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Abstract: Knowledge tracking (KT) is a core task in the domain of integrated
Chinese language education. However, traditional KT methods struggle to fully
uncover the complex knowledge relationships within Chinese language
education. To address this, this article designs a knowledge heterogeneous
graph in the domain of Chinese language education, designs a heterogeneous
graph neural network (GNN) to learn interactive relations among nodes, and
extracts exercise node features as exercise representations. Then, a deep
residual network is suggested to learn the interaction among exercise
representations and students’ answering abilities. Finally, a temporal
convolutional network is used to track students’ cognitive states and forecast
the probability of them correctly answering the next exercise. Experimental
results on the ASSIST and KDD datasets show that the proposed method
improves prediction accuracy by at least 2.74% and 3.41%, respectively,
enabling accurate forecasting of the mastery level of Chinese language
knowledge points.
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1 Introduction

Chinese education, as an essential part of basic education, not only bears the
responsibility of imparting knowledge of language and writing but also shoulders the
mission of cultivating students’ humanistic quality, thinking abilities, and aesthetic
interests. However, Chinese knowledge is characterised by richness, complexity, and
openness; it covers multiple dimensions such as vocabulary and grammar, and intricate
relationships exist among the knowledge points (Shen et al., 2022). Traditional
knowledge tracking (KT) approaches often concentrate on evaluating knowledge status
from a individual dimension, making it difficult to comprehensively and accurately
reflect the complex cognitive processes of students in Chinese learning (Zhao and Sun,
2024). As the deep learning technique emerging, KT methods in light of deep neural
networks have increasingly been a research hotspot. Recurrent neural networks (RNN)
and their variants are widely used in KT tasks, as they can process sequential data and
capture time-dependent relationships during the learning process (Delianidi and
Diamantaras, 2023). However, these methods still face challenges when handling
knowledge with complex graph structures (Lai et al., 2021). In the Chinese knowledge
system, the relationships between knowledge points resemble a graph structure. How to
utilise deep learning algorithms to deeply explore the relationship features of knowledge
points and achieve precise KT has significant research value.

Common KT models are generally divided into two categories. The first comprises
traditional approaches, exemplified by Bayesian KT (BKT) (Liu et al., 2021a), and the
other category consists of deep learning-based KT (DKT) methods (Piech et al., 2015). In
the BKT model, the student’s knowledge status is conceptualised as a set of binary
variables, each denoting mastery or non-mastery of a detailed knowledge component, a
hidden Markov model (HMM) (Alghamdi, 2016) is adopted to update the probabilities of
each of these binary variables. This update mechanism captures the evolution of the
student’s knowledge state throughout the studying process. Lei et al. (2024) modified the
BKT model and proposed a student-oriented method. This approach emphasises the
uniqueness of each student, believing that each student should have a set of personalised
parameters for all knowledge. Huber et al. (2024) introduced relationships between
knowledge points, noting that knowledge points are not isolated, and changes in the
mastery level of one skill are able to impact the learning status of related knowledge
components. Takami et al. (2024) utilised BKT to customise a more suitable sequence of
Chinese exercises for students to meet their personalised Chinese learning needs. Alotaibi
and Papandreou (2022) effectively identified and extracted possible guessing components
in students’ answering processes by deeply analysing their multiple answering records
and single answering records.

