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Abstract: Global climate change has made accurate urban carbon sink
accounting crucial for low-carbon policies and ecological restoration, yet
traditional methods suffer from inefficiency, low precision, and poor
generalisation. To address these issues, this study proposes an edge loT-causal
graph neural network framework. It integrates a multi-layer edge internet of
things architecture reducing data transmission latency by over 40% compared
to cloud-centric systems. Additionally, a causal graph neural network model is
developed; it infers the causal structure of environmental variables via an
improved PC algorithm and embeds this structure into graph attention network
training to avoid spurious correlations. Experimental validation on real urban
green space data shows the framework achieves 94.7% accounting accuracy,
outperforming traditional graph neural networks, support vector machines, and
remote sensing inversion by over 8.5%. This work provides a practical
technical paradigm for high-precision urban carbon sink accounting, supporting
evidence-based urban low-carbon management.
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1 Introduction

Global climate change has spurred nations worldwide to commit to carbon peaking and
carbon neutrality targets, with cities emerging as pivotal hubs for carbon emission
reduction and carbon sink regulation. Urban carbon sinks — encompassing vegetation
carbon sinks, soil carbon sinks, and aquatic carbon sinks — can offset roughly 15-20% of
urban carbon emissions, rendering accurate carbon sink accounting essential for
formulating effective low-carbon policies and assessing the outcomes of ecological
restoration efforts (Creutzig et al., 2019). However, the complexity inherent to urban
ecosystems — characterised by fragmented green spaces, diverse underlying surfaces, and
dynamic environmental shifts — poses substantial hurdles to achieving high-precision,
real-time carbon sink accounting (Alshayeb, 2025).

Traditional accounting methods face critical limitations: while field survey methods
yield accurate results for small plots, they rely on labour-intensive manual sampling and
laboratory analysis such as allometric equations applied to estimate vegetation biomass,
leading to prolonged cycles often annual or seasonal that fail to capture short-term carbon
sink dynamics triggered by abrupt temperature fluctuations or precipitation events (Dong
et al., 2023). Remote sensing inversion methods, which leverage satellite or unmanned
aerial vehicle (UAV) data alongside vegetation indices like the normalised difference
vegetation index (NDVI) to estimate regional carbon sinks, suffer from low spatial
resolution typically > 30 m (Wang et al., 2023). This low resolution impedes the
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distinction of micro-scale urban green spaces, including street trees and community
lawns, while atmospheric interference such as cloud cover further degrades their
accuracy. Cloud-centric internet of things (IoT) systems, despite collecting environmental
data via distributed sensors, transmit massive volumes of raw data to remote cloud
servers — causing transmission latencies to exceed 1 second and straining network
bandwidth, thereby hindering real-time carbon sink accounting I (Cohen et al., 2021).

Moreover, conventional machine learning models for carbon sink accounting —
including support vector machines (SVMs) and backpropagation (BP) neural networks —
prioritise mining statistical correlations between input variables like temperature and soil
moisture and carbon sink amounts but overlook the inherent causal mechanisms
underlying carbon sink formation (Islam, 2025). For instance, temperature directly drives
vegetation photosynthesis a core biological process for carbon sequestration, whereas the
observed correlation between atmospheric CO: concentration and soil carbon content
may be spurious as it is mediated by vegetation growth (Korycki et al., 2025). Such over-
reliance on correlational patterns results in poor model generalisation, particularly when
faced with shifts in data distribution — such as seasonal vegetation dormancy or extreme
weather events.

To address these challenges, edge computing technology deploys computational
resources in proximity to sensors to enable real-time pre-processing of raw data including
noise reduction and feature extraction, reducing the volume of data transmitted to the
cloud. Meanwhile, causal inference techniques — focused on identifying causal
relationships rather than mere correlations — enhance model interpretability and
robustness. Graph neural networks (GNNs) excel at processing structured data such as
the spatial relationships between monitoring points yet lack inherent capabilities for
causal modelling (Krich et al., 2022). By combining causal inference with GNNs to form
a causal graph neural network (CGNN), it becomes possible to simultaneously capture
both the structural characteristics of environmental data and the causal mechanisms
governing carbon sink dynamics, thereby laying a foundation for high-precision carbon
sink accounting (Kumar et al., 2022).

Driven by these research gaps, this study develops an edge [oT-CGNN framework
that integrates edge IoT data acquisition with CGNN to tackle the challenges of high
latency, low accuracy, and poor generalisation in urban carbon sink accounting.
Specifically, the framework aims to construct a real-time, multi-source edge IoT
monitoring system, design a CGNN model capable of learning causal relationships
between environmental factors and carbon sink capacity, and verify its performance using
real urban monitoring data while comparing it with mainstream accounting methods
(Leist et al., 2022).

While prior studies have explored Edge IoT for environmental monitoring or CGNNs
in domains like traffic and water quality, this work presents a novel integration
specifically tailored for the complex, multi-source data environment of urban carbon sink
accounting. Our framework distinguishes itself in three key aspects compared to existing
Edge IoT or CGNN studies in other environmental domains. It designs a multi-layer edge
architecture specifically for fusing heterogeneous carbon sink data, moving
beyond single-source data collection common in existing systems; It develops a causal
discovery-driven CGNN model that explicitly embeds an improved PC algorithm into the
graph attention network (GAT), shifting the learning paradigm from data-driven
correlation to causal mechanism; It establishes a fully functional, real-time accounting
pipeline from edge sensing to cloud-based model serving, validated extensively across
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diverse urban green spaces, demonstrating both low latency and high accuracy — a
combination not yet achieved in prior work.
This work makes four key contributions:

1 A multi-layer edge IoT architecture tailored for urban carbon sink data acquisition is
proposed, integrating heterogeneous sensors with edge computing nodes. This
architecture enables real-time data pre-processing including noise reduction, drift
correction, and multi-source fusion at the network edge, reducing data transmission
latency by over 40% compared to cloud-centric systems and alleviating network
bandwidth pressure.

2 A causal discovery-driven CGNN model is developed, which first infers the causal
structure among environmental variables via constraint-based causal discovery
algorithms and then embeds this causal structure into graph neural network training.
This design ensures the model captures intrinsic causal mechanisms of carbon sink
formation, avoiding spurious correlations and enhancing generalisation across
dynamic urban scenarios.

