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Abstract: Global climate change has made accurate urban carbon sink 
accounting crucial for low-carbon policies and ecological restoration, yet 
traditional methods suffer from inefficiency, low precision, and poor 
generalisation. To address these issues, this study proposes an edge IoT-causal 
graph neural network framework. It integrates a multi-layer edge internet of 
things architecture reducing data transmission latency by over 40% compared 
to cloud-centric systems. Additionally, a causal graph neural network model is 
developed; it infers the causal structure of environmental variables via an 
improved PC algorithm and embeds this structure into graph attention network 
training to avoid spurious correlations. Experimental validation on real urban 
green space data shows the framework achieves 94.7% accounting accuracy, 
outperforming traditional graph neural networks, support vector machines, and 
remote sensing inversion by over 8.5%. This work provides a practical 
technical paradigm for high-precision urban carbon sink accounting, supporting 
evidence-based urban low-carbon management. 

Keywords: edge IoT; causal graph neural network; CGNN; urban carbon sink 
accounting; causal inference; multi-source data fusion. 
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1 Introduction 

Global climate change has spurred nations worldwide to commit to carbon peaking and 
carbon neutrality targets, with cities emerging as pivotal hubs for carbon emission 
reduction and carbon sink regulation. Urban carbon sinks – encompassing vegetation 
carbon sinks, soil carbon sinks, and aquatic carbon sinks – can offset roughly 15–20% of 
urban carbon emissions, rendering accurate carbon sink accounting essential for 
formulating effective low-carbon policies and assessing the outcomes of ecological 
restoration efforts (Creutzig et al., 2019). However, the complexity inherent to urban 
ecosystems – characterised by fragmented green spaces, diverse underlying surfaces, and 
dynamic environmental shifts – poses substantial hurdles to achieving high-precision, 
real-time carbon sink accounting (Alshayeb, 2025). 

Traditional accounting methods face critical limitations: while field survey methods 
yield accurate results for small plots, they rely on labour-intensive manual sampling and 
laboratory analysis such as allometric equations applied to estimate vegetation biomass, 
leading to prolonged cycles often annual or seasonal that fail to capture short-term carbon 
sink dynamics triggered by abrupt temperature fluctuations or precipitation events (Dong 
et al., 2023). Remote sensing inversion methods, which leverage satellite or unmanned 
aerial vehicle (UAV) data alongside vegetation indices like the normalised difference 
vegetation index (NDVI) to estimate regional carbon sinks, suffer from low spatial 
resolution typically ≥ 30 m (Wang et al., 2023). This low resolution impedes the 
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distinction of micro-scale urban green spaces, including street trees and community 
lawns, while atmospheric interference such as cloud cover further degrades their 
accuracy. Cloud-centric internet of things (IoT) systems, despite collecting environmental 
data via distributed sensors, transmit massive volumes of raw data to remote cloud 
servers – causing transmission latencies to exceed 1 second and straining network 
bandwidth, thereby hindering real-time carbon sink accounting I (Cohen et al., 2021). 

Moreover, conventional machine learning models for carbon sink accounting – 
including support vector machines (SVMs) and backpropagation (BP) neural networks – 
prioritise mining statistical correlations between input variables like temperature and soil 
moisture and carbon sink amounts but overlook the inherent causal mechanisms 
underlying carbon sink formation (Islam, 2025). For instance, temperature directly drives 
vegetation photosynthesis a core biological process for carbon sequestration, whereas the 
observed correlation between atmospheric CO₂ concentration and soil carbon content 
may be spurious as it is mediated by vegetation growth (Korycki et al., 2025). Such over-
reliance on correlational patterns results in poor model generalisation, particularly when 
faced with shifts in data distribution – such as seasonal vegetation dormancy or extreme 
weather events. 

To address these challenges, edge computing technology deploys computational 
resources in proximity to sensors to enable real-time pre-processing of raw data including 
noise reduction and feature extraction, reducing the volume of data transmitted to the 
cloud. Meanwhile, causal inference techniques – focused on identifying causal 
relationships rather than mere correlations – enhance model interpretability and 
robustness. Graph neural networks (GNNs) excel at processing structured data such as 
the spatial relationships between monitoring points yet lack inherent capabilities for 
causal modelling (Krich et al., 2022). By combining causal inference with GNNs to form 
a causal graph neural network (CGNN), it becomes possible to simultaneously capture 
both the structural characteristics of environmental data and the causal mechanisms 
governing carbon sink dynamics, thereby laying a foundation for high-precision carbon 
sink accounting (Kumar et al., 2022). 

Driven by these research gaps, this study develops an edge IoT-CGNN framework 
that integrates edge IoT data acquisition with CGNN to tackle the challenges of high 
latency, low accuracy, and poor generalisation in urban carbon sink accounting. 
Specifically, the framework aims to construct a real-time, multi-source edge IoT 
monitoring system, design a CGNN model capable of learning causal relationships 
between environmental factors and carbon sink capacity, and verify its performance using 
real urban monitoring data while comparing it with mainstream accounting methods 
(Leist et al., 2022). 

While prior studies have explored Edge IoT for environmental monitoring or CGNNs 
in domains like traffic and water quality, this work presents a novel integration 
specifically tailored for the complex, multi-source data environment of urban carbon sink 
accounting. Our framework distinguishes itself in three key aspects compared to existing 
Edge IoT or CGNN studies in other environmental domains. It designs a multi-layer edge 
architecture specifically for fusing heterogeneous carbon sink data, moving  
beyond single-source data collection common in existing systems; It develops a causal 
discovery-driven CGNN model that explicitly embeds an improved PC algorithm into the 
graph attention network (GAT), shifting the learning paradigm from data-driven 
correlation to causal mechanism; It establishes a fully functional, real-time accounting 
pipeline from edge sensing to cloud-based model serving, validated extensively across 
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diverse urban green spaces, demonstrating both low latency and high accuracy – a 
combination not yet achieved in prior work. 

This work makes four key contributions:  

1 A multi-layer edge IoT architecture tailored for urban carbon sink data acquisition is 
proposed, integrating heterogeneous sensors with edge computing nodes. This 
architecture enables real-time data pre-processing including noise reduction, drift 
correction, and multi-source fusion at the network edge, reducing data transmission 
latency by over 40% compared to cloud-centric systems and alleviating network 
bandwidth pressure. 

2 A causal discovery-driven CGNN model is developed, which first infers the causal 
structure among environmental variables via constraint-based causal discovery 
algorithms and then embeds this causal structure into graph neural network training. 
This design ensures the model captures intrinsic causal mechanisms of carbon sink 
formation, avoiding spurious correlations and enhancing generalisation across 
dynamic urban scenarios. 