BKT-based models do not consider the impact of knowledge point difficulty on KT
performance; they simply categorise exercises into certain knowledge points for
prediction. BKT has relatively few training parameters, but the model’s predictive
accuracy lags significantly behind that of the DKT baseline. Compared to traditional KT
models, DKT models learner proficiency within a high-dimensional continuous manifold,
facilitating a more nuanced simulation of complex cognitive acquisition. Liu et al. (2019)
integrated matrix factorisation technology into RNN, enabling the effective acquisition of
exercise representations through matrix factorisation using only student interaction data,
without including knowledge point information. Zou et al. (2020) input the textual
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information of exercises into a bidirectional LSTM to capture semantic information in the
problems, and obtained tracing results through a fully connected network. The advantage
of RNN-based models is their simple structure, but using a single vector to represent a
student’s knowledge status results in issues of poor interpretability and the inability to
specify the student’s grasp of individual knowledge points. Liu et al. (2021b) coped with
this limitation through introducing a memory network; they proposed DKVMN. Unlike
DKT, which stores knowledge states in a single hidden vector. In the DKVMN
architecture, the key matrix defines the set of knowledge points, while the value matrix
dynamically stores and updates the inferred mastery level of each student for the
corresponding points. Xu et al. (2024) integrated student behavioural features, such as the
number of attempts, with the student’s learning ability based on DKVMN. Song et al.
(2024) calculated the similarity among the current exercise to be forecasted and historical
exercises the student has completed using cosine similarity when predicting student
answering performance, and then aggregated the student’s historical knowledge states
weighted by the similarity.

Within KT, relational structures are frequently present. A contemporary approach to
model these structures and more effectively tackle KT involves leveraging graph
representation studying approaches, including GNN. Knowledge integration in language
education exhibits characteristics such as complex interconnections, dynamic evolution,
and multimodal fusion. Graph neural networks (GNNs) can effectively capture these
features through structured relationship modelling, dynamic tracking, multimodal fusion,
and personalised reasoning capabilities. Their graph structure inherently aligns with the
networked nature of linguistic knowledge, while message passing and attention
mechanisms support precise modelling of the knowledge integration process. Therefore,
GNNSs represent a highly promising technical direction for KT in language education.
Techniques like GNN (Song et al., 2021) are widely used. Wu et al. (2022) suggested the
GKT model in light of GNN. They framed the KT task as a node classification problem
over time and addressed it with established graph learning techniques like message
passing. Cui et al. (2024) proposed graph-based interactive knowledge tracing (GIKT),
which utilised the relationship between exercises and knowledge concepts through graph
representation to learn useful embeddings for answer prediction. Li et al. (2025)
suggested structure-based KT, using the GNN structure to propagate feature information
between knowledge concepts, considering the temporal characteristics of the sequence
and the spatial features of the storage structure, and updating the learners’ mastery status
of knowledge concepts through a gating mechanism.

Researchers have proposed a series of KT models based on GNN, using GNN to
model the intrinsic relations among knowledge concepts. These models consider the
relations among exercises and knowledge points, but do not comprehensively consider
the deep relationships among them. In addition, these methods usually measure the
knowledge state of students from the overall learning cycle and ignore short-term
fluctuations in knowledge states and students’ answering abilities. To cope with the
above issues, this article puts forward a Chinese education domain KT approach in light
of GNN. The main work of this method is summarised into the following four aspects.

1 Collecting historical interaction data between students and knowledge in Chinese
education integration, constructing a Chinese education domain knowledge
heterogeneous graph with knowledge points, exercises, and other elements in the
Chinese education integration domain, designing heterogeneous graph convolution to
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learn exercise representations, taking into comprehensive account the difficulty level
of the exercises, the coverage of knowledge points, the correspondence between
exercises and knowledge points, and the similarity between exercises, thereby
improving the comprehensiveness of exercise representations.

2 Using sliding window techniques to dynamically calculate student answering ability
and combining it with exercise representations, inputting them into a deep residual
cross network (DRCN). It can effectively differentiate changes in students’
knowledge status and improve the understanding of the relationship between
students and exercises through high-order feature interactions, thus enhancing
prediction accuracy.

3 Based on the interaction of the above features, a temporal convolutional network
(TCN) is used to track students’ knowledge states. The TCN receives students’
time-series response data and cognitive fusion feature information processed by the
DRCN, extracts the knowledge state matrix of students at each time point and
predicts the probability that students will answer the next exercise correctly.

4  Visualisation experiments and comparative studies were conducted on the ASSIST
and KDD datasets. The outcome demonstrated that the proposed method achieved
prediction accuracies of 92.81% and 95.09%, respectively, outperforming the
comparison models. It demonstrated better adaptability to students’ learning progress
and enabled timely adjustments in assessing their mastery of integrated Chinese
language education knowledge.

