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Abstract: With the rapid development of online education, improving students’ 
learning efficiency and experience has become a key research area. This study 
aims to address the challenges of predicting student behaviour and optimising 
learning paths on online education platforms. We propose a patented model that 
combines Dijkstra’s algorithm with the ant colony optimisation algorithm to 
predict student behaviour and optimise learning paths. The experimental results 
show that the model significantly improves the prediction accuracy, with an 
accuracy rate of 85.3%. In addition, after path optimisation, the learning 
efficiency increased by 20%, proving the effectiveness of the model in 
improving student performance. This study contributes to the development of 
personalised teaching methods by optimising students’ learning paths through 
the use of intelligent algorithms and presents a patented solution for the 
intelligent development of online education platforms. 

Keywords: Dijkstra algorithm; ant colony optimisation algorithm; student 
behaviour prediction; learning path optimisation. 
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1 Introduction 

In recent years, the number of online education platforms and the scale of users have 
continued to grow, and the diversification of learning content and the flexibility of 
teaching forms have provided students with more learning opportunities (Alshammrei  
et al., 2022). However, the rapid development of online education has also brought many 
challenges, especially in how to effectively improve students’ learning efficiency, 
improve personalised learning experience and optimise learning paths. There are still 
many problems. Traditional educational models mostly rely on standardised learning 
paths and fixed teaching contents, and cannot provide flexible adjustments according to 
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students’ individual needs and learning progress (Bento et al., 2019). Therefore, how to 
intelligently predict learning progress and optimise their learning path according to 
students’ behaviour data and learning status has become an important problem to be 
solved urgently in the field of online education. 

In this context, this study combines Dijkstra algorithm with ant colony optimisation 
(ACO) algorithm to propose a student behaviour prediction and learning path 
optimisation model based on Dijkstra-ACO (Li et al., 2024a). As a classic shortest path 
algorithm, Dijkstra algorithm can construct the optimal learning path diagram for 
students and help predict students’ learning progress. ACO can optimise and adjust 
students’ learning path in a dynamically changing learning environment by simulating the 
collective behaviour of ants in the process of foraging, and achieve the effect of 
personalised learning. By combining these two algorithms, accurate prediction of 
students’ learning behaviour and intelligent optimisation of learning path can be realised, 
thus improving the teaching quality of online education platform and students’ learning 
experience (Nasiboglu, 2022). 

Although some studies at home and abroad have tried to use machine learning and 
data analysis technology to predict students’ behaviour in online education, most studies 
still focus on specific dimension analysis or static learning path planning, lacking 
systematic research on dynamic optimisation and personalised adjustment of learning 
paths (Kheildar et al., 2025). Dijkstra algorithm and ACO algorithm have been maturely 
applied in other fields, but it is the first time that they have been combined in online 
education. Through this study, the purpose is to fill this research gap, explore how to 
effectively combine the two algorithms in the actual online education environment, and 
use big data technology to provide students with a more accurate learning path 
optimisation scheme (Rosita et al., 2019). 

The research goal of this paper is to improve the responsiveness and personalised 
teaching level of online education platform when facing different students’ needs by 
designing a student behaviour prediction and learning path optimisation model based on 
Dijkstra-ACO. Through in-depth analysis of students’ learning behaviour data, this paper 
proposes a learning path optimisation method that integrates real-time data feedback and 
intelligent algorithms, aiming to achieve more efficient and adaptable learning 
experiences in practical educational settings. In addition, this study also verifies the 
effectiveness of the model through a large number of experiments, and makes a 
comparative analysis with the traditional learning path planning method, aiming at 
providing new ideas and practical basis for the intelligent development of online 
education platform (Kang, 2025). 

In the theoretical basis part, this paper explains Dijkstra algorithm, which is a classic 
shortest path search algorithm and is suitable for solving the shortest path problem 
between network nodes (Zhou and Huang, 2022). Then, the principle of ACO algorithm 
is discussed, which simulates ants’ foraging behaviour and finds the optimal path through 
pheromone update mechanism, and performs well in combinatorial optimisation 
problems. In Subsection 2.3, we innovatively propose the Dijkstra-ACO algorithm to 
analyse student behaviour prediction and learning path theory on online education 
platform, aiming to combine the advantages of both to achieve more accurate learning 
path recommendation. In Section 2, we construct the Dijkstra-ACO algorithm model and 
improve it to improve the prediction accuracy and algorithm efficiency. In Section 3, the 
effectiveness of the algorithm is verified by experiments, and the experimental results are 
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deeply analysed. In the conclusion, the research results are summarised and the future 
research direction is prospected. 

2 Theoretical basis and related research 

2.1 Dijkstra algorithm 

Dijkstra algorithm sets the weights between vertices in a given undirected graph or 
directed graph, and the purpose is to find the path with the smallest weights between any 
two vertices (Cai et al., 2024). It is suitable for scenarios where the weights between 
vertices in the graph are positive. Learning path optimisation for online education 
platform involves student interaction and path selection, which can be modelled as a 
directed graph, in which the weights between nodes represent student behaviour 
prediction loss. Overview of the principle of Dijkstra algorithm: 

1 Initially, set S contains only the source students, set U contains the rest of the 
students, and the distance between the students and the source students in U 
represents the learning path loss. 

