databases. As a result, it is essential to enhance the overall image
quality during the pre-processing steps. Combining a directed filter with a matched filter
is an innovative strategy that can improve retinal vascular performance measures.
Improving the image’s overall quality was the first stage in using the rapid guided filter.
Because the green component makes retinal arteries more visible and contrasty than the
blue and red ones, it was the next step in the vessel extraction process to apply it
exclusively to the matching filter.

3.3 Analysis of piano teaching effectiveness using an attention-driven
multi-head CNN

Here, we examined the ConvNet-MPE baseline model, a CNN-based MPE model.
However, local polyphony estimation (LPE) was performed using a number of CNN
models that were trained on the new feature representations. Differences in kernel shape
and number of pooling layers are the primary distinguishing features of these models.

The following sections provide detailed descriptions of each model type, summarised in
Table 1 (Dash, 2022).

Table 1 Synopsis of neural network model structures, objectives, feature representations,
convolutional block kernel shapes, class numbers, and model parameters

Model Task repf:sizlti;ion Kernel shape NZ;ZfseersOf Number of parameters
ConvNet-MPE ~ MPE HR-CQT 3,3) 88 2,158,000
ConvNet-LPE LPE HR-CQT @3,3) 3/6/13  2,114,000-2,119,000
CQT LPE HR-CQT (1/3/5,24) 3/6/13 79,000-287,000
CQT LPE LR-CQT (3,24) 3/6/13 112,000-161,000
F-CQT LPE F-CQT (4,3/06) 3/6/13 47,000-107,000
F-CQT 3D LPE F-CQT (3/5,4,3/6) 3/6/13 221,000-394,000

3.3.1 MPE model: ConvNet-MPFE

All comparisons in MPE are based on the ‘ConvNet’ architecture, which was initially
developed by. Our reimplementation produced the same results as the original
publication, as demonstrated by the MPE results reported in. Specifically, the
ConvNet-MPE is composed of three CBs. Batch normalisation, ReLU activation,
dropout, and convolutional layers are all components of each CB. Only during training
was the dropout clause invoked. With momentum-based batch normalisation, both of the
first CBs used a kernel size of (3, 3) and 32 filters. A 0.1 momentum was setup. In the
context of convolutional approaches, ‘valid padding’ refers to the absence of
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zero-padding. A max-pooling layer with a pool size of (1, 2) and a dropout layer with a
minimal dropout of 0.25 followed these two CBs. The most current CB used 64 filters
instead of 32 and a reduced kernel size of (1, 3). Two dense layers, one with 512 units
and the other with 88 units, were employed following the three CBs. The sigmoid
activation function was helpful in this situation. Additionally, a dropout probability of 0.5
was used between the two dense layers. There are no bias terms in any of the model’s
computational levels. Training the ConvNet-MPE involved reducing the binary
cross-entropy loss function and HR-CQT.

3.3.2 LPE models

Figure 3 shows every LPE model. All the LPE models considered are derivatives of the
same basic design, in contrast to ConvNet-LPE. Everything about the last dense layer
stack, including input batch normalisation (BN), indicates that each convolutional layer
(CB) has the same number of filters. There are three CBs in total.

Figure 3 Specifically, the three CNN models utilised in the LPE studies are described in detail,
including the output tensor forms for each layer (see online version for colours)

(LR-)QT Batch ~ Conv Block (16) MaxPool CB (32) MP CB (46) MP
Input  Norm  'k:(frf) BN : (1.2) s (1,2) - (12
B @] 8 @@ = @[
ts8) (t88.16)  (t4416)  (6:2432) (6.2432)  (£2248)  (41148)
F-caT Batch  Conv Block (16) CB (32) CB (48) MP
Input  Norm  :'(f:f) BN . (1,2)
624y ©.2416) (6,2432) (6.2448)  (6,12.48)
F-CQT3D Batch  ConvBlock (16) CB (32)
Input  Norm f,6,12,32 BPE :
@ : ;- Dropout TdFc | [
: : . (6,25)
(fr6,24) (76,632) (f16.6.48) - H H Flatten Output
= | == 0
CQT: 88
F-CQT: 84
F-CQT 3D: 84

3.3.3 Class, fifth, frame, feature, kernel, octave, and time are all abbreviations.
Included are additional specifications for the parameters

A convolutional layer, a BN, and an activation function for a rectified linear unit (ReLU)
make up each CB. A probability of 0.25 was used to apply dropout after the last CB. We
then used the same number of units as the bins in the original feature representation to
train a bias-free fully connected (FC) layer with a tanh activation function. After that,
another FC with the same amount of units as the current polyphonic scenario and
Softmax activation followed. Default stride sizes were one, and all CBs utilised the same
padding. Lastly, the categorical cross- entropy loss function was used for training all LPE
models except ConvNet-LPE.