2 Relevant technologies

2.1 KT overview

KT dynamically tracks changes in students’ knowledge state levels based on their answer
records with a learning platform. Based on the obtained knowledge state levels of
students, it can help teachers provide intelligent services to students. First, KT models
enable learning platforms to offer personalised tutoring to students. Once a precise
understanding of the students’ knowledge status is achieved, the studying system can
tailor more suitable studying plans for various students, thus enabling education to be
adapted to the individual capabilities (Abdelrahman et al., 2023). Subsequently, students
themselves can gain a clearer insight into their studying progress, helping them focus
more on their learning obstacles and improving learning efficiency. During the learning
process, the teaching system records student interaction data, including exercises, the
knowledge concepts included in the exercises, and the students’ responses.

A student’s knowledge state in KT tasks is typically represented as discrete states,
continuous states, skill graphs, vector spaces, probabilistic graphs, dynamic systems, or
hybrid models. The specific choice of representation depends on task requirements, data
availability, and model complexity. Modern KT models tend to favour continuous state or
vector space models to more finely describe the gradual process of knowledge
acquisition. KT tasks typically forecast the student’s outcome on the subsequent problem
in light of the estimated knowledge state, using the accuracy of predicting exercise
performance to reflect the accuracy of evaluating the student’s knowledge status (Liu
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et al., 2022). The KT task is generally defined as bellow. Given a student’s record of
answering interactions over T time I = {iy, i, ..., i}, where j; is the j answering record
in the history. At time ¢z, the answering record can be represented as a tuple, e.g., i; = <ey,
r~>, where e, stands for the exercise answered at time ¢, and » € {0, 1} stands for the
binary representation of the student’s response result. The task of KT is to forecast the
probability 7., that the student answers correctly in the subsequent ¢ + 1 exercise e;+ in

light of the student’s answering history sequence up to the time ¢ Its formal
representation is as bellow.

’3+1:P(Vm=1|i1,l'2,--~,l},€t+1) M

2.2 Graph neural network

GNNs can learn node representation vectors that contain node feature information and
contextual relationships, adopted to represent the state of knowledge points and students’
learning history. The node embeddings learned by GNNs can be utilised to predict
student proficiency across knowledge concepts and track their learning trajectories, and
so on, providing support for personalised teaching (Ying et al., 2019). The chief idea of
GNNss is to adopt a message passing scheme to aggregate node characteristic information
in light of the connections between nodes (Khemani et al., 2024). In each layer of the
computation process, each node updates its representation based on its own
characteristics and the information from its neighbouring nodes. This information passing
process can be iterated multiple times to gradually obtain a more comprehensive feature
representation of the node. GNNs are divided into graph convolutional networks (GCN)
and graph attention networks (GAT). The GCN model propagates information between
nodes by applying a normalised Laplacian operator to aggregate features from adjacent
nodes, and does not require additional parameter learning to determine the importance
weights of neighbouring nodes during the computation process. This makes GCN highly
computationally efficient in handling large-scale graph data, enabling fast forward and
backward propagation processes. GAT introduces an attention mechanism that can
automatically learn the significance weights of every neighbouring node for the central
node. By calculating attention coefficients, GAT can dynamically adjust the aggregation
weights in light of the characteristics of the neighbouring nodes and the central node,
allowing the model to pay more attention to neighbouring nodes that have a greater
impact on the central node.