3 The Edge IoT-CGNN framework is comprehensively validated using real-world 
urban monitoring data from diverse green space types, with results demonstrating 
that it achieves a carbon sink accounting accuracy of 94.7% – outperforming 
traditional GNNs, SVMs, and remote sensing inversion methods by 8.5% or more. 

4 By bridging edge computing, causal inference, and GNNs, this study provides a 
practical and generalisable technical paradigm for high-precision urban carbon sink 
accounting, supporting evidence-based decision-making in urban low-carbon 
management and ecological restoration strategies. 

The remainder of this paper is structured as Section 2 reviews related work on urban 
carbon sink accounting, edge IoT applications, and causal GNNs to identify research 
gaps. Section 3 introduces preliminary theories, including edge IoT components, carbon 
sink accounting indicators, and CGNN basic principles. Section 4 details the edge IoT 
data acquisition system design, covering architecture, hardware selection, and edge 
preprocessing algorithms. Section 5 elaborates CGNN model construction, including 
causal structure discovery and GNN optimisation. Section 6 presents experimental setup, 
dataset, and results from comparisons with mainstream methods. Section 7 concludes the 
study and discusses future directions. 

2 Relevant work 

2.1 SSD urban carbon sink accounting methods 

Urban carbon sink accounting has evolved through three core methodological categories, 
each designed to address specific challenges but facing limitations that restrict their 
effectiveness in dynamic urban ecosystems. Field survey methods, the most traditional 
and ground-truthed approach, focus on direct on-site sampling and allometric modelling 
to calculate carbon storage, with high precision for small plots but poor scalability for 
large urban areas. For vegetation carbon sinks – the primary component of urban carbon 
storage – individual plant biomass serves as the foundational input, estimated using 
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species-specific allometric equations tailored to different plant types. The standard 
allometric equation for woody plants is: 

b cM a DBH H= ⋅ ⋅  (1) 

where M represents the aboveground biomass of a single plant, DBH denotes the 
diameter of the tree trunk measured 1.3 metres above the ground, H is the total height of 
the plant, and a, b, c are species-specific calibration coefficients derived from regression 
analysis of paired ‘actual biomass-sample’ data – for instance, felling small sample trees 
of the same species to measure their dry biomass, then fitting the data to the equation to 
determine coefficients. Once biomass M is obtained, vegetation carbon storage is 
calculated using: 

vegC M γ= ⋅  (2) 

where Cveg is the carbon storage of the vegetation and γ = 0.5 is the standard carbon 
content coefficient for terrestrial plants, reflecting the scientific consensus that carbon 
constitutes approximately 50% of the dry weight of most vascular plants exceptions like 
succulents have slightly lower coefficients, 0.45–0.48, but 0.5 remains the industry 
standard for urban vegetation accounting due to its simplicity and wide applicability. 
Despite their high accuracy for small-scale plots, field surveys suffer from two critical 
drawbacks: long survey cycles and high labour costs, making them impractical for large 
urban areas with thousands of hectares of green space (Liu et al., 2024). 

To overcome the scalability limitations of field surveys, remote sensing inversion 
methods leverage satellite or UAV data to estimate regional carbon sinks, using 
vegetation indices to establish correlations between remote sensing signals and carbon 
density. The most widely used vegetation index is the NDVI, which quantifies vegetation 
coverage and vigor by measuring the difference between near-infrared (NIR) light 
reflectance – vegetation strongly reflects NIR and absorbs red light, while non-vegetated 
surfaces show the opposite pattern. The formula for NDVI is: 

NIR Red

NIR Red

ρ ρNDVI
ρ ρ

−=
+

 (3) 

where ρNIR is the reflectance of the NIR band typically 750–900 nm, depending on the 
satellite sensor and ρRed is the reflectance of the red band 620–670 nm. NDVI values 
range from –1 to 1, with values > 0.3 indicating dense vegetation, 0.1–0.3 indicating 
sparse vegetation, and < 0 indicating non-vegetated surfaces. Based on NDVI, 
researchers construct linear inversion models to calculate vegetation carbon density: 

vegD k NDVI d= ⋅ +  (4) 

where Dveg is the vegetation carbon density, k and d are calibration coefficients derived 
from ground-truth data, with typical k values ranging from 20–40 t C/(ha⋅NDVI unit) and 
d values from –5 to –2 t C/ha for urban green spaces. Commonly used satellite sensors 
include Landsat 8 with a spatial resolution of 30 metres, suitable for large urban regions 
and Sentinel-2, but even Sentinel-2’s resolution is insufficient for micro-scale urban 
green spaces – for example, a single street tree with a crown diameter of 5–10 metres 
may only occupy 1–2 pixels in a Sentinel-2 image, making it impossible to distinguish 
from adjacent roads or buildings. Additionally, atmospheric interferences such as cloud 
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cover, aerosols, and haze distort the reflectance values of NIR and Red bands: cloud 
cover can reduce NDVI by 0.2–0.4, while aerosols scatter light and increase ρRed, leading 
to underestimated NDVI values. These interferences reduce inversion accuracy by  
15–25% in urban areas, where air pollution and frequent cloud cover are common. 

Model-based methods for urban carbon sink accounting include process-based and 
statistical models, each with distinct strengths and weaknesses. Process-based models 
simulate the entire carbon cycle of ecosystems by integrating physiological processes and 
environmental drivers, aiming to capture the mechanistic relationships between 
environmental factors and carbon sequestration. For example, Biome-BGC calculates 
gross primary productivity (GPP) as: 

GPP PAR FPAR= ⋅ ⋅∈ (5) 

where PAR is photosynthetically active radiation, FPAR is the proportion of PAR 
absorbed by vegetation, and ∈ is the light use efficiency. While process-based models 
offer high mechanistic accuracy, they require detailed input parameters such as soil 
texture, vegetation physiological traits, and hourly meteorological data – parameters that 
are difficult to obtain in urban areas due to the fragmentation of green spaces and the 
mixing of natural and artificial surfaces. Statistical models, by contrast, simplify carbon 
sink calculation using empirical coefficients, with the most widely used being the 
inventory method. The core formula of the method is 

C A D T= ⋅ ⋅  (6) 

where C is the total carbon sink of a specific carbon pool, A is the area of the carbon 
pool, D is the annual carbon density increment of the pool, and T is the accounting 
period. 

The method is simple to implement and requires minimal data, but it relies on 
outdated statistical coefficients and cannot capture dynamic changes in urban carbon 
sinks. In recent years, machine learning models have been applied to carbon sink 
accounting to improve fitting accuracy, using multi-source data as inputs. However, these 
models focus on mining statistical correlations between input variables and carbon sink 
amounts rather than identifying causal relationships, leading to poor generalisation – for 
example, a random forest model trained to predict carbon sinks in summer may fail in 
winter, as the correlation between temperature and NDVI changes with the season, and 
the model cannot distinguish between causal drivers and spurious correlations. 