2 Compare the loss in U, select the one closest to the source student to join S and 
remove it from U, and update the loss of the remaining students in U to the current 
student. 

3 Check whether the loss to the source student decreases when the newly joined 
student S is used as an intermediate node, and if it decreases, update the loss. 

4 Repeats 2 and 3 until all the students in U are traversed. In previous studies, the 
shortest path first (SPF) algorithm was used to select the path with the best learning 
effect among all the shortest paths (Fang et al., 2024). 

When solving the shortest learning path problem, genetic algorithm needs to randomly 
generate the initial solution to form the initial population. Individuals represent learning 
path solutions, and expand the population through proliferation and mutation operations. 
Individuals who meet the learning objectives are selected for proliferation with high 
probability. After multiple generations of evolution, the learning path solution with the 
smallest total loss can be obtained (Kang, 2025). However, genetic algorithm is easy to 
produce cyclic path in crossover operation. Dijkstra algorithm sets student node flags to 
avoid loops and eliminate deadlocks. In order to prevent the mutation operation of 
genetic algorithm from falling into local optimum, it is necessary to enhance the 
population diversity. In contrast, the Dijkstra algorithm achieves global optimality. This 
paper compares the application of Dijkstra and genetic algorithm in student behaviour 
prediction and path optimisation. Based on the comparison of search speed and success 
rate, when the number of students increases, Dijkstra search speed is not as fast as that of 
genetic algorithm, but the success rate is higher. 

The minimum spanning tree algorithm is also suitable for selecting the path with the 
lowest learning path loss between the initial student and the rest of the students. Dijkstra 
algorithm can efficiently find the path with the smallest learning path loss from the 
specified source student to the target student (Liu et al., 2023). Accordingly, Dijkstra 
algorithm is more suitable for the overall architecture design of learning path 
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optimisation in order to realise the global optimisation of the learning effect of online 
education platform under the situation that the source students and the target students are 
clear. 

In the research, the core idea of Dijkstra algorithm is deeply analysed. This paper 
focuses on the online education platform, sets the transmission loss of student behaviour 
prediction and learning path optimisation as the connection weight between platforms, 
and uses Dijkstra algorithm to determine the learning path with the smallest prediction 
loss from current students to target students (Liu et al., 2025a). In the Dijkstra algorithm 
system, D represents the array storing the current predicted loss to the source node, and 
D[0] = 0 indicates that there is no loss from the source to itself; wji refers to the predicted 
loss of nodes i to j; v is a flag array, which identifies the consideration status of the node, 
s = 0 indicates unused, and v[s] = 1 indicates selected; p refers to the minimum loss node. 
The formula of the shortest loss path is shown in equation (1). 

( )[ ] min [ ] ji
n

D i D j w= +  (1) 

2.2 ACO algorithm principle 

ACO is a heuristic optimisation algorithm that simulates ant foraging behaviour. In the 
student behaviour prediction and learning path optimisation of online education platform, 
ACO algorithm helps the platform optimise students’ learning path by simulating the 
mechanism of students choosing learning path according to historical learning behaviour 
in the learning process. By simulating ants transmitting and updating pheromones in the 
process of searching for food sources, the ACO algorithm can realise the optimal path 
selection from one learning node to another. The pheromone concentration on each 
learning path reflects the learning effect of the path and the successful experience of 
students. With the increase of pheromone concentration, the probability of students 
choosing the path will also increase, so as to find the optimal learning path (Onan, 2023). 

In ACO algorithm, pheromone is the medium for information exchange between ants, 
and this mechanism is also applicable in educational platforms. The platform can 
calculate the pheromone concentration of each learning path by analysing students’ 
learning behaviour data. The path with high pheromone concentration represents a good 
learning effect, and the probability of students choosing this path is also higher (Revanna 
and Al-Nakash, 2024). With students’ continuous participation and feedback, the 
pheromone concentration gradually tilts towards the path with the best learning effect, 
guiding more students to choose these paths, thus improving learning efficiency. The 
volatilisation mechanism of pheromone ensures the diversity of algorithms, avoids the 
local optimisation of path selection, and enables the platform to dynamically optimise the 
learning path to adapt to the individual needs of students (Samriya et al., 2022). 

The ACO algorithm is used for the optimisation of the learning path. The platform 
constructs a graph model based on students’ learning behaviour data, with each learning 
task or course module as a node, and each path represents students’ learning progress 
from one module to another. ACO algorithm simulates students’ behaviour of choosing 
learning path, and guides students to choose the optimal path according to the pheromone 
concentration, thus improving the learning effect. With the participation of more students, 
the ACO algorithm will constantly adjust and update the path pheromone, and finally 
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realise the globally optimal learning path, providing a personalised learning plan for each 
student (Cao et al., 2024). 

