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Abstract: In this study, we provide a system that shows students how to play 
piano with improvisation and accompaniment using cloud computing, deep 
learning, and CNN. Automatic evaluation of performance aspects, such as 
pitch, timbre, articulation, rhythm, and dynamics, is one way the suggested 
approach enhances piano lessons. Applying a hybrid approach that combines a 
matched filter with a rapid guided filter optimises preprocessing for music 
feature extraction. To further improve the accuracy of piano performance 
analysis, attention-induced multi-head CNNs and perceptual evaluation datasets 
are employed. In adaptive and remote learning settings, the technique shows 
better dependability and scalability. The model successfully integrates visual 
and aural methods of teaching piano, supports multilevel perceptual feature 
analysis, by providing a novel framework that enhances learning outcomes, 
enables tailored instruction, and adapts to the diverse needs of learners, this 
research contributes to the expanding field of intelligent music education. 
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1 Introduction 

Engineering, AI, internet technology, music, and numerous other fields have all begun to 
incorporate computer music technology into their work in recent years. Composers are 
motivated to create music in unique ways when they use computers to freely compose 
music with the help of algorithms in songwriting programs (Li, 2022). Additionally, 
computer music technology can provide a pervasive and inexpensive music tutoring 
service. An automated system that can assess a pianist’s performance on several factors 
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(e.g., rhythm, articulation, expressiveness, timbre, pitch, and chords) is our goal in doing 
this research. If the system can determine the user’s current skill level and provide them 
with timely feedback on how to improve, it would be beneficial for piano students 
(Alzubaidi et al., 2021). It is essential to consider a wide range of talents when evaluating 
a student’s progress in piano lessons, especially for younger children. Consequently, 
there are issues in education and learning that can be addressed, and abilities in  
face-to-face instruction at various levels can be enhanced through the use of  
computer-based techniques (Phanichraksaphong and Tsai, 2023). We include timbre- and 
pitch-based evaluation tools, as playing the piano requires a multifaceted set of skills, 
including control over volume and dynamics, as well as rhythms, techniques, body 
language, and facial expressions. 

Due to its demanding nature, playing the piano is an excellent way to develop 
stronger hand-eye and motor skills. When playing the piano, it’s essential to use both 
your left and right hands. But you can’t rely on one hand to play the melody or rhythms 
alone; for example, you may play the melody with your right hand and the 
accompaniment with your left, giving the impression that both hands are acting 
separately. The independence of the hands provides the pianist with greater leeway to 
express themselves while playing. In addition, you can use both of your feet to press 
down on the pedals at the same time. There has been a diverse trend in the development 
of computer-assisted composition over the last half-century. Artificial neural networks, 
genetic algorithms, music grammar rules, and other similar techniques are the mainstays 
of automatic composition. While these approaches can address some of the requirements 
of autonomous composition, they are not without their flaws (Peñalver Vilar and  
Valles Grau, 2020). Take a recurrent neural network music, for example. It lacks overall 
musical coherence and attempts to correct the melody and harmony using a genetic 
algorithm, only to end up creating meaningless local optimal regions in the harmonic 
search space problem. 

The inability of computer-assisted composition to keep up with the ever-evolving 
nature of musical materials is currently its biggest challenge (Stün and Ozer, 2020). From 
one angle, music is simply a combination of various musical parts, and computers excel 
at mathematical calculations. Contrarily, computers lack human emotions and thought 
processes, and music is an art form. Therefore, computer-assisted composition 
necessitates more assistance from AI technology, in addition to more diverse programs. 
As it stands, the music programs at public and private schools make excellent use of 
technological resources. The compatibility of their music classroom setting with various 
social cultures is also undergoing minor alterations as a result of the shift in 
communication style between instructors and students (Li, 2020). School administrators 
can, on the one hand, utilise big data analysis to pinpoint inefficiencies in the current 
instructional method and refine it. As an alternative, innovative education has introduced 
new approaches to teaching and learning, including the intelligent piano, and various 
forms of music learning software have altered the way people study music (Liu and 
Huang, 2021). There is potential for intelligent piano instruction to leverage deep 
learning (DL). Take, for example, DL-based automatic music transcription. To provide 
an unbiased justification for the accuracy of performance, let students quickly identify 
their mistakes, and improve learning efficiency, it is beneficial to compare the played 
music to a standard score. Piano grading tests and computer-assisted piano instruction are 
two areas that could benefit from this technology. The study’s first section includes an 
analysis of the literature on intelligent music instruction (Li, 2022). Using the cognitive 
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and motor growth of preschoolers as a lens, the second segment delves more into the 
features and capabilities of intelligent pianos. 

