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Abstract: With the development of society and the improvement of people’s 
living standards, swimming and fitness have gradually become important 
activities in daily life. To improve the safety management of swimming 
facilities, this study proposes a YOLOv7 and DeepSORT algorithm for 
abnormal swimming behaviour detection and multi-object tracking. This 
method first uses YOLOv7 for object detection, and then continuously tracks 
the detected targets through the DeepSORT algorithm. To optimise feature 
extraction for small targets, this study utilises spatial pyramid deformable 
convolution module and non-local attention module attention mechanism for 
improvement. In addition, to further improve tracking accuracy, DeepSORT 
introduces distance intersection and union ratio. The results showed that the 
improved object detection accuracy, recall and F1-value reached 94.56%, 
93.89%, and 95.08%, respectively. The accuracy of multi-object tracking on 
the training and testing sets reached 88.56 and 90.54, with an improved 
accuracy value of 89.42. In addition, the detection rate of the research method 
exceeded 86% in crowded scenes and 91% in sparse scenes, with a minimum 
false alarm rate of only 1.2 times per hour. The constructed method can identify 
and track abnormal swimming behaviour, providing technical support for pool 
safety management. 

Keywords: YOLOv7; DeepSORT; behaviour detection; multi-object tracking; 
swim. 
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1 Introduction 

The progress of society has promoted the increasing use of public swimming pools and 
water parks, and the issue of swimming pool safety has received much attention. 
Therefore, standardised management of swimming pools and water parks, especially in 
preventing dangerous situations, has become increasingly important. At present, the 
monitoring of abnormal human behaviour mostly relies on traditional manual monitoring 
methods, but these methods have problems such as low efficiency and poor accuracy 
(Pramanik et al., 2021). Therefore, an efficient technological means is required to assist 
in the safety management of swimming pools. With the advancement of computer vision 
(CV) technology, deep learning (DL)-based multi-object tracking technology provides 
new possibilities for solving this problem. In complex multi-person environments,  
multi-object tracking technology faces challenges such as missed detections, false 
detections, and mismatched tracking due to the similarity in appearance features between 
targets and the tendency for crossing and occlusion during multi-object tracking (Preethi 
and Mamatha, 2023). Currently, object detection and multi-object tracking have become 
important research directions in CV and have made outstanding progress. In object 
detection, the you only look once (YOLO) series algorithms have gained widespread 
attention since their real-time object detection capacities. Among them, the YOLOv7 
structure optimises the learning and convergence efficiency of the model while reducing 
computational complexity, thus demonstrating excellent performance in multiple tasks 
(Abba Haruna et al., 2022). Meanwhile, the improved multi-object tracking algorithm is 
based on the conventional simple online and real-time tracking (SORT) algorithm by 
introducing deep features for improvement (Lin et al., 2023; Guo et al., 2023). Therefore, 
based on this background, the study innovatively combines the SORT with a deep 
association metric (DeepSORT) algorithm with YOLOv7, aiming to enhance the 
intelligence level of swimming pool safety management. 

2 Related works 

The DeepSORT algorithm has shown excellent performance in target tracking tasks and 
has therefore attracted the attention of numerous researchers. Pereira et al. (2022) put 
forward a DeepSORT algorithm built on data association improvement to enhance the 
multi-object tracking performance of assisted mobile robots in navigation tasks. This 
algorithm solved the linear allocation problem by generating a cost matrix and evaluated 
target tracking using Euclidean distance and bounding box metrics. This method 
effectively improved the performance of robots in multi-object tracking. Tu et al. (2022) 
proposed an improved DeepSort method to effectively identify pig behaviour and track 
collective pigs in complex farm environments. This method combined two object 
detectors, Yolox-S and YOLOv5s, to detect and classify four pigs’ behaviours, and 
improved the stability of pig behaviour tracking by optimising DeepSort. This method 
could stably track pig behaviour under commercial conditions. Jie et al. (2021) put forth 
an improved DeepSort ship detection and tracking approach to improve the accuracy of 
ship monitoring. This method optimised the initial values of anchor boxes using K-means 
clustering algorithm and modified the output classifier to a single-softmax-classifier. This 
method could effectively handle interference including occlusion and camera movement. 
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The YOLOv7 is crucial in target tracking tasks. Zhu et al. (2024b) developed a 
method built on an improved YOLOv7 detection model to effectively detect trees 
affected by pine wilt disease. This method utilised high-resolution helicopter images and 
DL models, combined with artificial intelligence attention mechanism technology to 
improve detection accuracy. The precision of this method was as high as 0.92, which 
could effectively automatically detect diseased trees in the forest. Dewi et al. (2023) 
designed a DL method grounded on the YOLOv7 to improve the accuracy of hand 
recognition in crowded environments. This method adopted CNN object recognition 
algorithm and conducted a concise analysis of YOLOv7 and YOLOv7x models, finding 
excellent performance in precision and stability of hand recognition. Wu et al. (2022) 
suggested a tea oil tree fruit (TOTF) detection method built on YOLOv7 and multiple 
data augmentation methods to improve the harvesting efficiency of TOTFs. The author 
established a DA-YOLOv7 model, and collected images of TOTFs to establish 
experimental sets. This method had good generalisation ability in complex conditions 
with superior detection performance. 