2.2 Edge IoT in environmental monitoring 

Edge IoT systems have emerged as a solution to the latency and bandwidth constraints of 
cloud-centric IoT architectures, with growing applications in environmental monitoring 
due to their ability to process data in real-time at the network edge. Unlike cloud-centric 
systems, which transmit all raw sensor data to remote cloud servers for processing 
leading to high latency and large bandwidth consumption, edge IoT systems deploy edge 
nodes in proximity to sensors typically within 100–500 metres to perform real-time data 
pre-processing, reducing the volume of data transmitted to the cloud and lowering latency 
(Liu et al., 2023). The core workflow of an edge IoT environmental monitoring system 
involves three steps: first, distributed sensors collect environmental data at fixed 
intervals; second, edge nodes receive this data via short-range communication protocols 
and perform pre-processing tasks such as data cleaning, noise reduction, and feature 
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extraction; third, the pre-processed data rather than raw data is transmitted to the cloud 
for long-term storage and further analysis, while edge nodes can also generate local alerts 
for abnormal conditions (Mariappan et al., 2012). 

A typical example of edge IoT application in air quality monitoring involves 
processing PM2.5 data: sensors collect PM2.5 concentrations every 10 seconds, and edge 
nodes use the 3σ rule to filter abnormal values – an outlier detection method based on the 
normal distribution, where values outside the range [μ–3σ, μ + 3σ] are classified as 
abnormal. In this rule, μ is the mean of the PM2.5 concentration over a 5-minute window, 
and σ is the standard deviation of the 5-minute window (Mohsen et al., 2023). After 
filtering outliers, edge nodes compute the hourly average PM2.5 concentration and 
transmit only the hourly averages to the cloud, cutting data transmission by 90% and 
reducing latency from > 1 second to < 0.3 seconds. Another application is forest 
ecological monitoring, where edge nodes collect soil moisture data from sensors buried in 
the ground; when soil moisture falls below a threshold, edge nodes trigger local early 
warnings for drought stress, eliminating the need to wait for cloud processing and 
enabling timely forest management. 

Despite these successes, edge IoT applications in urban carbon sink monitoring 
remain limited, with three key shortcomings. First, existing edge IoT systems for 
environmental monitoring typically collect single-source data rather than integrating the 
multi-source data required for comprehensive carbon sink accounting – for example, 
some systems only collect vegetation NDVI data via remote sensing sensors, while others 
focus solely on soil moisture, but urban carbon sink accounting requires data from four 
key domains: vegetation, soil, atmosphere, and meteorology. Without integrating these 
multi-source data, edge nodes cannot provide the comprehensive inputs needed for 
accurate carbon sink calculation. Second, edge pre-processing algorithms are rudimentary 
and lack tailored processing for carbon sink-specific data. Most edge nodes only perform 
basic tasks such as data cleaning and temporal aggregation, but carbon sink data requires 
specialised pre-processing: for example, CO₂ sensors are prone to drift caused by 
temperature changes, requiring edge nodes to apply temperature correction using a 
formula like: 

( )0corr rawC C k T T= − ⋅ −  (7) 

where Ccorr is the corrected CO₂ concentration, Craw is the raw concentration from the 
sensor, T is the current temperature, T0 = 25°C is the sensor calibration temperature, and 
k = 3 ppm/°C is the temperature drift coefficient – but few existing edge systems include 
such correction. Additionally, sensors for carbon sink data have disparate sampling 
frequencies, requiring edge nodes to perform multi-rate data fusion to align time series, 
but current edge algorithms lack this capability, leading to inconsistent data inputs for 
carbon sink models. Third, edge nodes rarely participate in carbon sink calculation 
pipelines, limiting their ability to support real-time accounting. Most edge IoT systems 
only pre-process data and transmit it to the cloud, where carbon sink calculations are 
performed – this means real-time carbon sink results still depend on cloud latency even if 
reduced by pre-processing, and edge nodes cannot generate on-site carbon sink estimates 
for immediate decision-making. 
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2.3 Causal graph neural networks 

GNNs have become a powerful tool for environmental monitoring tasks due to their 
ability to model structured data – data with inherent relationships between entities, such 
as the spatial relationships between urban green space monitoring points (Mohsen, et al., 
2023). Traditional GNN variants include graph convolutional networks (GCNs) and 
GATs, both of which use graph convolutions to aggregate feature information from 
neighbouring nodes, enabling the model to capture spatial dependencies. The core 
formula of a GCN layer is 

( 1) ( ) ( )l l l+ =H AH W  (8) 

where H(l+1) is the feature matrix of nodes at the (l + 1)th layer, A  is the normalised 
adjacency matrix of the graph, a square matrix where A ij = 1 if there is a spatial 
relationship between node i and node j, 0 otherwise, normalised by node degrees to avoid 
feature scaling issues, H(l) is the feature matrix at the lth layer, and W(l) is the weight 
matrix for the lth layer learned during model training to extract meaningful features. 
GATs improve on GCNs by introducing an attention mechanism to weight the 
importance of neighbouring nodes, with the attention coefficient formula: 

( )( )
[ ]( )( )

( )

exp LeakyReLU

exp LeakyReLU

T
i j

ij T
i k

k i∈

  =


a Wh Wh

a Wh Wh






α  (9) 

where αij is the attention coefficient between node i and node j, a is the attention vector, 
hl and hj are the feature vectors of nodes i and j, W is the linear transformation matrix, || 
denotes vector concatenation, and N(i) is the set of neighbouring nodes of i. While GCNs 
and GATs excel at capturing spatial correlations, they have a critical limitation: they only 
model statistical correlations between nodes, not causal relationships – this means they 
cannot distinguish between direct causal drivers of carbon sinks and spurious 
correlations. This limitation leads to poor model generalisation: a GAT trained to predict 
carbon sinks in a temperate city may fail in a tropical city, as the correlational patterns 
between environmental variables and carbon sinks differ between climates, even if the 
causal mechanisms remain the same. 