3 The Edge [oT-CGNN framework is comprehensively validated using real-world
urban monitoring data from diverse green space types, with results demonstrating
that it achieves a carbon sink accounting accuracy of 94.7% — outperforming
traditional GNNs, SVMs, and remote sensing inversion methods by 8.5% or more.

4 By bridging edge computing, causal inference, and GNNs, this study provides a
practical and generalisable technical paradigm for high-precision urban carbon sink
accounting, supporting evidence-based decision-making in urban low-carbon
management and ecological restoration strategies.

The remainder of this paper is structured as Section 2 reviews related work on urban
carbon sink accounting, edge IoT applications, and causal GNNs to identify research
gaps. Section 3 introduces preliminary theories, including edge IoT components, carbon
sink accounting indicators, and CGNN basic principles. Section 4 details the edge IoT
data acquisition system design, covering architecture, hardware selection, and edge
preprocessing algorithms. Section 5 elaborates CGNN model construction, including
causal structure discovery and GNN optimisation. Section 6 presents experimental setup,
dataset, and results from comparisons with mainstream methods. Section 7 concludes the
study and discusses future directions.

2 Relevant work

2.1 SSD urban carbon sink accounting methods

Urban carbon sink accounting has evolved through three core methodological categories,
each designed to address specific challenges but facing limitations that restrict their
effectiveness in dynamic urban ecosystems. Field survey methods, the most traditional
and ground-truthed approach, focus on direct on-site sampling and allometric modelling
to calculate carbon storage, with high precision for small plots but poor scalability for
large urban areas. For vegetation carbon sinks — the primary component of urban carbon
storage — individual plant biomass serves as the foundational input, estimated using
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species-specific allometric equations tailored to different plant types. The standard
allometric equation for woody plants is:

M =a-DBH" -H® (1)

where M represents the aboveground biomass of a single plant, DBH denotes the
diameter of the tree trunk measured 1.3 metres above the ground, H is the total height of
the plant, and a, b, ¢ are species-specific calibration coefficients derived from regression
analysis of paired ‘actual biomass-sample’ data — for instance, felling small sample trees
of the same species to measure their dry biomass, then fitting the data to the equation to
determine coefficients. Once biomass M is obtained, vegetation carbon storage is
calculated using:

Chog =M -y 2

where C,.g is the carbon storage of the vegetation and y= 0.5 is the standard carbon
content coefficient for terrestrial plants, reflecting the scientific consensus that carbon
constitutes approximately 50% of the dry weight of most vascular plants exceptions like
succulents have slightly lower coefficients, 0.45-0.48, but 0.5 remains the industry
standard for urban vegetation accounting due to its simplicity and wide applicability.
Despite their high accuracy for small-scale plots, field surveys suffer from two critical
drawbacks: long survey cycles and high labour costs, making them impractical for large
urban areas with thousands of hectares of green space (Liu et al., 2024).

To overcome the scalability limitations of field surveys, remote sensing inversion
methods leverage satellite or UAV data to estimate regional carbon sinks, using
vegetation indices to establish correlations between remote sensing signals and carbon
density. The most widely used vegetation index is the NDVI, which quantifies vegetation
coverage and vigor by measuring the difference between near-infrared (NIR) light
reflectance — vegetation strongly reflects NIR and absorbs red light, while non-vegetated
surfaces show the opposite pattern. The formula for NDVI is:

NDVI = PNR ~ Pred. (3)
PR T PRrea

where pwir is the reflectance of the NIR band typically 750-900 nm, depending on the
satellite sensor and pr.s is the reflectance of the red band 620-670 nm. NDVI values
range from —1 to 1, with values > 0.3 indicating dense vegetation, 0.1-0.3 indicating
sparse vegetation, and < O indicating non-vegetated surfaces. Based on NDVI,
researchers construct linear inversion models to calculate vegetation carbon density:

D,,, =k-NDVI+d C)

where D, is the vegetation carbon density, k and d are calibration coefficients derived
from ground-truth data, with typical k values ranging from 20—40 t C/(ha-NDVI unit) and
d values from —5 to —2 t C/ha for urban green spaces. Commonly used satellite sensors
include Landsat 8 with a spatial resolution of 30 metres, suitable for large urban regions
and Sentinel-2, but even Sentinel-2’s resolution is insufficient for micro-scale urban
green spaces — for example, a single street tree with a crown diameter of 5—10 metres
may only occupy 1-2 pixels in a Sentinel-2 image, making it impossible to distinguish
from adjacent roads or buildings. Additionally, atmospheric interferences such as cloud
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cover, aerosols, and haze distort the reflectance values of NIR and Red bands: cloud
cover can reduce NDVI by 0.2-0.4, while aerosols scatter light and increase preq, leading
to underestimated NDVI values. These interferences reduce inversion accuracy by
15-25% in urban areas, where air pollution and frequent cloud cover are common.

Model-based methods for urban carbon sink accounting include process-based and
statistical models, each with distinct strengths and weaknesses. Process-based models
simulate the entire carbon cycle of ecosystems by integrating physiological processes and
environmental drivers, aiming to capture the mechanistic relationships between
environmental factors and carbon sequestration. For example, Biome-BGC calculates
gross primary productivity (GPP) as:

GPP = PAR-FPAR-€ )

where PAR is photosynthetically active radiation, FPAR is the proportion of PAR
absorbed by vegetation, and € is the light use efficiency. While process-based models
offer high mechanistic accuracy, they require detailed input parameters such as soil
texture, vegetation physiological traits, and hourly meteorological data — parameters that
are difficult to obtain in urban areas due to the fragmentation of green spaces and the
mixing of natural and artificial surfaces. Statistical models, by contrast, simplify carbon
sink calculation using empirical coefficients, with the most widely used being the
inventory method. The core formula of the method is

C=A4-D-T (6)

where C is the total carbon sink of a specific carbon pool, 4 is the area of the carbon
pool, D is the annual carbon density increment of the pool, and 7 is the accounting
period.

The method is simple to implement and requires minimal data, but it relies on
outdated statistical coefficients and cannot capture dynamic changes in urban carbon
sinks. In recent years, machine learning models have been applied to carbon sink
accounting to improve fitting accuracy, using multi-source data as inputs. However, these
models focus on mining statistical correlations between input variables and carbon sink
amounts rather than identifying causal relationships, leading to poor generalisation — for
example, a random forest model trained to predict carbon sinks in summer may fail in
winter, as the correlation between temperature and NDVI changes with the season, and
the model cannot distinguish between causal drivers and spurious correlations.

