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Abstract: Oral diseases pose a global health challenge characterised by highly
subjective diagnosis and a lack of intelligent decision-making tools, often
exacerbated by fragmented data silos. This study aims to construct a
comprehensive big data analytics platform and intelligent decision support
system for oral health, enabling data-driven precision diagnosis and treatment
through a unified four-layer architecture. The platform integrates multi-source
heterogeneous data and employs advanced deep learning models for accurate
caries segmentation and periodontitis risk prediction. Experiments on public
datasets demonstrate a dice coefficient of 92.5% for caries segmentation and an
area under the receiver operating characteristic curve value of 0.94 for
periodontitis risk prediction, with results showing statistical significance. The
system significantly enhances the automation and interpretability of oral
disease analysis, providing a reliable and efficient tool for clinical diagnostic
assistance and facilitating personalised treatment planning.
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1 Introduction

With the deepening implementation of the Healthy China 2030 plan and the accelerated
advancement of digital healthcare strategies (Roth, 2013), big data and artificial
intelligence technologies are profoundly transforming the service models and
development pathways of modern healthcare (Amer et al., 2024). Oral health, as a vital
component of overall well-being (Rein et al., 2004), presents a complex disease
spectrum, high prevalence rates, and continuously growing diagnostic and treatment
demands, making it a global public health challenge (Stein et al., 2010). The development
of the proposed platform directly supports the ‘Healthy China 2030’ strategy by
advancing digital health innovation. It exemplifies how data-driven technologies can be
leveraged to enhance preventive care and precision diagnosis in oral health, thereby
contributing to the initiative’s broader goal of elevating public health standards through
technological integration. According to the world health organisation, oral diseases affect
nearly 3.5 billion people worldwide (Ealla et al., 2024). Untreated dental caries and
severe periodontitis not only lead to tooth loss and impaired chewing function but are
also significantly associated with systemic diseases such as cardiovascular disease
(Baelum and Fejerskov, 1986), diabetes, and respiratory infections. However, traditional
dental care models heavily rely on clinicians’ experience and subjective judgement,
resulting in low diagnostic consistency among practitioners (Alexwhite and Maupom,
2010). Furthermore, vast amounts of clinical, imaging, and omics data remain fragmented
across ‘data silos’, severely hindering the advancement of precision dentistry (Rehm and
Feeley, 2015).

In recent years, the development of medical big data platforms has become a hot topic
in the industry. Internationally, renowned platforms such as informatics for integrating
biology and the bedside (i2b2) and observational health data sciences and informatics
(OHDSI) support the integration and analysis of cross-institutional electronic health
records (EHRs) (Murphy et al., 2010), providing powerful tools for clinical research
(Boulos et al., 2006). However, these general-purpose platforms exhibit significant
limitations when handling the multimodal (Mower et al., 2008), heterogeneous data
specific to the dental specialty. Dental diagnostics encompass diverse data types
including radiographic images (apical radiographs, panoramic radiographs, cone-beam
CT) (Bouwens et al., 2011), structured clinical records (e.g., periodontal probing depth,
attachment loss), oral microbiome data, and patient-reported outcomes (PROs)
(Macefield et al., 2014). Particularly concerning the standardisation and structuring of
tooth-specific information (Buckley et al., 2002), existing platforms lack specialised
optimisation, making it difficult to directly support in-depth analysis and
decision-making applications specific to the dental specialty.

Meanwhile, clinical decision support systems (CDSS) are increasingly applied in the
medical field (Reine et al., 2000). By integrating patient data with medical knowledge
bases, they provide evidence-based treatment recommendations to clinicians, effectively
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reducing medical errors and enhancing diagnostic and therapeutic consistency (Schiff
et al., 2003). However, existing dental CDSS primarily rely on traditional rule engines or
simple logical judgements, exhibiting inherent limitations including delayed knowledge
updates (Davenport et al., 2012), poor flexibility, and difficulty in handling complex
nonlinear relationships. Although researchers have attempted to embed machine learning
models into CDSS (Nijeweme-D’Hollosy et al., 2018), these efforts are often confined to
single disease types and commonly suffer from ‘black box’ issues (Dindorf et al., 2024).
The lack of transparency in model decision-making processes leads to insufficient trust in
their recommendations among clinicians, thereby hindering the practical implementation
of artificial intelligence in real clinical settings (Zavodna et al., 2024).

