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Abstract: Singing technique assessment is a crucial component in enhancing 
the quality of music education. To address the issue of insufficient assessment 
accuracy caused by the coupling of time-frequency features in existing 
methods, this paper first performs pre-processing on singing audio to extract 
time-frequency features. Then, by combining deep separable convolutions with 
dilated convolutions, it simultaneously models frequency and temporal 
features. Additionally, a residual network is employed to mitigate the gradient 
vanishing problem in deep network structures. Second, a spatio-temporal 
enhancement branch is constructed based on a bidirectional long short-term 
memory (BiLSTM) network. Through a gating mechanism, decoupled features 
are bidirectionally transmitted between temporal and frequency domains. 
Decoupled time-frequency feature sequences are then clustered to enable the 
model to intelligently evaluate singing segments. Experimental results show 
that the proposed model achieves at least a 4.71% improvement in evaluation 
accuracy, demonstrating a significant advantage over baseline models. 

Keywords: singing technique evaluation; time-frequency feature decoupling; 
deep separable convolution; bidirectional long short-term memory model; 
feature clustering. 
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1 Introduction 

In the field of music and art, singing carries rich emotions and cultural connotations. The 
degree of mastery of singing techniques directly affects the quality and artistic 
expressiveness of a performance (Zhang et al., 2024). Traditional singing technique 
evaluation primarily relies on the experience of vocal teachers, using auditory perception 
and visual observation to analyse technical elements such as pitch, rhythm, timbre, and 
resonance of performers (Yang et al., 2022). However, this evaluation method has 
obvious subjectivity and limitations. Manual evaluation finds it difficult to conduct a 
comprehensive analysis of subtle changes and complex features during singing, and is 
unable to provide detailed and quantifiable evaluation criteria, limiting the scientific 
nature and effectiveness of vocal education (Sear, 2024). However, singing acoustic 
signals have complex time-frequency coupling characteristics. Features from different 
techniques intertwine in the time and frequency domains, making it difficult for existing 
methods to achieve fine-grained technique decoupling and objective evaluation (Gallo, 
2019). Therefore, an accurate and objective evaluation of singing techniques has 
significant practical significance. It not only helps learners promptly understand their 
strengths and weaknesses and adjust their training direction, but also provides 
quantitative basis for vocal teachers to optimise teaching methods and improve teaching 
efficiency. 

Frič and Pavlechová (2020) extracted objective audio features representing timbre 
based on subjective perception scores, calculated their differences to obtain a timbre 
similarity matrix, and achieved the detection and evaluation of singing techniques. Ekici 
(2022) divided the music signals based on musical measures, inferred the overall features 
from partial features of the music signal, validated the chaotic characteristics in the music 
signal using the Lyapunov exponent, and evaluated the sound quality based on the 
detected music signal features. Chan (2018) used source characteristics, signal 
characteristics, sound field characteristics, auditory characteristics, and stereo sensation 
as the criteria layer, and ten sound quality evaluation elements as the plan layer, thereby 
constructing the singing technique evaluation index system structure. However, the 
accuracy of the assessment is not high. 

Machine learning can extract acoustic features that are difficult for the human ear to 
capture (such as microsecond-level pitch fluctuations and harmonic distortions), generate 
evaluation results in real-time through the extraction of audio signal features, and 
significantly improve evaluation efficiency. Xu et al. (2022) extracted the MECC features 
of singing audio and used support vector machines (SVM) to output evaluation prediction 
results. Xia and Yan (2021) used prosody and singing quality features to classify singing 
techniques. At the first level, they first classified two different activation levels, and then 
used a Bayesian classifier for music teaching evaluation. Tang (2023) used  
multi-template Mel frequency cepstral coefficients (MFCC) clustering to label speech 
frames and employed a k-nearest neighbour algorithm based on prosody features to 
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evaluate singing techniques, but the evaluation accuracy was not high. Traditional 
singing technique evaluation mainly relies on experience-based judgment, analysing 
technical elements such as pitch, rhythm, and timbre through auditory and visual 
observations, leading to low precision in evaluations. 