2.2 Edge IoT in environmental monitoring

Edge 10T systems have emerged as a solution to the latency and bandwidth constraints of
cloud-centric IoT architectures, with growing applications in environmental monitoring
due to their ability to process data in real-time at the network edge. Unlike cloud-centric
systems, which transmit all raw sensor data to remote cloud servers for processing
leading to high latency and large bandwidth consumption, edge IoT systems deploy edge
nodes in proximity to sensors typically within 100500 metres to perform real-time data
pre-processing, reducing the volume of data transmitted to the cloud and lowering latency
(Liu et al., 2023). The core workflow of an edge IoT environmental monitoring system
involves three steps: first, distributed sensors collect environmental data at fixed
intervals; second, edge nodes receive this data via short-range communication protocols
and perform pre-processing tasks such as data cleaning, noise reduction, and feature
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extraction; third, the pre-processed data rather than raw data is transmitted to the cloud
for long-term storage and further analysis, while edge nodes can also generate local alerts
for abnormal conditions (Mariappan et al., 2012).

A typical example of edge IoT application in air quality monitoring involves
processing PM2.5 data: sensors collect PM2.5 concentrations every 10 seconds, and edge
nodes use the 3o rule to filter abnormal values — an outlier detection method based on the
normal distribution, where values outside the range [(—30, 4 + 30] are classified as
abnormal. In this rule, g is the mean of the PM2.5 concentration over a 5-minute window,
and o is the standard deviation of the 5-minute window (Mohsen et al., 2023). After
filtering outliers, edge nodes compute the hourly average PM2.5 concentration and
transmit only the hourly averages to the cloud, cutting data transmission by 90% and
reducing latency from > 1 second to < 0.3 seconds. Another application is forest
ecological monitoring, where edge nodes collect soil moisture data from sensors buried in
the ground; when soil moisture falls below a threshold, edge nodes trigger local early
warnings for drought stress, eliminating the need to wait for cloud processing and
enabling timely forest management.

Despite these successes, edge IoT applications in urban carbon sink monitoring
remain limited, with three key shortcomings. First, existing edge IoT systems for
environmental monitoring typically collect single-source data rather than integrating the
multi-source data required for comprehensive carbon sink accounting — for example,
some systems only collect vegetation NDVI data via remote sensing sensors, while others
focus solely on soil moisture, but urban carbon sink accounting requires data from four
key domains: vegetation, soil, atmosphere, and meteorology. Without integrating these
multi-source data, edge nodes cannot provide the comprehensive inputs needed for
accurate carbon sink calculation. Second, edge pre-processing algorithms are rudimentary
and lack tailored processing for carbon sink-specific data. Most edge nodes only perform
basic tasks such as data cleaning and temporal aggregation, but carbon sink data requires
specialised pre-processing: for example, CO: sensors are prone to drift caused by
temperature changes, requiring edge nodes to apply temperature correction using a
formula like:

CCO)’T :Craw_k.(T_Yz)) (7)
where C,, is the corrected CO2 concentration, C,, is the raw concentration from the
sensor, 7 is the current temperature, 7o = 25°C is the sensor calibration temperature, and
k=3 ppm/°C is the temperature drift coefficient — but few existing edge systems include
such correction. Additionally, sensors for carbon sink data have disparate sampling
frequencies, requiring edge nodes to perform multi-rate data fusion to align time series,
but current edge algorithms lack this capability, leading to inconsistent data inputs for
carbon sink models. Third, edge nodes rarely participate in carbon sink calculation
pipelines, limiting their ability to support real-time accounting. Most edge IoT systems
only pre-process data and transmit it to the cloud, where carbon sink calculations are
performed — this means real-time carbon sink results still depend on cloud latency even if
reduced by pre-processing, and edge nodes cannot generate on-site carbon sink estimates
for immediate decision-making.
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2.3 Causal graph neural networks

GNNs have become a powerful tool for environmental monitoring tasks due to their
ability to model structured data — data with inherent relationships between entities, such
as the spatial relationships between urban green space monitoring points (Mohsen, et al.,
2023). Traditional GNN variants include graph convolutional networks (GCNs) and
GATs, both of which use graph convolutions to aggregate feature information from
neighbouring nodes, enabling the model to capture spatial dependencies. The core
formula of a GCN layer is

H — AHOWO ®)

where H*'D is the feature matrix of nodes at the (/ + 1) layer, A is the normalised

adjacency matrix of the graph, a square matrix where A 7 = 1 if there is a spatial
relationship between node i and node j, 0 otherwise, normalised by node degrees to avoid
feature scaling issues, H? is the feature matrix at the /™ layer, and WO is the weight
matrix for the /™ layer learned during model training to extract meaningful features.
GATs improve on GCNs by introducing an attention mechanism to weight the
importance of neighbouring nodes, with the attention coefficient formula:

exp(LeakyReLU(aT [Wh,- Il Whj}))
= 9
K > exp(LeakyReLU (a” [Wh, || Wh,])) ®)
ke N (i)

where ¢ is the attention coefficient between node i and node j, a is the attention vector,
h; and h; are the feature vectors of nodes i and j, W is the linear transformation matrix, ||
denotes vector concatenation, and N(7) is the set of neighbouring nodes of i. While GCNs
and GATs excel at capturing spatial correlations, they have a critical limitation: they only
model statistical correlations between nodes, not causal relationships — this means they
cannot distinguish between direct causal drivers of carbon sinks and spurious
correlations. This limitation leads to poor model generalisation: a GAT trained to predict
carbon sinks in a temperate city may fail in a tropical city, as the correlational patterns
between environmental variables and carbon sinks differ between climates, even if the
causal mechanisms remain the same.

