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Abstract: Knowledge tracking (KT) is a core task in the domain of integrated 
Chinese language education. However, traditional KT methods struggle to fully 
uncover the complex knowledge relationships within Chinese language 
education. To address this, this article designs a knowledge heterogeneous 
graph in the domain of Chinese language education, designs a heterogeneous 
graph neural network (GNN) to learn interactive relations among nodes, and 
extracts exercise node features as exercise representations. Then, a deep 
residual network is suggested to learn the interaction among exercise 
representations and students’ answering abilities. Finally, a temporal 
convolutional network is used to track students’ cognitive states and forecast 
the probability of them correctly answering the next exercise. Experimental 
results on the ASSIST and KDD datasets show that the proposed method 
improves prediction accuracy by at least 2.74% and 3.41%, respectively, 
enabling accurate forecasting of the mastery level of Chinese language 
knowledge points. 

Keywords: Chinese language education integration field; knowledge tracking; 
graph neural network; GNN; deep residual network; temporal convolutional 
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1 Introduction 

Chinese education, as an essential part of basic education, not only bears the 
responsibility of imparting knowledge of language and writing but also shoulders the 
mission of cultivating students’ humanistic quality, thinking abilities, and aesthetic 
interests. However, Chinese knowledge is characterised by richness, complexity, and 
openness; it covers multiple dimensions such as vocabulary and grammar, and intricate 
relationships exist among the knowledge points (Shen et al., 2022). Traditional 
knowledge tracking (KT) approaches often concentrate on evaluating knowledge status 
from a individual dimension, making it difficult to comprehensively and accurately 
reflect the complex cognitive processes of students in Chinese learning (Zhao and Sun, 
2024). As the deep learning technique emerging, KT methods in light of deep neural 
networks have increasingly been a research hotspot. Recurrent neural networks (RNN) 
and their variants are widely used in KT tasks, as they can process sequential data and 
capture time-dependent relationships during the learning process (Delianidi and 
Diamantaras, 2023). However, these methods still face challenges when handling 
knowledge with complex graph structures (Lai et al., 2021). In the Chinese knowledge 
system, the relationships between knowledge points resemble a graph structure. How to 
utilise deep learning algorithms to deeply explore the relationship features of knowledge 
points and achieve precise KT has significant research value. 

Common KT models are generally divided into two categories. The first comprises 
traditional approaches, exemplified by Bayesian KT (BKT) (Liu et al., 2021a), and the 
other category consists of deep learning-based KT (DKT) methods (Piech et al., 2015). In 
the BKT model, the student’s knowledge status is conceptualised as a set of binary 
variables, each denoting mastery or non-mastery of a detailed knowledge component, a 
hidden Markov model (HMM) (Alghamdi, 2016) is adopted to update the probabilities of 
each of these binary variables. This update mechanism captures the evolution of the 
student’s knowledge state throughout the studying process. Lei et al. (2024) modified the 
BKT model and proposed a student-oriented method. This approach emphasises the 
uniqueness of each student, believing that each student should have a set of personalised 
parameters for all knowledge. Huber et al. (2024) introduced relationships between 
knowledge points, noting that knowledge points are not isolated, and changes in the 
mastery level of one skill are able to impact the learning status of related knowledge 
components. Takami et al. (2024) utilised BKT to customise a more suitable sequence of 
Chinese exercises for students to meet their personalised Chinese learning needs. Alotaibi 
and Papandreou (2022) effectively identified and extracted possible guessing components 
in students’ answering processes by deeply analysing their multiple answering records 
and single answering records. 