The above research mostly relies on manually designed audio features, which often 
fail to fully capture the complex connotations of singing techniques, leading to large 
prediction errors. Although machine learning-based singing skill assessment models can 
extract audio signal features in real-time, current feature extraction methods may fail to 
comprehensively capture all key elements of singing ability. Furthermore, machine 
learning models can only make objective judgments based on data features and are 
unable to capture these abstract attributes. Deep learning methods integrate deep neural 
networks into the feature extraction system, perform deep learning feature extraction on 
spectrograms, learn significant representations of singing techniques, and outperform 
machine learning algorithms. Donati et al. (2023) used a pre-trained AlexNet model to 
learn deep feature representations from three-channel speech Mel spectrograms and 
adopted a linear SVM for classification, improving evaluation accuracy. Liu and Hui 
(2022) designed a multi-scale convolutional neural network (CNN) to extract multimodal 
features of singing techniques and used an attention mechanism for feature fusion, 
achieving an evaluation accuracy of 79.45%. Pati et al. (2018) modelled the audio map of 
singing techniques as a spatiotemporal graph structure and designed a temporal graph 
convolutional network (GCN) for feature extraction, but such methods rely on static 
adjacency matrices that struggle to capture the dynamic associations of audio features. Li 
and Zhang (2022) combined transfer learning with multi-head self-attention from the 
Transformer to jointly model the spatial relationships and temporal evolution patterns of 
time-frequency features of singing techniques, but their computational complexity 
increases significantly with sequence length. To resolve the above contradiction, feature 
decoupling has become a new technological breakthrough. Guo and Tang (2023) used  
i-vector (Ibrahim and Ramli, 2018) to represent the timbre features of singers and voice 
posteriori graph to represent singer-independent singing features, to achieve feature 
decoupling, and used the decoupled features as inputs of the fully connected layer to 
obtain evaluation results. Chang (2025) employed two decoupled masked autoencoders to 
separately extract time-domain and frequency-domain features from singing audio and 
designed a multi-level feature fusion strategy, significantly improving evaluation 
accuracy. 

According to an in-depth analysis of current research, existing studies still face 
multiple challenges. Most methods can extract time-frequency features, but lack an 
effective multi-scale modelling mechanism, especially when processing different time 
scales, they fail to effectively integrate short-term and long-term information, and the 
spatiotemporal decoupling weakens feature interaction. To address the above issues, this 
paper proposes an intelligent singing technique evaluation model based on  
time-frequency feature decoupling. First, singing audio pre-processing is completed by 
utilising audio sampling, normalisation, framing, and time-frequency transformation 
processes to extract the time-frequency features of the audio. Variational autoencoders 
(VAE) are used to represent the time-frequency features of singing audio. Then, a  
multi-scale time-frequency feature enhancement module is designed. It combines 
depthwise separable convolution and dilated convolution, enabling simultaneous 
modelling of frequency domain features and long-term periodic behaviour patterns. By 
embedding a mixed attention mechanism, the semantic responses between  
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time-frequency feature channels are further enhanced. At the same time, residual 
networks with attention mechanisms are used to alleviate the gradient attenuation 
problem in deep network structures. Furthermore, time-frequency feature decoupling is 
achieved based on bidirectional gates, and a spatiotemporal enhancement branch is 
constructed using a BiLSTM network. Through a gating mechanism, decoupled features 
are bidirectionally transmitted in time and frequency domains. The decoupled time-
frequency feature sequences are clustered to enable the model to intelligently evaluate 
different singing segments. Experimental outcome indicates that the evaluation accuracy 
of the proposed model is 93.48%, which is at least 4.71% higher than that of baseline 
models, significantly improving the evaluation accuracy and providing new insights for 
the automation and precision of singing technique evaluation. 

2 Relevant technologies 

2.1 Feature decoupling representation learning theory 

Due to the lack of explicit signal supervision in the deep learning process, different 
features are likely to be coupled, which makes it difficult for the model to distinguish the 
important information required for specific tasks (Zhou et al., 2020). Unlike controlling 
shallow, single-dimensional features with relatively clear semantic information, in 
singing technique quality evaluation tasks, a more complex high-dimensional feature 
space needs to be decomposed so that different feature components can independently 
learn semantic information corresponding to different subtasks or training objectives, 
thereby improving the model’s generalisation ability, interpretability, and task 
adaptability. Conventional decoupling methods like EMD primarily target signal 
processing domains, demonstrating strong performance on specific data types such as 
one-dimensional time series signals. However, they face limitations when handling 
multimodal data like images, text, and speech. Feature decoupling representation 
learning, in contrast, exhibits broader adaptability. For instance, in the image domain, it 
can decompose images into independent features like shape, colour, and texture. In 
speech processing, it can separate features such as pitch, timbre, and intonation. In text 
analysis, it can decompose features like semantics, syntax, and sentiment. This cross-
domain adaptability makes feature-based decoupling representation learning highly 
promising for applications across multiple fields. 

