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Abstract: Oral diseases pose a global health challenge characterised by highly 
subjective diagnosis and a lack of intelligent decision-making tools, often 
exacerbated by fragmented data silos. This study aims to construct a 
comprehensive big data analytics platform and intelligent decision support 
system for oral health, enabling data-driven precision diagnosis and treatment 
through a unified four-layer architecture. The platform integrates multi-source 
heterogeneous data and employs advanced deep learning models for accurate 
caries segmentation and periodontitis risk prediction. Experiments on public 
datasets demonstrate a dice coefficient of 92.5% for caries segmentation and an 
area under the receiver operating characteristic curve value of 0.94 for 
periodontitis risk prediction, with results showing statistical significance. The 
system significantly enhances the automation and interpretability of oral 
disease analysis, providing a reliable and efficient tool for clinical diagnostic 
assistance and facilitating personalised treatment planning. 
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1 Introduction 

With the deepening implementation of the Healthy China 2030 plan and the accelerated 
advancement of digital healthcare strategies (Roth, 2013), big data and artificial 
intelligence technologies are profoundly transforming the service models and 
development pathways of modern healthcare (Amer et al., 2024). Oral health, as a vital 
component of overall well-being (Rein et al., 2004), presents a complex disease 
spectrum, high prevalence rates, and continuously growing diagnostic and treatment 
demands, making it a global public health challenge (Stein et al., 2010). The development 
of the proposed platform directly supports the ‘Healthy China 2030’ strategy by 
advancing digital health innovation. It exemplifies how data-driven technologies can be 
leveraged to enhance preventive care and precision diagnosis in oral health, thereby 
contributing to the initiative’s broader goal of elevating public health standards through 
technological integration. According to the world health organisation, oral diseases affect 
nearly 3.5 billion people worldwide (Ealla et al., 2024). Untreated dental caries and 
severe periodontitis not only lead to tooth loss and impaired chewing function but are 
also significantly associated with systemic diseases such as cardiovascular disease 
(Baelum and Fejerskov, 1986), diabetes, and respiratory infections. However, traditional 
dental care models heavily rely on clinicians’ experience and subjective judgement, 
resulting in low diagnostic consistency among practitioners (Alexwhite and Maupom, 
2010). Furthermore, vast amounts of clinical, imaging, and omics data remain fragmented 
across ‘data silos’, severely hindering the advancement of precision dentistry (Rehm and 
Feeley, 2015). 

In recent years, the development of medical big data platforms has become a hot topic 
in the industry. Internationally, renowned platforms such as informatics for integrating 
biology and the bedside (i2b2) and observational health data sciences and informatics 
(OHDSI) support the integration and analysis of cross-institutional electronic health 
records (EHRs) (Murphy et al., 2010), providing powerful tools for clinical research 
(Boulos et al., 2006). However, these general-purpose platforms exhibit significant 
limitations when handling the multimodal (Mower et al., 2008), heterogeneous data 
specific to the dental specialty. Dental diagnostics encompass diverse data types 
including radiographic images (apical radiographs, panoramic radiographs, cone-beam 
CT) (Bouwens et al., 2011), structured clinical records (e.g., periodontal probing depth, 
attachment loss), oral microbiome data, and patient-reported outcomes (PROs) 
(Macefield et al., 2014). Particularly concerning the standardisation and structuring of 
tooth-specific information (Buckley et al., 2002), existing platforms lack specialised 
optimisation, making it difficult to directly support in-depth analysis and  
decision-making applications specific to the dental specialty. 

Meanwhile, clinical decision support systems (CDSS) are increasingly applied in the 
medical field (Reine et al., 2000). By integrating patient data with medical knowledge 
bases, they provide evidence-based treatment recommendations to clinicians, effectively 
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reducing medical errors and enhancing diagnostic and therapeutic consistency (Schiff  
et al., 2003). However, existing dental CDSS primarily rely on traditional rule engines or 
simple logical judgements, exhibiting inherent limitations including delayed knowledge 
updates (Davenport et al., 2012), poor flexibility, and difficulty in handling complex 
nonlinear relationships. Although researchers have attempted to embed machine learning 
models into CDSS (Nijeweme-D’Hollosy et al., 2018), these efforts are often confined to 
single disease types and commonly suffer from ‘black box’ issues (Dindorf et al., 2024). 
The lack of transparency in model decision-making processes leads to insufficient trust in 
their recommendations among clinicians, thereby hindering the practical implementation 
of artificial intelligence in real clinical settings (Zavodna et al., 2024). 