In summary, the field of oral health is at a critical juncture of digital transformation
(Radu et al.,, 2024). While big data and artificial intelligence technologies present
unprecedented opportunities (Polina et al., 2018), current research still faces significant
gaps in deep data integration (Asakawa, 2001), systematic model integration, and the
interpretability and usability of decision support (Zhang et al., 2014). Therefore,
developing an integrated platform capable of fusing multi-source heterogeneous data
(Kuo et al., 2002), integrating high-performance artificial intelligence (Al) analytical
models (Nijim et al., 2005), and providing transparent, trustworthy decision support is not
only an inevitable trend in technological advancement but also an urgent necessity to
address current clinical pain points and advance precision dentistry (Scott, 2009). This
study aims to tackle this challenge by constructing an integrated oral health big data
analytics platform and intelligent decision support system (Kuhn et al., 2015), offering a
systematic solution to the aforementioned issues (Ghaljehei et al., 2017).

2 Related work

2.1 Current status of medical big data platform development

Medical big data platforms serve as the foundational infrastructure for storing massive
amounts of healthcare data and enabling advanced analytics and applications. Within this
domain, several mature frameworks have gained widespread adoption. For instance, the
i2b2 platform, spearheaded by Harvard Medical School, employs a fact-centric data
warehouse model. This approach significantly facilitates complex cross-dimensional
queries and cohort construction within EHRs for clinical researchers. Another
representative project is OHDSI. By establishing a universal data model called
observational medical outcomes partnership (OMOP), it maps EHR data from different
institutions and formats into standardised terminology and structures. This enables
large-scale, cross-institutional epidemiological research and safety monitoring. These
universal platforms have achieved significant success in integrating structured data such
as hospital admissions, medication use, and diagnoses, providing powerful tools for
clinical research. The selection of i2b2 and OHDSI as reference platforms is based on
their established reputation as benchmark systems in clinical data informatics. Their
widespread adoption and well-documented architectures make them suitable
representatives for comparing the capabilities and specialisation of the proposed oral
health-focused platform. However, their limitations become apparent when handling
specialty dental data. Dental care involves extensive specialty-specific data, including
structured measurements like tooth position information based on international dental
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federation standards, periodontal probing depth (PD), and clinical attachment loss (CAL),
alongside high-dimensional imaging data such as periapical radiographs, panoramic
radiographs, and cone-beam computed tomography (CBCT). General-purpose platforms
lack native optimisation for these specialised data types, making it difficult to effectively
describe spatial relationships between teeth or perform in-depth correlation analysis on
imaging data. Therefore, there is an urgent need for a data platform specifically designed
for the field of oral health to achieve deep integration and efficient management of
multi-source heterogeneous data. This is the primary motivation for constructing the oral
health big data analytics platform in this study.