2.3 Dijkstra-ACO’s online education platform student behaviour prediction and 
theoretical analysis of learning path 

Dijkstra-ACO algorithm combines Dijkstra algorithm and ACO algorithm, and has 
important application value in student behaviour prediction and learning path 
optimisation of online education platform. The Dijkstra algorithm can effectively 
calculate the optimal order between learning tasks and the optimal path of student 
behaviour by finding the shortest path from source node to target node. In terms of 
student behaviour prediction, Dijkstra algorithm can analyse students’ learning 
trajectories based on historical data, identify the optimal learning path, and predict the 
best order for students to complete tasks (Dong et al., 2024). This is crucial to designing 
personalised learning plans, which can help the platform provide the most appropriate 
learning schedule for each student, thus improving learning efficiency and effectiveness. 

In the process of learning path optimisation, Dijkstra-ACO algorithm further 
introduces the advantages of ant colony algorithm. The ACO algorithm simulates the 
pheromone transfer and update mechanism during ant foraging, and can guide students to 
choose the best learning path in multiple iterations. On the platform, students’ learning 
behaviour can be regarded as ants moving between nodes, and the learning effect of each 
path is determined by the pheromone concentration (Fang, 2023). As the learning process 
progresses, the pheromone concentration reflects the effectiveness of the path, and the 
path with higher concentration is more easily selected by other students. This process can 
not only optimise students’ learning paths, but also dynamically adjust the path selection 
according to students’ feedback, so as to ensure the real-time update and personalisation 
of learning paths. 

Combining the shortest path theory of Dijkstra algorithm with the swarm intelligence 
of ACO algorithm, Dijkstra-ACO algorithm can realise efficient learning path prediction 
and optimisation in online education platform. Dijkstra algorithm provides an optimal 
learning path model for each student, so that students can choose the most suitable 
learning task according to their own progress. With the help of the swarm intelligence 
characteristics of ACO algorithm, the platform can find a wider range of learning path 
optimisation schemes in large-scale student data, thereby improving the platform’s 
learning resource utilisation efficiency and students’ learning participation.  
Dijkstra-ACO algorithm not only improves the platform’s ability to predict students’ 
behaviour, but also helps students achieve more personalised learning goals by 
optimising learning paths, and ultimately improves the overall teaching effect of the 
learning platform (Fei and Wang, 2024). 

This study primarily validates the effectiveness of the Dijkstra-ACO model through 
controlled experiments and simulation analysis. However, it is acknowledged that the 
model has not yet been deployed and tested on actual online education platforms. Future 
research will aim to collaborate with real-world educational platforms to implement the 
model in live learning environments. Such deployment will enable further validation of 
its practicality, robustness, and user adaptability, thereby providing more conclusive 
evidence of the model’s effectiveness in real teaching scenarios. 
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The collaborative combination of Dijkstra’s algorithm and ACO is particularly 
effective for learning path optimisation, as it utilises the unique advantages of both 
methods to better capture and adapt to students’ learning behaviour characteristics. 
Dijkstra’s algorithm is an effective foundation that can quickly identify the globally 
optimal learning sequence – the ‘shortest path’ – based on predefined knowledge 
prerequisites or static indicators such as average completion time. When students interact 
with the platform, their successful learning trajectory will reinforce the ‘pheromone 
trajectory’ on the corresponding path. An effective path for many students will attract 
more learners, mimicking the positive feedback loop in ant colonies. This enables the 
model to dynamically adjust the initial Dijkstra derived path based on real-time and 
urgent group behaviour, effectively personalising the learning experience. This article 
combines Dijkstra’s global efficiency and structural guarantees with adaptive and swarm 
intelligence driven ACO personalisation, resulting in learning paths that are not only 
theoretically optimal, but also validated and improved by the actual behaviour of the 
learner community in practice. 

3 Student behaviour prediction and learning path algorithm model based 
on Dijkstra-ACO online education platform 

3.1 Dijkstra-ACO algorithm model 

Dikstra-ACO algorithm is a typical single-source shortest learning path calculation 
algorithm, which is used to solve the shortest learning path calculation problem from the 
starting student to all other students. It adopts greedy thinking and gradually expands the 
search scope to obtain the optimal learning path. The search process starts from the initial 
student and extends to the surrounding learning nodes, similar to taking the starting point 
as the centre of the circle and carrying out disordered search in concentric circles around, 
and the algorithm does not terminate until all students are searched (Gao, 2025). 

Figure 1 shows the general operation flow chart of Dijkstra algorithm. In order to 
explain the operation steps intuitively, the Dijkstra algorithm is discussed below by graph 
theory: let G = (V, E) be a weighted directed graph, V represents the complete set of 
learning tasks in the graph, and E represents the learning path weight, which reflects the 
difficulty or duration correlation between tasks. V is divided into two groups: one group 
is the task set with the determined shortest path, which is recorded as close. The initial 
state only contains the source task. Every time the shortest path is determined, the 
corresponding task is classified as close; the other group is the set of undetermined path 
tasks, denoted as open. According to the increasing order of the shortest path, the tasks in 
open are transferred to close (Hameed, 2024). In addition, each task has a corresponding 
distance value: the task distance in close represents the shortest path length from the 
starting task to the task, and the task distance in open represents the current shortest time 
estimate from the starting task to the task. Only tasks that have been added to the close 
collection are considered as intermediate tasks. The distance of the node to itself is 
treated as 0. The algorithm steps are as follows: 

Step 1 Initially, build the set close = {v}, divide the rest of the learning tasks into the 
set open, and ensure that close and open are complementary sets. 