BKT-based models do not consider the impact of knowledge point difficulty on KT 
performance; they simply categorise exercises into certain knowledge points for 
prediction. BKT has relatively few training parameters, but the model’s predictive 
accuracy lags significantly behind that of the DKT baseline. Compared to traditional KT 
models, DKT models learner proficiency within a high-dimensional continuous manifold, 
facilitating a more nuanced simulation of complex cognitive acquisition. Liu et al. (2019) 
integrated matrix factorisation technology into RNN, enabling the effective acquisition of 
exercise representations through matrix factorisation using only student interaction data, 
without including knowledge point information. Zou et al. (2020) input the textual 
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information of exercises into a bidirectional LSTM to capture semantic information in the 
problems, and obtained tracing results through a fully connected network. The advantage 
of RNN-based models is their simple structure, but using a single vector to represent a 
student’s knowledge status results in issues of poor interpretability and the inability to 
specify the student’s grasp of individual knowledge points. Liu et al. (2021b) coped with 
this limitation through introducing a memory network; they proposed DKVMN. Unlike 
DKT, which stores knowledge states in a single hidden vector. In the DKVMN 
architecture, the key matrix defines the set of knowledge points, while the value matrix 
dynamically stores and updates the inferred mastery level of each student for the 
corresponding points. Xu et al. (2024) integrated student behavioural features, such as the 
number of attempts, with the student’s learning ability based on DKVMN. Song et al. 
(2024) calculated the similarity among the current exercise to be forecasted and historical 
exercises the student has completed using cosine similarity when predicting student 
answering performance, and then aggregated the student’s historical knowledge states 
weighted by the similarity. 

Within KT, relational structures are frequently present. A contemporary approach to 
model these structures and more effectively tackle KT involves leveraging graph 
representation studying approaches, including GNN. Knowledge integration in language 
education exhibits characteristics such as complex interconnections, dynamic evolution, 
and multimodal fusion. Graph neural networks (GNNs) can effectively capture these 
features through structured relationship modelling, dynamic tracking, multimodal fusion, 
and personalised reasoning capabilities. Their graph structure inherently aligns with the 
networked nature of linguistic knowledge, while message passing and attention 
mechanisms support precise modelling of the knowledge integration process. Therefore, 
GNNs represent a highly promising technical direction for KT in language education. 
Techniques like GNN (Song et al., 2021) are widely used. Wu et al. (2022) suggested the 
GKT model in light of GNN. They framed the KT task as a node classification problem 
over time and addressed it with established graph learning techniques like message 
passing. Cui et al. (2024) proposed graph-based interactive knowledge tracing (GIKT), 
which utilised the relationship between exercises and knowledge concepts through graph 
representation to learn useful embeddings for answer prediction. Li et al. (2025) 
suggested structure-based KT, using the GNN structure to propagate feature information 
between knowledge concepts, considering the temporal characteristics of the sequence 
and the spatial features of the storage structure, and updating the learners’ mastery status 
of knowledge concepts through a gating mechanism. 

Researchers have proposed a series of KT models based on GNN, using GNN to 
model the intrinsic relations among knowledge concepts. These models consider the 
relations among exercises and knowledge points, but do not comprehensively consider 
the deep relationships among them. In addition, these methods usually measure the 
knowledge state of students from the overall learning cycle and ignore short-term 
fluctuations in knowledge states and students’ answering abilities. To cope with the 
above issues, this article puts forward a Chinese education domain KT approach in light 
of GNN. The main work of this method is summarised into the following four aspects. 

1 Collecting historical interaction data between students and knowledge in Chinese 
education integration, constructing a Chinese education domain knowledge 
heterogeneous graph with knowledge points, exercises, and other elements in the 
Chinese education integration domain, designing heterogeneous graph convolution to 
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learn exercise representations, taking into comprehensive account the difficulty level 
of the exercises, the coverage of knowledge points, the correspondence between 
exercises and knowledge points, and the similarity between exercises, thereby 
improving the comprehensiveness of exercise representations. 

2 Using sliding window techniques to dynamically calculate student answering ability 
and combining it with exercise representations, inputting them into a deep residual 
cross network (DRCN). It can effectively differentiate changes in students’ 
knowledge status and improve the understanding of the relationship between 
students and exercises through high-order feature interactions, thus enhancing 
prediction accuracy. 

3 Based on the interaction of the above features, a temporal convolutional network 
(TCN) is used to track students’ knowledge states. The TCN receives students’  
time-series response data and cognitive fusion feature information processed by the 
DRCN, extracts the knowledge state matrix of students at each time point and 
predicts the probability that students will answer the next exercise correctly. 

4 Visualisation experiments and comparative studies were conducted on the ASSIST 
and KDD datasets. The outcome demonstrated that the proposed method achieved 
prediction accuracies of 92.81% and 95.09%, respectively, outperforming the 
comparison models. It demonstrated better adaptability to students’ learning progress 
and enabled timely adjustments in assessing their mastery of integrated Chinese 
language education knowledge. 