CGNNs address this limitation by integrating causal inference with GNNs, combining
the structured data modelling capabilities of GNNs with the causal relationship
identification of causal inference. The CGNN workflow consists of two core steps: first,
learn the causal structure of environmental variables using causal discovery algorithms;
second, use this causal structure to guide GNN training, ensuring the model focuses on
causal relationships rather than spurious correlations. Causal discovery algorithms aim to
construct a directed acyclic graph (DAG) where nodes represent variables and directed
edges represent causal relationships. A widely used causal discovery algorithm is the PC
algorithm, which tests for conditional independence between variables to remove non-
causal edges. The PC algorithm uses mutual information to measure conditional
independence: the mutual information between variables X and Y given a set of variables
Zis:
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I(X:Y|2) =j p(x, 2 log— LDy (10)
x.y.z p(x|z2)p(y|z)

where p(x, y, z) is the joint probability density function of X, Y, and Z, p(x, y|z) the
conditional joint probability density of X and Y given Z, and p(x|z), p(y|z) are the
conditional probability densities of X and Y given Z. If I(X;Y|Z) < € is a small threshold),
X and Y are considered conditionally independent given Z, and the edge between them is
removed from the graph. Once the DAG is constructed, the CGNN uses it to modify the
GNN aggregation process — for example, in a causal GAT, the attention coefficient a;; is
weighted by the causal strength between nodes i and j, resulting in the modified attention
coefficient:

causal __
;" =0y Sy (1n

where S is the causal strength for a direct causal edge and S; = 0 for no causal
relationship. This modification ensures the GNN prioritises feature information from
variables with direct causal effects on carbon sinks, reducing the influence of spurious
correlations.

CGNNs have shown promising results in other environmental and engineering
domains. In traffic prediction, CGNNs model causal relationships between traffic flow,
weather, and road conditions, improving prediction accuracy by 12-18% compared to
traditional GNNs. In water quality prediction, CGNNs capture causal links between
hydrological factors and water quality parameters, enabling more accurate predictions of
water pollution events even under unseen hydrological conditions. However, to date, no
studies have applied CGNNs to urban carbon sink accounting, with three key challenges
hindering their adoption. First, constructing a causal DAG that accurately reflects the
mechanistic chain of urban carbon sink formation is complex — urban carbon sinks are
influenced by a mix of natural and artificial factors, and the causal relationships between
these factors are non-linear and context-dependent. This requires a DAG that can capture
non-linear causal effects, which traditional causal discovery algorithms like the PC
algorithm, which assumes linear relationships struggle to model. Second, integrating
heterogeneous multi-source edge IoT data into causal discovery is challenging — edge [oT
data for carbon sink accounting includes continuous variables, categorical variables, and
count variables, and most causal discovery algorithms are designed for single-type data,
requiring specialised pre-processing that can introduce biases if not done carefully. Third,
optimising the GNN architecture based on the causal DAG to balance model complexity
and computational efficiency is non-trivial — while a more complex GNN can capture
detailed causal relationships, it requires more computing resources, which is a problem
for edge nodes with limited processing power. Finding a lightweight CGNN architecture
that can run on edge nodes while maintaining high accuracy remains an unresolved issue
(Necula, 2023).
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3 Preliminaries

3.1 Edge IoT technology and urban carbon sink accounting basics

Edge 10T systems designed for urban carbon sink monitoring rely on three interconnected
core components to achieve real-time, high-quality data acquisition and preliminary
processing. The first component is multi-source sensors, which are deployed across urban
green spaces and water bodies to collect data on variables that directly or indirectly
influence carbon sink capacity. These sensors capture vegetation-related data including
normalised vegetation index, chlorophyll content, soil-related data including soil
moisture, soil organic carbon content, atmospheric data including CO- concentration, air
temperature, air humidity, and meteorological data including precipitation, solar radiation
— all of which are essential for comprehensively assessing carbon sink dynamics (Nguyen
et al., 2023). The second component is edge nodes, which are equipped with
microprocessors such as Raspberry Pi 4 and communication modules including LoRa and
NB-IoT. These edge nodes are placed in close proximity to sensor clusters usually within
100-500 metres to perform real-time pre-processing tasks including data cleaning,
feature extraction, and data fusion, which reduces the volume of data that needs to be
transmitted to the cloud and avoids redundant information. The third component is the
cloud platform, which is responsible for storing pre-processed data, training the
subsequent CGNN model, and presenting final carbon sink accounting results to users
through visual interfaces (Pimenow et al., 2025).

A critical performance metric for edge IoT systems in carbon sink monitoring is data
transmission latency, which is defined as the total time from when a sensor collects raw
data to when the pre-processed data is successfully stored in the cloud platform. For
real-time urban carbon sink accounting — where timely adjustments to green space
management or low-carbon policies may be required — this latency must be less than 0.5
seconds. The latency of the edge IoT system is calculated using the formula:

T=T,+T,+T, (12)

where T represents the total data transmission latency, 7 is the sensor sampling time
taken for a sensor to collect a single piece of data, typically ranging from 0.01 to 0.1 s
depending on the sensor type; for example, CO: sensors sample faster than soil organic
carbon sensors, 7, is the edge pre-processing time taken for edge nodes to clean, extract
features from, and fuse raw data, usually between 0.1 and 0.2 s, and 7 is the data
transmission time taken for pre-processed data to be transmitted from edge nodes to the
cloud platform via communication modules like LoRa or NB-IoT, generally ranging from
0.1 to 0.2 s. This latency performance stands in stark contrast to cloud-centric IoT
systems, where the data transmission time 7, alone often exceeds 1 second — this is
because cloud-centric systems transmit large volumes of unprocessed raw data, which
occupies more network bandwidth and leads to significant delays.

Urban carbon sinks are primarily composed of three interconnected pools: vegetation
carbon sinks, soil carbon sinks, and aquatic carbon sinks, with vegetation carbon sinks
accounting for 60—70% of the total urban carbon sink capacity. Accurate calculation of
each pool’s carbon sink capacity is the foundation of overall carbon sink accounting. For
vegetation carbon sinks, the total carbon storage C,. is the sum of aboveground carbon
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storage Cupove and belowground carbon storage Cheow. The aboveground carbon storage
Capove 18 calculated using the formula:

C :Mabovexy (13)

above

where Mapove the aboveground biomass of vegetation, and y= 0.5 is the standard carbon
content coefficient for terrestrial vegetation. For woody plants such as urban trees, Musove
is estimated using the species-specific allometric equation:

M, =axDBH"xH¢ (14)

above

where a, b, ¢ are coefficients calibrated for specific tree species, DBH is the diameter of
the tree trunk measured at 1.3 metres above the ground, and H is the total height of the
tree. For herbaceous plants such as urban grasslands, My is calculated as:

M =d X coverage X height (15)

above

where d is the biomass coefficient for herbaceous plants, is the vegetation coverage rate,
and height he average height of the herbaceous layer. The belowground carbon storage
Chelow 18 derived from the aboveground carbon storage using the formula:

Cbelaw =C Xr (16)

above

where r is the root-to-shoot ratio.
For soil carbon sinks, the total carbon storage is calculated using the formula:

C

soil

= pXDXOCXAx107 (17)

where p is the soil bulk density, D is the soil depth, OC is the soil organic carbon content,
A is the area of the soil plot, and the factor 102 is used to convert the final result to tons
of carbon (tC) to ensure consistency with other carbon sink pool units.