CGNNs address this limitation by integrating causal inference with GNNs, combining 
the structured data modelling capabilities of GNNs with the causal relationship 
identification of causal inference. The CGNN workflow consists of two core steps: first, 
learn the causal structure of environmental variables using causal discovery algorithms; 
second, use this causal structure to guide GNN training, ensuring the model focuses on 
causal relationships rather than spurious correlations. Causal discovery algorithms aim to 
construct a directed acyclic graph (DAG) where nodes represent variables and directed 
edges represent causal relationships. A widely used causal discovery algorithm is the PC 
algorithm, which tests for conditional independence between variables to remove non-
causal edges. The PC algorithm uses mutual information to measure conditional 
independence: the mutual information between variables X and Y given a set of variables 
Z is: 
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, ,

( , | )( ; | ) ( , , ) log
( | ) ( | )X Y Z

p x y zI X Y Z p x y z dxdydz
p x z p y z

=   (10) 

where p(x, y, z) is the joint probability density function of X, Y, and Z, p(x, y|z) the 
conditional joint probability density of X and Y given Z, and p(x|z), p(y|z) are the 
conditional probability densities of X and Y given Z. If I(X;Y|Z) < ∈ is a small threshold), 
X and Y are considered conditionally independent given Z, and the edge between them is 
removed from the graph. Once the DAG is constructed, the CGNN uses it to modify the 
GNN aggregation process – for example, in a causal GAT, the attention coefficient aij is 
weighted by the causal strength between nodes i and j, resulting in the modified attention 
coefficient: 

causal
ij ij ijS= ⋅α α  (11) 

where Sij is the causal strength for a direct causal edge and Sij = 0 for no causal 
relationship. This modification ensures the GNN prioritises feature information from 
variables with direct causal effects on carbon sinks, reducing the influence of spurious 
correlations. 

CGNNs have shown promising results in other environmental and engineering 
domains. In traffic prediction, CGNNs model causal relationships between traffic flow, 
weather, and road conditions, improving prediction accuracy by 12–18% compared to 
traditional GNNs. In water quality prediction, CGNNs capture causal links between 
hydrological factors and water quality parameters, enabling more accurate predictions of 
water pollution events even under unseen hydrological conditions. However, to date, no 
studies have applied CGNNs to urban carbon sink accounting, with three key challenges 
hindering their adoption. First, constructing a causal DAG that accurately reflects the 
mechanistic chain of urban carbon sink formation is complex – urban carbon sinks are 
influenced by a mix of natural and artificial factors, and the causal relationships between 
these factors are non-linear and context-dependent. This requires a DAG that can capture 
non-linear causal effects, which traditional causal discovery algorithms like the PC 
algorithm, which assumes linear relationships struggle to model. Second, integrating 
heterogeneous multi-source edge IoT data into causal discovery is challenging – edge IoT 
data for carbon sink accounting includes continuous variables, categorical variables, and 
count variables, and most causal discovery algorithms are designed for single-type data, 
requiring specialised pre-processing that can introduce biases if not done carefully. Third, 
optimising the GNN architecture based on the causal DAG to balance model complexity 
and computational efficiency is non-trivial – while a more complex GNN can capture 
detailed causal relationships, it requires more computing resources, which is a problem 
for edge nodes with limited processing power. Finding a lightweight CGNN architecture 
that can run on edge nodes while maintaining high accuracy remains an unresolved issue 
(Necula, 2023). 
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3 Preliminaries 

3.1 Edge IoT technology and urban carbon sink accounting basics 

Edge IoT systems designed for urban carbon sink monitoring rely on three interconnected 
core components to achieve real-time, high-quality data acquisition and preliminary 
processing. The first component is multi-source sensors, which are deployed across urban 
green spaces and water bodies to collect data on variables that directly or indirectly 
influence carbon sink capacity. These sensors capture vegetation-related data including 
normalised vegetation index, chlorophyll content, soil-related data including soil 
moisture, soil organic carbon content, atmospheric data including CO₂ concentration, air 
temperature, air humidity, and meteorological data including precipitation, solar radiation 
– all of which are essential for comprehensively assessing carbon sink dynamics (Nguyen 
et al., 2023). The second component is edge nodes, which are equipped with 
microprocessors such as Raspberry Pi 4 and communication modules including LoRa and 
NB-IoT. These edge nodes are placed in close proximity to sensor clusters usually within 
100–500 metres to perform real-time pre-processing tasks including data cleaning, 
feature extraction, and data fusion, which reduces the volume of data that needs to be 
transmitted to the cloud and avoids redundant information. The third component is the 
cloud platform, which is responsible for storing pre-processed data, training the 
subsequent CGNN model, and presenting final carbon sink accounting results to users 
through visual interfaces (Pimenow et al., 2025). 

A critical performance metric for edge IoT systems in carbon sink monitoring is data 
transmission latency, which is defined as the total time from when a sensor collects raw 
data to when the pre-processed data is successfully stored in the cloud platform. For  
real-time urban carbon sink accounting – where timely adjustments to green space 
management or low-carbon policies may be required – this latency must be less than 0.5 
seconds. The latency of the edge IoT system is calculated using the formula: 

s p tT T T T= + +  (12) 

where T represents the total data transmission latency, Ts is the sensor sampling time 
taken for a sensor to collect a single piece of data, typically ranging from 0.01 to 0.1 s 
depending on the sensor type; for example, CO₂ sensors sample faster than soil organic 
carbon sensors, Tp is the edge pre-processing time taken for edge nodes to clean, extract 
features from, and fuse raw data, usually between 0.1 and 0.2 s, and Ts is the data 
transmission time taken for pre-processed data to be transmitted from edge nodes to the 
cloud platform via communication modules like LoRa or NB-IoT, generally ranging from 
0.1 to 0.2 s. This latency performance stands in stark contrast to cloud-centric IoT 
systems, where the data transmission time Ts alone often exceeds 1 second – this is 
because cloud-centric systems transmit large volumes of unprocessed raw data, which 
occupies more network bandwidth and leads to significant delays. 

Urban carbon sinks are primarily composed of three interconnected pools: vegetation 
carbon sinks, soil carbon sinks, and aquatic carbon sinks, with vegetation carbon sinks 
accounting for 60–70% of the total urban carbon sink capacity. Accurate calculation of 
each pool’s carbon sink capacity is the foundation of overall carbon sink accounting. For 
vegetation carbon sinks, the total carbon storage Cveg is the sum of aboveground carbon 
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storage Cabove and belowground carbon storage Cbelow. The aboveground carbon storage 
Cabove is calculated using the formula: 

above aboveC M γ= ×  (13) 

where Mabove the aboveground biomass of vegetation，and γ = 0.5 is the standard carbon 
content coefficient for terrestrial vegetation. For woody plants such as urban trees, Mabove 
is estimated using the species-specific allometric equation: 

b c
aboveM a DBH H= × ×  (14) 

where a, b, c are coefficients calibrated for specific tree species, DBH is the diameter of 
the tree trunk measured at 1.3 metres above the ground, and H is the total height of the 
tree. For herbaceous plants such as urban grasslands, Mabove is calculated as: 

aboveM d coverage height= × ×  (15) 

where d is the biomass coefficient for herbaceous plants, is the vegetation coverage rate, 
and height he average height of the herbaceous layer. The belowground carbon storage 
Cbelow is derived from the aboveground carbon storage using the formula: 

below aboveC C r= ×  (16) 

where r is the root-to-shoot ratio. 
For soil carbon sinks, the total carbon storage is calculated using the formula: 

210soilC ρ D OC A −= × × × ×  (17) 

where ρ is the soil bulk density, D is the soil depth, OC is the soil organic carbon content, 
A is the area of the soil plot, and the factor 10–2 is used to convert the final result to tons 
of carbon (tC) to ensure consistency with other carbon sink pool units. 