2 Relevant technologies 

2.1 KT overview 

KT dynamically tracks changes in students’ knowledge state levels based on their answer 
records with a learning platform. Based on the obtained knowledge state levels of 
students, it can help teachers provide intelligent services to students. First, KT models 
enable learning platforms to offer personalised tutoring to students. Once a precise 
understanding of the students’ knowledge status is achieved, the studying system can 
tailor more suitable studying plans for various students, thus enabling education to be 
adapted to the individual capabilities (Abdelrahman et al., 2023). Subsequently, students 
themselves can gain a clearer insight into their studying progress, helping them focus 
more on their learning obstacles and improving learning efficiency. During the learning 
process, the teaching system records student interaction data, including exercises, the 
knowledge concepts included in the exercises, and the students’ responses. 

A student’s knowledge state in KT tasks is typically represented as discrete states, 
continuous states, skill graphs, vector spaces, probabilistic graphs, dynamic systems, or 
hybrid models. The specific choice of representation depends on task requirements, data 
availability, and model complexity. Modern KT models tend to favour continuous state or 
vector space models to more finely describe the gradual process of knowledge 
acquisition. KT tasks typically forecast the student’s outcome on the subsequent problem 
in light of the estimated knowledge state, using the accuracy of predicting exercise 
performance to reflect the accuracy of evaluating the student’s knowledge status (Liu  



   

 

   

   
 

   

   

 

   

   38 W. Hu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

et al., 2022). The KT task is generally defined as bellow. Given a student’s record of 
answering interactions over T time I = {i1, i2, …, iT}, where ij is the jth answering record 
in the history. At time t, the answering record can be represented as a tuple, e.g., it = <et, 
rt>, where et stands for the exercise answered at time t, and r ∈ {0, 1} stands for the 
binary representation of the student’s response result. The task of KT is to forecast the 
probability 1t̂r +  that the student answers correctly in the subsequent t + 1 exercise et+1 in 
light of the student’s answering history sequence up to the time t. Its formal 
representation is as bellow. 

( )1 1 1 2 11 , ,ˆ , ,t t t tr p r i i i e+ + += =   (1) 

2.2 Graph neural network 

GNNs can learn node representation vectors that contain node feature information and 
contextual relationships, adopted to represent the state of knowledge points and students’ 
learning history. The node embeddings learned by GNNs can be utilised to predict 
student proficiency across knowledge concepts and track their learning trajectories, and 
so on, providing support for personalised teaching (Ying et al., 2019). The chief idea of 
GNNs is to adopt a message passing scheme to aggregate node characteristic information 
in light of the connections between nodes (Khemani et al., 2024). In each layer of the 
computation process, each node updates its representation based on its own 
characteristics and the information from its neighbouring nodes. This information passing 
process can be iterated multiple times to gradually obtain a more comprehensive feature 
representation of the node. GNNs are divided into graph convolutional networks (GCN) 
and graph attention networks (GAT). The GCN model propagates information between 
nodes by applying a normalised Laplacian operator to aggregate features from adjacent 
nodes, and does not require additional parameter learning to determine the importance 
weights of neighbouring nodes during the computation process. This makes GCN highly 
computationally efficient in handling large-scale graph data, enabling fast forward and 
backward propagation processes. GAT introduces an attention mechanism that can 
automatically learn the significance weights of every neighbouring node for the central 
node. By calculating attention coefficients, GAT can dynamically adjust the aggregation 
weights in light of the characteristics of the neighbouring nodes and the central node, 
allowing the model to pay more attention to neighbouring nodes that have a greater 
impact on the central node. 

GNN models take a graph as input. Based on the associations between nodes, they 
continuously receive and aggregate the representation information from neighbouring 
nodes, while also sharing their own representations with neighbours, ultimately achieving 
node embedding modelling. GNNs can not only model nodes, but also analyse and learn 
graphs at the edge level and the graph level. Taking GCN as an example, the model’s 
input is a graph with C input channels, and through the implicit levels, it produces an 
output with F output channels. The learning process of GNNs relies on a local transition 
function that is shared by all nodes. Its definition is as follows, where xv stands for the 
characteristics of node v, xe[v] stands for the characteristics of the edges connected to node 
v, xe[v] represents the state representations of nodes adjacent to node v, and xn[v] stands for 
the characteristics of the adjacent nodes. 