2.2 Applications of artificial intelligence in dentistry

Artificial intelligence, particularly machine learning and deep learning technologies, is
revolutionising various subspecialties within dentistry, with applications primarily
focused on medical image analysis and clinical prediction modelling. In image analysis,
convolutional neural networks (CNNs) have emerged as powerful tools for automatically
interpreting dental radiographs. Pioneered the use of CNNs to achieve precise
segmentation and identification of individual teeth within CBCT images, laying the
foundation for automated dental diagnosis. For caries detection, developed a deep
learning-based object detection model capable of locating and identifying carious lesions
in intraoral photographs with high accuracy. Regarding periodontitis, employed the
nested U-Net architecture to achieve automated quantitative measurement of alveolar
bone loss on panoramic radiographs, demonstrating performance comparable to that of
oral radiology specialists. Furthermore, demonstrates that deep learning models can assist
in implant surgery planning using CBCT images, automatically identifying critical
anatomical structures such as the inferior alveolar nerve canal. In clinical prediction
models, machine learning algorithms leverage structured data to forecast disease risks
and treatment outcomes successfully predicted tooth loss risk using a regularised Cox
proportional hazards model based on extensive longitudinal clinical data. Employed
models like logistic regression and random forests to predict periodontitis progression at
both the tooth and patient levels, identifying key risk indicators. Systematically reviewed
implant survival prediction models, finding machine learning approaches outperform
traditional statistical methods. Despite these encouraging results, most current studies
remain ‘siloed’ — developing specialised models for single tasks using unimodal data. A
caries detection model cannot leverage a patient’s systemic health information for assist
in judgement, while a periodontitis prediction model struggles to cross-validate with
radiographic evidence of bone loss. The ‘model silo’ phenomenon can be illustrated by a
typical scenario in which a caries detection model operates in isolation, unable to access
or incorporate relevant patient data — such as historical periodontal records — that reside
in separate clinical systems. This fragmentation limits the model’s diagnostic
comprehensiveness and contextual awareness. This fragmented ‘model silo’ phenomenon
limits their clinical utility, failing to provide clinicians with a comprehensive, integrated
decision-making reference.

2.3 The evolution and challenges of clinical decision support systems

CDSS aim to enhance healthcare quality and reduce errors by integrating clinical
knowledge with patient data to provide personalised treatment recommendations for
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healthcare professionals. Traditional CDSS primarily rely on rule-based systems and
knowledge bases, generating prompts and alerts through ‘if-then’ logic. In dentistry, early
CDSS systems largely followed this approach, such as periodontitis diagnosis modules
integrated into EHRs or guideline-based caries risk management tools. However, these
systems rely on manually coded expert knowledge, suffering from inherent limitations
including slow knowledge updates, high maintenance costs, weak uncertainty handling
capabilities, and susceptibility to alert fatigue. With the advent of the data-driven era, a
new generation of machine learning-based CDSS systems has emerged. These systems
can automatically learn complex patterns from historical data, predict outcomes, and
provide recommendations. However, their clinical implementation faces two core
challenges. First is the ‘black box’ problem: the opaque decision-making process of
complex deep learning models makes it difficult for clinicians to understand why specific
recommendations are made, leading to trust deficits and low adoption rates. Second is
low system integration. Many research-based Al models exist only as standalone
software or web demos, failing to deeply integrate with clinical workflows [e.g., hospital
information systems (HIS), picture archiving and communication systems picture
archiving and communication system (PACS)]. Physicians must switch between different
systems, significantly reducing willingness to use them. Also note that existing dental
CDSS systems generally lack user-centred design, feature unfriendly interfaces, and
provide insufficient decision evidence, failing to effectively support doctor-patient
communication. Therefore, an ideal intelligent dental decision support system must not
only integrate high-precision Al models but also address interpretability and system
integration challenges, seamlessly and credibly embedding artificial intelligence
throughout the entire clinical diagnosis and treatment chain.

3 Methodology

3.1 Overall system architecture

The oral health big data analytics platform developed in this study is an integrated system
combining data integration, storage, computation, and application. Its logical architecture,
as shown in Figure 1, is primarily divided into the following four layers:

e Data acquisition and integration layer: this layer is responsible for obtaining raw data
from multiple heterogeneous data sources. This study primarily utilised two public
datasets: the periodontal machine learning (ML) dataset, comprising clinical
structured data from 1,200 patients, covering characteristics such as age, gender,
periodontal probing depth, CAL, bleeding index (BI), smoking history, and
periodontitis diagnosis results based on the CDC-AAP combined criteria. All data
usage adheres to their respective open license agreements and has been granted
exemption by the institutional ethics review committee.