Design and practice of artificial intelligence-driven piano improvisation 67

3.3.4 ConvNet-LPE

To train the model for the LPE task, we used a softmax activation function and changed
the number of units in the ConvNet-MPE’s output layer to 3, 6, or 13 (as indicated).

We were able to determine if the overall ConvNet design was effective for LPE in
this manner. Like the ConvNet- MPE, this model kept the exact input feature
representation, optimiser, and learning rate settings.

3.3.5 CQOT model

Based on the batch size, the CQT model received CQTgram parts as input. These chunks
may come from the LR- CQTgram (with feature dimensions of 88) or the HR-CQTgram
(with feature dimensions of 264), depending on the specific model. Za is the number of
frames it includes, and Z¢ is the number of surrounding CQT-features (bins), which we
used as the kernel size for the first two CBs. If we want to see how their differences play
out, we can compare the kernel’s and the F-CQT’s training sets, which both cover the
same amount of notes but with different bin sizes: 12 for the kernel and 24 for the F-
CQT. The pooling layers gradually downsampled data from the feature dimension. In the
latest CB, we had to adjust the kernel to 12 bins to prevent over-patching and reduce the
parameter count.

3.3.6 F-CQT model

Data from specific frames of the F-CQT model were input into it. A single frame had
dimensions of 6 X 24 due to the two-dimensional structure imposed by the F-CQT
arrangement, which utilised 12 bins per octave and 7 octaves in total. In the original CB,
the kernel size was (o, ZT), where Zi is the octave number and Zi is the fifth number.
Since it might cover 4 octaves and three fifths, the proposed kernel size is (4, 3). The
benefit of covering harmonics within an octave is achieved by using an F-CQT
convolutional kernel with fewer parameters. The F-CQT model avoided all intermediate
pooling stages that follow each CB due to its smaller kernel size and reduced number of
model parameters, except for the last max-pooling operation over the fifth-related tensor
dimension.

3.3.7 F-CQT 3D model

The F-CQT model and its 3D counterpart are structurally identical. Even though both the
CQT and F-CQT 3D models utilise temporal context, the former employs convolution
kernels that span multiple frames, rather than just one. We created a three-dimensional
input feature by combining numerous successive F-CQT frames, enabling the F-CQT 3D
model to receive data. The input was scanned in the CBs using a 3D kernel that
resembled (Za, o, Zi). We decreased the feature representation during the forward pass
because this method could lead to a much greater parameter count: A single row of
octaves, or the fifth dimension, was used to add pooling layers following the first two
CB.
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4 Results

We investigated the relationships between several perceptual features of piano playing
and various hierarchical levels (note, voice, beat, measure), from the most basic to the
most complex. We trained and evaluated each succeeding model using outputs from
different hierarchical levels, starting with the Bi-LSTM baseline. A randomly split
dataset was utilised to eliminate the possibility of bias towards particular works or
performers. To start, the addition of hierarchical information has a greater impact on
lower-level perceptual qualities, including time, articulation, and timbre, as seen in the
line chart in Figure 4. Given the direct association between hierarchical information and
lower features, this is in line with expectations. Secondly, the bar chart clearly
demonstrates that perceptual feature performance is enhanced across the board when
hierarchies are used at the note, voice, and rhythm levels. The effects across several
measures are inconsistent. Features at low, mid-low, and high levels perform better, but
features at mid-high levels do not see significant improvement. ‘Dynamic’ and ‘music
creating’ are best conveyed and perceived by paying close attention to the expression
levels along each voice; in the medium-high range, beat-level timing adjustments are
more significant than measure-level ones. For these reasons, we have arrived at these
conclusions.