Feature decoupling representation learning aims to learn a representation from data 
such that different dimensions of this representation correspond to independent varying 
factors in the data generation process. Feature decoupling representation learning aims to 
find a specific latent feature representation in which each latent feature captures data 
variations independent of other latent features, i.e., each latent feature controls an 
independent factor of the data (Wang et al., 2024a). Most feature decoupling 
representation learning methods are based on the VAE architecture (Sewak et al., 2020), 
optimised by maximising the evidence lower bound, with the loss function expressed as 
follows. 

[ ]( | ) ln ( | ) ( | ) ( )VAE q h x θ KLL E p x h D q h x p h= −   φ φ  (1) 
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where x is the input data and h is the hidden layer feature. The first term in LVAE is the 
reconstruction loss, and the second term aims to approximate the prior distribution p(h) of 
the latent variables using the parameterised posterior distribution qφ(h|x). The generative 
model pθ(x|h) is the VAE decoder parameterised by the neural network. 

2.2 Attention mechanism 

The attention mechanism is designed to address long-range dependencies in sequence 
data and improve the network’s memory. In traditional sequence models, such as 
recurrent neural networks (RNN), long-range dependencies often cause problems like 
vanishing or exploding gradients, making it difficult for the model to effectively capture 
distant information. To solve this issue, the attention mechanism was introduced, and by 
incorporating learnable weights, the model can dynamically adjust the degree of attention 
to different parts based on the relevance of different positions in the input sequence (Yu 
et al., 2020). This mechanism enables the model to capture long-range dependencies 
between inputs and outputs, which is crucial for many natural language processing tasks 
(Song et al., 2020). For example, in speech generation, the acoustic information required 
for the model to generate each phoneme often only focuses on a short context window 
around that phoneme. 

Given a query, different keys are selected from the source and their relevance to the 
query is computed; different values corresponding to these keys receive different weight 
coefficients. Finally, the attention value is calculated through the weighted average of the 
results. The calculation formula is as follows, where Lx = ||Source|| is the length of the 
source, and Valuei is the value. 

1

( , ) ( , )
Lx

i
i

Attention Query Source Similarity Query Key Value
=

= ∗  (2) 

According to the different domains of the attention mechanism, it can be categorised into 
types such as channel attention (CAM), spatial attention (SAM), and hybrid attention 
(CBAM) (Wang et al., 2024b). CAM improves the model’s focus on input features, with 
a simple concept and fewer parameters, making it easily extensible to other networks. 
SAM focuses on the spatial location information in feature maps, aiming to learn the 
importance of different spatial positions in the feature map so that the model can focus on 
important regions in the image while ignoring irrelevant areas. CBAM integrates 
attention models from multiple dimensions. The most common approach is combining 
CAM and SAM, enabling the network to adaptively focus on important regions in the 
entire feature map. 

3 Design of an adaptive selection mechanism for multi-modal sensor data 
based on mutual information 

3.1 Singing audio data pre-processing 

To improve the evaluation accuracy of the singing skill assessment system, it is essential 
to ensure the quality of the input variables. This paper completes the pre-processing of 
singing audio through audio sampling, normalisation, framing, and time-frequency 
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transformation to determine the time-frequency features of the singing audio. Based on 
this, the time-frequency features of the singing audio are represented using a VAE, laying 
the foundation for the subsequent establishment of the evaluation model. 

The singing audio pre-processing process includes audio sampling, normalisation, 
framing, and time-frequency transformation. Singing audio signals exhibit short-term 
stationary characteristics, so a Hamming window is selected for the framing and 
windowing processing of the singing audio signals, setting the number of sampling points 
per frame to n. The time-frequency transformation of the singing audio signal uses the 
short-time Fourier transform. 