In summary, although significant achievements have been made in research based on 
DeepSORT algorithm and YOLOv7, the combination of the two and their application to 
swimming behaviour recognition is still relatively rare. Therefore, this study combines 
YOLOv7 and DeepSORT algorithms for abnormal swimming behaviour detection 
(ASBD) and multi-object tracking, to lift the precision of swimming behaviour 
monitoring and enhance safety. 

3 Abnormal swimming behaviour detection based on YOLOv7 and 
DeepSORT 

This study is based on YOLOv7 and DeepSORT algorithms, combined with target 
detection and multi-object tracking, to achieve the localisation and behaviour tracking of 
swimmers in swimming scenes. YOLOv7 optimises small target feature extraction 
through SPD convolution module and adopts non-local attention module (NAM) to 
improve detection accuracy. DeepSORT improves tracking accuracy by introducing 
distance intersection over union (DIoU) and detects abnormal swimming behaviour by 
analysing unstable trajectories. 

3.1 Object detection based on improved YOLOv7 

In today’s society, health fields such as fitness and swimming are gradually receiving 
more attention from people. Therefore, real-time monitoring of abnormal swimming 
behaviour has become one of the important means of current safety management. Object 
detection, as a core task in CV, has been broadly applied in various fields including 
security monitoring, intelligent transportation, and autonomous driving. However, these 
applications often require precise recognition and localisation of moving targets in 
dynamic environments, especially underwater environments, where there are special 
factors such as lighting changes and wave interference (Wang et al., 2023; Charles, 
2023). Therefore, traditional target detection algorithms still face significant challenges in 
precisely locating underwater environments. The YOLO series algorithms have achieved 
significant results because of their high efficiency, real-time performance, and strong 
object detection capabilities (Rao and Kumar, 2025; Gong et al., 2024). YOLOv7 
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performs well in practical applications due to its superior detection accuracy, speed, and 
real-time processing capabilities (Hasanvand et al., 2023). 

Based on the YOLOv7 for target detection of pool personnel, the paper introduces the 
NAM mechanism into its structure for improvement. Figure 1 shows the framework of 
YOLOv7. 

Figure 1 Structure of YOLOv7 (see online version for colours) 
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Figure 2 SPD convolutional structure (see online version for colours) 
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In Figure 1, the structure of YOLOv7 can be divided into the backbone, feature fusion, 
and prediction output. The main task of the backbone is to extract features from the input 
image. This section adopts an efficient layer aggregation network (ELAN) structure, 
which gradually extracts feature information at different levels through the processing of 
multiple convolutional layers. The ELAN structure can effectively improve the efficiency 
of feature extraction and accelerate the convergence speed of the network by optimising 
the gradient transfer path while reducing computational complexity. The feature fusion 
part utilises a multi-level feature fusion mechanism to efficiently combine features from 
different layers, thereby optimising adaptability to complex scenes. The task of the 
prediction output section is to perform final object detection and classification based on 
the extracted features. This part locates the target by generating bounding boxes and 
provides category and confidence scores for each target to complete the target detection 
task. However, in the pool environment, human targets are usually small and easily 
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mixed with the underwater background. Therefore, in response to the difficulty of 
extracting small target features, this study utilises the spatial pyramid deformable 
convolution (SPD) module to optimise the YOLOv7 structure. The SPD convolution 
structure is shown in Figure 2. 

In Figure 2, in the ELAN structure of YOLOv7 backbone, the strip convolution and 
pooling layer used for downsampling and feature compression in the original ELAN 
structure were replaced with SPD convolution modules. The ELAN structure serves as 
the core feature extraction unit of YOLOv7 backbone, gradually extracting features at 
different levels through multiple convolutional layers; after replacement, the SPD module 
first compresses the spatial dimension of the feature map and remaps the multi pixel 
values to the depth dimension to preserve the details of small targets. Then, it adjusts the 
number of channels through stride free convolution, ultimately enhancing the backbone’s 
feature capture ability for small-sized human targets in swimming pool scenes. The SPD 
structure mainly consists of one SPD layer and one non-step length convolutional layer. 
The function of the SPD layer compresses the spatial-dimension of the feature map and 
remaps the values of multiple pixels to the depth dimension to preserve more detailed 
information. Next, non-step length convolutional layers are used to further process these 
features, thereby reducing or increasing the number of channels. This study improves the 
model’s perception capacity for small targets by using SPD convolution structure instead 
of the original stride convolution and pooling layer in YOLOv7 structure. The SPD 
feature transformation operation is shown in equation (1). 

2
1, , ′ =  

 
S SX scale C

scale scale
 (1) 

In equation (1), X′ is the data after SPD feature transformation. S is feature map’s  
spatial-size. Scale is the scaling factor. C1 is the filter for SPD feature transformation. 
The non-stride convolution transformation operation is shown in equation (2). 