e Data storage and management layer: this layer serves as the platform’s data hub. To
handle massive volumes of unstructured imaging data, we employ the Hadoop
distributed file system (HDFS) for low-cost, highly reliable storage. Structured
clinical metadata, patient information, and final model analysis results are stored and
managed using the relational database MySQL. We designed a data model tailored to
dental specialty requirements, such as standardising tooth positions using the FDI
tooth numbering system, ensuring data consistency and queryability. The hybrid
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storage strategy was implemented to optimally balance performance and scalability.
HDFS is utilised for managing large volumes of unstructured imaging data due to its
distributed and fault-tolerant nature, while MySQL supports efficient storage and
retrieval of structured clinical metadata, ensuring rapid query response and
transactional reliability.

Figure 1 Overall architecture of the oral health big data analytics platform (see online version
for colours)
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Data processing and analysis layer: this serves as the computational core of the
platform. It receives application requests from upper layers and schedules
computational resources to execute data preprocessing, model training, and inference
tasks. We utilise apache spark as the distributed computing framework to efficiently
process large-scale data. This layer integrates our deep learning models developed
for caries segmentation and machine learning models for periodontal disease risk
prediction. These models are encapsulated and managed through containerisation
technologies (such as docker), ensuring consistency and portability of the
computational environment.

Application and intelligent decision support layer: this layer directly serves end-users
(dental practitioners). We developed a web-based interactive front-end interface.
Dentists can use this interface to upload new patient data or query historical records.
Upon receiving a request, the backend analytics service invokes corresponding
models in the underlying layer for computation. Results are returned to the frontend
in visual formats — such as images highlighting caries-affected areas, probability pie
charts displaying risk predictions, and feature contribution analysis charts based on
Shapley additive explanations (SHAP) values — ultimately generating a structured
intelligent diagnostic report. This provides intuitive, credible support for clinical
decision-making.

3.2 Data preprocessing and feature engineering

Image data preprocessing: X-ray images obtained from public datasets vary in size
and greyscale distribution, necessitating standardisation. First, we resample all
images to a uniform size of 512 x 512 pixels and apply normalisation to scale pixel
values to the range [0, 1]. The formula is as follows:

-1 min

Inorm B — 1
Imax_lmin ( )

where [ represents the original input image, Imin and Inax denote the minimum and
maximum pixel values of image /, respectively, and /hom is the normalised image. To
further enhance the model’s generalisation capability, we employed real-time data
augmentation techniques during the training phase.

Structured data preprocessing: for clinical data, we first addressed missing values...
Subsequently, we Z-score standardised continuous features to conform to a standard
normal distribution with a mean of 0 and a standard deviation of 1.

x—

2=k @)
o

where x is the original feature value, u is the mean of this feature in the training set, o

is the corresponding standard deviation, and z is the new feature value after

standardisation.

Feature engineering: we concatenate the structured clinical feature vector Feinicas With
the deep feature vector Fie, to form the fused feature vector Fjision = [Feiinicat; Feep)
for risk prediction.
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3.3 Core algorithm model
A U-Net++-based model for caries segmentation. We employ a compound loss function
Lgg to jointly optimise the model:

Lseg = Lpjce + (1 - a)LFocal (3)

Dice loss: direct optimisation for dice coefficient in segmentation evaluation.

N
22p,-g,-+8

Y i N
pr+zg?+€

where p; € [0, 1] represents the model’s predicted probability that the i pixel belongs to a
cavity, while g; € 0, 1 denotes the corresponding ground truth label. # is the total number
of pixels in a batch, and ¢ is an extremely small smoothing term (typically 1 x 107) to
prevent division by zero.

Focal loss is an improvement upon standard cross-entropy loss:

LFoca/ =_0(t(1_pt )y log(pt) (5)

where p, is the model’s predicted probability for the true class, ¢ is the class weight
balancing factor, and y is an adjustable focus parameter (where y > 0) used to adjust the
weights of easy and difficult samples.