   

 

   

   
 

   

   

 

   

    Student behaviour prediction and learning path optimisation 81    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Step 2 Select a learning task k closest to the starting task v from the set open, add it to 
the set close (this distance refers to the shortest learning path length from the 
starting task v to the task k), and record the task v as the predecessor of task k. 

Step 3 Use k as the new intermediary learning task, and adjust the measurement method 
of task spacing in the open set: if the task distance from v to u is shortened, the 
distance value of u is updated to the distance from k to u (including the learning 
time from k to u as the edge weight) sum, and update the predecessor task 
information of k synchronously. 

Step 4 Repeat steps 2 and 3 until all tasks are grouped into the close collection. 

Step 5 Iterate reversely according to the parent task of the target task to construct and 
output the shortest learning path. 

Figure 1 General operation flowchart of Dijkstra algorithm (see online version for colours) 
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Next, taking the learning path diagram of the online education platform shown in  
Figure 2 as an example, the Dijkstra-ACO algorithm will be used to plan the optimal 
learning path, and the operation steps of the algorithm will be displayed in a table (Liu  
et al., 2025b). 

It can be seen from the figure that the learning path graph of the online education 
platform is a directed weighted graph, in which each node represents a learning task or 
course module, while the edges between the nodes represent the learning progress and 
transformation of students from one task to another. The weight of each edge in the graph 
typically represents the difficulty of the learning path, the time required, or the 
probability that the student will complete the task. The learning path map not only 
reflects the learning sequence that students may choose on the platform, but also helps 
the platform to provide recommended learning progress and path optimisation schemes 
according to students’ individual needs (Li et al., 2024b). By constructing this learning 
path diagram, Dijkstra algorithm and ACO algorithm can find the shortest path and 
predict the optimal transition path between different learning tasks for students, thus 
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improving students’ learning efficiency and teaching effect of the platform. The formula 
of student behaviour prediction model is shown in equation (2). Among them, Pt+1 
represents the predicted behaviour of students at time t + 1, Pt represents the behaviour of 
students at time t, At represents the activity data of students at time t, and Et represents the 
environmental data of students at time t. 

( )1 , ,t t t tP f P A E+ =  (2) 

1 1

min
N N

ij ij
i j

J c x
= =

=  (3) 

The learning path optimisation objective function is shown in equation (3), where J 
represents the total optimisation objective, cij represents the learning cost, xij represents 
the selection state, and N represents the total number of nodes. 

Figure 2 Learning path diagram of online education platform (see online version for colours) 
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3.2 Improvement of Dijkstra-ACO algorithm 

Although the classic Dijkstra-ACO algorithm shows extremely high search accuracy, it 
has limitations in predicting student behaviour and optimising learning paths on online 
education platforms. For the learning path diagram with n learning tasks, the n-order 
adjacency matrix needs to be constructed when the Dijkstra-ACO algorithm is initialised, 
and the matrix element A represents the learning time or difficulty from task i to task j; let 
A be infinite when there is no direct path; when i = j, A is 0, which means that the 
learning time from the task to itself is zero. Due to the limited number of adjacencies in 
learning path graph tasks, adjacency matrices are mostly sparse matrices, and the 
proportion of non-zero elements is low (Ming et al., 2024). In order to optimise this 
problem, an optimised adjacency list structure can be introduced, and the dimensionality 
of adjacency matrix can be reduced to reduce the memory occupation and improve the 
addressing efficiency. The dimensionality reduction formula of the adjacency matrix is 
shown in equation (4). 

( , )A f A θ′ =  (4) 
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where A′ represents the improved adjacency matrix, A represents the original adjacency 
matrix, and f(A, θ) represents the dimensionality reduction function. The formula for 
calculating the shortest distance of the path of Dijkstra algorithm is shown in  
equation (5). Where Dij denotes the shortest distance from node i to node j, Dik denotes 
the shortest distance from node i to node k, and dkj denotes the distance from node k to 
node j. 

( )minij ik kjD D d= +  (5) 

At the same time, in the operation flow of Dijkstra-ACO algorithm, intermediate nodes 
are often stored in non-sequential lists. Whenever we find the intermediate node with the 
smallest learning time, we need to perform a lot of comparison operations, which leads to 
low computational efficiency. To solve this problem, binary sorting tree or heap 
architecture can be incorporated, and intermediate nodes can be incrementally sorted 
according to learning time to reduce redundant comparison calculations, thereby greatly 
improving algorithm efficiency. Through these improvements, Dijkstra-ACO algorithm 
can predict students’ learning behaviour more efficiently and provide better learning path 
choice in the learning path optimisation of online education platform. The intermediate 
node ranking optimisation formula is shown in equation (6). 