This serves as the basis for building a convolutional neural network (CNN) that 
detects the onset of piano notes. Additionally, to determine people’s opinions on the 
educational and popular effects of intelligent pianos, we surveyed parents and 
preschoolers. This can be used as a realistic basis for intelligent piano promotion and 
instruction. The poll’s findings and the CNN model’s performance are covered in the 
fourth part. The structure of this manuscript is as follows: Section 1 introduces the 
research background and motivation. Section 2 reviews relevant literature on AI-driven 
piano design and teaching practices. Section 3 describes the study’s methodology and the 
improvisation accompaniment teaching system. Section 4 reports the experimental 
findings and discusses their implications. Finally, Section 5 summarises the conclusions 
and outlines directions for future research. 

1.1 Paper contribution 

Incorporating cloud computing, artificial intelligence (AI), and DL into a unified 
framework for training and evaluation, this study contributes to the growing body of 
research in intelligent piano education. At its core, the program is an AI-driven 
improvisation and piano accompaniment system that can assess students’ progress along 
multiple dimensions and tailor its feedback to each individual’s strengths and areas for 
improvement. The study employs a hybrid preprocessing strategy that combines matched 
filters with quick guided filters to enhance the accuracy of music feature extraction and 
ensure reliable assessment across rhythm, dynamics, articulation, and pitch. Thirdly, 
attention-induced multi-head CNNs integrate visual and auditory teaching methods by 
enabling a more comprehensive investigation of perceptual performance traits. The 
research concludes that the system can be easily scaled, made accessible, and adapted to 
various learning contexts (such as remote and tailored education) by implementing it 
within a cloud -based architecture. Taken as a whole, these papers provide light on the 
state of intelligent music education and propose new ways to teach piano with the help of 
technology, both theoretically and practically. 

2 Related work 

2.1 Conflicts in teaching approaches to early piano education 

The master-apprentice method, in which a student learns an instrument and its repertoire 
by emulating the actions and intonation of a more experienced player, is one of the 
inventive approaches to music education that McPherson and Gabriel’s son recalled. 
Nonetheless, the majority of contemporary method books use a visual approach that 
connects the fingers to notation rather than sound, thereby enhancing the mathematical 
correlations between scale degrees. They frequently divide the process of learning 
technical competence from learning to play actual music, prioritising note identification 
and theoretical concepts over gaining perceptual comprehension. Teachers may use 
visual aids, such as fingerings, letter names, and hand posture, to help students learn the 
C scale, for instance. As an additional illustration, consider how pre-staff notation teaches 
high and low registers using visual connections rather than auditory cues (Kan, 2022). 
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Early piano instruction currently centres on visual musical notation literacy, according to 
Bunting, Williams, and Arshinova. 

Piano method books cover the fundamentals of the instrument, and it looks like music 
reproduction is the primary focus of early piano lessons. Concepts like black and white 
keys, instructions, geography, letter names, and number and letter ranges are better 
understood by students when they see them illustrated in method books. They also help 
students with concepts like hand and finger positioning and recognition. Good tools for 
teaching piano to children typically incorporate note reading into the very first lesson, 
along with the fundamentals of music theory and the instrument’s mechanics, and utilise 
eye-catching visuals to pique the interest of young learners (Pang, 2024a). The fact that 
these resources are attractive to piano teachers is not surprising. Nevertheless, to achieve 
the objective of music reproduction, this encourages a theory-driven understanding of 
music. However, this does not rule out the use of auditory methods in the early stages of 
piano training. On the contrary, such events are often overlooked. Books such as Music 
Little Mozart’s: Books like Music Lessons: Book 1 and Prep Course for Young 
Beginners: Lesson Book, Level A, both have short musical parts that teach kids how to 
incorporate their voices and bodies into singing and percussion. 

2.2 Application in intelligent electronic musical instruments 

Technological advancements in AI over the last several years have enabled electronic 
musical instruments to become more sophisticated, individualised, and intelligent, 
ushering in a new era. In addition to storing a wide variety of musical instrument timbres, 
the intelligent electronic instrument can also effectively combine timbres, allowing for 
the execution of timbres in response to a variety of action instructions (Zheng, 2022). 
Classical musical instruments clearly lack the functionality necessary to accomplish this 
task. Because of these advantages, intelligent electronic instruments are slowly but surely 
making their way into music classrooms. A new way of teaching music has emerged with 
the advent of intelligent electronic musical instruments. Now more than ever, a solo 
musician can inspire new ideas by experimenting with different combinations of 
powerful sounds (Zhang, 2023). Students of music practice greatly benefit from music, 
and they also achieve a greater level of instruction as a result. In today’s world, where 
science and technology are advancing at a rapid pace, AI is becoming increasingly 
significant, along with digital technology, online performances of electronic music, and 
collaborative research on wireless networks. A system for making electronic music was 
developed in the area of AI. 