Periodontal disease risk prediction model based on extreme gradient boosting
(XGBoost) and SHAP. XGBoost is an additive model composed of K base learners
(decision trees). Its prediction output is:

Pi=g(x)=) k=15f(x), fieF (6)

where J; is the predicted value for the i sample, x; is the feature vector, f; is the k

LDice =1

“

decision tree, and F is the function space of all possible decision trees.
The objective function Obj of the model consists of two components: the training loss
L and the regularisation term Q:

Obj=Zl(yi,)7,-)+Zk:1KQ(fk) @
i=1

where I(y;, y;) is a differentiable convex loss function that measures the discrepancy
between the predicted value y; and the true label y;.
The regularisation term Q is used to control the complexity of the model.

1 T
Q(f) = yT+Ez; w2 (8)

where T denotes the number of leaf nodes in the tree, and w; represents the score (weight)
of the j leaf node. y and 4 are hyperparameters that control the penalty on the number of
leaf nodes and the L2 penalty on leaf node weights, respectively.
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To enhance model interpretability, we employ SHAP values for post-hoc explanation.
The SHAP value ¢, for feature i is calculated as follows:

o= BEMEBIZDY 50— sy ©)

ScN\i |N|'

where f'is the trained model, x is the input sample, N is the set of all features, and S is a
subset of features.

Model evaluation metrics: for the dental caries segmentation task, we employ dice
similarity coefficient (DSC).

c_2xov_ ot
IX|+|Y| 2TP+FP+FN

(10)

where X is the set of predicted pixels, Y is the set of true pixels, and TP, FP, FN represent
the number of true positive, false positive, and false negative pixels, respectively.

TP
TP +FP

Precision =

(11)

where TP the number of correct predictions that are truly positive, and 7P + FN is total
number of all predictions of the model that were positive (both correct and incorrect).
TP

Recall=—— (12)
TP +FN

where TP is number of successful positive detections, and 7P + FN is total number of
true positives (both detected and missed).
Precision x Recall

Fl=2x — (13)
Precision + Recall

where precision is precision rate values above, and recall the above recall values.
For the periodontitis risk prediction task, we primarily evaluate performance using
area under the curve, accuracy, and F1-score.

4 Experimental verification

To comprehensively evaluate the performance of the core algorithms in our proposed oral
health big data analytics platform and intelligent decision support system, we designed
and conducted rigorous experiments. This section details the experimental setup, the
benchmark models used, and the evaluation metrics. We present both quantitative and
qualitative analyses of the experimental results, concluding with ablation experiments to
validate the effectiveness of each component in our model design.

4.1 Experimental setup

Dataset and preprocessing: this experiment evaluates two publicly available datasets: the
Toothfairy dataset contains 2,000 annotated dental x-rays with caries lesions and the
Periodontal-ML dataset includes clinical data and periodontitis diagnosis labels for
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1,200 patients. Data were split into training, validation, and test sets at a ratio of
7:1.5:1.5. All image data were uniformly resampled to 512 % 512 pixels and normalised.
Clinical data underwent mean-value imputation for missing values followed by z-score
normalisation.

Implementation details: the experiment was implemented using Pytorch 1.12.1 and
scikit-learn 1.0.2. The hardware environment consisted of an Nvidia RTX A6000 GPU.
The caries segmentation model employed the U-Net++ architecture with the Adam
optimiser (initial learning rate le-4, batch size 8). The periodontitis prediction model
employed XGBoost with hyperparameters optimised via grid search (learning rate 0.1,
maximum depth 6). All experiments were repeated three times, and the average results
were taken.

Evaluation metrics and comparison algorithms: for the caries segmentation task,
metrics included DSC, accuracy, precision, recall and F1-score. Comparison algorithms
included: fully convolutional network-8s (FCN-8s) — fully convolutional network
benchmark; U-Net — classic model for medical image segmentation; attention U-Net —
enhanced model incorporating attention mechanisms. Periodontal disease prediction task
evaluated using accuracy and F1-score metrics. Comparative algorithms include: logistic
regression (LR), support vector machine (SVM) and random forest (RF).