4.1 Necessity of RA metric

A noticeable pattern emerged in the evaluation results: when applied to data with high
levels of annotator disagreement, the model’s performance dropped significantly. The
interaction between the Bi-LSTM+SA+HAN model and performance metrics (MSE and
standard deviation) is seen in Figure 5. The figure illustrates that this trend emerges,
highlighting the importance of exercising caution when evaluating the model’s
performance, particularly when considering subjective perceptual assessments. This
finding sheds light on the reasoning behind using the RA metric. Low standard
deviations, which show strong agreement among annotators, are penalised by the RA
metric. To put it simply, the metric emphasises objectivity by penalising cases where
annotators converge heavily, drawing attention to possible errors in the model’s
predictions. The converse is also true; instances with larger standard deviations show that
it allows for a greater degree of subjectivity. To comprehend the model’s efficacy across
different degrees of annotator consensus, one must employ this intricate metric, which
takes into consideration the subjective components of the annotated data.

We found that the proposed method, which combines matched filters and rapid
guided filters, outperformed the alternatives and produced superior results. A distinction
was discernible in the healthy gradient vector field between the pixels representing the
vessels and the diseased tissues. Improved specificity but unimpressive sensitivity
resulted from labelling as ‘non-vessel pixels’ pixels that were brighter than their
neighbours. Table 2 shows how the proposed strategy stacks up against other cutting-
edge approaches. Research shows that most comparisons were made with pre-existing
matching filters because that was the intended goal of the suggested method. The
proposed approach yields performance matrices that are significantly superior to those of
state-of- the-art methodologies.
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Table 2 Examining the proposed approach’s performance
Sn Spe Ac

Approach Year

DRV CDB DRV CDB DRV CDB
Dash 2020 0.7203  0.6454 0.9871  0.9799 0.9581  0.9609
Dash and 2020 0.7403 - 0.9905 - 0.9661 --
Senapati
AlSaeed 2020 0.6312 - 0.9817 - 0.9353 ---
Memari 2019 0.761 0.738 0.981 0.968 0.961 0.93
Subudhi 2016 0.3451 -- 0.9716 -- 0911 --
Sreejini and 2015 0.7132 - 0.9866 -- 0.9633 --
Govindan

Figure 4 Measuring the model’s effectiveness over four assessment levels: low, mid-low,
mid-high, and high, with different music hierarchies: note, voice, beat, and measure
(see online version for colours)

060 R-squared Values by Category with Different Color Scheme 005

wfo SA prm— =&~ measure - note
0.044
note

el \\

N\
AN

)

=]

in

]
=]
<
£

@

r0.03

/

AmananKasann

©

wn
(=]

.
59
IIIIIIIII

R-squared

0019 0019

measure - not

o
[=}
~

IIIIIII'II'IILII

0.404

0.00

g

mid-low mid-high high
Categories

Note: You can see how well each model did on its own in the bar chart, and how far off
note-based and measure-based predictions were in the line chart.

The original photographs of retinas 2 and 4, located in the DRV database, and retina 1 in
the CDB database, are displayed in Figures 6(a), 7(a), and 8(a), respectively. These are
the actual images of retinas 2 and 4, collected from the DRIVE and CHASE
databases, respectively: Figures 6(b), 7(b), and 8(b) provide further details. Retinas 2 and
4 from the DRV database and retina 1 from the CDB database were used to construct
the vessel-extracted image, which is shown in Figures 6(c), 7(c), and 8(c).
Figures 6(d)-6(h), 7(d)-7(h), and 8(d)-8(h) show the recovered vessels that were
processed using the suggested procedure. The images were captured using DRV database
Rips 2 and 4, and CDB database Retina 1. The quick guided filter was adjusted for each
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setting. Statistical analysis reveals that the suggested method outperforms the original
matched filter in detecting thin vessels while producing fewer false positives.

Figure 5 The correlation between standard deviation and MSE performance, indicating model
underperformance with low annotator agreement (see online version for colours)
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Figure 6 Matched filter technique and fast guided filter for retina 2 dataset (see online version
for colours)

Retinal Vessel Segmentation Results - Alternative Color Scheme
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Segmentation based on multiple parameter values: The following images serve as
examples of parameter combinations: (a) the beginning point image, (b) a picture of the
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ground truth, (c) the original matching filter, and (d)—(h) the images that have been
segmented for the following values of s and r: 1, 6, 2, 10, 3, 18, 4, 28, and 5, 25,

respectively.