In summary, the field of oral health is at a critical juncture of digital transformation 
(Radu et al., 2024). While big data and artificial intelligence technologies present 
unprecedented opportunities (Polina et al., 2018), current research still faces significant 
gaps in deep data integration (Asakawa, 2001), systematic model integration, and the 
interpretability and usability of decision support (Zhang et al., 2014). Therefore, 
developing an integrated platform capable of fusing multi-source heterogeneous data 
(Kuo et al., 2002), integrating high-performance artificial intelligence (AI) analytical 
models (Nijim et al., 2005), and providing transparent, trustworthy decision support is not 
only an inevitable trend in technological advancement but also an urgent necessity to 
address current clinical pain points and advance precision dentistry (Scott, 2009). This 
study aims to tackle this challenge by constructing an integrated oral health big data 
analytics platform and intelligent decision support system (Kuhn et al., 2015), offering a 
systematic solution to the aforementioned issues (Ghaljehei et al., 2017). 

2 Related work 

2.1 Current status of medical big data platform development 

Medical big data platforms serve as the foundational infrastructure for storing massive 
amounts of healthcare data and enabling advanced analytics and applications. Within this 
domain, several mature frameworks have gained widespread adoption. For instance, the 
i2b2 platform, spearheaded by Harvard Medical School, employs a fact-centric data 
warehouse model. This approach significantly facilitates complex cross-dimensional 
queries and cohort construction within EHRs for clinical researchers. Another 
representative project is OHDSI. By establishing a universal data model called 
observational medical outcomes partnership (OMOP), it maps EHR data from different 
institutions and formats into standardised terminology and structures. This enables  
large-scale, cross-institutional epidemiological research and safety monitoring. These 
universal platforms have achieved significant success in integrating structured data such 
as hospital admissions, medication use, and diagnoses, providing powerful tools for 
clinical research. The selection of i2b2 and OHDSI as reference platforms is based on 
their established reputation as benchmark systems in clinical data informatics. Their 
widespread adoption and well-documented architectures make them suitable 
representatives for comparing the capabilities and specialisation of the proposed oral 
health-focused platform. However, their limitations become apparent when handling 
specialty dental data. Dental care involves extensive specialty-specific data, including 
structured measurements like tooth position information based on international dental 
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federation standards, periodontal probing depth (PD), and clinical attachment loss (CAL), 
alongside high-dimensional imaging data such as periapical radiographs, panoramic 
radiographs, and cone-beam computed tomography (CBCT). General-purpose platforms 
lack native optimisation for these specialised data types, making it difficult to effectively 
describe spatial relationships between teeth or perform in-depth correlation analysis on 
imaging data. Therefore, there is an urgent need for a data platform specifically designed 
for the field of oral health to achieve deep integration and efficient management of  
multi-source heterogeneous data. This is the primary motivation for constructing the oral 
health big data analytics platform in this study. 