For aquatic carbon sinks, the total carbon storage Cuguaic OVer a specific period is
calculated as:

C

aquatic

=oxPxA (18)

where J is the carbon sequestration rate of the aquatic ecosystem, P is the area of the
water body, and 4 is the accounting period.

The total urban carbon sink capacity Ci is the sum of the three carbon sink pools,
calculated as Ciai = Creg + Cooit T Caquaric- The primary goal of this study is to enhance the
accuracy of Cu by improving the precision of each individual carbon sink pool
calculation through high-quality data from edge IoT systems and the causal modelling
capabilities of the CGNN.

3.2 Basic principles of causal graph neural networks

CGNNs integrate causal inference technology with traditional GNNs to address the
limitation of GNNs that only capture statistical correlations rather than inherent causal
relationships — this integration enables CGNNs to better model the mechanistic
links between environmental factors and carbon sink capacity, thereby improving
generalisation in dynamic urban ecosystems. The operation of CGNNss relies on two core
sequential steps: causal structure discovery and causal GNN training, which work
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together to ensure the model learns meaningful causal patterns rather than spurious
correlations (Rahman et al., 2023).

The first step, causal structure discovery, aims to infer a DAG G = (V, E) that
represents the causal relationships between variables related to urban carbon sinks. In this
graph, V denotes the set of variables, and E denotes the set of directed edges. This study
adopts the PC algorithm — a widely used constraint-based causal discovery method — to
construct the DAG. The PC algorithm operates in three key stages: it first initialises a
fully connected undirected graph where every pair of variables in ¥ is connected by an
undirected edge; it then iteratively removes edges between variables that are
conditionally independent given a subset of other variables; finally, it orients the
remaining undirected edges into directed edges using conditional independence
constraints to form a valid DAG with no cycles.

To determine whether two variables X and Y are conditionally independent given a
subset of variables Z, the PC algorithm uses mutual information /(X;Y]Z) — a measure of
the amount of information that one variable provides about another when a third set of
variables is held constant. The mutual information is defined by the formula:

1(X:Y|2) =j p(x, 2 log— LDy (19)
X,z p(x|z2)p(y|z)

where p(x, y, z) represents the joint probability density function of variables X, ¥ and Z,
p(x, ylz) represents the conditional joint probability density function of X and Y given Z,
which represent the conditional probability density functions of X and Y given Z,
respectively. If the calculated mutual information /(X, Y|Z) is less than a small threshold ,
variables X and Y are considered conditionally independent given Z, and the edge
between them is removed from the graph — this ensures that only variables with
meaningful causal associations are retained.

The second step, causal GNN training, uses the inferred DAG G to guide the training
process of the GNN, ensuring that the model prioritises information from variables with
strong causal effects on carbon sinks. This study adopts the GAT as the base GNN
architecture because its attention mechanism allows for flexible weighting of neighbour
node information — an attribute that can be modified to emphasise causal relationships.
The core of the GAT layer is the update rule for node features, which is defined by the

formula 4™ = 0'( Z al.jWU’h;”). In this formula, 4" represents the feature vector of
JEN (i)

node i at the /™ layer of the GNN, N(i) represents the set of neighbour nodes of i in the

DAG G, WY represents the weight matrix at the /™ layer, ¢ represents the attention

coefficient between node i and node j, and o represents the activation function.

To integrate causal information into the GAT, the attention coefficient ¢y is weighted
by the causal strength S; between node i and node j — a value estimated during the causal
structure discovery step. The modified causal attention coefficient is defined by the
formula:
exp(LeakyReLU (a” [Wh, | Wh, ])x S,

causal __
i =

(20)
> exp(LeakyReLU (a” [Wh, || Wi ]) xS, )
ke N (i)
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where a represents the attention vector, and || denotes the concatenation operation. This
modification ensures that the GNN assigns higher weights to neighbour nodes with strong
causal effects on the target node — for example, when updating the feature vector of Cyeg,
the model will prioritise information from air temperature over wind speed, thereby
improving the model’s interpretability and robustness in varying urban environmental
conditions.

4 Design of edge IoT data acquisition system for urban carbon sink
monitoring

The edge [oT data acquisition system for urban carbon sink monitoring is designed with a
four-layer architecture — sensor layer, edge layer, network layer, and cloud layer — that
collaboratively enables real-time, multi-source data collection and pre-processing,
forming the technical foundation for high-precision carbon sink accounting. The sensor
layer involves deploying diverse sensors across urban green spaces such as parks, street
tree corridors, and wetlands to capture carbon sink-related data, categorised by target
variables: vegetation sensors include NDVI sensors and chlorophyll content sensors; soil
sensors consist of moisture sensors and organic carbon sensors; atmospheric sensors
encompass CO: concentration sensors, temperature and humidity sensors; meteorological
sensors include precipitation sensors and solar radiation sensors (Sebestyén et al., 2021).
All sensors undergo monthly calibration to mitigate drift-induced errors. The edge layer
comprises edge nodes positioned within 100 metres of sensor clusters to minimise
transmission distance, each equipped with a Raspberry Pi 4 microprocessor, LoRa and
NB-IoT communication modules, and a 16GB SD card for local data caching. The
Raspberry Pi 4 was selected as the edge computing device after evaluating several
alternatives based on its optimal balance of computational capability, memory capacity,
power consumption, cost, and extensive software ecosystem support. This
cost-performance trade-off makes it particularly suitable for scalable urban deployments
where both processing power and budget constraints are critical considerations. This
layer executes three core functions: data reception, collecting sensor data via LoRa or
USB; real-time pre-processing, involving data cleaning, correction, and fusion to enhance
quality; and local storage with transmission, caching pre-processed data for 72 hours as
backup and sending it to the cloud via NB-IoT, which offers low latency and wide
coverage (Song et al., 2024). The network layer employs a hybrid communication
network combining LoRa and NB-IoT: LoRa connects sensors to edge nodes with a
transmission distance of 500—1,000 metres and latency < 0.1s, while NB-IoT links edge
nodes to the cloud with a transmission distance of 1-10 km and latency < 0.2 s, balancing
coverage, latency, and power consumption to adapt to urban environments with complex
building layouts that may block signals. The cloud layer provides long-term data storage,
model training, and user services, utilising a database to store pre-processed data and a
TensorFlow-based platform for CGNN model training, alongside a user interface
displaying real-time carbon sink results, historical trends, and early warnings for
abnormal changes such as sudden declines due to pest infestations.