GNN models take a graph as input. Based on the associations between nodes, they
continuously receive and aggregate the representation information from neighbouring
nodes, while also sharing their own representations with neighbours, ultimately achieving
node embedding modelling. GNNs can not only model nodes, but also analyse and learn
graphs at the edge level and the graph level. Taking GCN as an example, the model’s
input is a graph with C input channels, and through the implicit levels, it produces an
output with F output channels. The learning process of GNNs relies on a local transition
function that is shared by all nodes. Its definition is as follows, where x, stands for the
characteristics of node v, x.[,) stands for the characteristics of the edges connected to node
v, Xe[v] Tepresents the state representations of nodes adjacent to node v, and X[, stands for
the characteristics of the adjacent nodes.

hv = f(xh Xe[v]» hn[v]a xn[v]) (2)
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3 Constructing a heterogeneous map of interdisciplinary knowledge in
language education

To more comprehensively catch the complex relations among exercises and knowledge
points in the integration of Chinese language education and domain knowledge, this
paper constructs an exercise-knowledge heterogeneous graph to learn the representations
of related problems. A heterogeneous graph can integrate various types of nodes and
edges, enabling a comprehensive consideration of the difficulty characteristics of
exercises and reflecting the similarity between exercises, thereby achieving more
accurate and comprehensive problem representations. Heterogeneous graphs can
incorporate nodes of various types, including knowledge points, questions, student
characteristics, and practice scenarios. This approach breaks the limitations of traditional
models that focus solely on knowledge points and answer results, enabling
representations to encompass more comprehensive learning-related data. By learning the
structural patterns of heterogeneous graphs, the model can better adapt to new knowledge
points. This avoids over-reliance on existing data, leading to more stable performance in
KT tasks across different scenarios and groups.

The input module is the data collection and pre-processing phase of the KT system,
and its main task is to construct an information-rich interaction graph that can detail the
interaction relations among students and knowledge points, as well as the structure within
the students’ learning social network. This module mainly consists of the following steps.

1  Data collection: First, the model collects historical interaction data U = {uy, uy, ...,
u,} of students, where each student user u; has a series of interaction records with
knowledge points, including answer records, learning time, and discussions. At the
same time, Chinese language education fusion domain knowledge point content data
N={ni, ny, ..., ny} is also collected, where each education i contains multimodal
information text. Social network information S = {si, s, ..., s} of users is also
collected, recording the learning interaction behaviour of users. For the feature
vectors of users and Chinese language education content, we use deep learning
models respectively to extract.

2 Feature extraction: For knowledge point-related text #,, the semantic vector ?k/. is
extracted by natural language processing models. For students’ social behaviour
features S;, they can be obtained by analysing students’ interaction data on the
learning social network. The features of students and knowledge points are fused to
form a unified representation. Suppose I; is the feature vector of student /;, and E is

the fusion feature vector of knowledge point £, we can obtain the fusion features
through the following equation.

[ =f(0s) 3)

K =gt @)

where f'and g respectively represent the fusion functions of student features and
knowledge point features. They may be some parameterised neural network models,
such as fully connected layers or attention mechanisms.
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3 Constructing the heterogeneous graph: This paper uses the PyTorch Geometric
library to construct the heterogeneous graph, where the vertex features and
construction of different types of edges are based on the following. First, construct
vertex features. Chinese language education fusion domain-related exercise vertex
features. Exercises have various levels of difficulty, and the vertex feature of each
exercise is represented by its average correctness rate, calculated from the
accumulated number of correct answers and the total amount of answers. Knowledge
point vertex features: The features of the knowledge point vertices include two
characteristics: the amount of covering exercises and the difficulty feature. The
amount of covering exercises reflects the breadth of coverage of a knowledge point
in exams or practices; the difficulty feature is calculated from the correctness rate of
students on related exercises.

Then, construct edges of the heterogeneous graph.

e  Exercise-knowledge point: Used to describe the correspondence among exercises
and knowledge points, constructed based on the belonging relationship among
exercises and knowledge points. If g; involves knowledge point s;, an edge is added
between exercise ¢; and s; in the heterogeneous graph, indicating the correspondence
among exercises and knowledge points.

e  Exercise-exercise: Used to describe the explicit or implicit similarity relationships
between different exercises. If exercise ¢; and g; include the same knowledge points,
an edge is added between exercise ¢; and g; in the heterogeneous graph, indicating
the similarity relationship between exercises.

e Knowledge point-knowledge point: Used to describe the explicit or implicit
similarity relationships between different knowledge points. If exercise ¢; involves
both knowledge points s; and s; simultaneously, add an edge between s; and s; in the
heterogeneous graph, indicating that knowledge points s; and s; have a similar
relationship.