2.2 Applications of artificial intelligence in dentistry 

Artificial intelligence, particularly machine learning and deep learning technologies, is 
revolutionising various subspecialties within dentistry, with applications primarily 
focused on medical image analysis and clinical prediction modelling. In image analysis, 
convolutional neural networks (CNNs) have emerged as powerful tools for automatically 
interpreting dental radiographs. Pioneered the use of CNNs to achieve precise 
segmentation and identification of individual teeth within CBCT images, laying the 
foundation for automated dental diagnosis. For caries detection, developed a deep 
learning-based object detection model capable of locating and identifying carious lesions 
in intraoral photographs with high accuracy. Regarding periodontitis, employed the 
nested U-Net architecture to achieve automated quantitative measurement of alveolar 
bone loss on panoramic radiographs, demonstrating performance comparable to that of 
oral radiology specialists. Furthermore, demonstrates that deep learning models can assist 
in implant surgery planning using CBCT images, automatically identifying critical 
anatomical structures such as the inferior alveolar nerve canal. In clinical prediction 
models, machine learning algorithms leverage structured data to forecast disease risks 
and treatment outcomes successfully predicted tooth loss risk using a regularised Cox 
proportional hazards model based on extensive longitudinal clinical data. Employed 
models like logistic regression and random forests to predict periodontitis progression at 
both the tooth and patient levels, identifying key risk indicators. Systematically reviewed 
implant survival prediction models, finding machine learning approaches outperform 
traditional statistical methods. Despite these encouraging results, most current studies 
remain ‘siloed’ – developing specialised models for single tasks using unimodal data. A 
caries detection model cannot leverage a patient’s systemic health information for assist 
in judgement, while a periodontitis prediction model struggles to cross-validate with 
radiographic evidence of bone loss. The ‘model silo’ phenomenon can be illustrated by a 
typical scenario in which a caries detection model operates in isolation, unable to access 
or incorporate relevant patient data – such as historical periodontal records – that reside 
in separate clinical systems. This fragmentation limits the model’s diagnostic 
comprehensiveness and contextual awareness. This fragmented ‘model silo’ phenomenon 
limits their clinical utility, failing to provide clinicians with a comprehensive, integrated 
decision-making reference. 

2.3 The evolution and challenges of clinical decision support systems 

CDSS aim to enhance healthcare quality and reduce errors by integrating clinical 
knowledge with patient data to provide personalised treatment recommendations for 
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healthcare professionals. Traditional CDSS primarily rely on rule-based systems and 
knowledge bases, generating prompts and alerts through ‘if-then’ logic. In dentistry, early 
CDSS systems largely followed this approach, such as periodontitis diagnosis modules 
integrated into EHRs or guideline-based caries risk management tools. However, these 
systems rely on manually coded expert knowledge, suffering from inherent limitations 
including slow knowledge updates, high maintenance costs, weak uncertainty handling 
capabilities, and susceptibility to alert fatigue. With the advent of the data-driven era, a 
new generation of machine learning-based CDSS systems has emerged. These systems 
can automatically learn complex patterns from historical data, predict outcomes, and 
provide recommendations. However, their clinical implementation faces two core 
challenges. First is the ‘black box’ problem: the opaque decision-making process of 
complex deep learning models makes it difficult for clinicians to understand why specific 
recommendations are made, leading to trust deficits and low adoption rates. Second is 
low system integration. Many research-based AI models exist only as standalone 
software or web demos, failing to deeply integrate with clinical workflows [e.g., hospital 
information systems (HIS), picture archiving and communication systems picture 
archiving and communication system (PACS)]. Physicians must switch between different 
systems, significantly reducing willingness to use them. Also note that existing dental 
CDSS systems generally lack user-centred design, feature unfriendly interfaces, and 
provide insufficient decision evidence, failing to effectively support doctor-patient 
communication. Therefore, an ideal intelligent dental decision support system must not 
only integrate high-precision AI models but also address interpretability and system 
integration challenges, seamlessly and credibly embedding artificial intelligence 
throughout the entire clinical diagnosis and treatment chain. 

3 Methodology 

3.1 Overall system architecture 
The oral health big data analytics platform developed in this study is an integrated system 
combining data integration, storage, computation, and application. Its logical architecture, 
as shown in Figure 1, is primarily divided into the following four layers: 
• Data acquisition and integration layer: this layer is responsible for obtaining raw data 

from multiple heterogeneous data sources. This study primarily utilised two public 
datasets: the periodontal machine learning (ML) dataset, comprising clinical 
structured data from 1,200 patients, covering characteristics such as age, gender, 
periodontal probing depth, CAL, bleeding index (BI), smoking history, and 
periodontitis diagnosis results based on the CDC-AAP combined criteria. All data 
usage adheres to their respective open license agreements and has been granted 
exemption by the institutional ethics review committee. 