Figure 7 Four retina images were extracted from the DRV dataset using the fast guided filter and
matched filter methods with varying parameter values, these images include (a) the
original image, (b) the ground truth image, (c) the original matched filter, and (d)—(h)
separated images for various parameter combinations, includings=1,r=6,s =2,
r=10,s=3,r=18,s=4,r=28, and s = 5 (see online version for colours)

Figure 8 The Retina 1 dataset comprises the original image, ground-truth image, original
matched filter, and segmented images for various parameter combinations (see online

version for colours)

Notes: These combinations include s=1,r=6,s=2,r=10,s=3,r=18,s=4,r=28,
and s = 5, r = 25. The technique used to segment the CDB dataset was a
combination of the Fast Guided Filter and the Matched Filter.
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We separated degrees into their own classes and determined their distributions using the
polyphonic values from the datasets. Figure 9 shows the distributions in general. Frames
with d > 7 make up fewer than 5% of each dataset, whereas frames with d > 6
nevertheless contribute to SMD-synth. Class 0 and 1 occurrences are substantially higher
in SMD-synth compared to MAPS. There are two types of frames: those with no active
pitch and those with a single pitch.

Figure 9 Division of Subsets in SMD-synth datasets and MIDI-aligned piano sounds (MAPS)
(see online version for colours)
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Notes: With 12 simultaneous notes, the highest possible polyphony degree is 12 — the
frequency of classes greater than 5 decreases rapidly. Further details of the subsets
are provided in Table 3.

This disparity prompted us to look at three distinct LPE class partition algorithms. We
examined three categories in the first plan: monophony (one note), polyphony (two notes
active), and silence (zero notes). Class 2 was thus defined as all degrees of polyphony
d > 2. Detecting more nuanced degrees of polyphony was the goal of the second
technique, which involved six classes. Regarding the difference for polyphonic degrees
d > 6, we previously stated that all degrees d > 5 were categorised as class 5. Then, you
may continue with classes 0 and 1, while classes 2—4 demonstrated different degrees of
polyphony by playing 2—4 notes at once, accordingly. After that, class 5 merged all
advanced degrees once more. The third tactic was to take into account all 13 degrees of
polyphony, which were the end consequence of the maximum polyphony of 12 in the two
sets of data. Our goal in implementing this third technique was to identify the areas with
the most significant decline in forecast accuracy.
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Table 3 Three-set division (training, validation, testing) of datasets from MAPS Configuration
2 and SMD-Synth

Dataset Number of files per set Duration [(rz;:lil?/val/test) A(f:l:ii Zg IZZ’;’Z)J’

MAPS 180/30/60 (270) 711.0/133.5/261.7 12/11/12 (@44100/511)
Config. 2 12/11/12 (@22050/511)
SMD-synth 35/7/8 (50) 201.3/38.6/21.2 12/11/12 (@44100/511)

12/11/11 (@22050/511)

5 Conclusions

This study demonstrates that conventional wisdom about piano instruction may be
significantly altered with the application of Al and DL. By objectively evaluating
multidimensional performance qualities, the suggested Al-driven piano accompaniment
and teaching system effectively provides learners with tailored feedback. The accuracy of
feature extraction is further enhanced by the hybrid matched and fast guided filter
technique, which guarantees trustworthy performance measurement. The experimental
results show that the model’s performance is significantly improved across several
musical dimensions when hierarchical perceptual information is incorporated.
Additionally, the system is well-suited for distant music instruction due to the use of
cloud-based infrastructures, which guarantee scalability and accessibility. Automatic
creation still has a ways to go before it can ensure things like emotional depth and
musical coherence, but the results suggest that piano lessons have made great strides.
Improving auditory-led teaching approaches, developing more effective generative
models for accompaniment, and expanding the system’s applications to other instruments
are all potential areas for future research. In conclusion, the study presented here offers a
fresh and valuable approach to the problem of intelligent, adaptable, and time-saving
piano instruction.
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