The input module ultimately converts the multimodal data in the Chinese language
education fusion domain into structured data that can be processed by GNN, providing a
foundation for subsequent knowledge state tracking and prediction.

4 A KT model for Chinese language education integration based on GNN’

4.1 Exercise representation learning based on GNN'’s

To address the difficulty of current research in fully exploring the rich and complex
knowledge associations in Chinese language education and the dynamic characteristics of
student learning processes, this paper suggests a Chinese language education integration
domain KT model in light of GNN. The model consists of an exercise representation
learning module, a feature interaction module, and a knowledge state extraction and
forecasting module, as implied in Figure 1. The exercise representation module adopts a
heterogeneous GNN to learn the interaction relationships between nodes and extract
exercise node features as exercise representations. The feature interaction module uses
DRCN to study the interaction between exercise representations and student answering
abilities. The knowledge state extraction and prediction module uses a TCN to track
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student cognitive states and forecast the probability of students correctly answering the
next exercise.

Figure 1 Structure of a KT model for language education integration based on GNN
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The exercise representation learning module is influenced by the graph autoencoder
(GAE) (Bai et al., 2024) architecture. This article suggests an approach in light of a
heterogeneous GAE, which consists of an encoder and a decoder. The encoder part
designs a heterogeneous graph convolutional network (HGCN) to process heterogeneous
graph data containing multiple node and edge types. The HGCN draws on the core
concept of the heterogeneous graph attention network (HAN) (Jia et al., 2023) to study
node embeddings for the heterogeneous graph. Unlike HAN, which aggregates
information through predefined meta-paths, HGCN uses graph attention convolution
(GATConv) to dynamically adjust the weights of neighbour nodes, thereby learning
embeddings for exercise nodes. For example, for the exercise node g1, in the first layer of

convolution, the initial feature H;?) of q) is transformed linearly to generate intermediate
features z;f). Then, a weighted aggregation is performed on the adjacent nodes for all
edge types » € R. The weights 045-”’) are calculated by an attention scheme, which
updates the feature of the exercise node to H;’fl). After multiple layers of convolution,

the final exercise representation H;,L) is generated. The formula is expressed as follows,

where || denotes the concatenation operation, N.«(q:) stands for the set of adjacent nodes
linked to the exercise node ¢ through edge type r, BatchNorm(-) is batch normalisation,
and ReLU(") is a nonlinear activation function.

@ — g g
2 =wOH] ©)
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H;Tl) = ReLU{BatchNorm(z Z al;i,r) Z}i)]] ®)

reR je Ny (q1)
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np-y ¥ s g
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The decoder is used to reconstruct edge information, aiming to catch the potential
associations among exercises and knowledge points, as well as between exercises, thus
generating high-quality exercise representations. The decoder maps node embeddings to
a common space and calculates the edge reconstruction probability between each pair of
nodes. For example, for exercise nodes ¢; and ¢, the decoder takes the node embedding

vector H, ;IL) and maps it to the common space. The reconstruction probability Rj is

calculated as follows, where Wy is the learnable linear transformation matrix in the
decoder, and ¢ is the Sigmoid function.

2y = WaeeH ) (10)

R; za(qu -zqz) (11)

Through this architectural design, HGCN can effectively capture complex relationships
in heterogeneous graphs by accurately reconstructing edge information to capture
relationships between exercises, thus generating high-quality exercise representations.

4.2  Feature interaction based on deep residual cross networks

To deepen the model’s understanding of the relationships between student-related
exercises in the domain of Chinese education, this paper proposes a student response
ability rating model by combining student answer accuracy and the number of attempts.
A DRCN is designed to learn the complex relationships between student response
abilities and exercise representations, generating student cognitive fusion features that
integrate student learning ability and exercise representations.