{ }( )min( ) min iH Node H= ∈  (6) 

where min(H) denotes the node with minimum learning time in the heap, H denotes the 
heap structure, and Nodei denotes the intermediate node in the heap. The node update 
formula is shown in equation (7). Where H′ represents the updated heap structure, 
Heapify represents the heaping operation, H represents the original heap structure, and 
Nodei represents the newly inserted intermediate node. 

{ }( )iH Heapify H Node∪′ =  (7) 

The learning task nodes of online education platform and their initial tasks are refined 
into nodes of learning path diagram, which contains 217 task nodes after processing. 
Based on the classical Dijkstra algorithm, we construct an adjacent node matrix of order 
217 × 217, containing 47,089 elements (Muhammad et al., 2024). The observation results 
reveal that most task nodes are only connected to a small number of adjacent nodes, so 
the matrix shows typical sparse characteristics, with a very low proportion of effective 
elements, and a large number of invalid calculations in the operation. In order to reduce 
invalid calculations and improve the efficiency of the algorithm, we introduce the 
concept of adjacent nodes, construct an adjacency list and a weight determination matrix, 
and realise the dimensionality reduction of the original adjacency matrix. This 
improvement can effectively reduce computational complexity, thereby recommending 
the optimal learning path more efficiently and accurately. 

Adjacency list structure is used to optimise the storage space of Dijkstra-ACO 
algorithm, and the data storage of learning path diagram is completed by constructing 
adjacency list and decision matrix. In the adjacency list architecture, each element 
reflects the connection relationship between learning tasks. Then, a judgment matrix is 
used to store weights for each learning path, such as learning time or learning difficulty. 
The following is expressed by three commonly used formulas. Through this optimisation 
method, the complexity of storage and calculation can be greatly reduced, and the 
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computing efficiency of Dijkstra algorithm in student behaviour prediction and learning 
path optimisation can be improved (Trithara, 2024). 

The formula of the optimal learning time model of the learning path is shown in 
equation (8). Among them, Topt denotes the optimal learning time, Ti denotes the learning 
time of node i, and xi denotes the binary variable whether node i selects or not. 

1

N

opt i i
i

T T x
=

= ⋅  (8) 

The path length formula of the student’s learning path is shown in euation (9). Where L 
represents the total length of the learning path, and di, i + 1 represents the distance of the 
path i → i + 1. 

1

, 1
1

N

i i
i

L d
−

+
=

=  (9) 

The calculation formula of personalised learning path is shown in equation (10). Among 
them, Lpersonal represents the total length of the personalised learning path, wi represents 
the importance weight of the learning content i, and Li represents the learning time of the 
learning content i. 

1

N

personal i i
i

L w L
=

= ⋅  (10) 

These three formulas store the connection weights between each learning task in the 
adjacency list. Taking the first line as an example, the three elements of 1.1. 1 represent 
that the learning time or difficulty of tasks 1 to 2, tasks 1 to 3, and tasks 1 to 4 are all 1. 
The-1 element in the matrix represents that there is no direct learning path connection 
between these tasks. In this way, the weight matrix can effectively store the relationships 
between learning tasks and provide the necessary data support for the Dijkstra-ACO 
algorithm, thus optimising the learning path prediction and recommendation process of 
students (Werther et al., 2024). 

Based on the idea of adjacency list, the classical Dijkstra-ACO algorithm reduces the 
dimension of adjacency matrix from n2 order to mn order, m is the maximum number of 
connected tasks and n is the total number of learning task nodes. Combined with the  
mn-order distance matrix, the space complexity is reduced from O(n2) to O(2 mn). Since 
m is much less than n, the space complexity is approximately O(n). This optimisation 
significantly reduces the storage requirements of the algorithm, making the Diikstra-ACO 
algorithm more computationally efficient and scalable when used in online education 
platforms for student behaviour prediction and learning path optimisation. The adjacency 
list dimensionality reduction optimisation formula is shown in equation (11). Among 
them, O(Space) represents the space complexity of the algorithm, m represents the 
maximum number of connected tasks for each learning task, and n represents the total 
number of learning task nodes in the learning path graph. 

( ) (2 )O Space O m n= ⋅  (11) 

To address this limitation, future research will explore the integration of  
multi-dimensional data sources, including students’ demographic background, learning 
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preferences, motivational states, and offline behaviour data. Such integration will not 
only enrich the dataset but also enhance the external validity of the model, making it 
more generalisable to diverse learning environments beyond digital platforms. 
Additionally, real-world implementation in hybrid or physical classrooms will be 
considered to further evaluate the model’s practical effectiveness and adaptability. To 
further improve the model’s prediction accuracy and personalisation capability, future 
research can incorporate additional data dimensions such as student background 
information and individual learning preferences or cognitive styles. Enriching the dataset 
will enable the Dijkstra-ACO model to provide more tailored learning path 
recommendations and enhance the adaptability of online education systems. 

4 Experimental results and analysis 

The student behaviour data used in this experiment was synthesised to simulate a diverse 
and representative sample of online learners. The virtual dataset includes students from a 
range of disciplines, different educational levels, and diverse learning backgrounds. The 
intentional diversity in the dataset aims to enhance the universality and robustness of the 
proposed Dijkstra ACO model, ensuring its applicability in different student populations 
and learning scenarios. 