2, , ′′ =  
 

S SX C
scale scale

 (2) 

In equation (2), X″ is the data after non-stride convolution transformation. C2 is a filter 
that further transforms non-step convolution (Zhu et al., 2024a). In order to further 
optimise the detection accuracy of YOLOv7 algorithm for small targets, the study 
introduces a NAM mechanism into its structure for improvement. The connection method 
of NAM mechanism in YOLOv7 is to concatenate NAM modules after the feature map 
layer formed by multi-scale feature fusion. Figure 3 shows the NAM mechanism. 

In Figure 3, NAM mainly includes two parts: channel attention submodule (CAS) and 
spatial attention submodule (SAS) (Wu et al., 2025). The former utilises scaling factors in 
batch normalisation to process features in order to adaptively focus on differences 
between channels and accurately capture key features of each channel. The latter focuses 
on spatial regions in the image through normalisation operations, ensuring that the model 
can focus on important areas in the image, further enhancing its ability to detect small 
targets. The mathematical expression for batch normalisation is given by equation (3). 

2

− = + + 

in B
out

B

B μB γ
σ ε

β  (3) 
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In equation (3), Bout and Bin are batch data for output and input. μB is the average of the 
input batch. 2

Bσ  is the variance of the input batch. ε is a small constant. γ and β are 
learnable scaling and offset factors (Bui et al., 2024). The expression of the CAS is 
shown in equation (4). 

( )( )( )1=C γM σ W BN F  (4) 

In equation (4), MC and F1 are the output and input features of the CAS. σ is the sigmoid 
function, and Wγ is the learnable scaling convolution weight. BN is a batch normalisation 
operation (Shao et al., 2023). The formula for the SAS is given by equation (5). 

( )( )( )2=S γM σ W BN F  (5) 

In equation (5), MS and F2 are the output and input feature maps of the SAS. The loss 
function formula of NAM is shown in equation (6). 

,

( ( , ), ) ( )= + NAM
x y

L ς f x ω y p g λ  (6) 

In equation (6), LNAM is the loss function of NAM. f(x) denotes the output predicted by the 
model. y is the target label, and ω is the network weight. ς is the loss between the model 
output and the real label. λ is the regularisation parameter. p is the penalty value. g is the 
paradigm penalty function (Cheng et al., 2023; Jaihuni et al., 2023). 

Figure 3 NAM mechanismi, (a) channel attention submodule (b) spatial attention submodule  
(see online version for colours) 
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3.2 Multi-object tracking based on improved DeepSORT 

On the basis of object detection, to achieve real-time monitoring and analysis of 
abnormal swimming behaviour, it is also necessary to combine multi-object tracking. 
multi-object tracking technology refers to the method of continuously tracking a captured 
target by assigning a unique identifier (ID) to analyse its multi-object tracking speed, 
direction changes, and position movements, and predict its multi-object tracking 
trajectory. However, target tracking faces challenges including target occlusion and 
disappearance. The DeepSORT algorithm utilises Kalman filter (KF) and Hungarian 
algorithm to extract and match features of object detection boxes, effectively solving 
problems such as object occlusion, intersection, and environmental interference (Feng  
et al., 2024). Especially in multiplayer swimming scenarios, DeepSORT can assign 
independent IDs to each swimmer and update their multi-object tracking trajectories in 
real-time, ensuring accurate multi-object tracking. The DeepSORT multi-object tracking 
algorithm process is shown in Figure 4. 

Figure 4 DeepSORT multi-object tracking algorithm process (see online version for colours) 
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In Figure 4, the improved YOLOv7 algorithm detects swimmers in each frame of the 
image and assigns them initial bounding boxes. The detected targets are then input into 
DeepSORT for matching through intersection over union (IoU). According to the 
matching situation, it can be divided into three types: successful matching, unmatched 
predicted boxes, and failed matching. If the match is successful, it will update the 
trajectory and form a trajectory sequence. Unmatched prediction boxes will create new 
trajectories. If the matching fails, it will determine the maximum lost frame. If the 
maximum tolerance for lost frames is exceeded, the trajectory will be deleted; otherwise, 
the trajectory will be retained and updated. This process ensures stable recognition of 
each swimmer’s movement trajectory, thereby avoiding tracking errors caused by 
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occlusion or overlap. In the process of target localisation and tracking based on YOLOv7 
and DeepSORT, it is possible to timely detect abnormal behaviours of swimmers such as 
stagnation, deviation from the lane, or rapid swimming. The KF formula is shown in 
equation (7). 

1−= ⋅ + ⋅t t tx F x B u  (7) 

In equation (7), xt is the state of the target at time t. F and B are the state transition matrix 
and control input matrix. ut is the control input at t (Sheng et al., 2024). The measuring 
residuals is shown in equation (8). 

1−= − ⋅t t t t ty z H x  (8) 

In equation (8), yt represents the measurement residual at time t, which is the actual 
observed value at that time. zt means the predicted observation value at t. Ht denotes the 
observation matrix at t. xt|t–1 is the current state predicted built on the previous time. The 
Kt formula for Kalman gain at t is shown in equation (9). 