For aquatic carbon sinks, the total carbon storage Caquatic over a specific period is 
calculated as: 

aquaticC δ P A= × ×  (18) 

where δ is the carbon sequestration rate of the aquatic ecosystem, P is the area of the 
water body, and A is the accounting period. 

The total urban carbon sink capacity Ctotal is the sum of the three carbon sink pools, 
calculated as Ctotal = Cveg + Csoil + Caquatic. The primary goal of this study is to enhance the 
accuracy of Ctotal by improving the precision of each individual carbon sink pool 
calculation through high-quality data from edge IoT systems and the causal modelling 
capabilities of the CGNN. 

3.2 Basic principles of causal graph neural networks 

CGNNs integrate causal inference technology with traditional GNNs to address the 
limitation of GNNs that only capture statistical correlations rather than inherent causal 
relationships – this integration enables CGNNs to better model the mechanistic  
links between environmental factors and carbon sink capacity, thereby improving 
generalisation in dynamic urban ecosystems. The operation of CGNNs relies on two core 
sequential steps: causal structure discovery and causal GNN training, which work 
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together to ensure the model learns meaningful causal patterns rather than spurious 
correlations (Rahman et al., 2023). 

The first step, causal structure discovery, aims to infer a DAG G = (V, E) that 
represents the causal relationships between variables related to urban carbon sinks. In this 
graph, V denotes the set of variables, and E denotes the set of directed edges. This study 
adopts the PC algorithm – a widely used constraint-based causal discovery method – to 
construct the DAG. The PC algorithm operates in three key stages: it first initialises a 
fully connected undirected graph where every pair of variables in V is connected by an 
undirected edge; it then iteratively removes edges between variables that are 
conditionally independent given a subset of other variables; finally, it orients the 
remaining undirected edges into directed edges using conditional independence 
constraints to form a valid DAG with no cycles. 

To determine whether two variables X and Y are conditionally independent given a 
subset of variables Z, the PC algorithm uses mutual information I(X;Y|Z) – a measure of 
the amount of information that one variable provides about another when a third set of 
variables is held constant. The mutual information is defined by the formula: 

, ,

( , | )( ; | ) ( , , ) log
( | ) ( | )X Y Z

p x y zI X Y Z p x y z dxdydz
p x z p y z

=   (19) 

where p(x, y, z) represents the joint probability density function of variables X, Y and Z, 
p(x, y|z) represents the conditional joint probability density function of X and Y given Z, 
which represent the conditional probability density functions of X and Y given Z, 
respectively. If the calculated mutual information I(X, Y|Z) is less than a small threshold , 
variables X and Y are considered conditionally independent given Z, and the edge 
between them is removed from the graph – this ensures that only variables with 
meaningful causal associations are retained. 

The second step, causal GNN training, uses the inferred DAG G to guide the training 
process of the GNN, ensuring that the model prioritises information from variables with 
strong causal effects on carbon sinks. This study adopts the GAT as the base GNN 
architecture because its attention mechanism allows for flexible weighting of neighbour 
node information – an attribute that can be modified to emphasise causal relationships. 
The core of the GAT layer is the update rule for node features, which is defined by the 
formula ( 1) ( ) ( )

( )

.l l l
i ij j

j i

h σ α W h+

∈

 =
 
 



 In this formula, ( )l
ih  represents the feature vector of 

node i at the lth layer of the GNN, N(i) represents the set of neighbour nodes of i in the 
DAG G, W(l) represents the weight matrix at the lth layer, αij represents the attention 
coefficient between node i and node j, and σ represents the activation function. 

To integrate causal information into the GAT, the attention coefficient αij is weighted 
by the causal strength Sij between node i and node j – a value estimated during the causal 
structure discovery step. The modified causal attention coefficient is defined by the 
formula: 

( )( )
[ ]( )( )

causal

( )

exp LeakyReLU ||

exp LeakyReLU ||

T
i j ij

ij T
i k ik

k i

a Wh Wh S
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α  (20) 
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where a represents the attention vector, and || denotes the concatenation operation. This 
modification ensures that the GNN assigns higher weights to neighbour nodes with strong 
causal effects on the target node – for example, when updating the feature vector of Cveg, 
the model will prioritise information from air temperature over wind speed, thereby 
improving the model’s interpretability and robustness in varying urban environmental 
conditions. 

4 Design of edge IoT data acquisition system for urban carbon sink 
monitoring 

The edge IoT data acquisition system for urban carbon sink monitoring is designed with a 
four-layer architecture – sensor layer, edge layer, network layer, and cloud layer – that 
collaboratively enables real-time, multi-source data collection and pre-processing, 
forming the technical foundation for high-precision carbon sink accounting. The sensor 
layer involves deploying diverse sensors across urban green spaces such as parks, street 
tree corridors, and wetlands to capture carbon sink-related data, categorised by target 
variables: vegetation sensors include NDVI sensors and chlorophyll content sensors; soil 
sensors consist of moisture sensors and organic carbon sensors; atmospheric sensors 
encompass CO₂ concentration sensors, temperature and humidity sensors; meteorological 
sensors include precipitation sensors and solar radiation sensors (Sebestyén et al., 2021). 
All sensors undergo monthly calibration to mitigate drift-induced errors. The edge layer 
comprises edge nodes positioned within 100 metres of sensor clusters to minimise 
transmission distance, each equipped with a Raspberry Pi 4 microprocessor, LoRa and 
NB-IoT communication modules, and a 16GB SD card for local data caching. The 
Raspberry Pi 4 was selected as the edge computing device after evaluating several 
alternatives based on its optimal balance of computational capability, memory capacity, 
power consumption, cost, and extensive software ecosystem support. This  
cost-performance trade-off makes it particularly suitable for scalable urban deployments 
where both processing power and budget constraints are critical considerations. This 
layer executes three core functions: data reception, collecting sensor data via LoRa or 
USB; real-time pre-processing, involving data cleaning, correction, and fusion to enhance 
quality; and local storage with transmission, caching pre-processed data for 72 hours as 
backup and sending it to the cloud via NB-IoT, which offers low latency and wide 
coverage (Song et al., 2024). The network layer employs a hybrid communication 
network combining LoRa and NB-IoT: LoRa connects sensors to edge nodes with a 
transmission distance of 500–1,000 metres and latency < 0.1s, while NB-IoT links edge 
nodes to the cloud with a transmission distance of 1–10 km and latency < 0.2 s, balancing 
coverage, latency, and power consumption to adapt to urban environments with complex 
building layouts that may block signals. The cloud layer provides long-term data storage, 
model training, and user services, utilising a database to store pre-processed data and a 
TensorFlow-based platform for CGNN model training, alongside a user interface 
displaying real-time carbon sink results, historical trends, and early warnings for 
abnormal changes such as sudden declines due to pest infestations. 