( )[ ] [ ] [ ], , ,v v e v n v n vh f x x h x=  (2) 
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3 Constructing a heterogeneous map of interdisciplinary knowledge in 
language education 

To more comprehensively catch the complex relations among exercises and knowledge 
points in the integration of Chinese language education and domain knowledge, this 
paper constructs an exercise-knowledge heterogeneous graph to learn the representations 
of related problems. A heterogeneous graph can integrate various types of nodes and 
edges, enabling a comprehensive consideration of the difficulty characteristics of 
exercises and reflecting the similarity between exercises, thereby achieving more 
accurate and comprehensive problem representations. Heterogeneous graphs can 
incorporate nodes of various types, including knowledge points, questions, student 
characteristics, and practice scenarios. This approach breaks the limitations of traditional 
models that focus solely on knowledge points and answer results, enabling 
representations to encompass more comprehensive learning-related data. By learning the 
structural patterns of heterogeneous graphs, the model can better adapt to new knowledge 
points. This avoids over-reliance on existing data, leading to more stable performance in 
KT tasks across different scenarios and groups. 

The input module is the data collection and pre-processing phase of the KT system, 
and its main task is to construct an information-rich interaction graph that can detail the 
interaction relations among students and knowledge points, as well as the structure within 
the students’ learning social network. This module mainly consists of the following steps. 

1 Data collection: First, the model collects historical interaction data U = {u1, u2, …, 
un} of students, where each student user ui has a series of interaction records with 
knowledge points, including answer records, learning time, and discussions. At the 
same time, Chinese language education fusion domain knowledge point content data 
N = {n1, n2, …, nm} is also collected, where each education i contains multimodal 
information text. Social network information S = {s1, s2, …, sk} of users is also 
collected, recording the learning interaction behaviour of users. For the feature 
vectors of users and Chinese language education content, we use deep learning 
models respectively to extract. 

2 Feature extraction: For knowledge point-related text ,jkt  the semantic vector jkt


 is 
extracted by natural language processing models. For students’ social behaviour 
features ,iS


 they can be obtained by analysing students’ interaction data on the 

learning social network. The features of students and knowledge points are fused to 
form a unified representation. Suppose il


 is the feature vector of student li, and jk


 is 

the fusion feature vector of knowledge point kj, we can obtain the fusion features 
through the following equation. 

( ),i i il f l s′ =
  

 (3) 

( )jj kk g t′ =
 

 (4) 

where f and g respectively represent the fusion functions of student features and 
knowledge point features. They may be some parameterised neural network models, 
such as fully connected layers or attention mechanisms. 
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3 Constructing the heterogeneous graph: This paper uses the PyTorch Geometric 
library to construct the heterogeneous graph, where the vertex features and 
construction of different types of edges are based on the following. First, construct 
vertex features. Chinese language education fusion domain-related exercise vertex 
features. Exercises have various levels of difficulty, and the vertex feature of each 
exercise is represented by its average correctness rate, calculated from the 
accumulated number of correct answers and the total amount of answers. Knowledge 
point vertex features: The features of the knowledge point vertices include two 
characteristics: the amount of covering exercises and the difficulty feature. The 
amount of covering exercises reflects the breadth of coverage of a knowledge point 
in exams or practices; the difficulty feature is calculated from the correctness rate of 
students on related exercises. 

Then, construct edges of the heterogeneous graph. 
• Exercise-knowledge point: Used to describe the correspondence among exercises 

and knowledge points, constructed based on the belonging relationship among 
exercises and knowledge points. If qi involves knowledge point sj, an edge is added 
between exercise qi and sj in the heterogeneous graph, indicating the correspondence 
among exercises and knowledge points. 

• Exercise-exercise: Used to describe the explicit or implicit similarity relationships 
between different exercises. If exercise qi and qi include the same knowledge points, 
an edge is added between exercise qi and qj in the heterogeneous graph, indicating 
the similarity relationship between exercises. 

• Knowledge point-knowledge point: Used to describe the explicit or implicit 
similarity relationships between different knowledge points. If exercise qi involves 
both knowledge points si and sj simultaneously, add an edge between si and sj in the 
heterogeneous graph, indicating that knowledge points si and sj have a similar 
relationship. 

The input module ultimately converts the multimodal data in the Chinese language 
education fusion domain into structured data that can be processed by GNN, providing a 
foundation for subsequent knowledge state tracking and prediction. 