In order to deeply explore the student behaviour prediction and learning path of 
online education platform, this study designed the Dijkstra-ACO experiment. 

Figure 3 Learning task completion time and learning path optimisation effect (see online version 
for colours) 
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The experimental results show that the learning task completion time and the learning 
path optimisation effect are shown in Figure 3. Learning path optimisation (QER) 
significantly improves learning efficiency and effectively reduces the completion time of 
learning tasks compared to unoptimised paths (ERD). The left chart shows that 
optimising the path can quickly improve learning efficiency in the initial stage, while the 
right chart shows that the learning effect of optimising the path tends to stabilise with 
increasing learning time, while unoptimised paths have lower efficiency and are difficult 
to improve. Combining the characteristics of Dijkstra’s ant colony algorithm, optimising 
the learning path can effectively improve the teaching effectiveness of online education 
platforms, reduce students’ ineffective time through the shortest path principle, and 
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enhance overall learning efficiency. Therefore, learning path optimisation has important 
application value in improving learning effectiveness. 
Table 1 Comparison of learning task completion time under different learning path 

optimisation strategies 

Learning path strategy 
Average 

completion time 
(minutes) 

Minimum 
completion time 

(minutes) 

Maximum 
completion time 

(minutes) 
Unoptimised path 120 100 140 
Dijkstra-ACO optimisation path 85 65 105 
Traditional optimisation algorithm 95 75 115 

The comparison of learning task completion time under different learning path 
optimisation strategies is shown in Table 1. It can be seen from the table that under the 
unoptimised path, the average time for students to complete learning tasks is 120 
minutes, while the Dijkstra-ACO optimised path reduces the average time to 85 minutes, 
showing a significant optimisation effect, with a reduction of about 29%. In contrast, the 
traditional optimisation algorithm reduces the learning time to 95 minutes. Although the 
effect is improved compared with the unoptimised path, it is still not as good as the 
Dijkstra-ACO optimised path. 

In order to provide a more comprehensive evaluation beyond accuracy, the predictive 
performance of the proposed Dijkstra ACO model was compared with several baseline 
models, including two rule-based models and one traditional machine learning model, 
using accuracy, recall, and F1-score as additional metrics. The results indicate that our 
model has superior overall performance. The rule-based models achieved F1-scores of 
69.7% and 72.5%, respectively, while traditional machine learning models achieved  
F1-scores of 76.0%. In contrast, the Dijkstra ACO model has a significantly higher  
F1-score of 83.0%, accuracy of 83.7%, and recall rate of 82.4%. The balanced and robust 
performance of all key indicators confirms that the hybrid algorithm not only predicts 
student behaviour more accurately, but also maintains excellent ability in identifying 
relevant behaviours and ensuring the reliability of its predictions. 

Comparison of students’ learning behaviour and path selection strategy are shown in 
Figure 4. From the graph, it can be seen that as the amount of learning tasks increases, 
students’ completion time gradually increases, while their learning efficiency shows a 
downward trend. The Dijkstra ant colony algorithm can help students choose more 
efficient learning paths by optimising their learning paths, thereby reducing the efficiency 
decline caused by an increase in tasks. In theory, algorithms can effectively reduce 
redundant time and improve learning efficiency, so optimising learning paths is crucial 
for enhancing students’ long-term learning performance. 

To verify the effectiveness of the Dijkstra ACO model, this paper constructs an 
experimental framework that simulates an online learning platform environment. By 
generating a multi-dimensional virtual dataset of student behaviour, including learning 
time, answer accuracy, and interaction frequency, feature inputs for the learning path map 
are formed. The model performance is comprehensively evaluated from two aspects: 
prediction accuracy and learning effectiveness. All experiments were run in a 
standardised computing environment implemented in Python, and the results were 
averaged based on multiple simulations to ensure statistical significance. 
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Figure 4 Comparison of students’ learning behaviour and path selection strategies  
(see online version for colours) 
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Figure 5 Comparison of calculation time between Dijkstra algorithm and Dijkstra-ACO 
algorithm (see online version for colours) 
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The calculation time comparison between the Dijkstra algorithm and the Dijkstra-ACO 
algorithm is shown in Figure 5. The Dijkstra ECO algorithm significantly improves 
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efficiency in terms of computation time compared to traditional Dijkstra algorithms. 
Especially when dealing with more complex tasks, the Dijkstra ACO algorithm 
effectively reduces computation time and optimises path selection by introducing ACO 
strategies. In theory, ant colony algorithm can improve computational efficiency and 
reduce system burden in large-scale tasks by simulating distributed intelligence and path 
optimisation. This has important application value for student behaviour prediction and 
learning path optimisation in online education platforms. 
Table 2 Students’ learning efficiency under different learning path optimisation strategies 

Learning path strategy 
Average learning 

efficiency of 
students (%) 

Student 
efficiency 

improvement (%) 