( ) 1
| 1

−
−= ⋅ ⋅T

t t t t tK P H S  (9) 

In equation (9), Pt|t–1 means the covariance matrix of the prediction error, which 
represents the credibility of the state estimation during the model prediction at time t – 1. 
T is the transpose, and St is the innovation covariance at t. The formula for updating the 
status is given by equation (10). 

| | 1−= + ⋅t t t t t tx x K y  (10) 

In equation (10), xt|t and xt|t–1 are the updated state estimates and predicted state estimates 
at t. By updating the state estimation, the Kalman gain corrects the predicted state to be 
closer to the actual observed value, thereby improving the estimation’s accuracy. 
DeepSORT uses IoU in the target matching stage to evaluate the degree of overlap 
between predicted and detected boxes, but IoU only considers the overlap between boxes 
and ignores the distance between their centre points (Liu et al., 2024). Therefore, when 
two boxes do not overlap, it may lead to tracking number errors (Djarah et al., 2024). 
Based on this limitation, this study utilises DIoU to improve the DeepSORT algorithm. 
Figure 5 shows the diagram of DIoU. 

Figure 5 DIoU schematic diagram (see online version for colours) 
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In Figure 5, the green and red boxed represent the real and predicted boxed, and the grey 
box is the smallest bounding box that can contain both red and green. d represents the 
Euclidean distance between the centre points of green and red, and l represents the 
diagonal length of the smallest bounding rectangle containing those two boxes. The 
calculation for DIoU is given by equation (11). 

2

2
= − dDIoU IoU

l
 (11) 

When the distance between boxes is far, the matching score of DIoU will decrease, so 
that the matching degree between targets can be more accurately determined based on the 
distance. The standardised result of DIoU is shown in equation (12). 

1= −DIoUL DIoU  (12) 

In equation (12), LDIoU is the standardised result of DIoU. The Hungarian matching 
algorithm can associate the detection target of the current frame with the tracking target 
of the previous frame by minimising the cost matrix, thereby establishing the trajectory of 
the target (Mokeddem et al., 2023). Each element in the cost matrix represents the 
matching cost between the two targets, with the goal of finding the optimal matching 
solution that minimises the total cost (Mathias et al., 2022). Minimise the total cost as 
shown in equation (13). 

min
1 1

min
= =

= ⋅
m n

ij ij
i j

C c x  (13) 

In equation (13), Cmin represents minimising the total cost. cij is the matching cost 
between tracking target i and detecting target j. xij represents the binary decision variable 
for whether to match the tracking target i with the detection target j. m and n are the total 
number of tracked and detected targets. The constraint conditions for tracking the target 
are shown in equation (14). 

1

1
=

≤
m

ij
i

x  (14) 

Equation (14) constrains each tracking target i to match at most one detection target. The 
constraint conditions for detecting the target are shown in equation (15). 

1

1
=

≤
n

ij
j

x  (15) 

Equation (15) constrains each detection target j to match at most one detection target. 
Research on using multi-object tracking accuracy (MOTA) to measure the 
comprehensive impact of various errors on overall tracking performance during the 
tracking process. The range of MOTA values is [–∞, 1], and the closer the value is to 1, 
the higher the tracking accuracy. The MOTA formula defined according to the 
MOTChallenge standard is shown in equation (16). 

MOTA 1 + += − FP FN IDsw
GT

 (16) 
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In equation (16), FP represents the number of false positives, FN represents the number 
of missed detections, IDsw represents the number of ID switches, and GT represents the 
total number of real targets in the entire video sequence. Multi-object tracking precision 
(MOTP) is used to evaluate the position matching accuracy between the tracking box and 
the real target box, reflecting the positioning accuracy of the tracking box on the target. 
The value range is [0, 1], and the closer the value is to 1, the higher the overlap between 
the tracking box and the real target and the more accurate the positioning. The formula 
for MOTP is shown in equation (17). 

MOTP =  ijIoU

Nm
 (17) 

In equation (17), Nm represents the total number of successful matches between the 
tracking box and the real box in the entire video sequence, and IoUij represents the 
intersection and union ratio between the ith tracking box and the jth real box. 

4 Verification of ASBD based on YOLOv7 and DeepSORT 

This study first established an experimental environment and validated the model’s 
performance built on the improved YOLOv7. Subsequently, the multi-object tracking 
performance based on the improved DeepSORT was validated, and the effectiveness in 
practical applications was finally evaluated. 