The designed multi-layer Edge IoT system architecture, encompassing the sensor 
layer, edge layer, network layer, and cloud layer, is illustrated in Figure 1. This 
architecture collaboratively enables real-time, multi-source data collection and  
pre-processing, forming the technical foundation for high-precision carbon sink 
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accounting. The sensor layer involves deploying diverse sensors across urban green 
spaces, while the edge layer performs critical pre-processing tasks including data 
cleaning, sensor drift correction, and multi-source data fusion to enhance data quality and 
reduce transmission volume. 

Figure 1 Overall architecture of the multi-layer edge IoT system for urban carbon sink 
monitoring (see online version for colours) 
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As depicted in the architecture, pre-processed data is transmitted to the cloud platform via 
hybrid communication networks for long-term storage and model training. The 
integration of these components ensures a significant reduction in data transmission 
latency to below 0.5 seconds and provides high-quality, causal-ready input data for the 
subsequent CGNN model, effectively addressing the limitations of cloud-centric systems. 

Edge data pre-processing is critical for improving data quality and reducing 
transmission volume, with the edge layer implementing three key algorithms. Data 
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cleaning removes abnormal values from sensor errors or environmental interference 
through two methods: range filtering, eliminating data outside the physical range of 
variables; and moving average filtering, reducing noise by replacing each data point with 
the average of itself and neighbouring points in a sliding window. The window size w is 
determined by sampling frequency, calculated as: 

/2

/2

1 i w
clean
i k

k i w

x x
w

+

= −

=   (21) 

where clean
ix  is the cleaned value at time i and xk is the raw value at time k, reducing noise 

by 30–40% while preserving data trends. Sensor drift correction addresses accuracy 
degradation from drift using temperature-based models: for CO₂ sensors, the correction 
formula is: 

( )0corr rawC C k T T= − × −  (22) 

where Craw is the corrected concentration, which is the raw reading, T is current 
temperature, and k is the drift coefficient; soil moisture sensors use soil temperature 
adjustments to counter reduced sensitivity at high temperatures. Multi-source data fusion 
integrates data from sensors with varying sampling frequencies into a unified 5-minute 
interval time series. For higher-frequency sensors, linear interpolation is used, while 
lower-frequency sensors use moving averages. For a target time t, the fused value of 
variable X is: 
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
 (23) 

where tk–1 < t < tk are adjacent sampling times, n = 2, and m = 12, reducing total data 
volume by 65% and lowering transmission latency significantly. 

System deployment targets a medium-sized city across three typical urban green 
space types: 3 urban parks, 5 street tree corridors, and 2 urban wetlands, with 120 sensors 
and 20 edge nodes deployed, the latter positioned at green space intersections to 
maximise coverage. Energy management is vital for long-term operation, particularly for 
battery-powered sensors like soil moisture sensors, employing two strategies: low-power 
sensors with consumption < 10 mA; and adaptive sampling, adjusting frequency based on 
environmental stability – increasing to 1-minute intervals during extreme weather and 
reducing to 30-minute intervals during stable periods – cutting energy consumption by 
40–50% and extending battery life to 6–12 months. Edge nodes are powered by 10 W 
solar panels paired with 10,000 mAh lithium-ion batteries, ensuring 72-hour continuous 
operation in cloudy weather, while the cloud layer uses an 8-core CPU server with 32 GB 
RAM and 1TB SSD, providing sufficient computing power for data storage and CGNN 
model training. 

Following the deployment of the edge IoT system across urban green spaces, a four-
week field test was conducted to evaluate the stability and efficiency of its core 
functionality under real-world conditions. Figure 2 presents the key performance metric 
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of for the proposed system and two comparative configurations over the test period. The 
Proposed Edge IoT System maintains consistently low and stable latency across all 
weeks, demonstrating the robustness of our integrated edge pre-processing and hybrid 
communication network design. In contrast, the edge system fusion exhibits higher and 
more variable latency, underscoring the critical role of multi-source data fusion in 
reducing transmission load. As expected, the Cloud-centric system incurs significantly 
and consistently higher latency due to the transmission of raw data. These results validate 
the effectiveness of our edge-layer design choices in achieving the low-latency data 
acquisition goals set forth in this Section. 

Figure 2 Performance stability of edge IoT system over time (see online version for colours) 
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To further evaluate system reliability, we monitored packet loss rate and operational 
stability throughout the four-week test, including during adverse weather conditions. The 
system maintained an average packet loss rate of 2.3%, with maximum rates reaching 
4.1% during the most severe weather events. This performance demonstrates the 
robustness of our hybrid LoRa/NB-IoT communication design, which automatically 
switches transmission paths when signal quality degrades. Additionally, edge nodes 
maintained continuous operation throughout the testing period, with no node failures 
recorded, confirming the stability of both hardware components and pre-processing 
algorithms under real-world urban conditions. 

5 Causal graph neural network model construction for urban carbon sink 
accounting  

The construction of the CGNN model focuses on integrating causal inference into GNNs 
to capture the intrinsic mechanistic relationships between environmental factors and 
urban carbon sink capacity, addressing the limitation of traditional models that rely on 
spurious correlations. This process involves two interconnected phases: targeted causal 
structure discovery for carbon sink-related variables and the design of a causal-enhanced 
graph neural network architecture, both optimised to adapt to the multi-source 
heterogeneous data from the edge IoT system. First, causal structure discovery is tailored 
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to the characteristics of urban carbon sink data, which includes continuous variables, 
semi-continuous variables, and derived variables. Before applying the PC algorithm, the 
edge IoT-derived data undergoes two key pre-processing steps to ensure reliability: 
variable normalisation and outlier reprocessing. Variable normalisation uses the min-max 
scaling method to map all variables to a uniform range, eliminating the impact of 
different units on causal discovery. Outlier reprocessing builds on the edge layer’s data 
cleaning by further removing extreme values that may distort causal relationships, with 
values beyond a specific range replaced with the nearest non-outlier value based on 
quartile calculations (Song et al., 2023). 