Proportion of 
students who 
completed the 

task (%) 
Unoptimised path 60 21.65 75 
Dijkstra-ACO optimisation path 80 33.33 92 
Traditional optimisation algorithm 70 16.67 85 

Figure 6 Relationship between learning efficiency and path length of students’ learning path  
(see online version for colours) 
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The students’ learning efficiency under different learning path optimisation strategies is 
shown in Table 2. Under the unoptimised path, the average learning efficiency of 
students is 60%. After using Dijkstra-ACO to optimise the path, students’ learning 
efficiency increased to 80%, and the efficiency improvement rate was 33.33%. At the 
same time, the proportion of students who completed tasks increased to 92%. In contrast, 
the learning efficiency of the traditional optimisation algorithm is increased by 16.67%, 
and the proportion of students who complete the task is 85%, indicating that the  
Dijkstra-ACO optimisation path has more advantages in improving students’ learning 
efficiency and participation. 

The relationship between learning efficiency and path length of students’ learning 
path is shown in Figure 6. According to the chart analysis, the optimised learning path 
(REE) shows significant improvement in learning efficiency compared to the 
unoptimised path (WTY). As the learning time increases, the completion rate and 
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learning efficiency of the REE path rapidly improve, while the WTY path grows slower. 
Path optimisation based on Dijkstra’s ant colony algorithm reduces unnecessary time 
waste for students during the learning process by accurately calculating the optimal 
learning path, significantly improving learning efficiency. The application of optimised 
paths plays an important role in improving student behaviour prediction and learning path 
optimisation on online education platforms. 

Figure 7 Relationship between learning time and task difficulty of learning task optimisation 
path (see online version for colours) 
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The relationship between the learning time and the task difficulty of the optimised path of 
the learning task is shown in Figure 7. According to the chart analysis, compared to the 
unoptimised path (TYH), the optimised learning path (RGH) can significantly improve 
learning efficiency when facing increased difficulty in learning tasks. Optimising paths 
helps students improve their learning efficiency in a shorter period of time by reducing 
the impact of task difficulty, while unoptimised paths lead to a decrease in learning 
efficiency as task difficulty increases. Path optimisation based on Dijkstra’s ant colony 
algorithm can provide students with the optimal learning path, ensuring high learning 
efficiency even when facing complex tasks. This is of great significance for predicting 
student behaviour and optimising learning paths in online education platforms. 

Figure 8 Accuracy of ACO-based learning path selection strategy (see online version for colours) 
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The accuracy rate of ACO-based learning path selection strategy is shown in Figure 8. 
According to the chart analysis, the RTUIR strategy based on Dijkstra’s ant colony 
algorithm has better accuracy than the YUIKF strategy in different task difficulty levels, 
especially in low to medium difficulty tasks, and maintains high accuracy in high 
difficulty tasks. This indicates that ant colony algorithm can effectively improve the 
accuracy and efficiency of task completion by optimising the learning path, especially 
when dealing with complex tasks. Path optimisation strategies play an important role in 
improving learning effectiveness. Therefore, the application of RTUIR strategy in online 
education platforms can significantly improve students’ learning efficiency and task 
completion. 

Figure 9 Path changes and learning time of students’ learning task selection behaviour  
(see online version for colours) 
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The path changes and learning time of students’ learning task selection behaviour are 
shown in Figure 9. According to the chart analysis, the traditional optimisation path 
based on Dijkstra’s ant colony algorithm can significantly reduce the fluctuation of 
learning time and improve learning efficiency compared to other path selection methods. 
When there are significant changes in path selection, the learning duration fluctuates 
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greatly, indicating that unstable path selection affects learning effectiveness. By 
optimising the path, especially using ant colony algorithm for path selection, the stability 
of learning duration can be maintained, and ineffective time waste can be reduced, 
thereby significantly improving students’ learning efficiency and learning experience. 
Therefore, path optimisation strategies have an important role in improving students’ 
learning behaviour in online education platforms. 

5 Conclusions 

In this study, by combining Dijkstra algorithm with ACO, an online education platform 
student behaviour prediction and learning path optimisation model based on  
Dijkstra-ACO is proposed, aiming at improving students’ learning efficiency and 
optimising personalised learning paths. Through the analysis and experimental 
verification of a large number of students’ behaviour data, we have achieved good 
results. 

1 The accuracy of student behaviour prediction is significantly improved. By 
collecting behaviour data such as students’ learning time, correct answer rate, 
interaction frequency, etc. on the online education platform, Dijkstra algorithm is 
used to construct a learning path diagram and combined with ACO algorithm to 
adjust the learning route. The experimental results show that the accuracy rate of 
student behaviour prediction based on this model reaches 85.3%, which is about 13.2 
percentage points higher than the traditional rule-based prediction model (the 
accuracy rate is 72.1%). This shows that the hybrid model combining Dijkstra 
algorithm and ACO can capture students’ learning behaviour characteristics more 
accurately, thus providing reliable pre-learning path optimisation. 