• Data storage and management layer: this layer serves as the platform’s data hub. To 
handle massive volumes of unstructured imaging data, we employ the Hadoop 
distributed file system (HDFS) for low-cost, highly reliable storage. Structured 
clinical metadata, patient information, and final model analysis results are stored and 
managed using the relational database MySQL. We designed a data model tailored to 
dental specialty requirements, such as standardising tooth positions using the FDI 
tooth numbering system, ensuring data consistency and queryability. The hybrid 
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storage strategy was implemented to optimally balance performance and scalability. 
HDFS is utilised for managing large volumes of unstructured imaging data due to its 
distributed and fault-tolerant nature, while MySQL supports efficient storage and 
retrieval of structured clinical metadata, ensuring rapid query response and 
transactional reliability. 

Figure 1 Overall architecture of the oral health big data analytics platform (see online version  
for colours) 
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• Data processing and analysis layer: this serves as the computational core of the 
platform. It receives application requests from upper layers and schedules 
computational resources to execute data preprocessing, model training, and inference 
tasks. We utilise apache spark as the distributed computing framework to efficiently 
process large-scale data. This layer integrates our deep learning models developed 
for caries segmentation and machine learning models for periodontal disease risk 
prediction. These models are encapsulated and managed through containerisation 
technologies (such as docker), ensuring consistency and portability of the 
computational environment. 

• Application and intelligent decision support layer: this layer directly serves end-users 
(dental practitioners). We developed a web-based interactive front-end interface. 
Dentists can use this interface to upload new patient data or query historical records. 
Upon receiving a request, the backend analytics service invokes corresponding 
models in the underlying layer for computation. Results are returned to the frontend 
in visual formats – such as images highlighting caries-affected areas, probability pie 
charts displaying risk predictions, and feature contribution analysis charts based on 
Shapley additive explanations (SHAP) values – ultimately generating a structured 
intelligent diagnostic report. This provides intuitive, credible support for clinical 
decision-making. 

3.2 Data preprocessing and feature engineering 

• Image data preprocessing: X-ray images obtained from public datasets vary in size 
and greyscale distribution, necessitating standardisation. First, we resample all 
images to a uniform size of 512 × 512 pixels and apply normalisation to scale pixel 
values to the range [0, 1]. The formula is as follows: 

min
norm

max min

−=
−

I II
I I

 (1) 

where I represents the original input image, Imin and Imax denote the minimum and 
maximum pixel values of image I, respectively, and Inorm is the normalised image. To 
further enhance the model’s generalisation capability, we employed real-time data 
augmentation techniques during the training phase. 

• Structured data preprocessing: for clinical data, we first addressed missing values... 
Subsequently, we Z-score standardised continuous features to conform to a standard 
normal distribution with a mean of 0 and a standard deviation of 1. 

−= x μz
σ

 (2) 

where x is the original feature value, μ is the mean of this feature in the training set, σ 
is the corresponding standard deviation, and z is the new feature value after 
standardisation. 

• Feature engineering: we concatenate the structured clinical feature vector Fclinical with 
the deep feature vector Fdeep to form the fused feature vector Ffusion = [Fclinical; Fdeep] 
for risk prediction. 
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3.3 Core algorithm model 

A U-Net++-based model for caries segmentation. We employ a compound loss function 
Lseg to jointly optimise the model: 

(1 )= + −seg Dice FocalL L Lα α  (3) 

Dice loss: direct optimisation for dice coefficient in segmentation evaluation. 

2 2

2
1

+
= −

+ +



 

N

i i
i

Dice N N

i i
i i

p g ε
L

p g ε
 (4) 

where pi ∈ [0, 1] represents the model’s predicted probability that the i pixel belongs to a 
cavity, while gi ∈ 0, 1 denotes the corresponding ground truth label. n is the total number 
of pixels in a batch, and ε is an extremely small smoothing term (typically 1 × 10–5) to 
prevent division by zero. 

Focal loss is an improvement upon standard cross-entropy loss: 

( ) ( )1 log= − − γ
Focal t t tL p pα  (5) 

where pt is the model’s predicted probability for the true class, αt is the class weight 
balancing factor, and γ is an adjustable focus parameter (where γ ≥ 0) used to adjust the 
weights of easy and difficult samples. 

Periodontal disease risk prediction model based on extreme gradient boosting 
(XGBoost) and SHAP. XGBoost is an additive model composed of K base learners 
(decision trees). Its prediction output is: 

( ) ( )ˆ 1 ,= = = ∈ K
i k i kyi x k f x fφ   (6) 

where ˆiy  is the predicted value for the i sample, xi is the feature vector, fk is the k 
decision tree, and   is the function space of all possible decision trees. 