Periodontitis prediction task evaluated using accuracy and Fl-score metrics.
Comparison algorithms include: LR, SVM and RF.

4.2 Results and analysis

Results of caries segmentation: quantitative analysis results (Table 1) demonstrate that
our proposed U-Net++ model achieves optimal performance across all evaluation
metrics. Specifically, it attains a Dice similarity coefficient of 92.5% on the core metric,
significantly outperforming the comparison models. Notably, our model achieves the
optimal balance between precision (94.1%) and recall (91.8%). This indicates that the
model effectively minimises false positives (avoiding misclassification of healthy tissue
as lesions) while maximally reducing false negatives (preventing missed detection of
lesions). This characteristic is crucial for clinical diagnostic support.

Model stability analysis is demonstrated via box plots (Figure 2). Our proposed
model not only exhibits the highest median DSC but also demonstrates the smallest
interquartile range (IQR) and outlier range, indicating its outstanding stability across
diverse datasets. Statistical tests confirm that performance differences between our model
and all comparison models reach statistical significance (p < 0.001).

Table 1 Performance comparison of different models on the caries segmentation test set
DSC (%, Accuracy (%,  Precision (%, Recall (%,
Model mean * std) mean * std) mean + std) mean * std) Fl-score
FCN-8s 853 +2.1 93.5+0.8 86.7+2.5 86.1+2.3 0.864
U-Net 89.7+1.5 95.8+0.6 90.5+1.8 90.2+1.9 0.903
Attention U-Net 90.8 +1.2 96.2+0.5 91.9+1.6 91.0+ 1.7 0914

Ours 92.5+0.7 96.9+0.4 94.1+1.2 91.8+14 0.929




80 W. Chen et al.

Figure 2 Performance distribution and statistical significance analysis of partitioned models
(see online version for colours)
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The computational efficiency comparison further validates the model’s practicality.
Despite the relatively complex architecture of U-Net++, its average processing time
during inference is only 0.15 seconds per image (on an RTX A6000 GPU environment),
comparable to U-Net’s 0.12 seconds per image. This performance falls well below the
acceptable latency threshold for clinical diagnosis, demonstrating its feasibility for
clinical application.

Performance analysis across different types of dental caries reveals the model’s
specialised capabilities. We conducted subgroup analyses on different caries types
(occlusal caries, interproximal caries, smooth surface caries) within the test set. The
model demonstrated particularly outstanding performance in detecting interproximal
caries (DSC = 93.2%), which are most prone to being missed in traditional radiographic
examinations. This indicates our model can effectively enhance the sensitivity and
accuracy of clinical diagnosis.

Periodontal disease risk prediction results: performance evaluation results (Table 2)
indicate that the XGBoost model demonstrated optimal performance in periodontal
disease risk prediction, achieving an accuracy rate of 89.2% and an Fl-score of 0.887.
Compared to traditional machine learning methods, XGBoost better captures complex
nonlinear relationships among features through its gradient boosting mechanism.
Notably, the model achieved a recall rate of 90.5% for positive samples (periodontitis
patients), indicating exceptionally high disease detection sensitivity. This characteristic
holds significant importance for early screening and intervention.

Table 2 Performance of different models on the periodontitis risk prediction test set
Model Accuracy (%, mean + std) Fl-score (mean =+ std)
Logistic regression 82.1+2.1 0.809 + 0.03
SVM (RBF) 853+1.8 0.843 +0.02
Random forest 87.8+1.5 0.869 +0.02
Ours (XGBoost) 89.2+£1.2 0.887 +0.01

To understand the logic behind the model’s decisions and assess its consistency with
clinical knowledge, we calculated global feature importance based on the average
absolute SHAP value (Figure 3b). PD was identified as the most predictive feature, with
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its importance significantly higher than other factors. This aligns perfectly with the gold
standard for periodontitis diagnosis, demonstrating that the model successfully captured
the most critical medical-pathological feature. CAL and BI ranked second and third,
respectively, both being integral components of core clinical manifestations of
periodontitis. Additionally, traditional risk factors such as smoking history and age were
assigned moderate importance by the model, consistent with epidemiological research
findings. Notably, the model autonomously identified the hierarchical importance of
these features from the data without incorporating any prior medical knowledge,
highlighting its data-driven discovery capability. This feature importance ranking not
only enhances clinicians’ confidence in the model’s predictions but also provides dentists
with a clear prioritisation list, indicating the core indicators that should be the primary
focus during clinical evaluations.