Thanks to this technology, online schooling can now utilise both wireless networks 
and electronic music (Yu and Ma, 2023). A new electronic musical instrument has 
emerged due to technological advancements in computer sensor networks, intelligent 
algorithms, and wireless networks. We can verify the degree of alignment between the AI 
electronic music course materials and the objectives of online intelligent matching and 
online education by running a simulation experiment. The information about the sound is 
subsequently transformed into visual and auditory patterns using the oscilloscope. 

2.3 Adaptive piano accompaniment 

Adaptive piano accompaniment generative adversarial networks are an area where our 
method excels, surpassing both competing GANs and innovative hybrid methods. The 
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data processing capabilities of this tool are second to none when compared to mixing 
technology, thanks to its utilisation of cutting-edge technology for information mining 
and the provision of high-quality data to the model, which allows for considerably more 
flexible accompaniment and melody generation (Kale and Altun, 2024). Due to issues 
with gradient vanishing and other model-level problems common to typical GANs, this 
tool utilises adaptive ensemble methods to enhance training stability and employs 
Gaussian mixture models to generate a diverse range of coherent accompaniments. This 
technology utilises sentiment analysis and other techniques to make the melody and 
accompaniment emotionally engaging, which distinguishes it from other GAN arts that 
struggle with musical understanding and expression (Karamatlı, 2024). In a nutshell, this 
instrument spearheads the field’s development and accomplishes advances in numerous 
dimensions. Environments can be changed via adaptive integration technology. While 
block-based integration manages data in separate pieces, online integration handles 
training instances without requiring storage. 

Most adaptive weighted integration techniques use SEA or AWE when working with 
data blocks (Zhou, 2025). While this kind of algorithm excels at handling gradual drifts 
in concepts, it is notoriously slow to react to abrupt changes. Current ensemble 
techniques that utilise blocks to train classifiers employ recently tagged data to inform the 
categorisation of unlabelled data. On the other hand, the ensemble model might not give 
reliable results if there is idea drift in the unlabelled data. Unlabelled data can include 
valuable insights that current algorithms fail to capture. Consequently, they are unable to 
adapt to the present environment by monitoring concept drift over time or by quickly 
assigning appropriate weights to component classifiers. 

3 Proposed methodology 

Using cloud computing, AI, and machine learning, this study presents  
RPT-AIMCNN-HPO, a system for distant piano instruction. Figure 1 illustrates the block 
diagram of the RPT-AIMCNN-HPO method. Using AIMCNN in the cloud, the following 
is a detailed example of remote piano instruction (Song, 2024). 

3.1 Trained model 

Twenty-five human pianists and two ‘score’ performances make up the 1,202 musical 
portions that make up PercePiano, which has 12,652 annotations. A total of 6,244 
annotations, 10,219 annotations, and 1,809 annotations make up these portions. It was 
possible to compare the two ‘score’ performances with the human performances because 
they were taken directly from the original MusicXML score 4,647. Choose from ‘Score’ 
and ‘Score2’. In contrast to the mechanical quality of the latter, the former makes greater 
use of musical notations (such as legato and dynamics) to mimic human performance. A 
total of 53 separate annotators, each rating 19 distinct labels, have evaluated the 
annotations. To be more precise, the following Schubert compositions have a combined 
total of 4,076 annotations: D.960, mv2 (2nd movement), D.960, mv3 (3rd movement), 
D.935, with 624 annotations, and Wo O.80 by Beethoven, which has 1,244 annotations. 
With a standard variation of 3.62, each performance segment typically has 10.52 
annotations. The average and standard deviation of annotator ratings across all 19 criteria 
for each performance are displayed in Table 2. The pieces’ names span from WoO.80 to 
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D.950 mv2. An auxiliary file showing the mean and standard deviation is Figure S2  
(Park et al., 2024). 