4.1 Construction of experimental environment 

To verify the performance of the ASBD system based on YOLOv7 and DeepSORT, this 
study uses Ubuntu 16.04.7 LTS operating system for construction. The hardware 
configuration includes Intel Core i7-9700 CPU, NVIDIA GeForce GTX 1080Ti GPU, 
and 32 GB of memory. In addition, the DL framework used is PyTorch 1.8.0, paired with 
CUDA 11.1 version, Python 3.7, the hardware storage uses a 1 TB solid-state drive 
model Samsung 860 EVO, the learning rate is 0.01, and the batch size is 64. The dataset 
used in the study was sourced from surveillance videos of three indoor public swimming 
pools to ensure scene diversity. The camera’s field of view is mainly above the 
swimming pool, which accounts for 80% of the total video, and some are side views, 
which account for 20% of the total video, covering multi angle monitoring scenes. The 
video capture period includes peak pool hours from 18:00 to 21:00, 4 hours per day, and 
off peak hours from 9:00 to 12:00, 3 hours per day, with a total capture time of 140 
hours. All videos are recorded at a uniform frame rate of 25 FPS. In the preprocessing 
stage, each video is segmented into static image frames at 1-frame intervals, retaining all 
frames to avoid losing motion information, resulting in a total of 1.26 million frames. 
Adjust the resolution of all frames uniformly to 1,280 × 720 pixels and use Gaussian 
filtering to eliminate water surface reflection noise. After filtering and preprocessing, the 
dataset is divided into a training set and a testing set in a 3:7 ratio, with the training set 
containing 378,000 frames and the testing set containing 882,000 frames. The dataset is 
manually annotated using the open-source annotation tool VGG image annotation tool, 
which supports simultaneous annotation of target bounding boxes and behaviour 
categories. When annotating, a rectangular bounding box is annotated for each swimmer 
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in the frame to determine the target position, and a unique temporary ID is assigned to 
ensure consistency in the annotation of the same target in consecutive frames. To ensure 
consistency in annotation, 10% of frames are randomly selected for trial annotation, and 
the annotation results are reviewed and corrected for deviations by a senior computer 
vision engineer. Subsequently, formal annotation will be carried out in batches, with 
50,000 frames per batch. After each batch of annotation is completed, cross review will 
be conducted among annotation personnel. Table 1 shows the specific experimental 
configuration. 
Table 1 Experimental settings 

Environment Configuration 
Operating system Ubuntu 16.04.7 LTS 
CPU Intel Core i7-9700 
GPU NVIDIA GeForce GTX 1080Ti 
Memory 32 GB 
Storage 1 TB solid state drive (SSD), model: Samsung 860 EVO 
DL framework PyTorch 1.8.0 
CUDA version 11.1 
Programming language Python 3.7 

4.2 Performance verification of object detection based on improved YOLOv7 

To verify, the performance of the improved YOLOv7 was compared with the YOLOv7 
before improvement, as displayed in Figure 6. In Figure 6(a), as the iteration approached 
100 times, the improved YOLOv7 has converged, with a convergence loss value (CLV) 
of 0.16. The YOLOv7 before improvement only converged after nearly 180 iterations, 
with a CLV of 0.32. The CLV has decreased by 50% compared to before the 
improvement. In Figure 6(b), the object detection accuracy of YOLOv7 before and after 
improvement rapidly increased in the early stages of iteration, with final convergence 
values of 0.93 and 0.88. The accuracy has increased by 5.68% compared to before the 
improvement. In summary, the improved YOLOv7 exhibited significant advantages in 
both convergence velocity and detection accuracy, verifying the effectiveness of the 
improved method. 

To further validate the performance of the improved YOLOv7, a comparative 
analysis was conducted with other advanced algorithms. Other algorithms included retina 
network (RetinaNet), efficient detection (EfficientDet) and faster region CNN (Faster  
R-CNN) (Zidani et al., 2024; Guo et al., 2024; Bhosle and Musande, 2023). Figure 7 
shows a comparison of object detection performance between different algorithms. In 
Figure 7(a), the improved YOLOv7 had an accuracy rate of up to 94.56%, which was 
6.19%, 10.47%, and 6.64% higher than the accuracy rates of RetinaNet, EfficientDet, and 
Faster R-CNN of 88.37%, 84.09%, and 87.92%. In Figure 7(b), the improved YOLOv7 
achieved a recall rate of 93.89%, which was 8.86%, 11.42%, and 7.53% higher than the 
85.03%, 82.47%, and 86.36% of the other three methods. In Figure 7(c), the F1 value of 
improved YOLOv7 was 95.08%, which was 7.47%, 12.52%, and 9.90% higher than the 
87.61%, 82.56%, and 85.18% of others. Improving the YOLOv7 has obvious advantages 
in object detection performance. 
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Figure 6 Loss values of YOLOv7 algorithm before and after improvement, (a) comparison of 
convergence loss values on the training set (b) comparison of object detection accuracy 
on the training set (see online version for colours) 
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Figure 7 Comparison of object detection performance of different algorithms, (a) object 
detection accuracy between different algorithms (b) target detection recall rates for 
different algorithms (c) F1 object detection with different algorithms (see online version 
for colours) 
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To verify the role of each module in the improved YOLOv7, the ablation experiment in 
Figure 8 is conducted. In Figure 8(a), on the training set, the average detection accuracy 
(ADA) of the original YOLOv7 is 91.56%, which is improved to 93.64% after adding the 
SPD module, and further improves to 95.27% after adding the NAM mechanism. In 
Figure 8(b), on the test set, the ADA of YOLOv7 is 91.73%, which increases to 93.47% 
after adding SPD, and reaches 95.32% after adding NAM. The addition of each improved 
module enhances the object detection performance of the algorithm. 