To reveal the dynamic changes in students’ learning states, this paper adopts a sliding
window method to calculate students’ exercise-answering accuracy across different time
periods, aiming to capture students’ short-term learning status in detail.

e Sliding window accuracy: The sliding window is an effective method for processing
time series data. Since students’ answering sequences have temporal characteristics,
calculating students’ exercise-answer accuracy during consecutive time periods can
reveal their learning progress and changes in answering ability. The calculation of
sliding window accuracy is as follows, where a; represents the student’s answering
result at time point j, and W is the size of the sliding window.

i
Correct Rate; = z a; | |W 12)

J=i+W -1

e  Student answering ability: Calculated by combining the sliding window answering
accuracy and the amount of attempts. When a student has not encountered a
particular knowledge point for a long time, they may face higher difficulty and more
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attempts, and the proposed scoring model will adjust the student’s answering ability
score accordingly to adapt to their actual learning state. The specific calculation is as
follows, where Correct Rate; is the answering accuracy in the sliding window
containing the current exercise 7, and attempt; is the number of attempts for the
current exercise. The weighting factor (1 + 1/(attempt; + 1)) is used to adjust the
score based on the number of attempts, ensuring a reasonable overall evaluation of
the student’s answering ability. The first ‘“+1° is added to prevent calculation errors,
such as division by zero. The second ‘+1’ ensures that the answering ability score
remains positive even if the student makes multiple attempts. This design provides a
higher score for students who answer correctly on their first try, highlighting their
ability to quickly master the knowledge points in the field of language education
integration.

A; = Correct Rate; X(l +;j (13)
attempt; +1

Designing high-order interactions between DRCN learning features before predicting the
student’s knowledge state effectively generates cognitive fusion features combining
student answering ability and exercise representation. After concatenating the exercise
representation and the student answering ability, the result is input into the DRCN, then
goes through a fully connected layer for linear transformation and enters the attention
layer. The attention layer uses a multi-head attention scheme to compute the relation
weights among features, focusing on the most important features to enhance the model’s
processing of key information. In addition, residual connections are introduced in the
DRCN. Residual connections can effectively avoid the gradient vanishing issue and
improve the network’s learning rate, accelerating the convergence speed. The equation is
as follows.

Xinpus = Concat (Z,, A) (14)

Xpl =W XD by (15)
oK’

Attention(Q, K, V') = Softmax \/67 V (16)
k

X0 =ReLU(LayerNorm( XD + x0))) (17)

where Z, is the exercise representation, 4 is the student’s answering ability at the current
time, Xipw 1S the initial input feature, X }2 is the feature output after the fully linked

level, and X® is the feature after processing through / layers, namely, the student’s
cognitive fusion feature.

4.3 Extraction and prediction of domain knowledge status in language
education integration

This paper uses a TCN to extract the student’s knowledge state. To solve the gradient
vanishing problem, TCN introduces residual connections instead of simple connections
between layers. The residual connection adds the input of each layer directly to the
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activation function before the output of that layer. TCN receives the time series data of
student responses and the student’s cognitive fusion feature information processed by
DRCN, and extracts the student’s knowledge state matrix Y at each moment from it. Its
dimension is RMX, in which N is the total amount of exercises answered by the student,
and K is the dimension of the student’s cognitive fusion features.

The student’s knowledge state in the language education integration field at time ¢, y,,
is first mapped by a linear layer to generate a prediction vector Z.;. Then, Z.; is passed
by a Sigmoid activation function layer to achieve the prediction probability p,;. The
equation is as bellow, where W is the weight matrix of the linear layer and b is the bias
term.

Zi = WY, +b (18)

1
1+e 2

Pt =0(Zin)= (19)

4.4 Model optimisation

Generally, during model training and optimisation, the model is trained by minimising a
standard cross-entropy loss function, which quantifies the difference between the
predictions and the ground-truth labels. Specifically, the model also incorporates a
secondary training objective: to learn optimised exercise embeddings that encode
information from the knowledge structure. This can avoid overfitting caused by using
exercise embeddings alone. Therefore, the loss function is divided into two parts: one
focused on maximising predictive accuracy and the other on learning semantically rich
exercise embeddings.