Singing audio consists of various notes with certain time durations, where each note’s 
main characteristic is a relatively stable spectrum. This indicates that the notes within the 
singing audio appear as a series of spectral segments on a spectrogram, featuring 
significant differences between segments and minimal differences within segments. 
Based on this, the distance measurement algorithm can be selected to perform note 
segmentation processing. As a distance measurement method that integrates the mean and 
method of data segments, the distance measurement algorithm can determine the 
differences between singing audio segments. Setting the data window length to five 
frames, the distance measurement algorithm DIS is described by equation (3), as shown 
below. 

( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 2

T Tμ μ μ μ μ μ
DIS

tr tr
+ + +

=
Σ + Σ

 (3) 

where μ1 is the mean vector of the previous singing audio segment’s features, μ2 is the 
mean vector of the next singing audio segment’s features, tr(Σ1) is the trace of the 
covariance matrix of the previous singing audio segment’s features, and tr(Σ2) is the trace 
of the covariance matrix of the next singing audio segment’s features. Under conditions 
where there is a significant difference in feature means between two singing audio 
segments and minimal variance in feature means within segments, the distance 
measurement can describe the distance between the two singing audio segments, and the 
two are directly proportional. 

The short-time amplitude spectrum is used to determine feature parameters. Through 
slid windows sliding data window according to frames, the distance measurement 
function DIS(t) for frame number t is determined. 

( ) ( )
( ) ( )

,1 ,2 ,1 ,2

,1 ,2
( )

T
t t t t

t t

μ μ μ μ
DIS t

tr tr
+ +

=
Σ + Σ

 (4) 

where μt,1 is the mean vector of the features of the two singing audio segments before 
frame t, μt,2 is the mean vector of the features of the two singing audio segments after 
frame t, tr(Σt,1) is the trace of the covariance matrix of the features of the two singing 
audio segments before frame t, and tr(Σt,2) is the trace of the covariance matrix of the 
features of the two singing audio segments after frame t. 

Calculate all maximum points within DIS(t), set the threshold for the mean of DIS(t) 
to T1, and remove the maximum points in which value <T1. At the same time, in fast-
paced singing, the duration of a quarter note is roughly 1/2 s. Considering that the 
duration of an eighth note and a sixteenth note are 1/2 and 1/4 of the quarter note, 
respectively, the segment distance must be set to more than 100 ms. Otherwise, the 
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corresponding maximum points must be eliminated, leaving the remaining maximum 
points as the note cut points. Since singing audio includes both voiced segments and non-
voiced segments, the voiced segments and non-voiced segments must be judged using a 
voiced segment detection algorithm after cutting. The spectral variance of voiced 
segments is significantly greater than that of non-voiced segments. Therefore, the spectral 
variance can be used as a feature parameter to identify the voiced segments in singing 
audio. 

3.2 Time-frequency feature representation of singing audio data 

The above singing audio pre-processing process can effectively reduce the false alarm 
rate of melody localisation in singing audio. Note splitting is achieved using a distance 
measurement algorithm (Casey et al., 2008), and the voiced segments in electronic music 
are determined using the variance method. On this basis, the Viterbi algorithm (Rao et al., 
2016) is used to track the dominant fundamental frequency trajectory of the voiced 
segments, while a fundamental frequency discrimination model is used to determine the 
main melody of electronic music, thereby obtaining the time-frequency data of the 
singing audio. In order to facilitate subsequent model recognition and evaluation, the 
time-frequency data of the singing audio needs to be feature represented. This paper uses 
a probabilistic inference model based on VAE, aiming to learn the time-frequency 
features of singing audio data and represent them. 

The time-frequency feature encoding consists of a time-frequency inference network 
and a time-frequency generation network. The time-frequency inference network models 
the Mel-frequency cepstral coefficients U by adjusting the input structure of the CNN. It 
extracts the time-frequency features of U and encodes them into a time-frequency latent 
representation 1 .fZ  The spectral generation network takes 1

fZ  as input and generates a 

reconstructed feature vector .fU ′  

2, ln ( )U fUμ σ E U=  (5) 

1
U Uf μ εZ σ= +   (6) 

( )1
f f fU D Z′ =  (7) 

where Ef(*) is the time-frequency inference network, ~ (0, 1)ε   is a random noise 
sampled during the reparameterisation process,  is element-wise multiplication, 

2~ ( , ),U UZ N μ σ , and Df(*) is the spectral generation network, where fU ′  is the 
reconstructed vector. 