Figure 8 Ablation experiment, (a) results in the training set (b) results in the test set (see online 
version for colours) 
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4.3 Performance verification of multi-object tracking based on improved 
DeepSORT 

To validate the performance of the improved DeepSORT in multi-object tracking, it is 
compared with other tracking algorithms, including fair multi-object tracking  
(Fair MOT), deep multi-object tracking (Deep MOT), and the original DeepSORT. The 
comparison metrics used are multi-object tracking accuracy (multi-object trackingA) and 
multi-object tracking precision (multi-object trackingP). Figure 9 displays the  
multi-object tracking performance of different algorithms. In Figure 9(a), on the training 
set, the multi-object trackingA of the improved DeepSORT reaches 88.56, while the 
multi-object trackingA of Fair MOT, Deep MOT, and the original DeepSORT are 68.51, 
66.7, and 79.84. In addition, the improved multi-object trackingP of DeepSORT is 89.42, 
which is 11.35%, 8.78%, and 12.11% higher than the multi-object trackingP values of 
79.27, 81.56, and 78.59 of other algorithms. In Figure 9(b), on the test set, the multi-
object trackingA and multi-object trackingP of the improved DeepSORT algorithm are 
90.54 and 91.27, while the multi-object trackingA and multi-object trackingP of other 
algorithms do not exceed 84. This indicates that the improved DeepSORT algorithm has 
excellent performance in multi-object tracking tasks. 

To further validate the performance of the improved DeepSORT algorithm, the  
multi-object tracking evaluation metrics of different tracking algorithms are compared, as 
shown in Table 2. In both datasets, the improved DeepSORT outperforms the compared 
algorithm in all metrics. In the training set, the ID switching frequency of the improved 
DeepSORT is only three times, while other algorithms have more than 20 times. The 
tracking failure rate of improved DeepSORT is the lowest, only 1.56%, while the failure 
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rates of other algorithms are all higher than 4.8%. From the perspective of trajectory 
integrity, the improved DeepSORT achieves 92.40%, while other algorithms do not 
exceed 90%. The improved DeepSORT has a processing speed of 37 FPS, which still has 
a slight advantage. This indicates that the improved DeepSORT exhibits higher integrity 
in multi-object tracking tasks. 

Figure 9 Multi-object tracking performance of different algorithms, (a) MOT performance on the 
training set (b) MOT performance on the test set (see online version for colours) 
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Table 2 Multi-object tracking evaluation metrics for different tracking algorithms 

Dataset Algorithm ID 
switches 

Tracking 
failure rate 

(%) 

Trajectory 
completeness 

(%) 

Processing 
speed (FPS) 

Improved DeepSORT 3 1.56 92.40 37 
Fair multi-object tracking 25 5.20 88.78 40 
Deep multi-object tracking 30 6.06 87.11 45 

Training 
set 

Original DeepSORT 20 4.83 89.36 42 
Improved DeepSORT 5 1.82 91.29 35 

Fair multi-object tracking 28 5.52 87.91 39 
Deep multi-object tracking 32 6.34 86.52 38 

Test set 

Original DeepSORT 22 5.09 88.64 41 

To verify the detection Acc and completeness of the improved DeepSORT in target 
tracking, the detection performance of different algorithms is compared, as exhibited in 
Figure 10. In Figure 10(a), the detection Acc of the improved DeepSORT in object 
tracking is as high as 91.52%, which is 5.88%, 7.95%, and 3.88% higher than the 
85.64%, 83.57%, and 87.64% of Fair MOT, Deep MOT, and the original DeepSORT. In 
Figure 10(b), the recall rate of the improved DeepSORT reaches 91.98%, which is 
3.73%, 6.92%, and 2.34% higher than the compared algorithms of 88.25%, 85.06%, and 
89.64%. In Figure 10(c), the improved DeepSORT’s F1 value is 90.98%, which is 4.71%, 
6.68%, and 2.22% higher than Fair MOT’s 86.27%, Deep MOT’s 84.30%, and the 
original DeepSORT’s 88.76%. Therefore, improving the DeepSORT algorithm has 
shown excellent performance in target tracking tasks. 
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Figure 10 Detection performance of different tracking algorithms, (a) comparison of detection 
accuracy of different algorithms (b) comparison of detection recall of different 
algorithms (c) comparison of detection F1-values of different algorithms (see online 
version for colours) 
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4.4 Practical application verification 