L (ﬁnl s Pr+1 ) = _(le log py + (1 — P+l )10g (1 — D1 )) (20)

In the second part, this paper designs the following method to calculate the loss for
exercise representation.

1o -(z))"), it r(ef,2/) =1

Ly (i, j)=
’ a(xi~(zf)T), ifr(ei,z«f)zo

€2y

It can be found that if exercise i contains knowledge concept j and their similarity is
higher, then their dot product result will be larger, and L(i, j) will be smaller. Ultimately,
to enhance the trainable parameters throughout the entire model, this paper employs the
following loss function to minimise the model’s overall loss.

1 &1 <& 1 |E| K]
L=—Y» — > Li( P11, +A— L, j 22
L;T; l(pt+1,l pt+1,/) |E||K| ;]Z:; 2 (i, ) (22)

where L represents the amount of learners per batch during training, 7 stands for the
amount of exercises completed by the learners, and /1 is a hyperparameter used to adjust
weights. It is worth noting that the learner index / is included in the total loss calculation
formula because this model computes the loss for a batch of learners in each training
process.
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5 Experiment and performance analysis

5.1 Visualisation of Chinese education domain KT results

The experiments are conducted on Windows 11 with Intel Core i7-11370H CPU at 3.3
GHz. Python 3.9.10 is used as the programming language, and PyTorch 1.11.0 is used as
the deep learning framework. Two public datasets, ASSIST (Xia et al., 2023) and KDD
(Liu et al., 2023), are used in the experiments. The Chinese education domain knowledge
is extracted from these datasets. After pre-processing, the ASSIST dataset is filtered to
preserve records in which each knowledge point has been answered at least ten times. A
total of 4,955 records are obtained, including responses from 237 students and 101
Chinese knowledge concepts. Similarly, this paper extracts records from the KDD dataset
in which each knowledge point has been answered at least ten times. After
pre-processing, 8,200 records are obtained, including responses from 168 students and
211 Chinese knowledge concepts. This paper classifies the dataset into training and test
sets in an 8:2 ratio. The experiments are set with a maximum of 200 training epochs, a
batch size of 64, and the hidden layer dimension set to 256.

Figure 2 Visualisation of changes in knowledge status, (a) knowledge state on the ASSIST
dataset (b) knowledge state on the KDD dataset (see online version for colours)
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This paper visualises the knowledge state changes of a particular student from two
datasets, as indicated in Figure 2. The x-axis represents the number of student
interactions, which can be understood as interaction based on time changes, indicating the
student’s engagement in the studying process. The y-axis represents the measurement of
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the student’s knowledge state, which is the result of summing and averaging the model’s
estimates of the student’s mastery level for each exercise. The approach introduced in this
work is named HGCN and is evaluated against the established DKT baseline. The
background colour changes represent different days. This design helps observers
understand the model’s performance during different time periods. First, within the same
day, i.e., in areas with the same background colour, HGCN shows more stable
performance than DKT. This means that HGCN can maintain its accuracy in assessing a
student’s knowledge state at different time points throughout the day, without significant
fluctuations. Second, when the background colour changes, HGCN can more precisely
adjust its predictions to reflect knowledge retention or loss from one day to the next. This
means HGCN not only captures the growth of a student’s knowledge state during
learning but also models the forgetting curve, offering a more comprehensive view of the
student’s learning process. Third, in the changes of the number of student interactions,
especially changes within a single day, HGCN appears to be more sensitive and accurate
in tracking subtle changes in the knowledge state. This indicates that HGCN can better
adapt to students’ learning rhythms and timely adjust the assessment of their mastery of
knowledge.