4 Intelligent evaluation of singing techniques by decoupling  
time-frequency features 

4.1 Multi-scale time-frequency feature enhancement 

To address the insufficiency of time-frequency feature modelling and multi-scale fusion 
in singing skill evaluation, this paper proposes an intelligent singing skill evaluation 
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system based on time-frequency feature decoupling. The system model is mainly 
composed of enhanced multi-scale time-frequency features (MSTF), time-frequency 
feature decoupling module (BGCTF), and singing skill element score prediction module, 
as indicated in Figure 1. First, it combines dilated convolution with deep separable 
temporal convolution to establish a cross-scale feature dynamic interaction mechanism, 
solving the scale mismatch problem caused by fixed dilation rates in traditional methods. 
Then, it embeds the CBAM mechanism and designs a residual network with attention 
mechanism to strengthen the semantic response between singing skills and feature 
channels while alleviating the gradient vanishing problem. Next, a time-frequency feature 
decoupling enhancement branch is constructed based on a BiLSTM network, achieving 
bidirectional dynamic modelling of the vocal spectrogram and time-frequency features 
through a gating mechanism. Finally, the Gumbel-Softmax clustering is used to predict 
and score the singing skills, obtaining the final intelligent singing skill evaluation results. 

Figure 1 Intelligent assessment model for singing techniques based on the decoupling of  
time-frequency features (see online version for colours) 
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For the goal of coping with the issues of insufficient capture of complex time-frequency 
patterns and inefficient feature fusion in singing skill evaluation, this paper proposes a 
MSTF module based on an attention mechanism. The module achieves efficient 
modelling of long-term and short-term time-frequency feature dependencies through a 
hierarchical feature enhancement and dynamic fusion mechanism. First, traditional 
studies use standard 3D convolutions for feature extraction, which suffer from limited 
receptive fields. To address this, this paper proposes combining deep separable 
convolutions with dilated convolutions. First, the standard convolution is decomposed 
into a cascade operation of depthwise convolution and pointwise convolution, and a 
divide-and-conquer strategy is used for feature extraction, as shown in equations (8) and 
(9). 

( )( )( )1 1ReLUmid inF BN P F×=  (8) 
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( )( )1 1out midF P DWConv F×=  (9) 

where P1×1 is the pointwise convolution of 1 × 1, Fin, Fmid, and Fout are the input features, 
intermediate features, and output features, respectively. BN is the batch normalisation 
operation, ReLU is the activation function, and DWConv is the depthwise convolution. 
Next, a dilation rate sequence is introduced in the temporal dimension to construct  
multi-level temporal receptive fields. The model can capture context information of 
different granularities simultaneously through different dilation rates. A small dilation 
rate focuses on fine-grained features between adjacent frames for capturing local features, 
whereas a large dilation rate spans multiple frame time ranges to capture action periodic 
characteristics. The actual coverage range RF of depthwise separable convolution with 
kernel size k and dilation rate d is calculated as follows. 

( 1) ( 1)RF k d k= + − × −  (10) 

Next, to optimise the multi-branch feature fusion process, the CBAM mechanism is 
introduced, as shown in Figure 2. This component includes parallel max-pooling and 
average-pooling paths. Channel weight distribution is learned through a fully linked 
level, and the equation is as follows. 

( ) ( )( )( ) max( )cw σ MLP Avg F MLP F= ⊕  (11) 

where F is the input feature, σ is the Sigmoid function, ⊕ is element-wise addition, MLP 
represents the fully connected layer, Avg and Max respectively represent the average 
pooling layer and the max pooling layer, and wc is the channel weight. After the channel 
weight calculation, the size of the attention weight map is dynamically adjusted to adapt 
to different spatial dimensions of the input, solving the feature map size mismatch 
problems caused by the pooling operation. Subsequently, the channel weighting is 
applied to the original feature map through the element-wise product ⊗. 

Finally, to address the gradient attenuation problem in deep networks, a residual 
structure incorporating an attention mechanism is constructed. 