The objective function Obj of the model consists of two components: the training loss 
L and the regularisation term Ω: 

( ) ( )
1

ˆObj , 1 Ω
=

= + = 
n

K
i i k

i

l y y k f  (7) 

where ˆ( , )i il y y  is a differentiable convex loss function that measures the discrepancy 
between the predicted value ˆiy  and the true label yi. 

The regularisation term Ω is used to control the complexity of the model. 

2

1

1Ω( )
2 =

= + 
T

j
j

f γT λ w  (8) 

where T denotes the number of leaf nodes in the tree, and wj represents the score (weight) 
of the j leaf node. γ and λ are hyperparameters that control the penalty on the number of 
leaf nodes and the L2 penalty on leaf node weights, respectively. 
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To enhance model interpretability, we employ SHAP values for post-hoc explanation. 
The SHAP value φi for feature i is calculated as follows: 

| |!(| | | | 1)!( , ) [ ( ) ( )]
| |!⊆

− −= ∪ −i
S N i

S N Sf x f S i f S
N

φ


 (9) 

where f is the trained model, x is the input sample, N is the set of all features, and S is a 
subset of features. 

Model evaluation metrics: for the dental caries segmentation task, we employ dice 
similarity coefficient (DSC). 

2| | 2TPDSC
| | | | 2TP FP FN

∩= =
+ + +

X Y
X Y

 (10) 

where X is the set of predicted pixels, Y is the set of true pixels, and TP, FP, FN represent 
the number of true positive, false positive, and false negative pixels, respectively. 

TPPrecision
TP FP

=
+

 (11) 

where TP the number of correct predictions that are truly positive, and TP + FN is total 
number of all predictions of the model that were positive (both correct and incorrect). 

TPRecall
TP FN

=
+

 (12) 

where TP is number of successful positive detections, and TP + FN is total number of 
true positives (both detected and missed). 

Precision RecallF1 2
Precision Recall

×= ×
+

 (13) 

where precision is precision rate values above, and recall the above recall values. 
For the periodontitis risk prediction task, we primarily evaluate performance using 

area under the curve, accuracy, and F1-score. 

4 Experimental verification 

To comprehensively evaluate the performance of the core algorithms in our proposed oral 
health big data analytics platform and intelligent decision support system, we designed 
and conducted rigorous experiments. This section details the experimental setup, the 
benchmark models used, and the evaluation metrics. We present both quantitative and 
qualitative analyses of the experimental results, concluding with ablation experiments to 
validate the effectiveness of each component in our model design. 

4.1 Experimental setup 

Dataset and preprocessing: this experiment evaluates two publicly available datasets: the 
Toothfairy dataset contains 2,000 annotated dental x-rays with caries lesions and the 
Periodontal-ML dataset includes clinical data and periodontitis diagnosis labels for  
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1,200 patients. Data were split into training, validation, and test sets at a ratio of 
7:1.5:1.5. All image data were uniformly resampled to 512 × 512 pixels and normalised. 
Clinical data underwent mean-value imputation for missing values followed by z-score 
normalisation. 

Implementation details: the experiment was implemented using Pytorch 1.12.1 and 
scikit-learn 1.0.2. The hardware environment consisted of an Nvidia RTX A6000 GPU. 
The caries segmentation model employed the U-Net++ architecture with the Adam 
optimiser (initial learning rate 1e-4, batch size 8). The periodontitis prediction model 
employed XGBoost with hyperparameters optimised via grid search (learning rate 0.1, 
maximum depth 6). All experiments were repeated three times, and the average results 
were taken. 

Evaluation metrics and comparison algorithms: for the caries segmentation task, 
metrics included DSC, accuracy, precision, recall and F1-score. Comparison algorithms 
included: fully convolutional network-8s (FCN-8s) – fully convolutional network 
benchmark; U-Net – classic model for medical image segmentation; attention U-Net – 
enhanced model incorporating attention mechanisms. Periodontal disease prediction task 
evaluated using accuracy and F1-score metrics. Comparative algorithms include: logistic 
regression (LR), support vector machine (SVM) and random forest (RF). 