To verify the effectiveness of the ASBD system based on YOLOv7 and DeepSORT in 
practical applications, this study selects monitoring videos from actual swimming pools 
for testing. The video is shot from different angles, including top view, side view, etc., 
and covers different scene densities, such as sparse and crowded environments. This 
study sets four types of abnormal behaviours: stationary for more than 30 seconds,  
high-frequency swinging of the arm, staying in restricted areas, and floating on the back 
without moving. In addition, to further validate the model’s cross scene generalisation 
ability, the study added a dataset of outdoor public swimming pools with outdoor 
swimming pools, differentiated lighting, and water quality for comparative analysis. The 
verification results of actual application scenarios are shown in Table 3. The inference 
speed of the system in different scenarios is below 30 FPS, indicating that its 
performance in real-time meets practical application requirements. Mostly lost (ML) 
metric reflects the proportion of successful target tracking by the system. The ML value 
is highest in the top-down sparse scene, reaching 95.20%, and lowest in the sideways 
crowded scene, reaching 87.45%. The mostly tracked (MT) metric represents the 
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proportion of tracked targets lost by the system. The minimum MT is only 2.11%, 
although it exceeds 5% in crowded scenes, the mixed perspective reduces it to 3.71%. In 
all test scenarios, the anomaly detection rate shows a high level, exceeding 86% in 
crowded scenarios, 91% in sparse scenarios, and 90% in mixed view scenarios. The 
lowest false alarm rate is only 1.2 times/hour, and the highest in crowded scenarios is 
only 3.5 times/hour. From the perspective of outdoor scenes, in strong light outdoor 
scenes, the anomaly detection rate reaches 89.23%, with a false alarm rate of only 3.8 
times per hour. In the scenario of moderate turbid water quality outdoors, the abnormal 
detection rate is 85.76% and the false alarm rate is 4.2 times/hour, but it still meets 
practical needs. Comparing the results indoors and outdoors, it can be seen that the model 
performance only fluctuates by 3.2–5.8%, proving that it still has strong adaptability 
under different lighting, water quality, and viewing angle conditions, effectively solving 
the problem of insufficient generalisation caused by single scene data. This indicates that 
the ASBD system based on YOLOv7 and DeepSORT has demonstrated good 
performance in practical applications. 
Table 3 Actual application scenario verification results 

Scene 
Inference 

speed 
(FPS) 

MT 
(%) 

ML 
(%) 

Abnormal 
detection 
rate (%) 

False alarm 
rate 

(times/hour) 
Top view – sparse 28.5 95.20 2.11 93.88 1.2 

Top view – crowded 22.3 90.71 5.32 87.54 2.8 
Side view – crowded 18.6 87.45 5.50 86.76 3.5 
Side view – sparse 24.1 88.94 2.83 91.71 3.1 

Indoor 

Mixed perspective 19.8 93.62 3.71 90.68 3.3 
Strong light, clear water 25.6 89.57 4.12 89.23 3.8 

Overcast, slightly turbid water 22.8 88.13 4.76 87.51 4.0 
Dusk, clear water 20.3 86.92 5.01 86.84 4.1 

Outdoor 
pool 

Noon, moderately turbid water 18.5 85.36 5.28 85.76 4.2 

To more intuitively verify the effectiveness of this method in reality, the paper randomly 
selects the 200th and 500th frames from the surveillance video for tracking performance 
comparison, as shown in Figure 11. In the video frames, the swimmers are successfully 
labelled with IDs, and the target ID number from the previous frame 200 is maintained at 
frame 500, proving the continuous tracking of the target. In addition, newly appearing 
targets in the image have been correctly assigned new IDs. This indicates that the method 
can achieve stable target tracking performance and has good tracking consistency when 
dealing with dynamic changes. 

To further verify the role of various structures in ASBD based on YOLOv7 and 
DeepSORT, this study conducts ablation experiments, as shown in Table 4. Among them, 
‘√’ indicates that the module exists, while ‘/’ means that the module does not exist. When 
using only the YOLOv7, the detected multi-object trackingA is 74.86, while with the 
addition of SPD convolution and NAM mechanism, the multi-object trackingA increases 
to 76.14 and 77.50. After further introducing the DeepSORT algorithm, multi-object 
trackingA is significantly improved, reaching 82.15. Finally, after introducing DIoU for 
improvement, multi-object trackingA is further increased to 87.42. From the change in ID 
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switching frequency, only YOLOv7 has a higher ID switching frequency, reaching 52 
times. With the addition of SPD and NAM, the number of ID switches gradually 
decreased to 48 and 23 times. After introducing DeepSORT, the number of ID switches is 
further reduced to 11 times, while after improvement by DIoU, it is reduced to 3 times. 

Figure 11 Comparison of tracking effects of surveillance videos, (a) frame 200 (b) frame 500 
(see online version for colours) 
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In order to accurately evaluate the independent contributions of each module, the study 
designed only SPD and only NAM modules as control observation groups. The results 
showed that in the experimental group using only SPD modules, MOTA increased by 
1.28 compared to the original YOLOv7. The reduction of ID switching frequency by 4 
times validates the independent optimisation effect of SPD module on small target feature 
extraction. In the experimental group using only the NAM module, MOTA improved by 
1.06 compared to the original YOLOv7, and the number of ID switches decreased by 2 
times, reflecting the independent improvement effect of the NAM module on object 
detection accuracy in complex backgrounds. By comparing the two, it can be seen that 
the contribution of SPD module in small target feature optimisation is slightly higher than 
that of NAM module, and the performance superposition effect is more significant when 
the two are combined, further verifying the rationality of module combination. The 
gradual addition of various modules not only improves the multi-object trackingA value 
but also effectively reduces the number of ID switches, verifying the contribution of each 
module to the detection performance of abnormal swimming behaviour. 
Table 4 Ablation experiment 