( )( )res strid ineF AttnCon P Fv=  (12) 

where AttnConv is the temporal convolution layer embedded with CBAM, Pstride is the 
stride-1 × 1 convolution, Fin and Fres respectively represent the input and residual 
features. The input feature is first compressed along the channel dimension through the 
stride 1 × 1 convolution to reduce the computational complexity. Subsequently, the 
temporal convolution layer of CBAM dynamically enhances key features related to 
singing skill assessment. Finally, the processed features are added to the high-frequency 
features output from the main path to achieve stable gradient propagation. 

4.2 Time-frequency feature decoupling based on bidirectional gating 

To overcome the problem of insufficient one-way information flow and feature 
interaction after traditional time-frequency feature decoupling, this article proposes a 
BGCTF module, which realises the decoupling, fusion, and enhancement of  
time-frequency features through a hierarchical bidirectional interaction mechanism. The 
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core innovation lies in using BiLSTM (Wijaya et al., 2024) to build a dynamic interaction 
mechanism for time-frequency features. 

First, the extracted time-frequency features ut are rearranged into vt through a specific 
dimensional reconstruction strategy. Second, a BiLSTM structure is proposed to build a 
bidirectional feature propagation mechanism. The temporal encoder captures the forward 
and backward dependencies of the audio through bidirectional gating units, modelling the 
dynamic patterns of singing audio, where the forward LSTM captures historical trends 
and the backward LSTM infers future singing intentions. The concatenation of their 
hidden states forms a dynamically enhanced temporal context. In the frequency domain 
decoupling branch, the frequency domain encoder utilises a memory gating mechanism to 
learn the implicit topological constraint relationships between joints. Forward 
propagation encodes the local joint collaboration patterns, while backward propagation 
captures the time-frequency feature correlations of singing audio, outputting a spatial 
topological context. 

Finally, max pooling is applied to the output of BiLSTM to compress the 
dimensionality. vt extracts salient features along the time axis, and vs captures key 
frequency domain features along the frequency axis. This strategy retains the most 
discriminative features of each modality. Ultimately, the bidirectional characteristics of vt 
and vs completely preserve the contextual information of the sequence. 

Through the bidirectional gating mechanism of BiLSTM, the sequential dependency 
differences of traditional methods are overcome. The gating units can adaptively adjust 
the interaction strength of time-frequency features, enhancing the model’s robustness to 
noise while reducing the risk of overfitting. 

4.3 Score prediction for singing technique elements 

After obtaining the decoupled time-frequency features, this paper clusters the  
time-frequency feature sequences of singing audio to enable the model to perform 
intelligent evaluation of different singing segments. In the absence of sequential and 
category labels, an unsupervised clustering-based segmenting method is used, 
specifically performing differentiable Gumbel-softmax clustering (Chaudhary and Singh, 
2023) on the feature of each segment. 

Specifically, let there be K randomly initialised cluster centres. In practice, referring 
to the evaluation rules of singing techniques, singing techniques are divided into three 
categories: basic vocalisation, pitch and rhythm control, and timbre and expressiveness, 
so K is directly set to 3, denoted as C1, …, CK. The distance from each element ft in the 
decoupled time-frequency features Ft to each centre is then computed accordingly. 

2
i T id f C= −  (13) 

Subsequently, a random vector gi ~ Gumbel(0, 1) is added to simulate the randomness of 
discrete random sampling, and a hyperparameter τcluster is used to control the smoothness 
of the clustering, as shown below, where the random variable ui is sampled from a 
uniform distribution U(0, 1). 

softmax i i
i

cluster

d gP
τ

+ =  
 

 (14) 
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( )( )log logi ig u= − −  (15) 

After that, a category vector is obtained by weighting according to the probability 
distribution, as shown below. 