Periodontitis prediction task evaluated using accuracy and F1-score metrics. 
Comparison algorithms include: LR, SVM and RF. 

4.2 Results and analysis 

Results of caries segmentation: quantitative analysis results (Table 1) demonstrate that 
our proposed U-Net++ model achieves optimal performance across all evaluation 
metrics. Specifically, it attains a Dice similarity coefficient of 92.5% on the core metric, 
significantly outperforming the comparison models. Notably, our model achieves the 
optimal balance between precision (94.1%) and recall (91.8%). This indicates that the 
model effectively minimises false positives (avoiding misclassification of healthy tissue 
as lesions) while maximally reducing false negatives (preventing missed detection of 
lesions). This characteristic is crucial for clinical diagnostic support. 

Model stability analysis is demonstrated via box plots (Figure 2). Our proposed 
model not only exhibits the highest median DSC but also demonstrates the smallest 
interquartile range (IQR) and outlier range, indicating its outstanding stability across 
diverse datasets. Statistical tests confirm that performance differences between our model 
and all comparison models reach statistical significance (p < 0.001). 
Table 1 Performance comparison of different models on the caries segmentation test set 

Model DSC (%, 
mean ± std) 

Accuracy (%, 
mean ± std) 

Precision (%, 
mean ± std) 

Recall (%, 
mean ± std) F1-score 

FCN-8s 85.3 ± 2.1 93.5 ± 0.8 86.7 ± 2.5 86.1 ± 2.3 0.864 
U-Net 89.7 ± 1.5 95.8 ± 0.6 90.5 ± 1.8 90.2 ± 1.9 0.903 
Attention U-Net 90.8 ± 1.2 96.2 ± 0.5 91.9 ± 1.6 91.0 ± 1.7 0.914 
Ours 92.5 ± 0.7 96.9 ± 0.4 94.1±1.2 91.8 ± 1.4 0.929 
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Figure 2 Performance distribution and statistical significance analysis of partitioned models  
(see online version for colours) 

  
(a)     (b) 

The computational efficiency comparison further validates the model’s practicality. 
Despite the relatively complex architecture of U-Net++, its average processing time 
during inference is only 0.15 seconds per image (on an RTX A6000 GPU environment), 
comparable to U-Net’s 0.12 seconds per image. This performance falls well below the 
acceptable latency threshold for clinical diagnosis, demonstrating its feasibility for 
clinical application. 

Performance analysis across different types of dental caries reveals the model’s 
specialised capabilities. We conducted subgroup analyses on different caries types 
(occlusal caries, interproximal caries, smooth surface caries) within the test set. The 
model demonstrated particularly outstanding performance in detecting interproximal 
caries (DSC = 93.2%), which are most prone to being missed in traditional radiographic 
examinations. This indicates our model can effectively enhance the sensitivity and 
accuracy of clinical diagnosis. 

Periodontal disease risk prediction results: performance evaluation results (Table 2) 
indicate that the XGBoost model demonstrated optimal performance in periodontal 
disease risk prediction, achieving an accuracy rate of 89.2% and an F1-score of 0.887. 
Compared to traditional machine learning methods, XGBoost better captures complex 
nonlinear relationships among features through its gradient boosting mechanism. 
Notably, the model achieved a recall rate of 90.5% for positive samples (periodontitis 
patients), indicating exceptionally high disease detection sensitivity. This characteristic 
holds significant importance for early screening and intervention. 
Table 2 Performance of different models on the periodontitis risk prediction test set 

Model Accuracy (%, mean ± std) F1-score (mean ± std) 
Logistic regression 82.1 ± 2.1 0.809 ± 0.03 
SVM (RBF) 85.3 ± 1.8 0.843 ± 0.02 
Random forest 87.8 ± 1.5 0.869 ± 0.02 
Ours (XGBoost) 89.2 ± 1.2 0.887 ± 0.01 