The designed multi-layer Edge IoT system architecture, encompassing the sensor
layer, edge layer, network layer, and cloud layer, is illustrated in Figure 1. This
architecture collaboratively enables real-time, multi-source data collection and
pre-processing, forming the technical foundation for high-precision carbon sink
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accounting. The sensor layer involves deploying diverse sensors across urban green
spaces, while the edge layer performs critical pre-processing tasks including data
cleaning, sensor drift correction, and multi-source data fusion to enhance data quality and
reduce transmission volume.

Figure 1 Overall architecture of the multi-layer edge IoT system for urban carbon sink
monitoring (see online version for colours)
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As depicted in the architecture, pre-processed data is transmitted to the cloud platform via
hybrid communication networks for long-term storage and model training. The
integration of these components ensures a significant reduction in data transmission
latency to below 0.5 seconds and provides high-quality, causal-ready input data for the
subsequent CGNN model, effectively addressing the limitations of cloud-centric systems.

Edge data pre-processing is critical for improving data quality and reducing
transmission volume, with the edge layer implementing three key algorithms. Data
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cleaning removes abnormal values from sensor errors or environmental interference
through two methods: range filtering, eliminating data outside the physical range of
variables; and moving average filtering, reducing noise by replacing each data point with
the average of itself and neighbouring points in a sliding window. The window size w is
determined by sampling frequency, calculated as:

1 i+w/2
LS @1

Wi

clean
i

where x"

" is the cleaned value at time i and x; is the raw value at time £, reducing noise
by 30-40% while preserving data trends. Sensor drift correction addresses accuracy
degradation from drift using temperature-based models: for CO: sensors, the correction
formula is:

Ccorr = Craw —kx (T - TO) (22)
where Cy. is the corrected concentration, which is the raw reading, 7 is current
temperature, and & is the drift coefficient; soil moisture sensors use soil temperature
adjustments to counter reduced sensitivity at high temperatures. Multi-source data fusion
integrates data from sensors with varying sampling frequencies into a unified 5-minute
interval time series. For higher-frequency sensors, linear interpolation is used, while
lower-frequency sensors use moving averages. For a target time ¢, the fused value of
variable X is:

n

%X (t,) if X has higher frequency
= Tl
Xpa =177 (23)

1 z X (k) if X has lower frequency

k=t—m+1

where #1 < t < t are adjacent sampling times, n = 2, and m = 12, reducing total data
volume by 65% and lowering transmission latency significantly.

System deployment targets a medium-sized city across three typical urban green
space types: 3 urban parks, 5 street tree corridors, and 2 urban wetlands, with 120 sensors
and 20 edge nodes deployed, the latter positioned at green space intersections to
maximise coverage. Energy management is vital for long-term operation, particularly for
battery-powered sensors like soil moisture sensors, employing two strategies: low-power
sensors with consumption < 10 mA; and adaptive sampling, adjusting frequency based on
environmental stability — increasing to 1-minute intervals during extreme weather and
reducing to 30-minute intervals during stable periods — cutting energy consumption by
40-50% and extending battery life to 6-12 months. Edge nodes are powered by 10 W
solar panels paired with 10,000 mAh lithium-ion batteries, ensuring 72-hour continuous
operation in cloudy weather, while the cloud layer uses an 8-core CPU server with 32 GB
RAM and 1TB SSD, providing sufficient computing power for data storage and CGNN
model training.

Following the deployment of the edge 1oT system across urban green spaces, a four-
week field test was conducted to evaluate the stability and efficiency of its core
functionality under real-world conditions. Figure 2 presents the key performance metric
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of for the proposed system and two comparative configurations over the test period. The
Proposed Edge IoT System maintains consistently low and stable latency across all
weeks, demonstrating the robustness of our integrated edge pre-processing and hybrid
communication network design. In contrast, the edge system fusion exhibits higher and
more variable latency, underscoring the critical role of multi-source data fusion in
reducing transmission load. As expected, the Cloud-centric system incurs significantly
and consistently higher latency due to the transmission of raw data. These results validate
the effectiveness of our edge-layer design choices in achieving the low-latency data
acquisition goals set forth in this Section.

Figure 2 Performance stability of edge IoT system over time (see online version for colours)
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To further evaluate system reliability, we monitored packet loss rate and operational
stability throughout the four-week test, including during adverse weather conditions. The
system maintained an average packet loss rate of 2.3%, with maximum rates reaching
4.1% during the most severe weather events. This performance demonstrates the
robustness of our hybrid LoRa/NB-IoT communication design, which automatically
switches transmission paths when signal quality degrades. Additionally, edge nodes
maintained continuous operation throughout the testing period, with no node failures
recorded, confirming the stability of both hardware components and pre-processing
algorithms under real-world urban conditions.

5 Causal graph neural network model construction for urban carbon sink
accounting

The construction of the CGNN model focuses on integrating causal inference into GNN's
to capture the intrinsic mechanistic relationships between environmental factors and
urban carbon sink capacity, addressing the limitation of traditional models that rely on
spurious correlations. This process involves two interconnected phases: targeted causal
structure discovery for carbon sink-related variables and the design of a causal-enhanced
graph neural network architecture, both optimised to adapt to the multi-source
heterogeneous data from the edge [oT system. First, causal structure discovery is tailored
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to the characteristics of urban carbon sink data, which includes continuous variables,
semi-continuous variables, and derived variables. Before applying the PC algorithm, the
edge IoT-derived data undergoes two key pre-processing steps to ensure reliability:
variable normalisation and outlier reprocessing. Variable normalisation uses the min-max
scaling method to map all variables to a uniform range, eliminating the impact of
different units on causal discovery. Outlier reprocessing builds on the edge layer’s data
cleaning by further removing extreme values that may distort causal relationships, with
values beyond a specific range replaced with the nearest non-outlier value based on
quartile calculations (Song et al., 2023).