After pre-processing, the PC algorithm is adapted to infer the causal DAG for carbon 
sink variables. During this causal discovery process, we encountered challenges related to 
high-dimensional data and potential unobserved confounders. To mitigate these issues, 
we enhanced the standard PC algorithm in two ways: First, we employed kernel density 
estimation for mutual information calculation to better capture non-linear relationships 
between variables. Second, we conducted sensitivity analysis by iteratively applying the 
PC algorithm to different data subsets and validating the consistency of recovered edges, 
thus reducing the risk of spurious causal links due to unobserved confounding. The final 
DAG includes only edges that persisted across multiple sensitivity tests, enhancing the 
robustness of the discovered causal structure. To address non-linear relationships 
between variables, the mutual information calculation in the original PC algorithm is 
enhanced with a kernel density estimation method to approximate joint probability 
density functions. The threshold for conditional independence is dynamically adjusted 
based on variable types, ensuring that weak but meaningful causal links are not 
mistakenly removed. The final inferred DAG includes 12 core variables and 18 directed 
edges, with key causal paths clearly identified. 

On the basis of the causal DAG, the CGNN model adopts a two-layer GAT as the 
base architecture, with modifications to the attention mechanism and training process to 
prioritise causal information. The first layer focuses on fusing environmental variable 
features according to causal relationships, while the second layer maps the aggregated 
features to the final carbon sink capacity. For the causal feature aggregation layer, the 
attention coefficient is redefined to incorporate the causal strength between nodes, which 
is quantified by conditional mutual information after removing other variables, ensuring 
it ranges within a standard interval. 

The output of the first layer is passed to the carbon sink prediction layer, which uses a 
linear transformation followed by a sigmoid activation function to predict total carbon 
sink capacity, scaled to cover the typical range of urban carbon sinks. 

The model training process uses the Adam optimiser with a dynamically adjusted 
learning rate and a fixed batch size. The loss function adopts mean squared error (MSE) 
combined with a causal regularisation term to enforce consistency between the model’s 
attention weights and the inferred DAG. Training stops when the validation loss remains 
unchanged for a consecutive number of epochs, ensuring the model avoids overfitting to 
training data. 

The efficacy of the proposed CGNN architecture is preliminarily validated by 
examining its training dynamics. Figure 3 illustrates the convergence behaviour of the 
proposed CGNN model against two baseline GNN architectures – traditional GAT and 
GCN – by plotting the training loss over successive epochs. The CGNN model, 
empowered by its embedded causal structure, demonstrates a markedly steeper and 
smoother descent in loss, achieving convergence significantly faster and to a lower 
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optimum than the other models. This indicates that the causal priors provide a more 
informative learning signal, effectively guiding the optimisation process towards the true 
underlying data-generating mechanisms. In contrast, the Traditional GAT model, which 
relies solely on spatial correlations, converges more slowly and less stably. The GCN 
model, with its simpler architecture, exhibits the slowest convergence and the highest 
final loss. This comparative analysis during the training phase underscores the intrinsic 
advantage of the CGNN design, setting the stage for its superior performance in the final 
accounting task demonstrated in the next Section. 

Figure 3 Training convergence comparison of GNN architectures (see online version for colours) 
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6 Experimental results and analyses 

To verify the performance of the proposed edge IoT-CGNN framework in urban carbon 
sink accounting, experiments were conducted using real-world monitoring data from a 
medium-sized city, with comprehensive comparisons against mainstream methods to 
evaluate latency, accuracy, and robustness. The experimental dataset was collected by the 
edge IoT system deployed across 10 monitoring sites covering different urban green 
space types, and data collection spanned one full year to capture seasonal variations in 
carbon sinks – resulting in 8,760 hourly samples that included 12 input variables related 
to environmental conditions and carbon sink components, plus one target variable 
representing total carbon sink capacity (Tian et al., 2025). Ground-truth values for the 
target variable were obtained via regular field surveys to ensure calibration and validation 
reliability, and the dataset was split using stratified sampling into training, validation, and 
test sets. Three mainstream methods were selected for comparison: edge IoT + traditional 
GAT, edge IoT + SVM, and Cloud IoT + traditional GNN. Four key evaluation indicators 
were used: data transmission latency, accounting accuracy, MSE, and mean absolute 
error. Experimental hardware included dedicated microprocessors for edge node  
pre-processing and a high-performance server with multi-core CPUs, dedicated GPUs, 
and large-capacity RAM for model training/inference; the CGNN model was configured 
with two GAT layers, a fixed hidden layer dimension, and a dropout rate to prevent 
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overfitting, while comparison methods were optimised with architecture-matching 
parameters. Vegetation biomass was measured using species-specific allometric 
equations with manual sampling of DBH and tree height; soil carbon content was 
determined through core sampling and laboratory analysis; aquatic carbon sequestration 
was estimated using submerged incubation chambers. To ensure measurement 
consistency, all field surveys were conducted by a team of three trained ecologists, with 
inter-rater reliability analysis showing an intraclass correlation coefficient (ICC) of 0.96, 
indicating excellent agreement in biomass measurements. 

The edge IoT-CGNN framework demonstrated significant advantages in latency 
performance, achieving an average total latency that met real-time requirements for urban 
carbon sink accounting – with time evenly allocated across sensor sampling, edge  
pre-processing, and data transmission. In contrast, the cloud IoT + Traditional GNN 
method exhibited much higher latency, primarily due to the large volume of raw data 
transmitted to remote servers, which caused bandwidth congestion and prolonged 
transmission times, making it unsuitable for scenarios requiring timely green space 
management adjustments. Comprehensive performance across evaluation indicators is 
shown in Table 1, where the edge IoT-CGNN framework achieved the highest 
accounting accuracy and the lowest MSE, outperforming all comparison methods. 
Compared to edge IoT + traditional GAT, the CGNN framework showed notable 
accuracy improvement and significant error reduction, confirming that integrating causal 
information effectively reduces reliance on spurious correlations; against edge IoT + 
SVM, it maintained higher accuracy and lower error, as its graph-based architecture 
better captures spatial dependencies between monitoring sites critical for consistent urban 
carbon sink accounting. The cloud IoT + traditional GNN method performed worst across 
all indicators, affected by both high transmission latency and unprocessed raw data noise 
that degraded model input quality. Seasonal performance analysis further highlighted the 
CGNN framework’s robustness: while comparison methods showed significant accuracy 
drops in specific seasons, the CGNN framework maintained stable high accuracy across 
all seasons, attributed to its causal structure that retains core mechanistic relationships 
between variables even as seasonal patterns shift – avoiding performance degradation 
from fluctuating correlational patterns in traditional models. An ablation study evaluating 
the impact of edge pre-processing confirmed its critical role: three variants of the edge 
IoT-CGNN framework all showed reduced accuracy and increased error metrics, with 
omitting multi-source data fusion leading to the most significant performance drop, 
underscoring the importance of pre-processing for ensuring high-quality data input to the 
CGNN model. 
Table 1 Comparison of performance across different methods 