1

K

i i
i

z P C
=

= ⋅  (16) 

τcluster usually takes small values to make z closer to the cluster centres rather than the 
original features, enhancing its ability to represent categories and reducing direct 
interference from the semantics of the features. Finally, a linear transformation is applied 
to the clustering results to obtain z′, which adds extra information to each feature to 
indicate its category, and then updates the feature representation with category 
information through residual connections (i.e., T Tf f z′ ← + ′ ) to assist subsequent models 
in recognising their semantics. The sequence TF ′  with added category information is 
divided into several segments, which are then sequentially fed into an MLP for 
computation. Ultimately, the results of all singing segments are summed to obtain the 
predicted score for the intelligent assessment ˆ .Ty  

5 Experimental results and analyses 

5.1 Analysis of intelligent assessment results for singing techniques 

This paper uses the Tianqin Singing Evaluation Dataset released by Tencent Music’s 
Tianqin Lab in collaboration with Tsinghua University and other institutions. This dataset 
includes 1,000 dry vocal tracks of 10 songs, with accompanying Musical Instrument 
Digital Interface (MIDI) and lyric files, suitable for singing technique evaluation 
research. In this dataset, 70% of the data was randomly selected as the training set, and 
30% was selected as the test set. The experiments are implemented using the PyTorch 
1.13.0 framework with an RTX 4090 GPU. This paper sets the dataset batch size 
batch_size to 64 and the initial hyperparameter for softmax to 0.2. During training, 
stochastic gradient descent with momentum 0.9 and weight decay 0.0001 was used for 
optimisation. In order to fully learn the features in the dataset and ensure the learning rate 
stabilises near the optimal, the training epoch is set to 450. 

This paper uses t-SNE to visualise the differences between the time-frequency 
features before and after decoupling, as shown in Figure 2. Similar features show no 
significant distribution differences, so the t-SNE does not distinguish them clearly and 
therefore they are not displayed. From Figure 2, it is evident that the untreated difference 
features exhibit significant distinctions in time-domain features, frequency-domain 
features, and time-frequency features, which can be attributed to the inherent differences 
between the different singing audio segments. Additionally, some overlap exists between 
the frequency-domain features and time-frequency features, indicating that consistent 
information exists in the difference features. The difference features after decoupling are 
not only successfully separated but also appear more compact, indicating that TFFD 
effectively extracts unique information between time-frequency features. 
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Figure 2 Visualisation of time-frequency characteristics before and after decoupling, (a) before 
decoupling (b) after decoupling (see online version for colours) 

 Time domain features
 Frequency domain features
 Time-frequency features

 Time domain features
 Frequency domain features
 Time-frequency features  

(a)     (b) 

5.2 Comparative experiments 

The experiment selects VQES (Liu and Hui, 2022), SVTL (Li and Zhang, 2022), and 
DVAE (Chang, 2025) as baseline models. The proposed model is denoted as TFFD. The 
evaluation accuracy of the basic voice production, pitch and rhythm control, and tone and 
expressiveness singing skills for different models is shown in Table 1. TFFD achieves an 
evaluation accuracy of 94.62% for the basic voice production singing skills, which is an 
improvement of 13.14%, 10.71%, and 5.56% compared to VQES, SVTL, and DVAE, 
respectively. By comparing the singing skills of pitch and rhythm control, TFFD achieves 
an evaluation accuracy improvement of 14.02%, 6.49%, and 4.36% compared to QES, 
SVTL, and DVAE, respectively. The average evaluation accuracy of VQES, SVTL, 
DVAE, and TFFD for these three singing skills is 79.45%, 83.9%, 88.77%, and 93.48%, 
respectively. The average evaluation accuracy of TFFD is at least 4.71% higher than the 
other three models. Numerical analysis of the above experimental results indicates that 
TFFD can achieve accurate assessment of various singing skills. 
Table 1 The assessment accuracy rates of different types of singing techniques 

Model VQES SVTL DVAE TFFD 
Basic voice production 81.48% 83.91% 89.06 94.62% 
Pitch and rhythm control 77.51% 85.04% 87.17 91.53% 
Tone and expressiveness 79.36% 82.75% 90.08 94.29% 