After pre-processing, the PC algorithm is adapted to infer the causal DAG for carbon
sink variables. During this causal discovery process, we encountered challenges related to
high-dimensional data and potential unobserved confounders. To mitigate these issues,
we enhanced the standard PC algorithm in two ways: First, we employed kernel density
estimation for mutual information calculation to better capture non-linear relationships
between variables. Second, we conducted sensitivity analysis by iteratively applying the
PC algorithm to different data subsets and validating the consistency of recovered edges,
thus reducing the risk of spurious causal links due to unobserved confounding. The final
DAG includes only edges that persisted across multiple sensitivity tests, enhancing the
robustness of the discovered causal structure. To address non-linear relationships
between variables, the mutual information calculation in the original PC algorithm is
enhanced with a kernel density estimation method to approximate joint probability
density functions. The threshold for conditional independence is dynamically adjusted
based on variable types, ensuring that weak but meaningful causal links are not
mistakenly removed. The final inferred DAG includes 12 core variables and 18 directed
edges, with key causal paths clearly identified.

On the basis of the causal DAG, the CGNN model adopts a two-layer GAT as the
base architecture, with modifications to the attention mechanism and training process to
prioritise causal information. The first layer focuses on fusing environmental variable
features according to causal relationships, while the second layer maps the aggregated
features to the final carbon sink capacity. For the causal feature aggregation layer, the
attention coefficient is redefined to incorporate the causal strength between nodes, which
is quantified by conditional mutual information after removing other variables, ensuring
it ranges within a standard interval.

The output of the first layer is passed to the carbon sink prediction layer, which uses a
linear transformation followed by a sigmoid activation function to predict total carbon
sink capacity, scaled to cover the typical range of urban carbon sinks.

The model training process uses the Adam optimiser with a dynamically adjusted
learning rate and a fixed batch size. The loss function adopts mean squared error (MSE)
combined with a causal regularisation term to enforce consistency between the model’s
attention weights and the inferred DAG. Training stops when the validation loss remains
unchanged for a consecutive number of epochs, ensuring the model avoids overfitting to
training data.

The efficacy of the proposed CGNN architecture is preliminarily validated by
examining its training dynamics. Figure 3 illustrates the convergence behaviour of the
proposed CGNN model against two baseline GNN architectures — traditional GAT and
GCN - by plotting the training loss over successive epochs. The CGNN model,
empowered by its embedded causal structure, demonstrates a markedly steeper and
smoother descent in loss, achieving convergence significantly faster and to a lower
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optimum than the other models. This indicates that the causal priors provide a more
informative learning signal, effectively guiding the optimisation process towards the true
underlying data-generating mechanisms. In contrast, the Traditional GAT model, which
relies solely on spatial correlations, converges more slowly and less stably. The GCN
model, with its simpler architecture, exhibits the slowest convergence and the highest
final loss. This comparative analysis during the training phase underscores the intrinsic
advantage of the CGNN design, setting the stage for its superior performance in the final
accounting task demonstrated in the next Section.

Figure 3 Training convergence comparison of GNN architectures (see online version for colours)
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6 Experimental results and analyses

To verify the performance of the proposed edge IoT-CGNN framework in urban carbon
sink accounting, experiments were conducted using real-world monitoring data from a
medium-sized city, with comprehensive comparisons against mainstream methods to
evaluate latency, accuracy, and robustness. The experimental dataset was collected by the
edge IoT system deployed across 10 monitoring sites covering different urban green
space types, and data collection spanned one full year to capture seasonal variations in
carbon sinks — resulting in 8,760 hourly samples that included 12 input variables related
to environmental conditions and carbon sink components, plus one target variable
representing total carbon sink capacity (Tian et al., 2025). Ground-truth values for the
target variable were obtained via regular field surveys to ensure calibration and validation
reliability, and the dataset was split using stratified sampling into training, validation, and
test sets. Three mainstream methods were selected for comparison: edge IoT + traditional
GAT, edge [oT + SVM, and Cloud IoT + traditional GNN. Four key evaluation indicators
were used: data transmission latency, accounting accuracy, MSE, and mean absolute
error. Experimental hardware included dedicated microprocessors for edge node
pre-processing and a high-performance server with multi-core CPUs, dedicated GPUs,
and large-capacity RAM for model training/inference; the CGNN model was configured
with two GAT layers, a fixed hidden layer dimension, and a dropout rate to prevent
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overfitting, while comparison methods were optimised with architecture-matching
parameters. Vegetation biomass was measured using species-specific allometric
equations with manual sampling of DBH and tree height; soil carbon content was
determined through core sampling and laboratory analysis; aquatic carbon sequestration
was estimated using submerged incubation chambers. To ensure measurement
consistency, all field surveys were conducted by a team of three trained ecologists, with
inter-rater reliability analysis showing an intraclass correlation coefficient (ICC) of 0.96,
indicating excellent agreement in biomass measurements.

The edge IoT-CGNN framework demonstrated significant advantages in latency
performance, achieving an average total latency that met real-time requirements for urban
carbon sink accounting — with time evenly allocated across sensor sampling, edge
pre-processing, and data transmission. In contrast, the cloud IoT + Traditional GNN
method exhibited much higher latency, primarily due to the large volume of raw data
transmitted to remote servers, which caused bandwidth congestion and prolonged
transmission times, making it unsuitable for scenarios requiring timely green space
management adjustments. Comprehensive performance across evaluation indicators is
shown in Table 1, where the edge [0T-CGNN framework achieved the highest
accounting accuracy and the lowest MSE, outperforming all comparison methods.
Compared to edge IoT + traditional GAT, the CGNN framework showed notable
accuracy improvement and significant error reduction, confirming that integrating causal
information effectively reduces reliance on spurious correlations; against edge IoT +
SVM, it maintained higher accuracy and lower error, as its graph-based architecture
better captures spatial dependencies between monitoring sites critical for consistent urban
carbon sink accounting. The cloud IoT + traditional GNN method performed worst across
all indicators, affected by both high transmission latency and unprocessed raw data noise
that degraded model input quality. Seasonal performance analysis further highlighted the
CGNN framework’s robustness: while comparison methods showed significant accuracy
drops in specific seasons, the CGNN framework maintained stable high accuracy across
all seasons, attributed to its causal structure that retains core mechanistic relationships
between variables even as seasonal patterns shift — avoiding performance degradation
from fluctuating correlational patterns in traditional models. An ablation study evaluating
the impact of edge pre-processing confirmed its critical role: three variants of the edge
IoT-CGNN framework all showed reduced accuracy and increased error metrics, with
omitting multi-source data fusion leading to the most significant performance drop,
underscoring the importance of pre-processing for ensuring high-quality data input to the
CGNN model.