Method Data transmission 
latency (s) 

Accounting 
accuracy (%) MSE (tC²/ha²) MAE (tC/ha) 

Edge IoT-CGNN 0.18 94.7 0.012 0.98 
Edge IoT + 
traditional GAT 

0.20 86.2 0.045 1.85 

Edge IoT + SVM 0.21 82.9 0.068 2.31 
Cloud IoT + 
traditional GNN 

1.24 79.3 0.089 2.76 
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As shown in Table 2, three variants of the Edge IoT-CGNN framework all showed 
reduced accuracy and increased error metrics. Removing the causal attention mechanism 
CGNN w/o causal attention resulted in an 5.5% accuracy drop, demonstrating the 
importance of causal structure guidance. Omitting edge pre-processing CGNN w/o edge 
pre-processing caused even greater performance degradation 9.1% accuracy decrease, 
highlighting the value of data quality enhancement at the edge. Most significantly, 
disabling multi-source data fusion CGNN w/o data fusion led to the most substantial 
performance drop 13.4% accuracy reduction, underscoring the necessity of integrating 
heterogeneous environmental data for comprehensive carbon sink accounting. 
Table 2 Ablation study results of edge IoT-CGNN framework components 

Model variant Accounting accuracy (%) MSE (tC²/ha²) MAE (tC/ha) 
Full edge IoT-CGNN 94.7 0.012 0.98 
w/o causal attention 89.2 0.038 1.72 
w/o edge pre-processing 85.6 0.061 2.24 
w/o data fusion 81.3 0.095 2.89 

Figure 4 Three-dimensional performance comparison of accounting methods (see online version 
for colours) 

 

The superior performance of the proposed edge IoT-CGNN framework is further 
visualised in Figure 4, which plots the comparative results of all methods across three 
critical dimensions: data transmission latency, accounting accuracy, and MSE. The ideal 
operating point in this three-dimensional space is characterised by the lowest latency, 
highest accuracy, and smallest error, corresponding to the front-top-left corner of the 
graph. As clearly demonstrated, one data point – representing our proposed framework – 
consistently occupies this optimal region. In stark contrast, the data points corresponding 
to the three baseline methods are located in distinctly separate and suboptimal regions of 
the space, exhibiting higher latency, lower accuracy, and/or larger errors. This spatial 
separation provides a powerful visual confirmation of the quantitative results presented in 
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Table 1, unequivocally demonstrating the comprehensive superiority and balanced 
performance of our integrated approach. 

To assess model performance on edge cases, we evaluated the framework on two 
newly developed green areas undergoing rapid ecological change. In these challenging 
scenarios, the CGNN framework maintained an accuracy of 91.5%, significantly 
outperforming Traditional GAT (85.2%) and SVM (79.8%). This robustness can be 
attributed to the model’s causal structure, which captures fundamental mechanistic 
relationships that remain valid even in rapidly changing environments, unlike  
correlation-based approaches that rely on stable statistical patterns. Future enhancements 
will include continuous learning mechanisms to further adapt to dynamic urban 
landscapes. 

7 Conclusions 

This study developed an edge CGNN framework to comprehensively address the 
persistent challenges of high latency, low accuracy, and poor generalisation in urban 
carbon sink accounting. The proposed four-layer edge IoT architecture – comprising 
sensor, edge, network, and cloud layers – effectively facilitates real-time multi-source 
data acquisition and intelligent pre-processing at the network periphery. By deploying 
heterogeneous sensors across varied urban green spaces and utilising Raspberry Pi-based 
edge nodes equipped with LoRa and NB-IoT communication modules, the system 
achieves a significant reduction in data transmission latency to 0.18 seconds. This is 
made possible through dedicated pre-processing routines including sensor drift 
correction, adaptive data cleaning, and multi-rate data fusion, which collectively enhance 
data quality while alleviating bandwidth constraints. Moreover, the integrated CGNN 
model leverages a causal discovery-driven approach using an improved PC algorithm to 
infer meaningful environmental variable relationships and incorporates these causal 
structures into a GAT. This dual design ensures that the model captures underlying 
mechanistic processes – such as the direct impact of temperature on photosynthesis – 
rather than relying on spurious correlations, thereby substantially improving both 
interpretability and predictive robustness. 

Experimental validation conducted on a year-long dataset from diverse urban green 
spaces demonstrates the superior performance of the edge IoT-CGNN framework, which 
achieved an impressive carbon sink accounting accuracy of 94.7%. The proposed 
framework outperformed all baseline methods, including edge IoT with traditional GAT, 
edge IoT with SVM, and Cloud IoT with traditional GNN, by a notable margin of over 
8.5%. Furthermore, the framework exhibited significantly lower MSE and mean absolute 
error, underscoring its high prediction precision. Crucially, the model maintained 
consistent performance across seasonal variations, highlighting its generalisation 
capability in dynamic urban environments where traditional correlation-based models 
often fail. Ablation studies further confirmed the critical roles of edge pre-processing and 
causal feature integration, with the omission of multi-source data fusion leading to the 
most substantial decline in model accuracy. These results collectively affirm that the 
synergy between low-latency edge computing and causal graph neural learning 
establishes a new benchmark for reliable and real-time carbon sink monitoring. While the 
proposed framework demonstrates excellent performance in our experimental setting, its 
scalability to city-wide implementation warrants discussion. Based on our deployment 
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experience, the hardware cost for a single monitoring point is approximately $250–300. 
Scaling to cover a medium-sized city with ~500 major green spaces would require an 
initial investment of $125,000–150,000, with additional maintenance overhead for 
regular sensor calibration and software updates. This represents a potential limitation for 
resource-constrained municipalities. Future work will therefore focus on developing more 
cost-effective sensor alternatives and optimising the CGNN model for reduced 
computational requirements, thereby enhancing the economic viability of city-wide 
deployment. 

Looking forward, several promising directions emerge for extending this research. 
Future work will focus on augmenting the existing sensor network to incorporate 
hyperspectral imaging sensors, enabling finer-grained monitoring of vegetation 
physiological traits such as chlorophyll fluorescence and water stress indicators. 
Additionally, efforts will be devoted to developing lightweight and quantised CGNN 
variants suitable for deployment directly on resource-constrained edge nodes, thereby 
supporting fully decentralised and real-time carbon sink accounting without reliance on 
cloud infrastructure. The integration of transfer learning and meta-causal discovery 
mechanisms may further enhance model adaptability across cities with varying climatic 
and ecological profiles. Ultimately, this framework is poised to serve as a critical tool for 
urban planners and environmental policymakers, providing actionable, high-frequency 
carbon sink assessments that can inform targeted green space management, optimise 
carbon sequestration strategies, and contribute meaningfully to urban carbon neutrality 
goals. 
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