Figure 1 Schematic representation of the RPT-AIMCNN-HPO method (see online version  
for colours) 

 

‘I do not know’ was appended to 921 of the 12,652 annotations, or 7.3% of the total. You 
can find the exact total down below. We provide thorough statistics and data quality 
checks for each musical composition in supplementary notes A. One popular descriptive 
statistic for quantitative measures is the intraclass correlation coefficient (ICC), which 
shows how similar different units are within the same group. In order to investigate the 
level of agreement between annotators, we sort ICC evaluation models by the data and 
annotators that were employed [ICC (1, 1) and ICC (1, k)]. When a separate group of k 
randomly chosen annotators measures each subject, for instance, one-way random 
evaluation is employed (ICC, 1, k). An random one-way assessment was determined to 
be suitable49 after employing distinct sets of randomly selected annotators for each 
section. To determine the reliability of the averages and individual evaluations, we 
calculated the ICC (1, 1) and ICC (1, k) values for each label (Pang, 2024b). When 
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examining average reliability, the ICC is ‘excellent’ (1, k), according to Table 2; 
however, when considering single-measure dependability, it is ‘poor’ (1, 1). These results 
suggest that people’s subjective views on music may not be comprehensive, but when 
considered collectively, they tend to converge towards a more widely accepted 
understanding of music. 

3.2 Adaptive distorted Gaussian matched filter for pre-processing 

In most cases, greyscale retinal pictures do not clearly show small blood vessels. Because 
of the lack of contrast in local intensity, vessel segmentation is severely limited. The 
intensity of the vessel’s width, which encompasses its borders, differs considerably 
among photographs. Equally mixed with Gaussian noise are little vessels. Consequently, 
the majority of the methods proposed in the literature for precisely identifying vessels 
have been unsuccessful. Due to this limitation, vessel segmentation is a challenging task. 
It is clear from the equation sets and the quick guided filter description that pixels in 
regions with high variance will keep their values, while pixels in areas with even variance 
will have their values smoothed out by nearby pixels. Therefore, with a frequency 
defined by an averaging method, very few fine features in the virtually flat portions are 
smoothed away (Dash, 2022). One easy and effective way to remove vessels is with a 
matching filter. A matching filter can detect edges on vessels as well as those outside of 
them. On the other hand, a guided filter is an operator that performs better at the edges, 
exhibiting both smoothing and preserving qualities. Based on these characteristics, 
combining a matched filter with a rapid guided filter in a single model will improve 
vessels and allow for precise vessel extraction. Figure 2 depicts the three stages of the 
proposed procedure. 

Figure 2 Proposed method’s schematic diagram 

 

3.2.1 Matched filter 
It is possible to identify blood vessels using a Gaussian matching filter when the 
vasculature’s grey-level profile approaches a Gaussian-shaped curve. Below is a 
summary of the matching filter, and you can find its specifics in the documentation. Here 
is a description of the matching filter that uses the Gaussian kernel function: 

( )2
2( , ) exp | | , | | .3,2 2

LmP m n n m tσ
−= ∀ ≤ ≤  (1) 

Where the matched filter is defined as 
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− −  ×      =


 (3) 

The vessel segment length, denoted as L, the intensity outline spreading, denoted as σ, 
and a constant t, fixed at 3, constitute smooth noise. The vessel identification process 
involves maximising the filter bank’s response by rotating the kernel P(m, n) in different 
orientations. Twelve kernels rotated at 15-degree intervals are sufficient to accurately 
identify the vessels. In a Gaussian curve where the signals are infinitely long, the  
two-sided tails are cut off at u =± 3σ, and N is represented as 

{ }( , ), 3 , 2
LN u v VuV σ V V= ≤ ≤ϑ  (4) 

The weights in the kernels i (where i ranges from 1 to 12, the total number of kernels) are 
defined by. 

2

12
( , ) exp

2t
up m n Z N
σ

− = − ∀ ∈ 
 

 (5) 

The following is the formula for determining the kernel mean value when A is a set of 
points in N: 

1

1( , )
t Z N

P m ns A∈
=  (6) 

Hence, this is the convolution mask: 

( , ) ( , )f f fP m n p m n S Z N= − ∀ ∈  (7) 

3.2.2 Fast guided filter 

Although it performs better near the edges, a directed filter is essentially a special case of 
a bilateral filter. Theoretically, a directed filter might interact with the Laplacian matrix. 
Moreover, guided filters can utilise structures to enhance the quality of the output image, 
which is not the case with regular smoothing operators. The computational complexity is 
independent of the filter’s kernel size because the guided filter uses a fast and  
non-approximate linear-time technique. Noise reduction, HDR compression, 
enhancement, haze removal, and joint upsampling are just a few of the many uses for 
guided filters in computer vision, computer graphics, and computer science. A guided 
filter takes input images I, uses guidance images P, and produces filtered output images 
Q using a basic linear model. Knowing that pixel k is the centre of window mk, it is 
necessary to assert that the linear transform is Q of P. 

See the kernel and guided filter definitions below: 

1,t k t k kQ C l d= + ∀ ∈∈  (8) 
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(ck, dk) are linear coefficients that are almost constant, and the wk square window has an 
index of k and a radius of r. 