Table 1 Comparison of performance across different methods
Method Data transmission Accounting MSE (iC%ha®)  MAE (iC/ha)
etho latency (s) accuracy (%)

Edge IoT-CGNN 0.18 94.7 0.012 0.98
Edge IoT + 0.20 86.2 0.045 1.85
traditional GAT

Edge IoT + SVM 0.21 82.9 0.068 2.31
Cloud IoT + 1.24 79.3 0.089 2.76

traditional GNN
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As shown in Table 2, three variants of the Edge IoT-CGNN framework all showed
reduced accuracy and increased error metrics. Removing the causal attention mechanism
CGNN w/o causal attention resulted in an 5.5% accuracy drop, demonstrating the
importance of causal structure guidance. Omitting edge pre-processing CGNN w/o edge
pre-processing caused even greater performance degradation 9.1% accuracy decrease,
highlighting the value of data quality enhancement at the edge. Most significantly,
disabling multi-source data fusion CGNN w/o data fusion led to the most substantial
performance drop 13.4% accuracy reduction, underscoring the necessity of integrating
heterogeneous environmental data for comprehensive carbon sink accounting.

Table 2 Ablation study results of edge IoT-CGNN framework components

Model variant Accounting accuracy (%) MSE (tC%ha? MAE (tC/ha)
Full edge [oT-CGNN 94.7 0.012 0.98
w/o causal attention 89.2 0.038 1.72
w/o edge pre-processing 85.6 0.061 2.24
w/o data fusion 81.3 0.095 2.89

Figure 4 Three-dimensional performance comparison of accounting methods (see online version
for colours)
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The superior performance of the proposed edge IoT-CGNN framework is further
visualised in Figure 4, which plots the comparative results of all methods across three
critical dimensions: data transmission latency, accounting accuracy, and MSE. The ideal
operating point in this three-dimensional space is characterised by the lowest latency,
highest accuracy, and smallest error, corresponding to the front-top-left corner of the
graph. As clearly demonstrated, one data point — representing our proposed framework —
consistently occupies this optimal region. In stark contrast, the data points corresponding
to the three baseline methods are located in distinctly separate and suboptimal regions of
the space, exhibiting higher latency, lower accuracy, and/or larger errors. This spatial
separation provides a powerful visual confirmation of the quantitative results presented in
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Table 1, unequivocally demonstrating the comprehensive superiority and balanced
performance of our integrated approach.

To assess model performance on edge cases, we evaluated the framework on two
newly developed green areas undergoing rapid ecological change. In these challenging
scenarios, the CGNN framework maintained an accuracy of 91.5%, significantly
outperforming Traditional GAT (85.2%) and SVM (79.8%). This robustness can be
attributed to the model’s causal structure, which captures fundamental mechanistic
relationships that remain valid even in rapidly changing environments, unlike
correlation-based approaches that rely on stable statistical patterns. Future enhancements
will include continuous learning mechanisms to further adapt to dynamic urban
landscapes.

7 Conclusions

This study developed an edge CGNN framework to comprehensively address the
persistent challenges of high latency, low accuracy, and poor generalisation in urban
carbon sink accounting. The proposed four-layer edge IoT architecture — comprising
sensor, edge, network, and cloud layers — effectively facilitates real-time multi-source
data acquisition and intelligent pre-processing at the network periphery. By deploying
heterogeneous sensors across varied urban green spaces and utilising Raspberry Pi-based
edge nodes equipped with LoRa and NB-IoT communication modules, the system
achieves a significant reduction in data transmission latency to 0.18 seconds. This is
made possible through dedicated pre-processing routines including sensor drift
correction, adaptive data cleaning, and multi-rate data fusion, which collectively enhance
data quality while alleviating bandwidth constraints. Moreover, the integrated CGNN
model leverages a causal discovery-driven approach using an improved PC algorithm to
infer meaningful environmental variable relationships and incorporates these causal
structures into a GAT. This dual design ensures that the model captures underlying
mechanistic processes — such as the direct impact of temperature on photosynthesis —
rather than relying on spurious correlations, thereby substantially improving both
interpretability and predictive robustness.

Experimental validation conducted on a year-long dataset from diverse urban green
spaces demonstrates the superior performance of the edge IoT-CGNN framework, which
achieved an impressive carbon sink accounting accuracy of 94.7%. The proposed
framework outperformed all baseline methods, including edge IoT with traditional GAT,
edge IoT with SVM, and Cloud IoT with traditional GNN, by a notable margin of over
8.5%. Furthermore, the framework exhibited significantly lower MSE and mean absolute
error, underscoring its high prediction precision. Crucially, the model maintained
consistent performance across seasonal variations, highlighting its generalisation
capability in dynamic urban environments where traditional correlation-based models
often fail. Ablation studies further confirmed the critical roles of edge pre-processing and
causal feature integration, with the omission of multi-source data fusion leading to the
most substantial decline in model accuracy. These results collectively affirm that the
synergy between low-latency edge computing and causal graph neural learning
establishes a new benchmark for reliable and real-time carbon sink monitoring. While the
proposed framework demonstrates excellent performance in our experimental setting, its
scalability to city-wide implementation warrants discussion. Based on our deployment
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experience, the hardware cost for a single monitoring point is approximately $250-300.
Scaling to cover a medium-sized city with ~500 major green spaces would require an
initial investment of $125,000-150,000, with additional maintenance overhead for
regular sensor calibration and software updates. This represents a potential limitation for
resource-constrained municipalities. Future work will therefore focus on developing more
cost-effective sensor alternatives and optimising the CGNN model for reduced
computational requirements, thereby enhancing the economic viability of city-wide
deployment.

Looking forward, several promising directions emerge for extending this research.
Future work will focus on augmenting the existing sensor network to incorporate
hyperspectral imaging sensors, enabling finer-grained monitoring of vegetation
physiological traits such as chlorophyll fluorescence and water stress indicators.
Additionally, efforts will be devoted to developing lightweight and quantised CGNN
variants suitable for deployment directly on resource-constrained edge nodes, thereby
supporting fully decentralised and real-time carbon sink accounting without reliance on
cloud infrastructure. The integration of transfer learning and meta-causal discovery
mechanisms may further enhance model adaptability across cities with varying climatic
and ecological profiles. Ultimately, this framework is poised to serve as a critical tool for
urban planners and environmental policymakers, providing actionable, high-frequency
carbon sink assessments that can inform targeted green space management, optimise
carbon sequestration strategies, and contribute meaningfully to urban carbon neutrality
goals.
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