The ROC curves of different models are compared as shown in Figure 3. The AUC 
values of VQES, SVTL, DVAE, and TFFD are 0.7641, 0.8378, 0.8759, and 0.9135, 
respectively. Compared to the baseline model, the AUC value of TFFD improved by 
4.29-19.55%. VQES designs multi-scale CNNs and CNNs to evaluate and predict vocal 
techniques, but the scale design relies on prior knowledge, such as low scales capturing 
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pitch details and high scales capturing rhythmic patterns. However, vocal technique 
evaluation needs to cover multiple dimensions such as pitch accuracy, rhythm, and 
timbre, and fixed scales are difficult to dynamically adapt. Although SVTL introduced a 
Transformer with parallel computing for intelligent evaluation of vocal techniques, vocal 
technique evaluation needs to simultaneously focus on absolute and relative sequences. 
The attention weights of the Transformer only reflect absolute relationships between 
positions and are difficult to model temporal dynamics. Although DVAE considers the 
decoupling of time-frequency features in audio, the evaluation of vocal techniques must 
consider temporal dynamics, such as the frequency changes of vibratos and the intensity 
control of crescendos and decrescendos. A standard autoencoder lacks explicit modelling 
of temporal relationships. In summary, TFFD models the time domain and frequency 
domain enhancement branch based on BiLSTM, and passes the features after  
time-frequency decoupling bidirectionally through the time domain and frequency 
domain branches via a gating mechanism, thereby effectively filtering noise and 
enhancing context dependency. Through these designs, TFFD can significantly improve 
the accuracy of evaluating vocal techniques. 

Figure 3 The ROC curves of different models (see online version for colours) 
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5.3 Ablation experiment 

This section verifies the effectiveness of the MSTF module and the BGCTF model 
through ablation experiments. The experimental results are shown in Table 2. In the table, 
TFFD/MSTF indicates removing the MSTF module while retaining the BGCTF module. 
TFFD/BGCTF indicates removing the BGCTF module while retaining the MSTF 
module. TFFD/(MSTF + BGCTF) indicates removing both the MSTF and BGCTF 
modules, and directly using the pre-processed time-frequency feature representation as 
input to the evaluation model. 
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Table 2 The ablation experiment results of the TFFD model 

Model TFFD/MSTF TFFD/BGCTF TFFD/(MSTF + BGCTF) TFFD 
Accuracy 80.33% 75.61% 72.51% 93.48% 
AUC 0.8205 0.7843 0.7469 0.9135 

TFFD/(MSTF+BGCTF) shows the lowest evaluation accuracy and AUC value, 
indicating that MSTF and BGCTF have the greatest impact on the performance of the 
evaluation model; only through their synergistic effect can optimal performance be 
achieved. The evaluation accuracy and AUC of TFFD are 93.48% and 0.9135, 
respectively, which are improved by 13.15% and 11.33% compared to TFFD/MSTF, and 
by 17.87% and 16.47% compared to TFFD/BGCTF. The results show that MSTF 
effectively enhances the representational ability of singing details and the overall 
structure, while BGCTF significantly improves the time-frequency feature correlation 
modelling of singing audio. This fully verifies the importance of multi-scale  
time-frequency features and long-term dependency modelling, and further highlights the 
generalisation and robustness of the module architecture. 

6 Conclusions 

Intelligent evaluation of singing skills plays a crucial role in music education, vocal 
research, and singing training. To address the issue where current research fails to 
effectively integrate short-term and long-term information, leading to weak feature 
interactions due to spatiotemporal decoupling, this paper proposes an intelligent singing 
skill evaluation model based on time-frequency feature decoupling. First, singing audio 
pre-processing is performed through audio sampling, normalisation, framing, and  
time-frequency transformations to extract the time-frequency features of the audio. A 
VAE is then used to represent the time-frequency features of the singing audio. 
Subsequently, by introducing a multi-scale time-frequency feature enhancement module 
that combines depthwise separable temporal convolution networks with dilated 
convolution scale selection, short-term and long-term periodic audio features can be 
perceived simultaneously, significantly enhancing the capacity for multi-scale feature 
fusion. Furthermore, to further improve the modelling ability of time-frequency features, 
this paper also designs a time-frequency feature decoupling module based on 
bidirectional gating. This module uses BiLSTM for time-domain and frequency-domain 
enhancement branch modelling and employs a gating mechanism to bidirectionally 
transmit decoupled time-frequency features in both time and frequency domain branches, 
thereby effectively filtering noise and enhancing contextual dependencies. Finally, 
clustering is applied to the decoupled time-frequency feature sequences to enable the 
model to perform intelligent evaluation of different singing segments. Experimental 
results show that the evaluation accuracy of the proposed model is 93.48%, with an AUC 
of 0.9135, achieving precise intelligent assessment of singing skills. 
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