The output is the minimum reconstruction error between P and Q as determined by 
equation (8) for input image P 

2

1
| | t t k kt w

k
k

I P μ P
wC

σ ε
∈

−
=

+


 (9) 

k k kd C μ=  

The degree of smoothness is controlled by the regularisation parameter ε, where μk 
represents the mean and σk stands for the variance of I in the window. Following the 
computation of (ck, dk) for each image patch wk, the following steps are taken to 
determine the filter output: 

( )1:1

1
| | k

t k kk w
Q C p d

w
= +  (10) 

1t t tQ C I d= +  (11) 

where 1 | |ic w k wick= ∈  and 1 | |id w k widk= ∈  are the mean values of the 
coefficients for all i-centred windows. The first algorithm shows the procedures that the 
guided filter follows. When approaching O(N) time, Zmean represents the mean filter 
with considerable variability. While conventional guided filters rely heavily on the 
guiding image, they struggle to achieve fast computation when denoising images, which 
is why you should use a rapid guided filter. The time complexity for a subsampling ratio 
s can be reduced from O(N) to O(Ny2/) using a fast guided filter. A fast guided filter 
outperforms the standard by a factor of ten in many cases, all without sacrificing 
performance. 
Algorithm 1 Algorithm for guided filter 

Input parameters: A is the input filtering image, P is the guidance image, r is the radius, and ε is 
the regularisation. 
Output parameter: Q is the filtering output. 
1 meanP = fmean(P) 
 meanA = fmean(A) 
 corrP = fmean(P × P) 
 corrPA = fmean(P × A) 
2 varP = corrP – meanP ∗ meanP 
 cosPA = corrPA – meanP ∗ meanA 
3 x = covPa./(varP + ∈) 
 y = meanA – x. ∗ meanP 
4 meanx = fmean(x) 
 meany = fmean(y) 
5 Q = meanx. ∗ P + meany 
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3.2.3 Preprocessing 
The utilisation of retinal fundus images allowed for the automatic detection of eye 
disorders in fundus images. The most challenging part of interpreting a fundus image, 
though, is dealing with the image corruption, which can happen for a number of reasons. 
The quality of a fundus image is diminished due to a cataract in a human lens, similar to 
how a hazy camera lens reduces the clarity of a photograph. The contents and properties 
of the photos are altered based on fundus images from various clinical circumstances 
found in different databases. As a result, it is essential to enhance the overall image 
quality during the pre-processing steps. Combining a directed filter with a matched filter 
is an innovative strategy that can improve retinal vascular performance measures. 
Improving the image’s overall quality was the first stage in using the rapid guided filter. 
Because the green component makes retinal arteries more visible and contrasty than the 
blue and red ones, it was the next step in the vessel extraction process to apply it 
exclusively to the matching filter. 

3.3 Analysis of piano teaching effectiveness using an attention-driven  
multi-head CNN 

Here, we examined the ConvNet-MPE baseline model, a CNN-based MPE model. 
However, local polyphony estimation (LPE) was performed using a number of CNN 
models that were trained on the new feature representations. Differences in kernel shape 
and number of pooling layers are the primary distinguishing features of these models. 
The following sections provide detailed descriptions of each model type, summarised in 
Table 1 (Dash, 2022). 
Table 1 Synopsis of neural network model structures, objectives, feature representations, 

convolutional block kernel shapes, class numbers, and model parameters 

Model Task Feature 
representation Kernel shape Number of 

classes Number of parameters 

ConvNet-MPE MPE HR-CQT (3, 3) 88 2,158,000 
ConvNet-LPE LPE HR-CQT (3, 3) 3 / 6 / 13 2,114,000–2,119,000 
CQT LPE HR-CQT (1 / 3 / 5, 24) 3 / 6 / 13 79,000–287,000 
CQT LPE LR-CQT (3, 24) 3 / 6 / 13 112,000–161,000 
F-CQT LPE F-CQT (4, 3 / 6) 3 / 6 / 13 47,000–107,000 
F-CQT 3D LPE F-CQT (3 / 5, 4, 3 / 6) 3 / 6 / 13 221,000–394,000 