YOLOv7 SPD 
convolution NAM DeepSORT DIoU Multi-object 

trackingA ID switches 

√ / / / / 74.86 52 
√ √ / / / 76.14 48 
√ / √ / / 75.92 50 
√ √ √ / / 77.50 23 
√ √ √ √ / 82.15 11 
√ √ √ √ √ 87.42 3 

Note: ‘√’ indicates use of the module, ‘/’ indicates not used. 
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5 Discussion 

Currently, swimming has gradually become a part of people’s daily fitness activities, and 
the demand for swimming safety management is also increasing. To improve the safety 
of swimmers, this study proposed an ASBD and multi-object tracking method based on 
YOLOv7 and DeepSORT. In the experiment, YOLOv7 demonstrated significant 
advantages in object detection. By introducing SPD convolution and NAM mechanism in 
YOLOv7, the detection accuracy of small targets has been successfully improved. The 
improved YOLOv7 achieved accuracy, recall, and F1 value of 94.56%, 93.89%, and 
95.08%, which were significantly better than traditional object detection algorithms. 
Especially in complex swimming scenes, YOLOv7 could effectively identify and 
accurately locate multiple swimmers, especially in crowded or multi-target environments, 
where its performance was particularly outstanding. In addition, after adding NAM, the 
detection accuracy of YOLOv7 was further improved to 95.32%. This indicated that 
NAM enhanced the adaptability of the model in detecting complex backgrounds and 
small targets by weighting global and local information of the target. Pereira R’s team 
also designed a multi-object tracking method, but this method did not specifically focus 
on small targets or target overlap issues, so it is not suitable for the dynamic and target 
dense environment of swimming pools. 

From the perspective of multi-object tracking performance, the improved DeepSORT 
performed excellently in both multi-object trackingA and multi-object trackingP values. 
The multi-object trackingA in the two sets reached 88.56 and 90.54, and the multi-object 
trackingP value increased to 89.42, showing significant advantages compared to other 
algorithms. It indicated that the improved DeepSORT could reduce ID switching and 
tracking failures when tracking multiple targets in complex environments, providing 
more stable tracking performance. Especially in crowded scenarios, the improved 
DeepSORT could maintain a high multi-object trackingA value, demonstrating its 
robustness in complex environments. Meanwhile, in the training set, the improved 
DeepSORT had only 3 ID switching times, a tracking failure rate as low as 1.56%, and a 
trajectory integrity as high as 92.40%. These results validated that the method could 
effectively reduce target loss and misidentification. In contrast, Tu et al. (2022) proposed 
an improved DeepSORT method, mainly used for identifying pig behaviour in complex 
farm environments and tracking collective pigs. Although this method has achieved good 
results in animal behaviour tracking, its main focus is on animal behaviour tracking. This 
study focused on abnormal detection of swimming behaviour and drowning judgement, 
therefore the differences in targets and scenes resulted in different tracking accuracy 
requirements for the two. To cope with the challenges of small targets and complex 
scenes in swimming pools, YOLOv7, which performed better in accuracy and recall, was 
chosen for this study. Especially in multi-target swimming scenes, the interaction and 
multi-object tracking patterns between targets were more complex, and tracking difficulty 
was greater. 

In summary, this study is based on YOLOv7 and DeepSORT’s ASBD and  
multi-object tracking method, which can effectively improve the safety management 
level of swimming pools. Especially in multi-objective and complex environments, this 
method demonstrates excellent detection and tracking capabilities, providing effective 
technical support for the safety management of water sports venues such as swimming 
pools. 
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6 Conclusions 

With the rise of people’s health awareness, swimming has become a widely popular form 
of exercise. To improve the safety of swimming management, this study designed an 
ASBD and multi-object tracking grounded on YOLOv7 and DeepSORT. The improved 
YOLOv7 had an accuracy of 94.56%, a recall of 93.89%, and an F1 value of 95.08%, 
significantly better than traditional algorithms. In terms of multi-object tracking, the 
improved DeepSORT model outperformed the comparative algorithms in multiple 
performance metrics. In the training set, the improved DeepSORT only had 3 ID 
switching times, with the lowest tracking failure rate of 1.56%, while the trajectory 
integrity reached 92.40%. In terms of practical application, swimmers have successfully 
labelled their IDs and achieved continuous tracking of their targets. In summary, the 
ASBD and multi-object tracking method based on YOLOv7 and DeepSORT effectively 
achieve continuous tracking and abnormal detection of swimming behaviour. However, 
drowning assessment is not limited to just a few common abnormal behaviours. The 
focus of this study is on object detection and tracking, while there is still room for 
improvement in drowning detection of abnormal swimming behaviour. Therefore, future 
research can further expand the recognition ability of drowning judgement and improve 
the overall performance of the system. 
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