4 A KT model for Chinese language education integration based on GNN’ 

4.1 Exercise representation learning based on GNN’s 

To address the difficulty of current research in fully exploring the rich and complex 
knowledge associations in Chinese language education and the dynamic characteristics of 
student learning processes, this paper suggests a Chinese language education integration 
domain KT model in light of GNN. The model consists of an exercise representation 
learning module, a feature interaction module, and a knowledge state extraction and 
forecasting module, as implied in Figure 1. The exercise representation module adopts a 
heterogeneous GNN to learn the interaction relationships between nodes and extract 
exercise node features as exercise representations. The feature interaction module uses 
DRCN to study the interaction between exercise representations and student answering 
abilities. The knowledge state extraction and prediction module uses a TCN to track 
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student cognitive states and forecast the probability of students correctly answering the 
next exercise. 

Figure 1 Structure of a KT model for language education integration based on GNN 

  

The exercise representation learning module is influenced by the graph autoencoder 
(GAE) (Bai et al., 2024) architecture. This article suggests an approach in light of a 
heterogeneous GAE, which consists of an encoder and a decoder. The encoder part 
designs a heterogeneous graph convolutional network (HGCN) to process heterogeneous 
graph data containing multiple node and edge types. The HGCN draws on the core 
concept of the heterogeneous graph attention network (HAN) (Jia et al., 2023) to study 
node embeddings for the heterogeneous graph. Unlike HAN, which aggregates 
information through predefined meta-paths, HGCN uses graph attention convolution 
(GATConv) to dynamically adjust the weights of neighbour nodes, thereby learning 
embeddings for exercise nodes. For example, for the exercise node q1, in the first layer of 
convolution, the initial feature (0)

1qH  of q1 is transformed linearly to generate intermediate 

features 
1

( ) .i
qz  Then, a weighted aggregation is performed on the adjacent nodes for all 

edge types r ∈ R. The weights ( , )i r
ijα  are calculated by an attention scheme, which 

updates the feature of the exercise node to ( 1) .i
qlH +  After multiple layers of convolution, 

the final exercise representation ( )L
qlH  is generated. The formula is expressed as follows, 

where || denotes the concatenation operation, Nr(q1) stands for the set of adjacent nodes 
linked to the exercise node q1 through edge type r, BatchNorm(·) is batch normalisation, 
and ReLU(·) is a nonlinear activation function. 

1 1
( ) (0)( )i i
q qz W H=  (5) 

( )( )( , ) ( ) ( ) ( )ReLU Ti r i i i
rij jqle a z z=  (6) 

( ) ( )( , ) ( , ) ( , )

( )

exp exp
r l

i r i r i r
ij ij ik

k N q

e e
∈

 =
 
 
α  (7) 
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( 1) ( , ) ( )
1

( )

ReLU
r l

i i r i
ij jq

r R j N q

H BatchNorm z+

∈ ∈

  =
  

  
  α  (8) 

( ) ( , ) ( )
1

( )r l

L L r L
ij jq

r j N q

H z
∈ ∈

= 


α  (9) 

The decoder is used to reconstruct edge information, aiming to catch the potential 
associations among exercises and knowledge points, as well as between exercises, thus 
generating high-quality exercise representations. The decoder maps node embeddings to 
a common space and calculates the edge reconstruction probability between each pair of 
nodes. For example, for exercise nodes q1 and q2, the decoder takes the node embedding 
vector ( )

1
L

qH  and maps it to the common space. The reconstruction probability Rij is 
calculated as follows, where Wdec is the learnable linear transformation matrix in the 
decoder, and σ is the Sigmoid function. 

1
( )L

q dec qlz W H=  (10) 

( )1 2ij q qR σ z z= ⋅  (11) 

Through this architectural design, HGCN can effectively capture complex relationships 
in heterogeneous graphs by accurately reconstructing edge information to capture 
relationships between exercises, thus generating high-quality exercise representations. 

4.2 Feature interaction based on deep residual cross networks 

To deepen the model’s understanding of the relationships between student-related 
exercises in the domain of Chinese education, this paper proposes a student response 
ability rating model by combining student answer accuracy and the number of attempts. 
A DRCN is designed to learn the complex relationships between student response 
abilities and exercise representations, generating student cognitive fusion features that 
integrate student learning ability and exercise representations. 