3.3.1 MPE model: ConvNet-MPE 
All comparisons in MPE are based on the ‘ConvNet’ architecture, which was initially 
developed by. Our reimplementation produced the same results as the original 
publication, as demonstrated by the MPE results reported in. Specifically, the  
ConvNet-MPE is composed of three CBs. Batch normalisation, ReLU activation, 
dropout, and convolutional layers are all components of each CB. Only during training 
was the dropout clause invoked. With momentum-based batch normalisation, both of the 
first CBs used a kernel size of (3, 3) and 32 filters. A 0.1 momentum was setup. In the 
context of convolutional approaches, ‘valid padding’ refers to the absence of  
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zero-padding. A max-pooling layer with a pool size of (1, 2) and a dropout layer with a 
minimal dropout of 0.25 followed these two CBs. The most current CB used 64 filters 
instead of 32 and a reduced kernel size of (1, 3). Two dense layers, one with 512 units 
and the other with 88 units, were employed following the three CBs. The sigmoid 
activation function was helpful in this situation. Additionally, a dropout probability of 0.5 
was used between the two dense layers. There are no bias terms in any of the model’s 
computational levels. Training the ConvNet-MPE involved reducing the binary  
cross-entropy loss function and HR-CQT. 

3.3.2 LPE models 
Figure 3 shows every LPE model. All the LPE models considered are derivatives of the 
same basic design, in contrast to ConvNet-LPE. Everything about the last dense layer 
stack, including input batch normalisation (BN), indicates that each convolutional layer 
(CB) has the same number of filters. There are three CBs in total. 

Figure 3 Specifically, the three CNN models utilised in the LPE studies are described in detail, 
including the output tensor forms for each layer (see online version for colours) 

 

3.3.3 Class, fifth, frame, feature, kernel, octave, and time are all abbreviations. 
Included are additional specifications for the parameters 

A convolutional layer, a BN, and an activation function for a rectified linear unit (ReLU) 
make up each CB. A probability of 0.25 was used to apply dropout after the last CB. We 
then used the same number of units as the bins in the original feature representation to 
train a bias-free fully connected (FC) layer with a tanh activation function. After that, 
another FC with the same amount of units as the current polyphonic scenario and 
Softmax activation followed. Default stride sizes were one, and all CBs utilised the same 
padding. Lastly, the categorical cross- entropy loss function was used for training all LPE 
models except ConvNet-LPE. 
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3.3.4 ConvNet-LPE 
To train the model for the LPE task, we used a softmax activation function and changed 
the number of units in the ConvNet-MPE’s output layer to 3, 6, or 13 (as indicated). 

We were able to determine if the overall ConvNet design was effective for LPE in 
this manner. Like the ConvNet- MPE, this model kept the exact input feature 
representation, optimiser, and learning rate settings. 

3.3.5 CQT model 
Based on the batch size, the CQT model received CQTgram parts as input. These chunks 
may come from the LR- CQTgram (with feature dimensions of 88) or the HR-CQTgram 
(with feature dimensions of 264), depending on the specific model. Za is the number of 
frames it includes, and Zt is the number of surrounding CQT-features (bins), which we 
used as the kernel size for the first two CBs. If we want to see how their differences play 
out, we can compare the kernel’s and the F-CQT’s training sets, which both cover the 
same amount of notes but with different bin sizes: 12 for the kernel and 24 for the F-
CQT. The pooling layers gradually downsampled data from the feature dimension. In the 
latest CB, we had to adjust the kernel to 12 bins to prevent over-patching and reduce the 
parameter count. 

3.3.6 F-CQT model 
Data from specific frames of the F-CQT model were input into it. A single frame had 
dimensions of 6 × 24 due to the two-dimensional structure imposed by the F-CQT 
arrangement, which utilised 12 bins per octave and 7 octaves in total. In the original CB, 
the kernel size was (o, ZT), where Zi is the octave number and Zi is the fifth number. 
Since it might cover 4 octaves and three fifths, the proposed kernel size is (4, 3). The 
benefit of covering harmonics within an octave is achieved by using an F-CQT 
convolutional kernel with fewer parameters. The F-CQT model avoided all intermediate 
pooling stages that follow each CB due to its smaller kernel size and reduced number of 
model parameters, except for the last max-pooling operation over the fifth-related tensor 
dimension. 

3.3.7 F-CQT 3D model 
The F-CQT model and its 3D counterpart are structurally identical. Even though both the 
CQT and F-CQT 3D models utilise temporal context, the former employs convolution 
kernels that span multiple frames, rather than just one. We created a three-dimensional 
input feature by combining numerous successive F-CQT frames, enabling the F-CQT 3D 
model to receive data. The input was scanned in the CBs using a 3D kernel that 
resembled (Za, o, Zi). We decreased the feature representation during the forward pass 
because this method could lead to a much greater parameter count: A single row of 
octaves, or the fifth dimension, was used to add pooling layers following the first two 
CB. 
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4 Results 