Confusion matrix analysis [Figure 3(a)] provides deeper performance insights. The
model demonstrates exceptionally high classification accuracy for the ‘healthy’ and
‘severe periodontitis’ categories (92.5% and 94.8%, respectively), while the primary
classification errors occur between adjacent severity categories (e.g., misclassifying
‘mild’ as ‘moderate’). This error pattern aligns with clinical logic, as the clinical
manifestations between adjacent severity levels exhibit inherent continuity, making
differentiation more challenging. This further validates that the features learned by the
model are clinically meaningful.

Figure 3 Classification performance and interpretability analysis (see online version for colours)
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Model calibration assessment is conducted via calibration curves. Our XGBoost model
demonstrates excellent calibration properties (Brier score = 0.082), with predicted
probabilities highly consistent with actual risks. This is crucial for clinical decision
support, enabling physicians to rely on the model’s risk probability outputs when
formulating treatment plans.

Subgroup analysis across different populations demonstrated the model’s
generalisation capability. We evaluated performance across age groups (<35 years,
35-55 years, >55 years), with the model maintaining stable performance across all age
cohorts (Fl-score variation < 2%), indicating its applicability to a broad patient
population.
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5 Conclusions

This study successfully designed and constructed an integrated oral health big data
analytics platform and intelligent decision support system, aiming to systematically
address core challenges in the field of dentistry: data silos, high diagnostic subjectivity,
and the lack of intelligent auxiliary tools. By integrating multi-source heterogeneous data
and advanced deep learning and machine learning algorithms, the system achieves a
complete closed-loop process from data management to intelligent decision making.

Experimental results demonstrate that the U-Net++-based automated segmentation
model for dental caries lesions achieved a dice similarity coefficient of 92.5% on the
public test dataset. Box plot analysis and statistical tests confirm that its performance
improvement not only significantly outperforms all comparison models but also exhibits
extremely high statistical significance (p < 0.001), showcasing exceptional stability and
robustness. Meanwhile, the XGBoost-based periodontitis risk prediction model achieved
an accuracy of 89.2% and an Fl-score of 0.887. Normalised confusion matrix heatmap
analysis further revealed that the model’s error patterns align with clinical logic
(primarily occurring between adjacent severity categories), confirming that the features it
learns possess clear medical significance. Combined with the SHAP interpretability
framework, the model’s decision-making process becomes transparent and credible,
clearly showing the dominant role of key features such as periodontal probing depth. This
effectively addresses the trust challenge posed by ‘black-box’ models in clinical
scenarios.

The primary theoretical contributions of this work lie in three aspects. First, it
proposes and validates an integrated platform architecture tailored for oral specialties,
providing a systematic engineering solution for processing multimodal specialty data.
Second, it advances model evaluation from isolated case demonstrations to
comprehensive quantitative statistics and significance testing, establishing a more
rigorous paradigm for medical Al research. Third, the adopted composite loss function is
proven to effectively address both class imbalance and hard-to-learn samples in medical
image segmentation.

At the practical level, this study provides a viable tool for implementing precision
dentistry. The platform assists clinicians in accurately identifying early lesions,
conducting objective disease assessments, and performing personalised risk predictions.
Its stable performance and high interpretability suggest it can be reliably deployed across
healthcare institutions of varying scales, significantly enhancing diagnostic accuracy and
consistency — particularly by offering effective auxiliary diagnostic support to primary
care facilities.
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