To reveal the dynamic changes in students’ learning states, this paper adopts a sliding 
window method to calculate students’ exercise-answering accuracy across different time 
periods, aiming to capture students’ short-term learning status in detail. 

• Sliding window accuracy: The sliding window is an effective method for processing 
time series data. Since students’ answering sequences have temporal characteristics, 
calculating students’ exercise-answer accuracy during consecutive time periods can 
reveal their learning progress and changes in answering ability. The calculation of 
sliding window accuracy is as follows, where aj represents the student’s answering 
result at time point j, and W is the size of the sliding window. 

1

i

i j
j i W

Correct Rate a W
= + −

 
=  
 
 
  (12) 

• Student answering ability: Calculated by combining the sliding window answering 
accuracy and the amount of attempts. When a student has not encountered a 
particular knowledge point for a long time, they may face higher difficulty and more 
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attempts, and the proposed scoring model will adjust the student’s answering ability 
score accordingly to adapt to their actual learning state. The specific calculation is as 
follows, where Correct Ratei is the answering accuracy in the sliding window 
containing the current exercise i, and attempti is the number of attempts for the 
current exercise. The weighting factor (1 + 1/(attempti + 1)) is used to adjust the 
score based on the number of attempts, ensuring a reasonable overall evaluation of 
the student’s answering ability. The first ‘+1’ is added to prevent calculation errors, 
such as division by zero. The second ‘+1’ ensures that the answering ability score 
remains positive even if the student makes multiple attempts. This design provides a 
higher score for students who answer correctly on their first try, highlighting their 
ability to quickly master the knowledge points in the field of language education 
integration. 

11
1i i

i
A Correct Rate

attempt
 = × + + 

 (13) 

Designing high-order interactions between DRCN learning features before predicting the 
student’s knowledge state effectively generates cognitive fusion features combining 
student answering ability and exercise representation. After concatenating the exercise 
representation and the student answering ability, the result is input into the DRCN, then 
goes through a fully connected layer for linear transformation and enters the attention 
layer. The attention layer uses a multi-head attention scheme to compute the relation 
weights among features, focusing on the most important features to enhance the model’s 
processing of key information. In addition, residual connections are introduced in the 
DRCN. Residual connections can effectively avoid the gradient vanishing issue and 
improve the network’s learning rate, accelerating the convergence speed. The equation is 
as follows. 

( ),input qX Concat Z A=  (14) 

( ) ( ) ( )( 1)l l ll
FC FC FCX W X b−= ⋅ +  (15) 

( , , ) Softmax
k

QKAttention Q K V V
d

 =  
 


 (16) 

( )( )( )( ) ( 1)ReLU ll l
AttX LayerNorm X X−= +  (17) 

where Zq is the exercise representation, A is the student’s answering ability at the current 
time, Xinput is the initial input feature, ( )l

FCX  is the feature output after the fully linked 
level, and X(l) is the feature after processing through l layers, namely, the student’s 
cognitive fusion feature. 

4.3 Extraction and prediction of domain knowledge status in language 
education integration 

This paper uses a TCN to extract the student’s knowledge state. To solve the gradient 
vanishing problem, TCN introduces residual connections instead of simple connections 
between layers. The residual connection adds the input of each layer directly to the 
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activation function before the output of that layer. TCN receives the time series data of 
student responses and the student’s cognitive fusion feature information processed by 
DRCN, and extracts the student’s knowledge state matrix Y at each moment from it. Its 
dimension is RN×K, in which N is the total amount of exercises answered by the student, 
and K is the dimension of the student’s cognitive fusion features. 

The student’s knowledge state in the language education integration field at time t, yt, 
is first mapped by a linear layer to generate a prediction vector Zt+1. Then, Zt+1 is passed 
by a Sigmoid activation function layer to achieve the prediction probability pt+1. The 
equation is as bellow, where W is the weight matrix of the linear layer and b is the bias 
term. 

1t tW bZ Y+ = +  (18) 

( )
1

1 1
1

1 t
t t Z

p σ Z
e +

+ + −
= =

+
 (19) 

4.4 Model optimisation 

Generally, during model training and optimisation, the model is trained by minimising a 
standard cross-entropy loss function, which quantifies the difference between the 
predictions and the ground-truth labels. Specifically, the model also incorporates a 
secondary training objective: to learn optimised exercise embeddings that encode 
information from the knowledge structure. This can avoid overfitting caused by using 
exercise embeddings alone. Therefore, the loss function is divided into two parts: one 
focused on maximising predictive accuracy and the other on learning semantically rich 
exercise embeddings. 