We investigated the relationships between several perceptual features of piano playing 
and various hierarchical levels (note, voice, beat, measure), from the most basic to the 
most complex. We trained and evaluated each succeeding model using outputs from 
different hierarchical levels, starting with the Bi-LSTM baseline. A randomly split 
dataset was utilised to eliminate the possibility of bias towards particular works or 
performers. To start, the addition of hierarchical information has a greater impact on 
lower-level perceptual qualities, including time, articulation, and timbre, as seen in the 
line chart in Figure 4. Given the direct association between hierarchical information and 
lower features, this is in line with expectations. Secondly, the bar chart clearly 
demonstrates that perceptual feature performance is enhanced across the board when 
hierarchies are used at the note, voice, and rhythm levels. The effects across several 
measures are inconsistent. Features at low, mid-low, and high levels perform better, but 
features at mid-high levels do not see significant improvement. ‘Dynamic’ and ‘music 
creating’ are best conveyed and perceived by paying close attention to the expression 
levels along each voice; in the medium-high range, beat-level timing adjustments are 
more significant than measure-level ones. For these reasons, we have arrived at these 
conclusions. 

4.1 Necessity of RA metric 

A noticeable pattern emerged in the evaluation results: when applied to data with high 
levels of annotator disagreement, the model’s performance dropped significantly. The 
interaction between the Bi-LSTM+SA+HAN model and performance metrics (MSE and 
standard deviation) is seen in Figure 5. The figure illustrates that this trend emerges, 
highlighting the importance of exercising caution when evaluating the model’s 
performance, particularly when considering subjective perceptual assessments. This 
finding sheds light on the reasoning behind using the RA metric. Low standard 
deviations, which show strong agreement among annotators, are penalised by the RA 
metric. To put it simply, the metric emphasises objectivity by penalising cases where 
annotators converge heavily, drawing attention to possible errors in the model’s 
predictions. The converse is also true; instances with larger standard deviations show that 
it allows for a greater degree of subjectivity. To comprehend the model’s efficacy across 
different degrees of annotator consensus, one must employ this intricate metric, which 
takes into consideration the subjective components of the annotated data. 

We found that the proposed method, which combines matched filters and rapid 
guided filters, outperformed the alternatives and produced superior results. A distinction 
was discernible in the healthy gradient vector field between the pixels representing the 
vessels and the diseased tissues. Improved specificity but unimpressive sensitivity 
resulted from labelling as ‘non-vessel pixels’ pixels that were brighter than their 
neighbours. Table 2 shows how the proposed strategy stacks up against other cutting-
edge approaches. Research shows that most comparisons were made with pre-existing 
matching filters because that was the intended goal of the suggested method. The 
proposed approach yields performance matrices that are significantly superior to those of 
state-of- the-art methodologies. 
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Table 2 Examining the proposed approach’s performance 

Approach Year 
Sn  Spc  Ac 

DRV CDB DRV CDB DRV CDB 
Dash 2020 0.7203 0.6454  0.9871 0.9799  0.9581 0.9609 
Dash and 
Senapati 

2020 0.7403 --  0.9905 --  0.9661 -- 

AlSaeed 2020 0.6312 --  0.9817 --  0.9353 --- 
Memari 2019 0.761 0.738  0.981 0.968  0.961 0.93 
Subudhi 2016 0.3451 --  0.9716 --  0.911 -- 
Sreejini and 
Govindan 

2015 0.7132 --  0.9866 --  0.9633 -- 

Figure 4 Measuring the model’s effectiveness over four assessment levels: low, mid-low,  
mid-high, and high, with different music hierarchies: note, voice, beat, and measure  
(see online version for colours) 

 

Note: You can see how well each model did on its own in the bar chart, and how far off 
note-based and measure-based predictions were in the line chart. 

The original photographs of retinas 2 and 4, located in the DRV database, and retina 1 in 
the CDB database, are displayed in Figures 6(a), 7(a), and 8(a), respectively. These are 
the actual images of retinas 2 and 4, collected from the DRIVE and CHASE  
databases, respectively: Figures 6(b), 7(b), and 8(b) provide further details. Retinas 2 and 
4 from the DRV database and retina 1 from the CDB database were used to construct  
the vessel-extracted image, which is shown in Figures 6(c), 7(c), and 8(c).  
Figures 6(d)–6(h), 7(d)–7(h), and 8(d)–8(h) show the recovered vessels that were 
processed using the suggested procedure. The images were captured using DRV database 
Rips 2 and 4, and CDB database Retina 1. The quick guided filter was adjusted for each 
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setting. Statistical analysis reveals that the suggested method outperforms the original 
matched filter in detecting thin vessels while producing fewer false positives. 