5.2 KT performance comparison

To estimate the effectiveness of the GNN-based question representation learning module
in HGCN for KT, 110 knowledge points in the dataset were clustered, with similar
knowledge points represented using the same colour. For easier representation, the
knowledge points were renumbered, and the outcome is indicated in Figure 3(a). In the
figure, the knowledge points are divided into ten categories, with the red cluster
representing knowledge points related to equations in mathematics. These shows that the
GNN-based question representation learning module can effectively classify question
knowledge points, acquire information about the knowledge points and the relationships
between them, proving the effectiveness of this module in HGCN. Given the large
number of questions in the dataset, this study selected some questions from ASSIST for
clustering, with results shown in Figure 3(b). Different categories are represented by
different colours. It can be seen from the figure that HGCN can effectively classify
different questions.

In addition to conducting a qualitative analysis of KT for the proposed model, this
paper also uses quantitative metrics such as accuracy (ACC) and AUC to objectively
evaluate HGCN and benchmark methods LPKT (Zou et al., 2020), DKVMN-MRI (Xu et
al., 2024), SAMKT (Song et al., 2024), SGKT (Wu et al., 2022), and DGEKT (Cui et al.,
2024), and STHKT (Li et al.,, 2025). The quantitative metric evaluation results for
different methods are shown in Table 1. On the ASSIST and KDD datasets, HGCN
achieved ACC values of 92.81% and 95.09%, respectively, representing improvements of
at least 2.74% and 3.41% compared to the baseline methods on both datasets. When
comparing the AUC metric for KT prediction accuracy, HGCN achieved AUC values of
0.9638 and 0.9867 on the ASSIST and KDD datasets, respectively, representing
improvements of at least 1.65% and 3.8% compared to the baseline method. HGCN can
help models more effectively capture characteristics such as the difficulty of different
questions when evaluating students’ answers by designing heterogeneous GNNs. The
designed residual cross-network can help models better identify the deep interaction
between students’ answering abilities and corresponding questions, avoiding the loss of
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feature information while alleviating the gradient disappearance problem in deep
networks, thereby greatly improving KT effectiveness.

Figure 3 Exercise knowledge point classification results (see online version for colours)
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Table 1 Comparison of KT effectiveness between different methods
ASSIST dataset KDD dataset
Method
ACC (%) AUC ACC (%) AUC
LPKT 78.09 0.8062 80.03 0.7905
DKVMN-MRI 80.94 0.8417 81.92 0.8341
SAMKT 82.57 0.8592 84.64 0.8681
SGKT 85.21 0.8837 87.03 0.9004
DGEKT 86.93 0.8951 87.99 0.9079
STHKT 90.07 0.9482 92.08 0.9506
HGCN 92.81 0.9638 95.49 0.9867

6 Conclusions

In the field of Chinese language education integration, accurately tracking students’
learning status and knowledge mastery is crucial for achieving personalised Chinese
teaching and improving teaching quality. To address the issue where current research has
not comprehensively considered the deep relationships among exercises and knowledge
points, leading to low prediction accuracy, this paper proposes a KT method in the

domain of Chinese language education integration based on GNN. Historical interaction
data between students and integrated Chinese language education knowledge is collected.
A heterogeneous graph of Chinese language education domain knowledge is constructed
through knowledge points, exercises, and other elements in the domain of Chinese
language education integration. HGCN is designed to learn the interaction relationships
between nodes and extract exercise node features as question representations. Then,
sliding window technology is used to dynamically calculate the student’s answering
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ability, which is combined with the question representation and input into the DRCN. It
can effectively distinguish changes in the student’s knowledge status and improve the
understanding of the relationship between students and questions through high-order
feature interaction, thereby enhancing prediction accuracy. On the basis of the above
feature interaction, the TCN is adopted to track the student’s knowledge status. The TCN
receives the time series data of student responses and the student’s cognitive integration
feature information processed by the DRCN, extracts the student’s knowledge status
matrix at each moment, and forecasts the probability of the student correctly answering
the next question. Experimental outcome indicates that the suggested method has
prediction accuracies of 92.81% and 95 on the ASSIST and KDD datasets,
respectively.9%, showing a significant improvement over baseline methods, opening up
new ideas for personalised teaching in Chinese language education.
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