( ) ( ) ( )( )1 1 1 1 1 1 1, log 1 log 1t t t t t tL p p p p p p+ + + + + += − + − −    (20) 

In the second part, this paper designs the following method to calculate the loss for 
exercise representation. 

( )( ) ( )
( )( ) ( )

2
1 , if , 1

( , )
, if , 0

Ti j i j

Ti j i j

σ x z r e z
i j

σ x z r e z
L

 − ⋅ == 
 ⋅ =

 (21) 

It can be found that if exercise i contains knowledge concept j and their similarity is 
higher, then their dot product result will be larger, and L2(i, j) will be smaller. Ultimately, 
to enhance the trainable parameters throughout the entire model, this paper employs the 
following loss function to minimise the model’s overall loss. 

( )1 1, 1, 2
1 1 1 1

1 1 1, ( , )
L T E K

t l t l
l t i j

L L p p λ L i j
L T E K+ +

= = = =

= + ⋅    (22) 

where L represents the amount of learners per batch during training, T stands for the 
amount of exercises completed by the learners, and λ is a hyperparameter used to adjust 
weights. It is worth noting that the learner index l is included in the total loss calculation 
formula because this model computes the loss for a batch of learners in each training 
process. 
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5 Experiment and performance analysis  

5.1 Visualisation of Chinese education domain KT results 

The experiments are conducted on Windows 11 with Intel Core i7-11370H CPU at 3.3 
GHz. Python 3.9.10 is used as the programming language, and PyTorch 1.11.0 is used as 
the deep learning framework. Two public datasets, ASSIST (Xia et al., 2023) and KDD 
(Liu et al., 2023), are used in the experiments. The Chinese education domain knowledge 
is extracted from these datasets. After pre-processing, the ASSIST dataset is filtered to 
preserve records in which each knowledge point has been answered at least ten times. A 
total of 4,955 records are obtained, including responses from 237 students and 101 
Chinese knowledge concepts. Similarly, this paper extracts records from the KDD dataset 
in which each knowledge point has been answered at least ten times. After  
pre-processing, 8,200 records are obtained, including responses from 168 students and 
211 Chinese knowledge concepts. This paper classifies the dataset into training and test 
sets in an 8:2 ratio. The experiments are set with a maximum of 200 training epochs, a 
batch size of 64, and the hidden layer dimension set to 256. 

Figure 2 Visualisation of changes in knowledge status, (a) knowledge state on the ASSIST 
dataset (b) knowledge state on the KDD dataset (see online version for colours) 
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This paper visualises the knowledge state changes of a particular student from two 
datasets, as indicated in Figure 2. The x-axis represents the number of student 
interactions, which can be understood as interaction based on time changes, indicating the 
student’s engagement in the studying process. The y-axis represents the measurement of 
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the student’s knowledge state, which is the result of summing and averaging the model’s 
estimates of the student’s mastery level for each exercise. The approach introduced in this 
work is named HGCN and is evaluated against the established DKT baseline. The 
background colour changes represent different days. This design helps observers 
understand the model’s performance during different time periods. First, within the same 
day, i.e., in areas with the same background colour, HGCN shows more stable 
performance than DKT. This means that HGCN can maintain its accuracy in assessing a 
student’s knowledge state at different time points throughout the day, without significant 
fluctuations. Second, when the background colour changes, HGCN can more precisely 
adjust its predictions to reflect knowledge retention or loss from one day to the next. This 
means HGCN not only captures the growth of a student’s knowledge state during 
learning but also models the forgetting curve, offering a more comprehensive view of the 
student’s learning process. Third, in the changes of the number of student interactions, 
especially changes within a single day, HGCN appears to be more sensitive and accurate 
in tracking subtle changes in the knowledge state. This indicates that HGCN can better 
adapt to students’ learning rhythms and timely adjust the assessment of their mastery of 
knowledge. 