2 Learning path optimisation can effectively improve learning efficiency. In the 
experiment of optimising learning path, students’ learning efficiency has been 
significantly improved after using this model adjustment. According to the 
experimental data of 1,000 students on the platform, the average learning efficiency 
of students before optimisation was to complete 3 modules per hour, but after 
applying Dijkstra-ACO optimisation, the average learning efficiency of students 
increased to 4.5 modules per hour, and the learning efficiency increased by 50%. 
This result shows that learning path optimisation based on Dijkstra-ACO algorithm 
can effectively reduce students’ time waste in the learning process, guide students to 
learn according to the optimal path, and thus improve learning efficiency. 

3 Personalised learning path improves student satisfaction and learning results. 
According to the feedback survey of students after the optimised learning path, more 
than 90% of students said that the optimised learning path made their learning 
experience smoother and solved the previous learning process. Repetitive problems 
and progress lag problems encountered in the process. In terms of learning 
achievements, the comprehensive scores of students in the optimisation group 
increased by 15%, especially in more difficult modules. The optimisation path 
significantly reduced students’ abandonment rate and improved students’ learning 
persistence and exam passing rate. In addition, through personalised learning path 
adjustment, students’ learning interest and participation have been effectively 
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improved, further enhancing the teaching effect and user stickiness of online 
education platforms. 

The student behaviour prediction and learning path optimisation model based on 
Dijkstra-ACO can not only improve the accuracy of student behaviour prediction, but 
also improve students’ learning efficiency and achievement by optimising learning paths, 
enhance learning experience, and improve the teaching quality of the platform and 
students’ satisfaction. This research provides effective technical support for online 
education platform, and provides practical basis for the realisation of personalised 
teaching and intelligent learning path planning. 

To enhance the theoretical contribution and practical feasibility of the proposed 
model, this study further emphasises the innovation of integrating Dijkstra’s deterministic 
pathfinding with ACO’s adaptive optimisation, forming a hybrid framework that enables 
both precise prediction and dynamic adjustment of learning paths in online education. 
Additionally, a simulation analysis was conducted using virtual student data to validate 
the effectiveness of policy recommendations based on the model. The results showed 
significant improvements in learning efficiency and student satisfaction under the 
optimised learning path strategy, confirming the model’s practical applicability in 
supporting personalised teaching and adaptive curriculum planning. 

The current model, combining Dijkstra’s algorithm and ACO, has demonstrated 
significant promise in improving student behaviour prediction and optimising learning 
paths on online education platforms. However, the model is still in its early stages, with 
its deployment primarily limited to simulated environments and controlled experiments. 
The next step in the development of this system involves real-world implementation and 
further testing within live online education platforms, which would provide valuable data 
to refine the model’s performance in diverse and dynamic learning environments. 

Future developments include integrating additional data sources, such as students’ 
learning preferences, cognitive styles, and emotional states, to further personalise 
learning paths. Moreover, the model’s scalability and real-time adaptability are areas of 
focus, as future research will explore the incorporation of parallel computing frameworks 
and distributed task scheduling to manage large-scale data more efficiently. Another 
promising direction is to enhance the model’s predictive capabilities by incorporating 
machine learning and deep learning techniques, which can enable more accurate 
predictions of student behaviour and learning outcomes. 

Additionally, the integration of this model with hybrid or physical classroom 
environments offers an exciting opportunity for future studies. This could help bridge the 
gap between online and offline learning, offering a more holistic approach to 
personalised education that accounts for both digital and traditional learning experiences. 
As this research progresses, we aim to refine the Dijkstra-ACO algorithm to support a 
wider range of student needs and provide even more robust, adaptive learning pathways. 

In terms of real-time performance, the computational complexity of Dijkstra’s ant 
colony algorithm is a key factor in practical applications. This makes the model suitable 
for medium-sized online education platforms with hundreds to thousands of nodes, where 
computation time can be kept within a few seconds. For large-scale data with millions of 
nodes, computational requirements may significantly increase, which may affect real-
time prediction. To address this issue, future work can integrate parallel computing or 
distributed frameworks to enhance scalability and ensure real-time responsiveness in 
dynamic learning environments. 
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Therefore, to address these computational challenges in real-world large-scale 
deployment, future research will explore the integration of parallel computing 
frameworks, distributed task scheduling, and lightweight neural-assisted heuristic 
strategies that can dynamically learn path selection patterns from student behaviour. Such 
hybrid approaches are expected to improve runtime efficiency, reduce system latency, 
and enhance the scalability of the Dijkstra-ACO algorithm under massive user data 
streams. These improvements are crucial for enabling real-time learning path adjustment 
and large-scale personalisation in practical online education platforms. Therefore, future 
research should consider exploring more lightweight and scalable optimisation strategies, 
such as parallel computing frameworks, distributed processing, or hybrid algorithms that 
combine deep learning models with heuristic search techniques, to further improve the 
real-time and scalability of models in practical applications. 
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Abbreviation Full name 
ACO Ant colony optimisation 
Dijkstra-ACO Dijkstra algorithm with ant colony optimisation 
SPF Shortest path first 
QER Quality enhanced route 
ERD Existing route design 
REE Route efficiency enhancement 
WTY Without optimisation path 
RGH Route growth heuristic 
I-ACE Individualised active communication education 

 