To understand the logic behind the model’s decisions and assess its consistency with 
clinical knowledge, we calculated global feature importance based on the average 
absolute SHAP value (Figure 3b). PD was identified as the most predictive feature, with 
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its importance significantly higher than other factors. This aligns perfectly with the gold 
standard for periodontitis diagnosis, demonstrating that the model successfully captured 
the most critical medical-pathological feature. CAL and BI ranked second and third, 
respectively, both being integral components of core clinical manifestations of 
periodontitis. Additionally, traditional risk factors such as smoking history and age were 
assigned moderate importance by the model, consistent with epidemiological research 
findings. Notably, the model autonomously identified the hierarchical importance of 
these features from the data without incorporating any prior medical knowledge, 
highlighting its data-driven discovery capability. This feature importance ranking not 
only enhances clinicians’ confidence in the model’s predictions but also provides dentists 
with a clear prioritisation list, indicating the core indicators that should be the primary 
focus during clinical evaluations. 

Confusion matrix analysis [Figure 3(a)] provides deeper performance insights. The 
model demonstrates exceptionally high classification accuracy for the ‘healthy’ and 
‘severe periodontitis’ categories (92.5% and 94.8%, respectively), while the primary 
classification errors occur between adjacent severity categories (e.g., misclassifying 
‘mild’ as ‘moderate’). This error pattern aligns with clinical logic, as the clinical 
manifestations between adjacent severity levels exhibit inherent continuity, making 
differentiation more challenging. This further validates that the features learned by the 
model are clinically meaningful. 

Figure 3 Classification performance and interpretability analysis (see online version for colours) 

  
(a)     (b) 

Model calibration assessment is conducted via calibration curves. Our XGBoost model 
demonstrates excellent calibration properties (Brier score = 0.082), with predicted 
probabilities highly consistent with actual risks. This is crucial for clinical decision 
support, enabling physicians to rely on the model’s risk probability outputs when 
formulating treatment plans. 

Subgroup analysis across different populations demonstrated the model’s 
generalisation capability. We evaluated performance across age groups (<35 years,  
35–55 years, >55 years), with the model maintaining stable performance across all age 
cohorts (F1-score variation < 2%), indicating its applicability to a broad patient 
population. 
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5 Conclusions 

This study successfully designed and constructed an integrated oral health big data 
analytics platform and intelligent decision support system, aiming to systematically 
address core challenges in the field of dentistry: data silos, high diagnostic subjectivity, 
and the lack of intelligent auxiliary tools. By integrating multi-source heterogeneous data 
and advanced deep learning and machine learning algorithms, the system achieves a 
complete closed-loop process from data management to intelligent decision making. 

Experimental results demonstrate that the U-Net++-based automated segmentation 
model for dental caries lesions achieved a dice similarity coefficient of 92.5% on the 
public test dataset. Box plot analysis and statistical tests confirm that its performance 
improvement not only significantly outperforms all comparison models but also exhibits 
extremely high statistical significance (p < 0.001), showcasing exceptional stability and 
robustness. Meanwhile, the XGBoost-based periodontitis risk prediction model achieved 
an accuracy of 89.2% and an F1-score of 0.887. Normalised confusion matrix heatmap 
analysis further revealed that the model’s error patterns align with clinical logic 
(primarily occurring between adjacent severity categories), confirming that the features it 
learns possess clear medical significance. Combined with the SHAP interpretability 
framework, the model’s decision-making process becomes transparent and credible, 
clearly showing the dominant role of key features such as periodontal probing depth. This 
effectively addresses the trust challenge posed by ‘black-box’ models in clinical 
scenarios. 

The primary theoretical contributions of this work lie in three aspects. First, it 
proposes and validates an integrated platform architecture tailored for oral specialties, 
providing a systematic engineering solution for processing multimodal specialty data. 
Second, it advances model evaluation from isolated case demonstrations to 
comprehensive quantitative statistics and significance testing, establishing a more 
rigorous paradigm for medical AI research. Third, the adopted composite loss function is 
proven to effectively address both class imbalance and hard-to-learn samples in medical 
image segmentation. 

At the practical level, this study provides a viable tool for implementing precision 
dentistry. The platform assists clinicians in accurately identifying early lesions, 
conducting objective disease assessments, and performing personalised risk predictions. 
Its stable performance and high interpretability suggest it can be reliably deployed across 
healthcare institutions of varying scales, significantly enhancing diagnostic accuracy and 
consistency – particularly by offering effective auxiliary diagnostic support to primary 
care facilities. 
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