Figure 5 The correlation between standard deviation and MSE performance, indicating model 
underperformance with low annotator agreement (see online version for colours) 

 

Figure 6 Matched filter technique and fast guided filter for retina 2 dataset (see online version  
for colours) 

 

Segmentation based on multiple parameter values: The following images serve as 
examples of parameter combinations: (a) the beginning point image, (b) a picture of the 
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ground truth, (c) the original matching filter, and (d)–(h) the images that have been 
segmented for the following values of s and r: 1, 6, 2, 10, 3, 18, 4, 28, and 5, 25, 
respectively. 

Figure 7 Four retina images were extracted from the DRV dataset using the fast guided filter and 
matched filter methods with varying parameter values, these images include (a) the 
original image, (b) the ground truth image, (c) the original matched filter, and (d)–(h) 
separated images for various parameter combinations, including s = 1, r = 6, s = 2,  
r = 10, s = 3, r = 18, s = 4, r = 28, and s = 5 (see online version for colours) 

 

Figure 8 The Retina 1 dataset comprises the original image, ground-truth image, original 
matched filter, and segmented images for various parameter combinations (see online 
version for colours) 

 

Notes: These combinations include s = 1, r = 6, s = 2, r = 10, s = 3, r = 18, s = 4, r = 28, 
and s = 5, r = 25. The technique used to segment the CDB dataset was a 
combination of the Fast Guided Filter and the Matched Filter. 
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We separated degrees into their own classes and determined their distributions using the 
polyphonic values from the datasets. Figure 9 shows the distributions in general. Frames 
with d ≥ 7 make up fewer than 5% of each dataset, whereas frames with d ≥ 6 
nevertheless contribute to SMD-synth. Class 0 and 1 occurrences are substantially higher 
in SMD-synth compared to MAPS. There are two types of frames: those with no active 
pitch and those with a single pitch. 

Figure 9 Division of Subsets in SMD-synth datasets and MIDI-aligned piano sounds (MAPS) 
(see online version for colours) 

  
Notes: With 12 simultaneous notes, the highest possible polyphony degree is 12 – the 

frequency of classes greater than 5 decreases rapidly. Further details of the subsets 
are provided in Table 3. 

This disparity prompted us to look at three distinct LPE class partition algorithms. We 
examined three categories in the first plan: monophony (one note), polyphony (two notes 
active), and silence (zero notes). Class 2 was thus defined as all degrees of polyphony  
d ≥ 2. Detecting more nuanced degrees of polyphony was the goal of the second 
technique, which involved six classes. Regarding the difference for polyphonic degrees  
d ≥ 6, we previously stated that all degrees d ≥ 5 were categorised as class 5. Then, you 
may continue with classes 0 and 1, while classes 2–4 demonstrated different degrees of 
polyphony by playing 2–4 notes at once, accordingly. After that, class 5 merged all 
advanced degrees once more. The third tactic was to take into account all 13 degrees of 
polyphony, which were the end consequence of the maximum polyphony of 12 in the two 
sets of data. Our goal in implementing this third technique was to identify the areas with 
the most significant decline in forecast accuracy. 
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Table 3 Three-set division (training, validation, testing) of datasets from MAPS Configuration 
2 and SMD-Synth 

Dataset Number of files per set Duration (train/val/test) 
[min] 

Max polyphony 
(train/val/test) 

MAPS 
Config. 2 

180/30/60 (270) 711.0/133.5/261.7 12/11/12 (@44100/511) 
  12/11/12 (@22050/511) 

SMD-synth 35/7/8 (50) 201.3/38.6/21.2 12/11/12 (@44100/511) 
  12/11/11 (@22050/511) 

5 Conclusions 

This study demonstrates that conventional wisdom about piano instruction may be 
significantly altered with the application of AI and DL. By objectively evaluating 
multidimensional performance qualities, the suggested AI-driven piano accompaniment 
and teaching system effectively provides learners with tailored feedback. The accuracy of 
feature extraction is further enhanced by the hybrid matched and fast guided filter 
technique, which guarantees trustworthy performance measurement. The experimental 
results show that the model’s performance is significantly improved across several 
musical dimensions when hierarchical perceptual information is incorporated. 
Additionally, the system is well-suited for distant music instruction due to the use of 
cloud-based infrastructures, which guarantee scalability and accessibility. Automatic 
creation still has a ways to go before it can ensure things like emotional depth and 
musical coherence, but the results suggest that piano lessons have made great strides. 
Improving auditory-led teaching approaches, developing more effective generative 
models for accompaniment, and expanding the system’s applications to other instruments 
are all potential areas for future research. In conclusion, the study presented here offers a 
fresh and valuable approach to the problem of intelligent, adaptable, and time-saving 
piano instruction. 
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