5.2 KT performance comparison 

To estimate the effectiveness of the GNN-based question representation learning module 
in HGCN for KT, 110 knowledge points in the dataset were clustered, with similar 
knowledge points represented using the same colour. For easier representation, the 
knowledge points were renumbered, and the outcome is indicated in Figure 3(a). In the 
figure, the knowledge points are divided into ten categories, with the red cluster 
representing knowledge points related to equations in mathematics. These shows that the 
GNN-based question representation learning module can effectively classify question 
knowledge points, acquire information about the knowledge points and the relationships 
between them, proving the effectiveness of this module in HGCN. Given the large 
number of questions in the dataset, this study selected some questions from ASSIST for 
clustering, with results shown in Figure 3(b). Different categories are represented by 
different colours. It can be seen from the figure that HGCN can effectively classify 
different questions. 

In addition to conducting a qualitative analysis of KT for the proposed model, this 
paper also uses quantitative metrics such as accuracy (ACC) and AUC to objectively 
evaluate HGCN and benchmark methods LPKT (Zou et al., 2020), DKVMN-MRI (Xu et 
al., 2024), SAMKT (Song et al., 2024), SGKT (Wu et al., 2022), and DGEKT (Cui et al., 
2024), and STHKT (Li et al., 2025). The quantitative metric evaluation results for 
different methods are shown in Table 1. On the ASSIST and KDD datasets, HGCN 
achieved ACC values of 92.81% and 95.09%, respectively, representing improvements of 
at least 2.74% and 3.41% compared to the baseline methods on both datasets. When 
comparing the AUC metric for KT prediction accuracy, HGCN achieved AUC values of 
0.9638 and 0.9867 on the ASSIST and KDD datasets, respectively, representing 
improvements of at least 1.65% and 3.8% compared to the baseline method. HGCN can 
help models more effectively capture characteristics such as the difficulty of different 
questions when evaluating students’ answers by designing heterogeneous GNNs. The 
designed residual cross-network can help models better identify the deep interaction 
between students’ answering abilities and corresponding questions, avoiding the loss of 
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feature information while alleviating the gradient disappearance problem in deep 
networks, thereby greatly improving KT effectiveness. 

Figure 3 Exercise knowledge point classification results (see online version for colours) 

 
(a)     (b) 

Table 1 Comparison of KT effectiveness between different methods 

Method 
ASSIST dataset  KDD dataset 

ACC (%) AUC  ACC (%) AUC 
LPKT 78.09 0.8062  80.03 0.7905 
DKVMN-MRI 80.94 0.8417  81.92 0.8341 
SAMKT 82.57 0.8592  84.64 0.8681 
SGKT 85.21 0.8837  87.03 0.9004 
DGEKT 86.93 0.8951  87.99 0.9079 
STHKT 90.07 0.9482  92.08 0.9506 
HGCN 92.81 0.9638  95.49 0.9867 

6 Conclusions 

In the field of Chinese language education integration, accurately tracking students’ 
learning status and knowledge mastery is crucial for achieving personalised Chinese 
teaching and improving teaching quality. To address the issue where current research has 
not comprehensively considered the deep relationships among exercises and knowledge 
points, leading to low prediction accuracy, this paper proposes a KT method in the 
domain of Chinese language education integration based on GNN. Historical interaction 
data between students and integrated Chinese language education knowledge is collected. 
A heterogeneous graph of Chinese language education domain knowledge is constructed 
through knowledge points, exercises, and other elements in the domain of Chinese 
language education integration. HGCN is designed to learn the interaction relationships 
between nodes and extract exercise node features as question representations. Then, 
sliding window technology is used to dynamically calculate the student’s answering 
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ability, which is combined with the question representation and input into the DRCN. It 
can effectively distinguish changes in the student’s knowledge status and improve the 
understanding of the relationship between students and questions through high-order 
feature interaction, thereby enhancing prediction accuracy. On the basis of the above 
feature interaction, the TCN is adopted to track the student’s knowledge status. The TCN 
receives the time series data of student responses and the student’s cognitive integration 
feature information processed by the DRCN, extracts the student’s knowledge status 
matrix at each moment, and forecasts the probability of the student correctly answering 
the next question. Experimental outcome indicates that the suggested method has 
prediction accuracies of 92.81% and 95 on the ASSIST and KDD datasets, 
respectively.9%, showing a significant improvement over baseline methods, opening up 
new ideas for personalised teaching in Chinese language education. 
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